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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52791384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00178189v5


Differential invariants of a Lie group action:

syzygies on a generating set

Evelyne Hubert a

aINRIA Sophia Antipolis, France

Abstract

Given a group action, known by its infinitesimal generators, we exhibit a complete
set of syzygies on a generating set of differential invariants. For that we elaborate
on the reinterpretation of Cartan’s moving frame by Fels and Olver (1999). This
provides constructive tools for exploring algebras of differential invariants.
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Introduction

A great variety of group actions arise in mathematics, physics, science and en-
gineering and their invariants, whether algebraic or differential, are commonly
used for symmetry reduction or to solve equivalence problems and determin-
ing canonical forms. Classifying invariants is consequently an essential task.
One needs to determine a generating set of invariants and their syzygies, i.e.
the relations they satisfy.

With minimal amount of data on the group action, we shall characterize two
generating sets of differential invariants. Though not computing them explic-
itly, we describe inductive processes to rewrite any differential invariants in
terms of them and their invariant derivatives. For one of those generating set
we determine a complete set of differential relationships, which we call syzy-
gies. The other generating set is of bounded cardinality and a complete set of
syzygies can be computed from the previous one by the generalized differential
elimination scheme provided by Hubert (2005b).
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The results in this paper are constructive and our presentation describes very
closely their symbolic implementation in aida (Hubert, 2007b). They are in-
deed part of a bigger project the aim of which is to develop the foundations
for symmetry reduction of differential systems with a view towards differential
elimination. This is outlined in the motivational example of Hubert (2005b).
The computational requirements include four main components: the explicit
computation of a generating set of invariants (1), and the relations among
them (2); procedures for rewriting the problem in terms of the invariants (3);
and finally procedures for computing in the algebra of invariants (4). In this
paper we focus on (2) and (3) while (1) and (4) were consistently addressed
by Hubert and Kogan (2007a,b) and Hubert (2005b) respectively. This paper
thus completes an algorithmic suite. While component (4) has been imple-
mented as a generalization of the maple library diffalg (Boulier and Hubert,
1998; Hubert, 2005a), components (1-3) is implemented in our Maple package
aida (Hubert, 2007b) that works on top of the maple library DifferentialGe-

ometry (Anderson and et al., 2007), as well as diffalg and Groebner. In this
paper we also use component (4) to reduce the number of generators, while
still providing the complete syzygies.

On one hand, the question of the finite generation of differential invariants was
addressed by Tresse (1894); Kumpera (1974, 1975a,b); Muñoz et al. (2003), in
the more general case of pseudo-groups - see also Ovsiannikov (1982); Olver
(1995) for Lie groups. On the other hand, Griffiths’s (1974) interpretation of
Cartan’s (1935; 1937; 1953) moving frame method solved equivalence prob-
lem in many geometries (Green, 1978; Jensen, 1977; Gardner, 1989; Ivey and
Landsberg, 2003). Alternatively, the approach of Gardner (1989) and its re-
cent symbolic implementation (Neut, 2003) lead to computational solutions
for the classification of differential equations (Neut and Petitot, 2002; Dridi
and Neut, 2006a,b). Besides Fels and Olver (1999) offered another interpreta-
tion of Cartan’s moving frame method, the application of which goes beyond
geometry (Olver, 2005). In particular it includes an explicit approach to the
generation properties.

The main original contribution in this paper is to formalize the notion of
differential syzygies for a generating set of differential invariants and prove the
completeness of a finite set of those. To this end we redevelop the construction
of normalized invariants and invariant derivations of Fels and Olver (1999) in
a spirit we believe closer to the audience of this journal. We offer alternative
proofs, and sometimes more general results. In particular we shall put the
emphasis on derivations, rather than differential forms.

One is interested in the action (effective on subsets) of a group G on a manifold
X×U and its prolongation to the higher order jets Jk(X ,U). In other words, X
is the space of independent variables while U is the set of dependent variables.
The jet space is parameterized by the derivatives of the dependent variables
with respect to the independent variables. At each order k, a local cross-section
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to the orbits defines a finite set of normalized invariants. Those latter form
a generating set for differential invariants of order k, in a functional sense.
Rewriting those latter in terms of the normalized invariants is furthermore
a trivial substitution. We review this material in Section 2.3, following the
presentation of Hubert and Kogan (2007b).

