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Abstract

We propose a network characterization of combinatorial fit-
ness landscapes by adapting the notiombérent networks
proposed for energy surfacgg (3). We use the well-known
family of N K landscapes as an example. In our case the in-
herent network is the graph where the vertices represent the
local maxima in the landscape, and the edges account for the
transition probabilities between their correspondingrizasf
attraction. We exhaustively extracted such networks on rep
resentative smalN K landscape instances, and performed a
statistical characterization of their properties. We fibtimat
most of these network properties can be related to the search
difficulty on the underlyingV K landscapes with varying val-
ues of K.

Introduction

at each vertex, is a representation of the given problem fit-
ness landscape. A useful simplification of the graphs for
the energy landscapes of atomic clusters was introduced in
(E; B). The idea consists in taking as vertices of the graph
not all the possible configurations, but only those that cor-
respond to energy minima. For atomic clusters these are
well-known, at least for relatively small assemblages. Two
minima are considered connected, and thus an edge is traced
between them, if the energy barrier separating them is suffi-
ciently low. In this case there is a transition state, megnin
that the system can jump from one minimum to the other
by thermal fluctuations going through a saddle point in the
energy hyper-surface. The values of these activation ener-
gies are mostly known experimentally or can be determined
by simulation. In this way, a network can be built which is
called the “inherent structure” or “inherent network” [ (3

Local optima are the very feature of a landscape that makes we propose a network characterization of combinatorial fit-

it rugged. Therefore, an Understanding of the distribution ness |andscapes by adapting the notiombérent networks

of local optima is of utmost importance for the understand- described above. We use the well-known family 16

ing ofa Iandscape. Combinatorial Iandscapes refer to the fi- |andscapes as an examp|e because they are a useful tun-
nite search spaces generated by important discrete preblem gple benchmark that can provide interesting information fo
such as the traveling salesman problem and many others. A more realistic combinatorial landscapes. In our case the in
property of some combinatorial landscapes, which has been herent network is the graph where the vertices are all the
often observed, is that on average, local optima are much |pcal maxima and the edges account for transition probabil-
closer to the optimum than are randomly chosen points, and jties between their corresponding basins of attraction. We
closer to each other than random points would be. In other exhaustively extract such networks on representativelsmal

words, the local optima are not randomly distributed, rathe
they tend to be clustered in a "central massif” (or "big val-
ley” if we are minimising). This globally convex landscape
structure has been observed in flié& family of landscapes
(E), and in other combinatorial optimization problems,suc
as the traveling salesman problelh (2), graph bipartitignin
(@), and flowshop schedulinfj (9).

In this study we seek to provide fundamental new in-
sights into the structural organization of the local optima
N K landscapes, particularly into the connectivity of their

N K landscape instances, and perform a statistical charac-
terization of their properties. Our analysis was inspiiad,
particular, by the work ofﬂiﬂ 4) on energy landscapes, and
in general, by the field of complex networlﬂ; (8). The study
of networks has exploded across the academic world since
the late 90’s. Researchers from the mathematical, biologi-
cal, and social sciences have made substantial progress on
some previously intractable problems, bringing new tech-
nigues, reformulating old ideas, and uncovering unexpecte
connections between seemingly different problems. We aim

basins of attraction. Combinatorial landscapes can be seenhere at bringing the tools of network analysis for the study
as a graph whose vertices are the possible configurations. If of problem hardness in combinatorial optimization.

two configurations can be transformed into each other by a The next section describes how combinatorial landscapes
suitable operator move, then we can trace an edge betweenare mapped onto networks, and includes the relevant def-

them. The resulting graph, with an indication of the fithess



initions and algorithms used in our study. The empirical
network analysis of our selectedl K landscape instances

is presented next, followed by our conclusions and ideas for
future work.

Landscapes as Networks

To model a physical energy landscape as a net\Ntﬂk, (4)
needed to decide first on a definition both of a state of the

In our study, the search space is composed by binary
strings of lengthV, therefore its size i2"Y. The neighbor-
hood is defined by the minimum possible move on a binary
search space, that is, the 1-move or bit-flip operation. In
consequence, for any given strin@f length V, the neigh-
borhood size i$V (s)| = N.

