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Abstract

We propose a network characterization of combinatorial fit-
ness landscapes by adapting the notion ofinherent networks
proposed for energy surfaces (3). We use the well-known
family of NK landscapes as an example. In our case the in-
herent network is the graph where the vertices represent the
local maxima in the landscape, and the edges account for the
transition probabilities between their corresponding basins of
attraction. We exhaustively extracted such networks on rep-
resentative smallNK landscape instances, and performed a
statistical characterization of their properties. We found that
most of these network properties can be related to the search
difficulty on the underlyingNK landscapes with varying val-
ues ofK.

Introduction
Local optima are the very feature of a landscape that makes
it rugged. Therefore, an understanding of the distribution
of local optima is of utmost importance for the understand-
ing of a landscape. Combinatorial landscapes refer to the fi-
nite search spaces generated by important discrete problems
such as the traveling salesman problem and many others. A
property of some combinatorial landscapes, which has been
often observed, is that on average, local optima are much
closer to the optimum than are randomly chosen points, and
closer to each other than random points would be. In other
words, the local optima are not randomly distributed, rather
they tend to be clustered in a ”central massif” (or ”big val-
ley” if we are minimising). This globally convex landscape
structure has been observed in theNK family of landscapes
(6), and in other combinatorial optimization problems, such
as the traveling salesman problem (2), graph bipartitioning
(7), and flowshop scheduling (9).

In this study we seek to provide fundamental new in-
sights into the structural organization of the local optimain
NK landscapes, particularly into the connectivity of their
basins of attraction. Combinatorial landscapes can be seen
as a graph whose vertices are the possible configurations. If
two configurations can be transformed into each other by a
suitable operator move, then we can trace an edge between
them. The resulting graph, with an indication of the fitness

at each vertex, is a representation of the given problem fit-
ness landscape. A useful simplification of the graphs for
the energy landscapes of atomic clusters was introduced in
(3; 4). The idea consists in taking as vertices of the graph
not all the possible configurations, but only those that cor-
respond to energy minima. For atomic clusters these are
well-known, at least for relatively small assemblages. Two
minima are considered connected, and thus an edge is traced
between them, if the energy barrier separating them is suffi-
ciently low. In this case there is a transition state, meaning
that the system can jump from one minimum to the other
by thermal fluctuations going through a saddle point in the
energy hyper-surface. The values of these activation ener-
gies are mostly known experimentally or can be determined
by simulation. In this way, a network can be built which is
called the “inherent structure” or “inherent network” in (3).
We propose a network characterization of combinatorial fit-
ness landscapes by adapting the notion ofinherent networks
described above. We use the well-known family ofNK
landscapes as an example because they are a useful tun-
able benchmark that can provide interesting information for
more realistic combinatorial landscapes. In our case the in-
herent network is the graph where the vertices are all the
local maxima and the edges account for transition probabil-
ities between their corresponding basins of attraction. We
exhaustively extract such networks on representative small
NK landscape instances, and perform a statistical charac-
terization of their properties. Our analysis was inspired,in
particular, by the work of (3; 4) on energy landscapes, and
in general, by the field of complex networks (8). The study
of networks has exploded across the academic world since
the late 90’s. Researchers from the mathematical, biologi-
cal, and social sciences have made substantial progress on
some previously intractable problems, bringing new tech-
niques, reformulating old ideas, and uncovering unexpected
connections between seemingly different problems. We aim
here at bringing the tools of network analysis for the study
of problem hardness in combinatorial optimization.
The next section describes how combinatorial landscapes
are mapped onto networks, and includes the relevant def-



initions and algorithms used in our study. The empirical
network analysis of our selectedNK landscape instances
is presented next, followed by our conclusions and ideas for
future work.

Landscapes as Networks

To model a physical energy landscape as a network, (4)
needed to decide first on a definition both of a state of the
system and how two states were connected. The states and
their connections will then provide the nodes and edges of
the network. For systems with continuous degrees of free-
dom, the author achieved this through the ‘inherent struc-
ture’ mapping. In this mapping each point in configuration
space is associated with the minimum (or ‘inherent struc-
ture’) reached by following a steepest-descent path from that
point. This mapping divides the configuration space into
basins of attraction surrounding each minimum on the en-
ergy landscape.