As the orbit dimension stabilizes at order s the action becomes locally free and,
to any local cross-section, we can associate a moving frame, i.e. an equivariant
map ρ : Js(X ,U) → G (Fels and Olver, 1999). The moving frame defines in
turn a basis of invariant derivations. The great value of this particular set of
invariant derivations is the fact that we can write explicitly their action on
invariantized functions. This is captured in the so called recurrence formulae.
They are the key to proving generation, rewriting and syzygies. Fels and Olver
(1999) gave the recurrence formulae for the normalized invariants in the case
of a coordinate cross-section. We propose generalized recurrence formulae in
the case of any cross-section and offer an alternate proof, close in spirit to the
one of Mansfield (2008).

We can then show that normalized invariants of order s + 1 form a generat-
ing set with respect to those invariant derivations. Rewriting any differential
invariant in terms of those and their derivative is a simple application of the
recurrence formulae (Section 4). By exhibiting a canonical rewriting, we can
prove the completeness of a set of differential syzygies for those differential
invariants, after giving this concept a definition (Section 5).

We formalize the notion of syzygies through the introduction of the algebra
of monotone derivatives. Along the lines of Hubert (2005b), this algebra is
equipped with derivations that are defined inductively so as to encode the
nontrivial commutation rules of the invariant derivations. The syzygies are
the elements of the kernel of the differential morphism between the algebra of
monotone derivatives and the algebra of differential invariants, equipped with
the invariant derivations. The type of differential algebra introduced at this
stage was shown to be a natural generalization of classical differential algebra
(Ritt, 1950; Kolchin, 1973). In the polynomial case, it is indeed endowed with
an effective differential elimination theory that has been implemented (Hubert,
2005a,b).

For cross-sections of minimal order we can also prove that the set of edge in-

variants is generating. This latter set has a cardinality bounded by mr + d0,
where m, r are the dimensions of X and G while d0 is the codimension of the
orbits on X × U . This is a generalization of the result of Olver (2007b) that
bears on coordinate cross-sections. The edge invariants then form a subset of
the normalized invariants of order s+1. Fels and Olver (1999) first conjectured
syzygies on this set of generating invariants. We feel that constructing directly
a complete and finite set of syzygies for the set of edge invariants is challeng-
ing, the problem bearing a high combinatorial difficulty. To obtain those, we
suggest to apply generalized differential elimination (Hubert, 2005a,b) on the
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set of syzygies for the normalized invariants. This is illustrated in the examples
of Section 5, 6 and 7.

Similarly, to reduce further the number of generators for the differential in-
variants we can apply the same generalized differential elimination techniques
to the syzygies. This substantially reduces the work of computing explicitly a
generating set for a given action. This is an approach that was applied for sur-
faces in Euclidean, affine, conformal and projective geometry (Olver, 2007a;
Hubert and Olver, 2007).

Let us stress here the minimal amount of data indeed needed for the determi-
nation of a generating set, the rewriting in terms of those and the differential
syzygies. All is based on the recurrence formulae that can be written with only
the knowledge of the infinitesimal generators of the action and the equations
of the cross-section. Furthermore the operations needed consist of derivations,
arithmetic operations and test to zero. Provided the coefficients of the in-
finitesimal generators are rational functions, which provide a general enough
class, we are thus in the realm of symbolic computation since we can indeed
always choose linear equations for the cross-section. On the other hand, the
explicit expression of the invariant derivations, or the differential invariants,
requires the knowledge of the moving frame. This latter is obtained by applica-
tion of the implicit function theorem on the group action. This is therefore not
constructive in general, but there are algorithms in the algebraic case (Hubert
and Kogan, 2007a,b).