The HillClimbing algorithm to determine the local op-
tima and therefore define the basins of attraction, is given
below:

system and how two states were connected. The states and

their connections will then provide the nodes and edges of
the network. For systems with continuous degrees of free-
dom, the author achieved this through the ‘inherent struc-
ture’ mapping. In this mapping each point in configuration
space is associated with the minimum (or ‘inherent struc-
ture’) reached by following a steepest-descent path frah th
point. This mapping divides the configuration space into
basins of attraction surrounding each minimum on the en-
ergy landscape.

Our goal is to adapt this idea to the context of combina-
torial optimization. In our case, the nodes of the graph can
be straightforwardly defined as the local maxima of the land-

Algorithm 1 HillClimbing

Choose initial solutios € S

repeat
chooses” € V(s) such thatf (s') = maz,ev(s) f(z)
if f(s) < f(s)then

S — S/

end if

until sis a Local optimum

Definition: Local optimum.
A local optimum is a solutiors* such thatvs € V(s*),

scape. These maxima are obtained exhaustively by runninga f(s) < f(s*).

best-improvement local search algorithiHil([Climbing, see
Algorithm 1) from every configuration of the search space.
The definition of the edges, however, is a much more del-
icate matter. In our initial attempm10) we considered that
two maxima; andj were connected (with an undirected and
unweighted edge), if there exists at least one pair of solu-
tions at Hamming distance ongands;, one in each basin

of attraction §; andb;). We found empirically on small
instances ofV K landscapes, that such definition produced
densely connected graphs, with very low ¢) average path
length between nodes for alf. Therefore, apart from the
already known increase in the number of optima with in-
creasingK, no other network property accounted for the
increase in search difficulty. Furthermore, a single pair of
neighbors between adjacent basins, may not realisticadly a
count for actual basin transitions occurring when using-com
mon heuristic search algorithms. These considerations, mo
tivated us to search for an alternative definition of the edge
connecting local optima. In particular, we decided to as-
sociate weights to the edges that account for the transition
probabilities between the basins of attraction of the local
optima. More details on the relevant algorithms and formal
definitions are given below.

Definitions and Algorithms

Definition: Fitness landscape.

Alandscape is a tripldtS, V, f) whereS is a set of potential
solutions i.e. a search spadé; S — 2°, a neighborhood
structure, is a function that assigns to everg S a set of
neighborsl/(s), andf : S — R is a fitness function that
can be pictured as theeightof the corresponding solutions.

The HillClimbing algorithm defines a mapping from the

search spac# to the set of locally optimal solutions*.
Definition: Basin of attraction.

The basin of attraction of a local optimuime S is the set

b; = {s € S| HillClimbing(s) = i}. The size of the basin

of attraction of a local optimais the cardinality ob;.
Definition: Edge weight.

Notice that for a non-neutral fitness landscapes, asvdke

landscapes, the basins of attraction as defined above, pro-

duce a partition of the configuration spase Therefore,

S =Ueg+b; andVi € SVj #i,b;Nb; =10

For each solutions ands’, let us defing)(s — s') as the

probability to pass frons to s with the bit-flip operator. In

the case of binary strings of siZ€, and the neighborhood

defined by the bit-flip operation, there ake neighbors for

each solution, therefore:

ifs eV(s),p(s—s) + and

ifs €V(s),p(s—s)=0.

We can now define the probability to pass from a solution

s € S'to a solution belonging to the badir, as:

pls—b) =Y pls—s)

SIEb]‘

Notice thatp(s — b;) < 1.

Thus, the total probability of going from baginto basinb;
is the average over all € b; of the transition probabilities
to solutionss’ € b;

1
p(bi — bj) = o > pls — b))
i sEb;



fib; is the size of the basily. We are now prepared to define

our ‘inherent’ network or network of local optima.
Definition: Local optima network.

The local optima network: = (S*, E) is the graph where

the nodes are the local optinhaand there is an edgg; € £

with the weightw;; = p(b; — b;) between two nodesand

jif p(bl — bj) > 0.