Our goal is to adapt this idea to the context of combina-
torial optimization. In our case, the nodes of the graph can
be straightforwardly defined as the local maxima of the land-
scape. These maxima are obtained exhaustively by running a
best-improvement local search algorithm (HillClimbing, see
Algorithm 1) from every configuration of the search space.
The definition of the edges, however, is a much more del-
icate matter. In our initial attempt (10) we considered that
two maximai andj were connected (with an undirected and
unweighted edge), if there exists at least one pair of solu-
tions at Hamming distance onesi andsj , one in each basin
of attraction (bi and bj). We found empirically on small
instances ofNK landscapes, that such definition produced
densely connected graphs, with very low (≤ 2) average path
length between nodes for allK. Therefore, apart from the
already known increase in the number of optima with in-
creasingK, no other network property accounted for the
increase in search difficulty. Furthermore, a single pair of
neighbors between adjacent basins, may not realistically ac-
count for actual basin transitions occurring when using com-
mon heuristic search algorithms. These considerations, mo-
tivated us to search for an alternative definition of the edges
connecting local optima. In particular, we decided to as-
sociate weights to the edges that account for the transition
probabilities between the basins of attraction of the local
optima. More details on the relevant algorithms and formal
definitions are given below.

Definitions and Algorithms

Definition: Fitness landscape.
A landscape is a triplet(S, V, f) whereS is a set of potential
solutions i.e. a search space,V : S −→ 2S , a neighborhood
structure, is a function that assigns to everys ∈ S a set of
neighborsV (s), andf : S −→ R is a fitness function that
can be pictured as theheightof the corresponding solutions.

In our study, the search space is composed by binary
strings of lengthN , therefore its size is2N . The neighbor-
hood is defined by the minimum possible move on a binary
search space, that is, the 1-move or bit-flip operation. In
consequence, for any given strings of lengthN , the neigh-
borhood size is|V (s)| = N .

TheHillClimbing algorithm to determine the local op-
tima and therefore define the basins of attraction, is given
below:

Algorithm 1 HillClimbing
Choose initial solutions ∈ S
repeat

chooses
′

∈ V (s) such thatf(s
′

) = maxx∈V (s) f(x)

if f(s) < f(s
′

) then
s← s

′

end if
until s is a Local optimum

Definition: Local optimum.
A local optimum is a solutions∗ such that∀s ∈ V (s∗),
f(s) < f(s∗).
The HillClimbing algorithm defines a mapping from the
search spaceS to the set of locally optimal solutionsS∗.

Definition: Basin of attraction.
The basin of attraction of a local optimumi ∈ S is the set
bi = {s ∈ S |HillClimbing(s) = i}. The size of the basin
of attraction of a local optimai is the cardinality ofbi.

Definition: Edge weight.
Notice that for a non-neutral fitness landscapes, as areNK
landscapes, the basins of attraction as defined above, pro-
duce a partition of the configuration spaceS. Therefore,
S = ∪i∈S∗bi and∀i ∈ S ∀j 6= i, bi ∩ bj = ∅

For each solutionss ands
′

, let us definep(s → s
′

) as the
probability to pass froms to s

′

with the bit-flip operator. In
the case of binary strings of sizeN , and the neighborhood
defined by the bit-flip operation, there areN neighbors for
each solution, therefore:
if s

′

∈ V (s) , p(s→ s
′

) = 1
N

and
if s

′

6∈ V (s) , p(s→ s
′

) = 0.
We can now define the probability to pass from a solution
s ∈ S to a solution belonging to the basinbj , as:

p(s→ bj) =
∑

s
′∈bj

p(s→ s
′

)

Notice thatp(s→ bj) ≤ 1.
Thus, the total probability of going from basinbi to basinbj

is the average over alls ∈ bi of the transition probabilities
to solutionss

′

∈ bj :

p(bi → bj) =
1

♯bi

∑

s∈bi

p(s→ bj)



♯bi is the size of the basinbi. We are now prepared to define
our ‘inherent’ network or network of local optima.