In Section 1 we extract from the books of Olver (1986, 1995) the essential ma-
terial we need for describing actions and their prolongations. In Section 2 we
define invariantization and normalized invariants for the action of a group on a
manifold along the lines of Hubert and Kogan (2007b). We then extend those
notions to differential invariants. In Section 3 we define invariant derivations
as the derivations that commute with the infinitesimal generators of the ac-
tion. We introduce the construction of invariant derivations of Fels and Olver
(1999) based on the moving frame together with the recurrence formulae. We
write those latter in a more general form (Theorem 3.6): the derivations of
the invariantization of a function are given explicitly in terms of invarianti-
zations. Section 4 discusses then the generation property of the normalized
invariants and effective rewriting. We furthermore show the generalization of
Olver (2007a), the generation property of the edge invariants in the case of
minimal order cross-section. In Section 5 we emphasize the non uniqueness
of the rewriting in terms of the normalized invariants. We then introduce the
algebra of monotone derivatives, and the inductive derivations acting on it, in
order to formalize the concept of syzygies. We can then write a finite set of
syzygies and prove its completeness.

In the penultimate section we present geometric examples that many readers
are familiar with in order to illustrate our general approach: the action of the
Euclidean group on space curves and surfaces. In the last section we undertake
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the challenging analysis for the action of the indefinite orthogonal groups on
three independent variables, and their affine extensions. To the best of our
knowledge, the structure of their differential algebra had not been explored
so far. Additional non trivial applications of the results in this paper, and the
related software, were developed by Hubert and Olver (2007).

1 Group action and their prolongations

This is a preliminary section introducing the definition and notations for Lie
group actions and their prolongation to derivatives. We essentially follow the
books of Olver (1986, 1995).

1.1 Local action of a Lie group on a manifold

Pullbacks and push-forwards of maps

Consider a smooth manifold M. F(M) denotes the ring of smooth functions
on M while Der(M) denotes the F(M)-module of derivations on F(M).

If N is another smooth manifold and φ : M → N a smooth map, the pull-back

of φ is the map φ∗ : F(N ) → F(M) defined by φ∗f = f ◦ φ i.e. (φ∗f)(z) =
f(φ(z)) for all z ∈ M. Through φ∗, F(N ) can be viewed as a F(M) module.

A derivation V : F(M) → F(M) on M induces a derivationV|z : F(M) → R

at z defined by V|z(f) = V(f)(z). The set of derivations at a point z ∈ M
is the tangent space of M at z. Vector fields on M can be understood as
derivations.

The push-forward or differential of φ is defined by

(φ∗V)(f)(φ(x)) = V(φ∗f)(x)

The coordinate expression for φ∗V is given by the chain rule. Yet this star

formalism allows us to write formulae in a compact way and we shall use it
extensively.

Local action on a manifold

We consider a connected Lie group G of dimension r. The multiplication of
two elements λ, µ ∈ G is denoted as λ · µ. An action of G on a manifold M
is defined by a map g : G ×M → M that satisfies g(λ, g(µ, z)) = g(λ · µ, z).
We shall implicitly consider local actions, that is g is defined only on an
open subset of G × M that contains {e} × M. We assume that M is made
of a single coordinate chart. If (z1, . . . , zk) are the coordinate functions then
g∗zi : G ×M → R represents the ith component of the map g.

There is a fine interplay of right and left invariant vector fields in the paper.
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We thus detail what we mean there now. Given a group action g : G×M → M
define, for λ ∈ G, gλ : M → M by gλ(z) = g(λ, z) for z ∈ M. A vector field
X on M is G-invariant if gλ∗X = X for all λ ∈ G, that is

∀f ∈ F(M), ∀z ∈ M, X(f ◦ gλ)(z) = X(f)(gλ(z)).

A vector field on G is right invariant if it is invariant under the action of G
on itself by right multiplication. In other words, if rµ : G → G is the right
multiplication by µ−1, rµ(λ) = λ · µ−1, a vector field v on G is right invariant
if

v(f ◦ rµ)(λ) = v(f)(λ · µ−1), ∀f ∈ F(G).

For a right invariant vector field on G, the exponential map ev : R → G is the
flow of v such that ev(0) is the identity. We write etv for ev(t). The defining
equation for ev is

v(f)(λ) =
d

dt

∣

∣

∣

∣

∣

t=0

f
(

etv · λ
)

.