According to our definition of weightsy;; = p(b; — b,)

may be different tham;; = p(b; — b;). Two weights are

needed in general, and we have an oriented transition graph.

Empirical Basin and Network Analysis

The N K family of Iandscapes[kG) is a problem-independent
model for constructing multimodal landscapes that can-grad
ually be tuned from smooth to rugged. In the mod¥l,
refers to the number of (binary) genes in the genotype (i.e.
the string length) and( to the number of genes that influ-
ence a particular gene (the epistatic interactions). By in-
creasing the value ok from O to N — 1, NK landscapes
can be tuned from smooth to rugged. Theariables that
form the context of the fitness contribution of gepean be
chosen according to different models. The two most widely
studied models are trandom neighborhoothodel, where
the k variables are chosen randomly according to a uniform
distribution among the — 1 variables other thag;, and the
adjacent neighborhooghodel, in which the: variables that
are closest t@; in a total orderings, ss, .. ., s, (Using pe-
riodic boundaries). No significant differences between the
two models were found ir[|(6) in terms of global properties

of the respective families of landscapes, such as mean num-

ber of local optima or autocorrelation length. Similarlyro
preliminary studies on the characteristics of thié land-
scape optima networks did not show noticeable differences
between the two neighborhood models. Therefore, we con-
ducted our full study on the more general random model.

In order to avoid sampling problems that could bias the
results, we used the largest valuesfthat can still be
analysed exhaustively with reasonable computational re-
sources. We thus extracted the local optima networks
of landscape instances witN = 14,16,18, and K
2,4,6,...,N —2, N — 1. For each pair ofV and K values,

30 randomly generated instances were explored. Therefore,

the networks statistics reported below represent the geera
behaviour of 30 independent instances.

Basins of Attraction

Besides the maxima network, it is useful to describe the
associated basins of attraction as these play a key role in
search algorithms. Furthermore, some characteristidseof t

basins can be related to the optima network features. The no-

tion of the basin of attraction of a local maximum has been

presented before. We have exhaustively computed the size

1Since each maximum has its associated b&smiso describes
the interconnection of basins.

and number of all the basins of attraction fsr= 16 and

N = 18 and for all evenk values plusK = N — 1. In
this section, we analyze the basins of attraction from séver
points of view as it is described below.

Global optimum basin size versusK. In Fig. ﬂ we plot

the average size of the basin corresponding to the global
maximum forN = 16 and N = 18, and all values o’
studied. The trend is clear: the basin shrinks very quickly
with increasingK. This confirms that the higher th&
value, the more difficult for an stochastic search algorithm
to locate the basin of attraction of the global optimum

NZ16 ——

0.01 ¢

0.001 ¢

relative size of the global optima’s basin

le-04

12 14 16 18

Figure 1. Average of the relative size of the basin corre-
sponding to the global maximum for each K over 30 land-
scapes.
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Figure 2: Cumulative distribution of the number of basins of
a given size with regression line. A representative langisca
with N = 18, K = 4 is visualized. A lin-log scale is used.

Number of basins of a given size. Fig. D shows the cu-
mulative distribution of the number of basins of a given
size (with regression line) for a representative instamgés

N =18, K = 4. Table |1 shows the average (of 30 inde-
pendent landscapes) correlation coefficients and linear re
gression coefficients (intercept) and slope §)) between

the number of nodes and the basin sizes for instances with
N = 16,18. Notice that distribution decays exponentially
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Table 1: Correlation coefficienp), and linear regression S o

coefficients (intercept) and slope §)) of the relationship 10000 |
between the basin size of optima and the cumulative num-
ber of nodes of a given (basin) size ( in logarithmic scale:
log(p(s)) = a + Bs + €). The average and standard devia-
tion values over 30 instances, are shown.