Definition: Local optima network.
The local optima networkG = (S∗, E) is the graph where
the nodes are the local optima1, and there is an edgeeij ∈ E
with the weightwij = p(bi → bj) between two nodesi and
j if p(bi → bj) > 0.
According to our definition of weights,wij = p(bi → bj)
may be different thanwji = p(bj → bi). Two weights are
needed in general, and we have an oriented transition graph.

Empirical Basin and Network Analysis
TheNK family of landscapes (6) is a problem-independent
model for constructing multimodal landscapes that can grad-
ually be tuned from smooth to rugged. In the model,N
refers to the number of (binary) genes in the genotype (i.e.
the string length) andK to the number of genes that influ-
ence a particular gene (the epistatic interactions). By in-
creasing the value ofK from 0 toN − 1, NK landscapes
can be tuned from smooth to rugged. Thek variables that
form the context of the fitness contribution of genesi can be
chosen according to different models. The two most widely
studied models are therandom neighborhoodmodel, where
thek variables are chosen randomly according to a uniform
distribution among then− 1 variables other thansi, and the
adjacent neighborhoodmodel, in which thek variables that
are closest tosi in a total orderings1, s2, . . . , sn (using pe-
riodic boundaries). No significant differences between the
two models were found in (6) in terms of global properties
of the respective families of landscapes, such as mean num-
ber of local optima or autocorrelation length. Similarly, our
preliminary studies on the characteristics of theNK land-
scape optima networks did not show noticeable differences
between the two neighborhood models. Therefore, we con-
ducted our full study on the more general random model.

In order to avoid sampling problems that could bias the
results, we used the largest values ofN that can still be
analysed exhaustively with reasonable computational re-
sources. We thus extracted the local optima networks
of landscape instances withN = 14, 16, 18, and K =
2, 4, 6, ..., N − 2, N − 1. For each pair ofN andK values,
30 randomly generated instances were explored. Therefore,
the networks statistics reported below represent the average
behaviour of 30 independent instances.

Basins of Attraction

Besides the maxima network, it is useful to describe the
associated basins of attraction as these play a key role in
search algorithms. Furthermore, some characteristics of the
basins can be related to the optima network features. The no-
tion of the basin of attraction of a local maximum has been
presented before. We have exhaustively computed the size

1Since each maximum has its associated basin,G also describes
the interconnection of basins.

and number of all the basins of attraction forN = 16 and
N = 18 and for all evenK values plusK = N − 1. In
this section, we analyze the basins of attraction from several
points of view as it is described below.

Global optimum basin size versusK. In Fig. 1 we plot
the average size of the basin corresponding to the global
maximum forN = 16 andN = 18, and all values ofK
studied. The trend is clear: the basin shrinks very quickly
with increasingK. This confirms that the higher theK
value, the more difficult for an stochastic search algorithm
to locate the basin of attraction of the global optimum
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Figure 1: Average of the relative size of the basin corre-
sponding to the global maximum for each K over 30 land-
scapes.
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Figure 2: Cumulative distribution of the number of basins of
a given size with regression line. A representative landscape
with N = 18, K = 4 is visualized. A lin-log scale is used.

Number of basins of a given size. Fig. 2 shows the cu-
mulative distribution of the number of basins of a given
size (with regression line) for a representative instanceswith
N = 18, K = 4 . Table 1 shows the average (of 30 inde-
pendent landscapes) correlation coefficients and linear re-
gression coefficients (intercept (ᾱ) and slope (̄β)) between
the number of nodes and the basin sizes for instances with
N = 16, 18. Notice that distribution decays exponentially



Table 1: Correlation coefficient (ρ̄), and linear regression
coefficients (intercept (̄α) and slope (̄β)) of the relationship
between the basin size of optima and the cumulative num-
ber of nodes of a given (basin) size ( in logarithmic scale:
log(p(s)) = α + βs + ǫ). The average and standard devia-
tion values over 30 instances, are shown.