Similarly the associated infinitesimal generator V of the action g of G on M
is the vector field on M defined by

V(f)(z) =
d

dt

∣

∣

∣

∣

∣

t=0

f(g(etv, z)), ∀f ∈ F(M). (1.1)

Note that v is the infinitesimal generator for the action of G on G by left
multiplication. The infinitesimal generator associated to v for the action of G
on G by right multiplication, r : G × G → G, r(λ, µ) = µ · λ−1 is

v̂(f)(λ) =
d

dt

∣

∣

∣

∣

∣

t=0

f(λ · e−tv). (1.2)

We can observe that v̂ is a left invariant vector field on G.

A right invariant vector field on G is completely determined by its value at
identity. We can thus find a basis v = (v1, . . . , vr) for the derivations on F(G)
made of right invariant vector fields. The associated left invariant vector fields
v̂ = (v̂1, . . . , v̂r) then also form a basis of derivations on F(G) (Olver, 1995,
Chapter 2).

The following property is used for the proof of Theorem 3.4 and 3.6. What is
used more precisely in Theorem 3.6 is the fact that v(g∗f)|e = V(f). This can
also be deduced from Theorem 3.10 by Fels and Olver (1999). In our notations
this latter reads as: v(g∗zi) = g∗V(zi).

Proposition 1.1 Let v be a right invariant vector field on G, v̂ the associated
infinitesimal generator for the action of G on G by right multiplication and V
the associated infinitesimal generator of the action g of G on M.
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When both v̂ and V are considered as derivations on F(G ×M) then

v̂(g∗f) + V(g∗f) = 0 and V(g∗f)(e, z) = V(f)(z), ∀f ∈ F(M).

As a particular case we have v̂(f)(e) = −v(f)(e).

proof: v̂ is a linear combination of derivations with respect to the group
parameters, i.e. the coordinate functions on G, while V is a combination of
derivations with respect to the coordinate functions on M. By (1.1) and (1.2)
we have

V(g∗f)(λ, z) =
d

dt

∣

∣

∣

∣

∣

t=0

(g∗f)(λ, g(etv, z))

and

v̂(g∗f)(λ, z) =
d

dt

∣

∣

∣

∣

∣

t=0

(g∗f)(λ · e−tv , z) = −
d

dt

∣

∣

∣

∣

∣

t=0

(g∗f)(λ · etv , z).

The conclusion follows from the group action property that imposes:

(g∗f)(λ, g(etv, z)) = f(g(λ, g(etv, z)) = f(g(λ · etv , z)) = (g∗f)(λ · etv , z).

2

Example 1.2 We consider the group G = R
∗
>0⋉R with multiplication (λ1, λ2)·

(µ1, µ2)
−1 = (λ1

µ1
,−λ1

µ2

µ1
+ λ2).

A basis of right invariant vector fields is given by (Olver, 1995, Example 2.46)

v1 = λ1
∂

∂λ1
+ λ2

∂

∂λ2
, v2 =

∂

∂λ2
.

The associated left invariant vector fields, i.e. the infinitesimal generators for
the action of G on G by right multiplication, are:

v̂1 = −λ1
∂

∂λ1

, v̂2 = −λ1
∂

∂λ2

.

If we consider the action g of G on R given by g∗x = λ1 x+ λ2, the associated
infinitesimal generators for this action are

V1 = x
∂

∂x
, V2 =

∂

∂x
.

Note that v̂i(g
∗x) = −Vi(g

∗x) and v̂i|e = −vi|e.

1.2 Action prolongations

We shall consider now a manifold X ×U . We assume that X and U are covered
by a single coordinate chart with respectively x = (x1, . . . , xm) and u =
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(u1, . . . , un) as coordinate functions. The x are considered as the independent
variables and the u as dependent variables. We discuss briefly the prolongation
of an action of G on X × U to its jet space following Olver (1986, 1995).

Notation 1.3 The m-tuple with 1 at the ith position and 0 otherwise is
denoted by ǫi . For α = (α1, . . . , αm) ∈ N

m we note |α| = α1 + . . . + αm. If
D1, . . . ,Dm are derivations we write Dα for Dα1

1 . . .Dαm
m . Similarly uα stands

for ∂|α|u
∂ xα = ∂|α|u

∂x
α1
1

...∂x
αm
m

.