1000 -

100 ¢

basin of attraction size

N=16 wl
P a B
—0.9440.0454 | 2.890.673 —0.00030.0002 l0,56 0.58 0.6 0.620.640.66 0.68 0.7 0.720.740.76 0.78
—0.95900310 4.190554 —0.001400006 fitness of local optima
—0.9670.0280 | 5.090.504 | —0.00360.0010 10000 ‘ ‘ ‘ —
—0.9820.0116 | 5.970.321 | —0.00800.0013 regr.fine =

—0.9850.0161 | 6.740.302 | —0.01630.0025
—0.9900.0088 | 7-470.346 | —0.03040.0042
—0.9940.0059 | 8.080.241 | —0.05080.0048
—0.9950.0044 | 8.370.240 | —0.06350.0058
N =18
2 | —0.9590.0257 | 3.180.696 | —0.00010.0001
4 | —0.9600.0409 | 4.570.617 | —0.00050.0002
6 | —0.9670.0283 | 5.500.520 | —0.00150.0004
8 | —0.9770.0238 | 6.440.485 | —0.00370.0007 1 : : : ; ;

10 | —0.9850.0141 7.240.372 —0.00770.0011 0.5 0.55 0.6 065 07 0.75 0.8
12 *0.9890,0129 7.9804370 70.01500'0019 fitness of local optima

14 | —0. . —0.0272

16 ,88322:23;2 Sgggjﬁ ,8,84202:323 Figure 3: Correlation between the fitness of local optima
17 | —0.9920.0113 | 9.490.386 | —0.05440.0058 and their corresponding basin sizes, for two represemtativ

instances withV = 18, K = 4 (top) andK = 8 (bottom).

1000 ¢

[N N
GRERG®oA~NX

100

basin of attraction size

10 ¢

or faster for the lower< and it is closer to exponential for

the higherX. This could be relevant to theoretical studies Mountains (each corresponding to a basin of attractiom), an

that estimate the size of attraction basins (see for example those mountains are wider the taller the hilltops. Morepver

@)). These studies often assume that the basin sizes are uni the size of a mountain basin grows exponentially with its

formly distributed, which is not the case for theK land- hight.

scapes studied here. From the slopesf the regression L

lines (tablg]L) one can see that high value&agive rise to General Network Statistics

steeper distributions (highet values). This indicates that ~ We now briefly describe the statistical measures used for our

there are fewer basins of large size for large value&of analysis of maxima networks.

Basins are thus broader for low valuesfof which is con- The standard clustering coefficiefif (8) does not consider

sistent with the fact that those landscapes are smoother. weighted edges. We thus use theighted clusteringnea-
sure proposed bﬂ(l), which combines the topological infor-

Fitness of local optima versus their basin sizes.The mation with the weight distribution of the network:

scatter-plots in Fig[|3 illustrate the correlation betwées

basin sizes of local maxima (in logarithmic scale) and their

fitness values. Two representative instances\for 18 and (i) = 1 Z Wij + Win

K = 4, 8 are shown. Notice that there is a clear positive silki =1) 4 2

correlation between the fitness values of maxima and their

basins’ sizes. In other words, the higher the peak the wider wheres; = Z#i Wij, Gnm = 1if wpm > 0, apm = 0 if

tend to be its basin of attraction. Therefore, on average, wn, = 0andk; = 3., a;;.

with a stochastic local search algorithm, the global optimu For each triple formed in the neighborhood of the veftex

would be easier to find than any other local optimum. This ¢*(¢) counts the weight of the two participating edges of the

may seem surprising. But, we have to keep in mind that as vertex:. C" is defined as the weighted clustering coefficient

the number of local optima increases (with increasiny averaged over all vertices of the network.

the global optimum basin is more difficult to reach by a The standard topological characterization of networks

stochastic local search algorithm (see Fﬂg. 1). This obser- is obtained by the analysis of the probability distribution

vation offers a mental picture oV K landscapes: we can  p(k) that a randomly chosen vertex has degked-or our

consider the landscape as composed of a large number ofweighted networks, a characterization of weights is olehin

A;5Q5hAhs



by the connectivity and weight distributiop(w) that any
given edge has weighit.
In our study, for each nodethe sum of weights from the

basins for highK, and/or the transitions are less likely to
occur. This confirms from a network point of view the com-
mon knowledge that search difficulty increases with

nodei is equal tol. So, an important measure is the weight

wy; Of self-connecting edges (remaining in the same node).