N = 16

K ρ̄ ᾱ β̄
2 −0.9440.0454 2.890.673 −0.00030.0002

4 −0.9590.0310 4.190.554 −0.00140.0006

6 −0.9670.0280 5.090.504 −0.00360.0010

8 −0.9820.0116 5.970.321 −0.00800.0013

10 −0.9850.0161 6.740.392 −0.01630.0025

12 −0.9900.0088 7.470.346 −0.03040.0042

14 −0.9940.0059 8.080.241 −0.05080.0048

15 −0.9950.0044 8.370.240 −0.06350.0058

N = 18

2 −0.9590.0257 3.180.696 −0.00010.0001

4 −0.9600.0409 4.570.617 −0.00050.0002

6 −0.9670.0283 5.500.520 −0.00150.0004

8 −0.9770.0238 6.440.485 −0.00370.0007

10 −0.9850.0141 7.240.372 −0.00770.0011

12 −0.9890.0129 7.980.370 −0.01500.0019

14 −0.9930.0072 8.690.276 −0.02720.0024

16 −0.9950.0056 9.330.249 −0.04500.0036

17 −0.9920.0113 9.490.386 −0.05440.0058

or faster for the lowerK and it is closer to exponential for
the higherK. This could be relevant to theoretical studies
that estimate the size of attraction basins (see for example
(5)). These studies often assume that the basin sizes are uni-
formly distributed, which is not the case for theNK land-
scapes studied here. From the slopesβ̄ of the regression
lines (table 1) one can see that high values ofK give rise to
steeper distributions (higher̄β values). This indicates that
there are fewer basins of large size for large values ofK.
Basins are thus broader for low values ofK, which is con-
sistent with the fact that those landscapes are smoother.

Fitness of local optima versus their basin sizes.The
scatter-plots in Fig. 3 illustrate the correlation betweenthe
basin sizes of local maxima (in logarithmic scale) and their
fitness values. Two representative instances forN = 18 and
K = 4, 8 are shown. Notice that there is a clear positive
correlation between the fitness values of maxima and their
basins’ sizes. In other words, the higher the peak the wider
tend to be its basin of attraction. Therefore, on average,
with a stochastic local search algorithm, the global optimum
would be easier to find than any other local optimum. This
may seem surprising. But, we have to keep in mind that as
the number of local optima increases (with increasingK),
the global optimum basin is more difficult to reach by a
stochastic local search algorithm (see Fig. 1). This obser-
vation offers a mental picture ofNK landscapes: we can
consider the landscape as composed of a large number of
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Figure 3: Correlation between the fitness of local optima
and their corresponding basin sizes, for two representative
instances withN = 18, K = 4 (top) andK = 8 (bottom).

mountains (each corresponding to a basin of attraction), and
those mountains are wider the taller the hilltops. Moreover,
the size of a mountain basin grows exponentially with its
hight.

General Network Statistics
We now briefly describe the statistical measures used for our
analysis of maxima networks.

The standard clustering coefficient (8) does not consider
weighted edges. We thus use theweighted clusteringmea-
sure proposed by (1), which combines the topological infor-
mation with the weight distribution of the network:

cw(i) =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijajhahi

wheresi =
∑

j 6=i wij , anm = 1 if wnm > 0, anm = 0 if
wnm = 0 andki =

∑

j 6=i aij .
For each triple formed in the neighborhood of the vertexi,

cw(i) counts the weight of the two participating edges of the
vertexi. Cw is defined as the weighted clustering coefficient
averaged over all vertices of the network.

The standard topological characterization of networks
is obtained by the analysis of the probability distribution
p(k) that a randomly chosen vertex has degreek. For our
weighted networks, a characterization of weights is obtained



by the connectivity and weight distributionp(w) that any
given edge has weightw.

In our study, for each nodei, the sum of weights from the
nodei is equal to1. So, an important measure is the weight
wii of self-connecting edges (remaining in the same node).
We have the relation:wii + si = 1. The vertexstrength,
si, is defined assi =

∑

j∈V(i)−{i} wij , where the sum is
over the setV(i)−{i} of neighbors ofi (1). The strength of
a node is a generalization of the node’s connectivity giving
information about the number and importance of the edges.