Total derivations

The k-th order jet space is noted Jk(X ,U), or Jk for short, while the infinite
jet space is J. Besides x and u the coordinate functions of Jk are uα for u in
{u1, . . . , un} and α ∈ N

m with |α| ≤ k.

The total derivations with respect to the independent variables are the deriva-
tions on J defined by

Di =
∂

∂xi

+
∑

u∈U , α∈Nm

uα+ǫi

∂

∂uα

, for 1 ≤ i ≤ m. (1.3)

In other words, Di is such that for any u ∈ U and α ∈ N
m, Di(uα) = uα+ǫi

,
while Dixj = 1 or 0 according to whether i = j or not.

Pragmatically the set of total derivations is the free F(J)-module with basis
D = {D1, . . . ,Dm}. Geometrically one defines total derivations as the deriva-
tions of F(J) that annihilate the contact forms (Olver, 1995). Alternatively
they correspond to the formal derivations in (Kumpera, 1974, 1975a,b; Muñoz
et al., 2003). A total derivation D is of order l if for all f ∈ F(Jl+k), k ≥ 0,
D(f) ∈ F(Jl+k+1). The total derivations of order l form a F(Jl)-module.

Prolongation of vector fields

Vector fields on Jk form a free F(Jk)-module a basis of which is given by
{ ∂

∂x
| x ∈ X} ∪ { ∂

∂uα
| u ∈ U , |α| ≤ k}.

Definition 1.4 Let V0 be a vector field on J0. The k-th prolongation Vk,
k ≥ 0, is the unique vector field of F(Jk) defined recursively by the conditions

Vk+1|F(Jk) = Vk, and Vk+1◦Di−Di◦V
k is a total derivation for all 1 ≤ i ≤ m.

This definition is to be compared with (Olver, 1995, Proposition 4.33) given
in terms of contact forms. The explicit form of the prolongations are given in
Chapter 4 of Olver (1995).
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Proposition 1.5 The prolongations of a vector field V0 =
∑n

i=1 ξi
∂

∂xi
+

∑n
j=1 ηj

∂
∂u

j

on J0 are the appropriate restrictions of the vector field

V =
n
∑

i=1

ξi Di +
∑

1≤j≤n,α∈Nm

Dα(ζj)
∂

∂ujα

where ζj = ηj −
m
∑

i=1

ξi Di(uj).

Furthermore Dj ◦ V − V ◦ Dj =
m
∑

i=1

Dj(ξi)Di, ∀j ∈ {1, . . . , m}.

Action prolongations

Consider a connected Lie group G of dimension r acting on J0 = X × U .

An action of G on J0 = X ×U can be prolonged in a unique way to an action
G × Jκ → Jκ that defines a contact transformation for each λ ∈ G. We shall
write g as well for the action on any Jk. The explicit expressions for g∗uα is
obtained as follows (Olver, 1986, Chapter 4).

In order to obtain compact formulae we introduce vectorial notations. D de-
notes the vector of total derivations D = (D1, . . .Dm)T on F(J). Define the
vector D̃ = (D̃1, . . . , D̃m)T of derivations on F(G × J) as

D̃ = A−1D where A = (Di(g
∗xj))ij

. (1.4)

The total derivations D are here implicitly extended to be derivations on
functions of G×J. The derivations D̃ commute and are such that D̃i(g

∗xj) = δij
and g∗uα = D̃α(g∗u) (Olver, 1995, Chapter 4). The prolongations are then
given by:

g∗(Df) = D̃(g∗f), ∀f ∈ F(J). (1.5)

If V0 = (V0
1, . . . ,V

0
r) are the infinitesimal generators for the action of g on J0

then their k-th prolongations Vk = (Vk
1 , . . . ,V

k
r) are the infinitesimal genera-

tors for the action of g on Jk.

Example 1.6 We consider the group of Example 1.2, G = R
∗
>0 ⋉ R and

extend trivially its action on X 1 × U1 as follows:

g∗x = λ1 x+ λ2, g∗u = u.