We have the relationw;; + s; = 1. The vertexstrength s00 R s S

si, is defined as;; = 3 ,c\;)_ ;) wij, Where the sum is

over the seV(i) — {i} of neighbors of (fl}). The strength of

a node is a generalization of the node’s connectivity giving

information about the number and importance of the edges.
Another network measure we report herealisparity @I)

Y5 (i), which measures how heterogeneous is the contribu-

tions of the edges of nodeo the total weight (strength):

(i) = 3 (4

S
J#i ’

250

200 + ; TR -

average path length
*
X
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50 t

250

The disparity could be averaged over the node with the 20

same degrek. If all weights are nearby of; /k, the dispar-
ity for nodes of degreg is nearbyl / k.

Finally, in order to compute the average distance (shortest
path) between two nodes on the optima network of a given
landscape, we considered the expected number of bit-flip
mutations to pass from one basin to the other. This expected 7
number can be computed by considering the inverse of the 2 4 6 8 10 12 14 15 18
transition probabilities between basins. In other woréls, i K
we attach to the edges the inverse of the transition probabil Figure 4: Average distance (shortest path) between nodes
ities, this value would represent the average number of ran- (top), and average path length to the optimum from all the
dom mutations to pass from one basin to the other. More other basins (bottom).
formally, the distance (expected number of bit-flip muta-

tions) between two nodes is defined dy = 1/w;; where Shortest Path to the Global Optimum. The average
wij = p(b; — b;). Now, we can define the length of a path  sportest path length$ are listed in the sixth column of ta-
between two nodes as being the sum of thgse distances along,|e . Fig.[h (top) is a graphical illustration of the average
the edges that connect the respective basins. shortest path length between optima for all the studveid

. landscapes. Notice that the shortest path increasesNyith
Detailed Study of Network Features this is topbe expected since the nume()er of optima increases
In this section we study in more depth some network fea- exponentially withV. More interestingly, for a givetV the
tures which can be related to stochastic local search diffi- shortest path increases witti, up to K = 10, and then it
culty on the underlying fitness landscapes. Tdble 2 reports stagnates and even decreases slightly for¥he 18. This

the average (over 30 independent instances for @aeimd is consistent with the well known fact that the search diffi-
K) of the network properties described, andn. are, re- culty in N K landscapes increases wiih. However, some
spectively, the mean number of vertices and the mean num- paths are more relevant from the point of view of a stochastic
ber of edges of the graph for a givéhrounded to the next local search algorithm following a trajectory over the max-
integer. C is the mean weighted clustering coefficieft. ima network. In order to better illustrate the relationsbip

is the mean disparity, andlis the mean path length. this network property with the search difficulty by heuigsti
local search algorithms, Fi@ 4 (bottom) shows the shortest
Clustering Coefficients. The fourth column of tabld]2  path length to the global optimum from all the other optima
lists the average values of the weighted clustering coeffi- in the landscape. The trend is clear, the path lengths to the

cients for allN and K. lItis apparent that the Clustering optimum increase Steadi]y with increasiﬁ'g
coefficients decrease regularly with increaskidor all N.

For the standard unweighed clustering, this would mean that Weight Distribution Here we report on the weight distri-
the largerK is, the less likely that two maxima which are  butionsp(w) of the maxima network edges. Fiﬂ. 5 shows
connected to a third one are themselves connected. Takingthe empirical probability distribution function for the ses
weights, i.e. transition probabilities into account thisans N = 16 andN = 18 (logarithmic binning has been used on
that either there are fewer transitions between neighborin

150 -

N=14 ——

average path length to the optimum




Table 2: NK landscapes network properties. Values are averages ovan80m instances, standard deviations are shown
as subscriptsn, andn. represent the number of vertexes and edges (rounded to xhénteger),C*, the mean weighted
clustering coefficientY” represent the mean disparity coefficiehthe mean path length (see text for definitions).