Another network measure we report here isdisparity (1)
Y2(i), which measures how heterogeneous is the contribu-
tions of the edges of nodei to the total weight (strength):

Y2(i) =
∑

j 6=i

(

wij

si

)2

The disparity could be averaged over the node with the
same degreek. If all weights are nearby ofsi/k, the dispar-
ity for nodes of degreek is nearby1/k.

Finally, in order to compute the average distance (shortest
path) between two nodes on the optima network of a given
landscape, we considered the expected number of bit-flip
mutations to pass from one basin to the other. This expected
number can be computed by considering the inverse of the
transition probabilities between basins. In other words, if
we attach to the edges the inverse of the transition probabil-
ities, this value would represent the average number of ran-
dom mutations to pass from one basin to the other. More
formally, the distance (expected number of bit-flip muta-
tions) between two nodes is defined bydij = 1/wij where
wij = p(bi → bj). Now, we can define the length of a path
between two nodes as being the sum of these distances along
the edges that connect the respective basins.

Detailed Study of Network Features

In this section we study in more depth some network fea-
tures which can be related to stochastic local search diffi-
culty on the underlying fitness landscapes. Table 2 reports
the average (over 30 independent instances for eachN and
K) of the network properties described.n̄v andn̄e are, re-
spectively, the mean number of vertices and the mean num-
ber of edges of the graph for a givenK rounded to the next
integer. C̄w is the mean weighted clustering coefficient.Ȳ
is the mean disparity, and̄d is the mean path length.

Clustering Coefficients. The fourth column of table 2
lists the average values of the weighted clustering coeffi-
cients for allN and K. It is apparent that the clustering
coefficients decrease regularly with increasingK for all N .
For the standard unweighed clustering, this would mean that
the largerK is, the less likely that two maxima which are
connected to a third one are themselves connected. Taking
weights, i.e. transition probabilities into account this means
that either there are fewer transitions between neighboring

basins for highK, and/or the transitions are less likely to
occur. This confirms from a network point of view the com-
mon knowledge that search difficulty increases withK.
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Figure 4: Average distance (shortest path) between nodes
(top), and average path length to the optimum from all the
other basins (bottom).

Shortest Path to the Global Optimum. The average
shortest path lengths̄d are listed in the sixth column of ta-
ble 2. Fig. 4 (top) is a graphical illustration of the average
shortest path length between optima for all the studiedNK
landscapes. Notice that the shortest path increases withN ,
this is to be expected since the number of optima increases
exponentially withN . More interestingly, for a givenN the
shortest path increases withK, up toK = 10, and then it
stagnates and even decreases slightly for theN = 18. This
is consistent with the well known fact that the search diffi-
culty in NK landscapes increases withK. However, some
paths are more relevant from the point of view of a stochastic
local search algorithm following a trajectory over the max-
ima network. In order to better illustrate the relationshipof
this network property with the search difficulty by heuristic
local search algorithms, Fig. 4 (bottom) shows the shortest
path length to the global optimum from all the other optima
in the landscape. The trend is clear, the path lengths to the
optimum increase steadily with increasingK.

Weight Distribution Here we report on the weight distri-
butionsp(w) of the maxima network edges. Fig. 5 shows
the empirical probability distribution function for the cases
N = 16 andN = 18 (logarithmic binning has been used on



Table 2: NK landscapes network properties. Values are averages over 30random instances, standard deviations are shown
as subscripts.nv andne represent the number of vertexes and edges (rounded to the next integer),C̄w, the mean weighted
clustering coefficient.̄Y represent the mean disparity coefficient,d̄ the mean path length (see text for definitions).