The derivation D̃ = 1
λ1

D allows to compute the prolongations of the action:
g∗uk = uk

λk
1

. The infinitesimal generators of the action were given in Exam-

ple 1.2. Their prolongations are:

V1 = xD −
∑

k≥0

Dk(xu1)
∂

∂uk

= x
∂

∂x
− k uk

∂

∂uk

, V2 =
∂

∂x
.
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2 Local and differential invariants

We first define the normalized invariants in the context of a group action on a
manifold M. We then generalize those concepts to differential invariants. The
material of this section is essentially borrowed from Fels and Olver (1999) and
Hubert and Kogan (2007b), following closely this latter. We refer the readers
to those papers for more details and a substantial set of examples.

2.1 Normalized invariants

We consider the action g : G ×M → M of the r-dimensional Lie group G on
the smooth manifold M.

Definition 2.1 A smooth function f , defined on an open subset of M, is a
local invariant if V(f) = 0 for any infinitesimal generator V of the action g of
G on M. The set of local invariants is denoted FG(M).

This is equivalent to say that, for z in the definition set of f , g∗λf(z) = f(z)
for all λ in a neighbourhood of the identity in G.

The orbit of a point z ∈ M is the set of points Oz = {g(λ, z)|λ ∈ G}. The
action is semi-regular if all the orbits have the same dimension, say d. For those
a maximally independent set of local invariants is classically shown to exist
by Frobenius theorem (Olver, 1995, Theorem 2.23 and 2.34). Alternatively, a
geometric method was described for free action based on a moving frame by
Fels and Olver (1999) and extended to semi-regular actions with the sole use
of a cross-section by Hubert and Kogan (2007b).

Definition 2.2 An embedded submanifold P of M is a local cross-section
to the orbits if there is an open set U of M such that

- P intersects O0
z ∩ U at a unique point ∀z ∈ U , where O0

z is the connected
component of Oz ∩ U , containing z.

- for all z ∈ P ∩ U , O0
z and P are transversal and of complementary dimen-

sions.

Most of the results in this paper restrict to U . We shall thus assume, with no
loss, that U = M.

An embedded submanifold of codimension d can be locally defined as the zero
set of a map P : M → R

d where the components (p1, . . . , pd) are independent
functions along P . The transversality and dimension condition in the definition
induce the following necessary condition for P to define a local cross-section
P :

the rank of the r × d matrix (Vi(pj))
j=1..d

i=1..r
equals to d on P . (2.1)
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When G acts semi-regularly on M there is a lot of freedom in choosing a
cross-section. In particular we can always choose a coordinate cross-section
(Hubert and Kogan, 2007b, Theorem 5.6).

A cross-section on M defines an invariantization process that is a projection
from F(M) to FG(M).

Definition 2.3 Let P be a local cross-section to the orbits of the action
g : G × M → M. Let f be a smooth function on M. The invariantization
ῑf of f is the function defined by ῑf(z) = f(z0) for each z ∈ M, where
z0 = O0

z ∩ P .

The invariantization of the coordinate functions on M are the normalized

invariants. Fels and Olver (1999, Definition 4.9) explain how invariantization
actually ties in with the normalization procedure in Cartan’s work. The follow-
ing theorem (Hubert and Kogan, 2007b, Theorem 1.8) entails that normalized
invariants form a generating set that is equipped with a trivial rewriting pro-
cess.

Theorem 2.4 Let a Lie group G act semi-regularly on a manifold M, and
let P be a local cross-section to the orbits. Then the invariantization ῑf of
f : M → R is the unique local invariant whose restriction to P is equal to the
restriction of f to P . In other words ῑf |P = f |P .

Contained in this theorem as well is the fact that two local invariants are equal
if and only if they have the same restriction on P . In particular if f ∈ FG(M)
then ῑf = f . Now, by comparing the values of the functions involved at the
cross-section, it is furthermore easy to check that:

Corollary 2.5 For f ∈ F(M), ῑf(z1, . . . , zn) = f(ῑz1, . . . , ῑzn).