K] #a ] e | Cc¥ ] Y | d
N=14
2 146 200131 0.980.0153 | 0.3670.0934 | 76194
4 7010 3163766 0.920.0139 0.1480.0101 89
6 18445 123271238 0.790.0149 | 0.0930.0031 1193
10 58522 416861485 0.540.0001 | 0.0580.0010 | 1391
12 89622 574201012 0.460.004s8 | 0.0520.0006 | 1401
13 108520 65287955 0.420.0045 | 0.0500.0006 | 1391
N =16
2 3315 516358 0.960.0245 | 0.3260.0579 | 5614
4 17833 91292930 0.920.0171 | 0.1370.0111 1265
8 89033 933844394 0.650.0102 | 0.0620.0011 194,

10 | 1,47034 1621394592 0.530.0070 | 0.0500.0006 | 2061
12 | 2,2543 2279122670 0.440.0031 | 0.0430.0003 | 2071
14 | 3,26429 2907322056 0.380.0022 | 0.0400.0003 | 2031
15| 3,86833 3212032061 0.350.0022 | 0.0390.0004 | 2001

N =18
2 5025 15791854 0.950.0201 | 0.3070.0630 | 7315
4 33072 262667056 0.920.0137 | 0.1270.0081 1749
6 9943 14644118685 0.780.0155 | 0.0760.0044 2375

10 | 3,61961 62052120318 0.520.0071 | 0.0440.0007 2924
14 | 8,35260 | 116364011935 | 0.360.0023 | 0.0340.0002 | 2931
16 | 11,7973 14068706622 0.320.0012 | 0.0320.0001 2831
17 | 13,79577 | 15247304818 | 0.300.0000 | 0.0320.0001 | 2771

the x-axis). The cas& = 14 is similar but is not reported come more homogeneous in the neighbourhood, that is, for
here because it is much more noisy fér= 2 and4 due to each node, all the neighboring basins are at similar distanc
the small size of the graphs in these cases (see[fable 2). If we suppose that edges with higher weights are likely to

One can see that the weights, i.e. the transition probabili- be connected to nodes with larger basins (an intuition tleat w
ties between neighboring basins are small. The distribatio  need to confirm in future work). Then, as the larger basins
are far from uniform and, for bottv. = 16 and N = 18, tend to have higher fitness (see Fﬁb 3), the path to higher
the low K have longer tails. For higk™ the decay is faster. fithess values would be easier to find for lowe€rthan for
This seems to indicate that, on average, the transition-prob largerk.
abilities are higher for lowx'.

Boundary of basins. Fig. |] shows the averages, over all

Disparity Fig. [§ depicts the disparity coefficient as de- the nodes in the network, of the weightsg (i.e the probabil-
fined in the previous section fa¥ = 16,18. An interest- ities of remaining in the same basin after a bit-flip mutakion
ing observation is that the disparity (i.e. dishomogeneity Notice that the weights);; are much higher when compared
the weights of a node’s outcoming links tends to decrease to thosew;; with j # i (see Fig[[). In particular, fak = 2,
steadily with increasind{. This reflects that for high< 50% of the random bit-flip mutations will produce a solution
the transitions to other basins tend to become equallylikel  within the same basin of attraction. These average probabil
which is another indication that the landscape, and thus its ities of remaining within the same basin, are abd2% for
representative maxima network, becomes more random andthe higher values of(. Notice that the averages are nearly
difficult to search. the same regardless the valuedf but decrease with the

WhenK increases, the number of edges increases and the epistatic parametek.
number of edges with a weight over a certain threshold in-  The exploration of new basins with the random bit-flip
creases too (see fiﬂ. 5). Therefore, for snélleach node is mutation seems to be, therefore, easier for Igkgthan for
connected with a small number of nodes each with arelative low K. But, as the number of basins increases, and the
high weight. On the other hand, for largé the weights be- fitness correlation between neighboring solutions deeseas
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random case.

with increasingk, it becomes harder to find the global max-

ima for large K. This result suggests that the dynamic of

stochastic local search algorithms 8K landscapes with

large K is different than that with lower values @€, with

the former engaging in more random exploration of basins.
The boundary of a basin of attraction can be defined as