K n̄v n̄e C̄w Ȳ d̄

N = 14

2 146 200131 0.980.0153 0.3670.0934 76194

4 7010 3163766 0.920.0139 0.1480.0101 896

6 18415 123271238 0.790.0149 0.0930.0031 1193

8 35022 258281801 0.660.0153 0.0700.0020 1332

10 58522 416861488 0.540.0091 0.0580.0010 1391

12 89622 574201012 0.460.0048 0.0520.0006 1401

13 108520 65287955 0.420.0045 0.0500.0006 1391

N = 16

2 3315 516358 0.960.0245 0.3260.0579 5614

4 17833 91292930 0.920.0171 0.1370.0111 1268

6 46029 417914690 0.790.0154 0.0840.0028 1703

8 89033 933844394 0.650.0102 0.0620.0011 1942

10 1, 47034 1621394592 0.530.0070 0.0500.0006 2061

12 2, 25432 2279122670 0.440.0031 0.0430.0003 2071

14 3, 26429 2907322056 0.380.0022 0.0400.0003 2031

15 3, 86833 3212032061 0.350.0022 0.0390.0004 2001

N = 18

2 5025 15791854 0.950.0291 0.3070.0630 7315

4 33072 262667056 0.920.0137 0.1270.0081 1749

6 99473 14644118685 0.780.0155 0.0760.0044 2375

8 2, 09370 35400918722 0.640.0097 0.0560.0012 2732

10 3, 61961 62052120318 0.520.0071 0.0440.0007 2921

12 5, 65759 89974214011 0.430.0037 0.0380.0003 2971

14 8, 35260 116364011935 0.360.0023 0.0340.0002 2931

16 11, 79763 14068706622 0.320.0012 0.0320.0001 2831

17 13, 79577 15247304818 0.300.0009 0.0320.0001 2771

the x-axis). The caseN = 14 is similar but is not reported
here because it is much more noisy forK = 2 and4 due to
the small size of the graphs in these cases (see table 2).

One can see that the weights, i.e. the transition probabili-
ties between neighboring basins are small. The distributions
are far from uniform and, for bothN = 16 andN = 18,
the lowK have longer tails. For highK the decay is faster.
This seems to indicate that, on average, the transition prob-
abilities are higher for lowK.

Disparity Fig. 6 depicts the disparity coefficient as de-
fined in the previous section forN = 16, 18. An interest-
ing observation is that the disparity (i.e. dishomogeneity) in
the weights of a node’s outcoming links tends to decrease
steadily with increasingK. This reflects that for highK
the transitions to other basins tend to become equally likely,
which is another indication that the landscape, and thus its
representative maxima network, becomes more random and
difficult to search.

WhenK increases, the number of edges increases and the
number of edges with a weight over a certain threshold in-
creases too (see fig. 5). Therefore, for smallK, each node is
connected with a small number of nodes each with a relative
high weight. On the other hand, for largeK, the weights be-

come more homogeneous in the neighbourhood, that is, for
each node, all the neighboring basins are at similar distance.

If we suppose that edges with higher weights are likely to
be connected to nodes with larger basins (an intuition that we
need to confirm in future work). Then, as the larger basins
tend to have higher fitness (see Fig. 3), the path to higher
fitness values would be easier to find for lowerK than for
largerK.

Boundary of basins. Fig. 7 shows the averages, over all
the nodes in the network, of the weightswii (i.e the probabil-
ities of remaining in the same basin after a bit-flip mutation).
Notice that the weightswii are much higher when compared
to thosewij with j 6= i (see Fig. 5). In particular, forK = 2,
50% of the random bit-flip mutations will produce a solution
within the same basin of attraction. These average probabil-
ities of remaining within the same basin, are above12% for
the higher values ofK. Notice that the averages are nearly
the same regardless the value ofN , but decrease with the
epistatic parameterK.

The exploration of new basins with the random bit-flip
mutation seems to be, therefore, easier for largeK than for
low K. But, as the number of basins increases, and the
fitness correlation between neighboring solutions decreases
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Figure 5: Probability distribution of the network weightswij

with j 6= i in logscale on x-axis. Averages of 30 instances
for eachN andK are reported.

with increasingK, it becomes harder to find the global max-
ima for largeK. This result suggests that the dynamic of
stochastic local search algorithms onNK landscapes with
largeK is different than that with lower values ofK, with
the former engaging in more random exploration of basins.

The boundary of a basin of attraction can be defined as
the set of configurations within a basin that have at least one
neighbor’s solution in another basin. Conversely, the inte-
rior of a basin is composed by the configurations that have
all their neighbors in the same basin. Table 3 gives the av-
erage number of configurations in the interior of basins (this
statistic is computed on30 independent landscapes). No-
tice that the size of the basins’ interior is below1% (except
for N = 14, K = 2). Surprisingly, the size of the basins’
boundaries is nearly the same as the size of the basins them-
selves. Therefore, the probability of having a neighboring
solution in the same basin is high, but nearly all the solu-
tions have a neighbor solution in another basin. Thus, the
interior basins seem to be”hollow” , a picture which is far
from the smooth standard representation of landscapes in 2D
with real variables where the basins of attraction are visual-
ized as real mountains.