055
05 B\
0.45
o4t
035 -

average wii

03

the set of configurations within a basin that have at least one 025 |
neighbor’s solution in another basin. Conversely, the-inte 02}
rior of a basin is composed by the configurations that have 0.5
all their neighbors in the same basin. Taljle 3 gives the av- 01 Y
2 4 6 8 10 12 14 16 18

erage number of configurations in the interior of basins(thi

statistic is computed oA0 independent landscapes). No- Figure 7: Average weight;; according to the parameters
tice that the size of the basins’ interior is beld# (except N andK.

for N = 14, K = 2). Surprisingly, the size of the basins’

boundaries is nearly the same as the size of the basins them-

selves. Therefore, the probability of having a neighboring ]
solution in the same basin is high, but nearly all the solu- Nerent networks proposed for energy surfadgs (3) in order

tions have a neighbor solution in another basin. Thus, the [0 @bstract and simplify the landscape description. In our
interior basins seem to B&ollow” , a picture which is far case the inherent network is the graph where the nodes are

from the smooth standard representation of landscapes in 2D @l the local maxima and the edges accounts for transition
with real variables where the basins of attraction are wWisua Probabilities (using the bit-flip operator) between thealoc
ized as real mountains. maxima basins of attraction. We have exhaustively obtained

. these graphs foN = {14, 16, 18}, and for all even values
Conclusions of K, plusK = N — 1, and conducted a network analy-
We have proposed a new characterization of combinatorial sis on them. Our guiding motivation has been to relate the
fitness landscapes using the family/éf< landscapes as an  statistical properties of these networks, to the seardh dif
example. We have used an extension of the concept of in-



Table 3: Average (080 independent landscapes for ed¢h

and K) of the mean sizes of the basins interiors.

K N =14 N =16 N =18

2 | 0.01670.02478 | 0.00500.00798 | 0.0028¢.00435
4 | 0.00250.00065 | 0.00129.00025 | 0.0006¢.00010
6 | 0.0029¢.00037 | 0.00140.00015 | 0.00070.00009
8 | 0.00430.00045 | 0.0022¢.00012 | 0.00119.00006
13 | 0.0059¢.00029

16 0.00350.00005
17 0.00340.00006

culty of the underlying combinatorial landscapes when us-
ing stochastic local search algorithms (based on the pit-fli
operator) to optimize them. We have found clear indications
of such relationships, in particular:

The clustering coefficients suggest that, for high values of
K, the transition between a given pair of neighboring basins
is less likely to occur.

The shortest paths increase withand, for a givenv, they
clearly increase with highek'.

The weight distributions indicate that, on average, the-tra
sition probabilities are higher for o .

The disparity coefficients reflect that for higt the transi-
tions to other basins tend to become equally likely, which is
an indication of the randomness of the landscape.

The construction of the maxima networks requires the de-
termination of the basins of attraction of the correspogdin

landscapes. We have thus also described the nature of the

basins, and found that the size of the basin corresponding
to the global maximum becomes smaller with increading

The distribution of the basin sizes is approximately expo-
nential for allV and K, but the basin sizes are larger for low
K, another indirect indication of the increasing randomness
and difficulty of the landscapes whé&hbecomes large. Fur-
thermore, there is a strong positive correlation between th
basin size of maxima and their degrees. Finally, we found
that the size of the basins boundaries is roughly the same
as the size of basins themselves. Therefore, nearly all the
configurations in a given basin have a neighbor solution in
another basin. This observation suggests a different land-
scape picture than the smooth standard representation of 2D
landscapes where the basins of attraction are visualized as
hilltops.

This study is our first attempt towards a topological
and statistical characterization of combinatorial larges,
from the point of view of complex networks analysis. Much
remains to be done. The results should be confirmed for
larger instances aN K landscapes. This will require good

sampling techniques, or theoretical studies since exivaust
sampling becomes quickly impractical. Other landscape
types should also be examined, such as those containing
neutrality, which are very common in real-world applica-
tions. Finally, the landscape statistical characterirats

only a step towards implementing good methods for search-
ing it. We thus hope that our results will help in designing
or estimating efficient search techniques and operators.
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