Conclusions
We have proposed a new characterization of combinatorial
fitness landscapes using the family ofNK landscapes as an
example. We have used an extension of the concept of in-

N = 16

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  100  200  300  400  500  600  700

av
g 

di
sp

ar
ity

degree k

K=2
K=4

K=10
K=12
K=15

random

N = 18

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  200  400  600  800  1000  1200  1400

av
g 

di
sp

ar
ity

degree k

K=2
K=4

K=10
K=14
K=17

random

Figure 6: Average disparity,Y2, of nodes with a given degree
k. Average of30 independent instances for eachN andK
are reported. The curve1/k is also reported to compare to
random case.
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herent networks proposed for energy surfaces (3) in order
to abstract and simplify the landscape description. In our
case the inherent network is the graph where the nodes are
all the local maxima and the edges accounts for transition
probabilities (using the bit-flip operator) between the local
maxima basins of attraction. We have exhaustively obtained
these graphs forN = {14, 16, 18}, and for all even values
of K, plusK = N − 1, and conducted a network analy-
sis on them. Our guiding motivation has been to relate the
statistical properties of these networks, to the search diffi-



Table 3: Average (on30 independent landscapes for eachN
andK) of the mean sizes of the basins interiors.

K N = 14 N = 16 N = 18
2 0.01670.02478 0.00500.00798 0.00280.00435

4 0.00250.00065 0.00120.00025 0.00060.00010

6 0.00290.00037 0.00140.00015 0.00070.00009

8 0.00430.00045 0.00220.00012 0.00110.00006

10 0.00550.00041 0.00310.00015 0.00180.00006

12 0.00610.00041 0.00400.00014 0.00250.00007

13 0.00590.00029

14 0.00450.00012 0.00310.00004

15 0.00440.00014

16 0.00350.00005

17 0.00340.00006

culty of the underlying combinatorial landscapes when us-
ing stochastic local search algorithms (based on the bit-flip
operator) to optimize them. We have found clear indications
of such relationships, in particular:
The clustering coefficients suggest that, for high values of
K, the transition between a given pair of neighboring basins
is less likely to occur.
The shortest paths increase withN and, for a givenN , they
clearly increase with higherK.
The weight distributions indicate that, on average, the tran-
sition probabilities are higher for lowK.
The disparity coefficients reflect that for highK the transi-
tions to other basins tend to become equally likely, which is
an indication of the randomness of the landscape.
The construction of the maxima networks requires the de-
termination of the basins of attraction of the corresponding
landscapes. We have thus also described the nature of the
basins, and found that the size of the basin corresponding
to the global maximum becomes smaller with increasingK.
The distribution of the basin sizes is approximately expo-
nential for allN andK, but the basin sizes are larger for low
K, another indirect indication of the increasing randomness
and difficulty of the landscapes whenK becomes large. Fur-
thermore, there is a strong positive correlation between the
basin size of maxima and their degrees. Finally, we found
that the size of the basins boundaries is roughly the same
as the size of basins themselves. Therefore, nearly all the
configurations in a given basin have a neighbor solution in
another basin. This observation suggests a different land-
scape picture than the smooth standard representation of 2D
landscapes where the basins of attraction are visualized as
hilltops.

This study is our first attempt towards a topological
and statistical characterization of combinatorial landscapes,
from the point of view of complex networks analysis. Much
remains to be done. The results should be confirmed for
larger instances ofNK landscapes. This will require good

sampling techniques, or theoretical studies since exhaustive
sampling becomes quickly impractical. Other landscape
types should also be examined, such as those containing
neutrality, which are very common in real-world applica-
tions. Finally, the landscape statistical characterization is
only a step towards implementing good methods for search-
ing it. We thus hope that our results will help in designing
or estimating efficient search techniques and operators.
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