Thus for f ∈ FG(M) we have f(z1, . . . , zn) = f(ῑz1, . . . , ῑzn). Therefore the
normalized invariants {ῑz1, . . . , ῑzn} form a generating set of local invariants:
any local invariant can be written as a function of those. The rewriting is
furthermore a simple replacement: we substitute the coordinate functions by
their invariantizations.

The normalized invariants are nonetheless not functionally independent. Char-
acterizing the functions that vanish on (ῑz1, . . . , ῑzn) amounts to characterize
the functions the invariantization of which is zero. The functions that cut out
the cross-section are an example of those.

Proposition 2.6 Assume the cross-section P is the zero set of the map
P = (p1, . . . , pd) : M → R

d which is of maximal rank d along P . The in-
variantization of f ∈ F(M) is zero if and only if, in a neighbourhood of each
point of P , there exist a1, . . . , ad ∈ F(M) such that f =

∑d
i=1 ai pi.
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proof: Taylor’s formula with integral remainder shows the following (Bour-
baki, 1967, Paragraph 2.5). For a smooth function f on an open set I1 × . . .×
Id × U ⊂ R

d × R
l, where the Ii are intervals of R that contain zero, there are

smooth functions f0 on U , and fi on I1 × . . . × Ii × U , 1 ≤ i ≤ d such that
f(t1, . . . , td, x) = f0(x) +

∑l
j=1 tj fj(t1, . . . , tj , x) where f0(x) = f(0, . . . , 0, x).

Assume that ῑf = 0 ⇔ f |P = 0. Since (p1, . . . , pd) is of rank d along P
we can find, in the neighbourhood of each point of P , xd+1, . . . , xn ∈ F(M)
such that (p1, . . . , pd, xd+1, . . . , xn) is a coordinate system. In this coordinate
system we have f(0, . . . , 0, xd+1, . . . , xn) = 0. The result therefore follows from
the above Taylor formula. 2

When G is an algebraic group and g a rational action, the normalized invariants
(ῑz1, . . . , ῑzn) are algebraic functions and their defining ideal can be computed
effectively (Hubert and Kogan, 2007b, Theorem 3.6). The method of Fels and
Olver (1999) proceed through the moving frame.

2.2 Moving frames

Invariantization was first defined by Fels and Olver (1999) in terms of an
G-equivariant map ρ : M → G called a moving frame in reference to the
repère mobile of Cartan (1935, 1937) of which they offer a new interpreta-
tion. As noted already by Griffiths (1974); Green (1978); Jensen (1977); Ivey
and Landsberg (2003), the geometric idea of classical moving frames, like the
Frenet frame for space curves in Euclidean geometry, can indeed be understood
as maps to the group.

An action of a Lie group G on a manifold M is locally free if for every point
z ∈ M its isotropy group Gz = {λ ∈ G | λ · z = z} is discrete. Local freeness
implies semi-regularity with the dimension of each orbit being equal to the
dimension of the group. Fels and Olver (1999, Theorem 4.4) established the
existence of moving frames for actions with this property. It can indeed then
be defined by a cross-section to the orbits.

If the action is locally free and P is a local cross-section on M, then the
equation

g(ρ(z), z) ∈ P for z ∈ M and ρ(z) = e, ∀z ∈ P (2.2)

uniquely defines a smooth map ρ : M → G in a sufficiently small neighborhood
of any point of the cross-section. This map is seen to be equivariant: ρ(λ ·z) =
ρ(z) · λ−1 for λ sufficiently close to the identity.

If P is the zero set of the map P = (p1, . . . , pr) : M → R
r then p1(g(ρ, z)) =

0, . . . , pr(g(ρ, z)) = 0 are implicit equations for the moving frame . If we can
solve those, ρ provides an explicit construction for the invariantization process.
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To make that explicit let us introduce the following maps.

σ : M → G ×M

z 7→ (ρ(z), z)

and π = g ◦ σ : M → M

z 7→ g(ρ(z), z)

(2.3)

Proposition 1.16 of Hubert and Kogan (2007b) can be restated as:

Proposition 2.7 ῑf = π∗f, that is ῑf(z) = f(g(ρ(z), z)) for all z ∈ M.

2.3 Differential invariants

We consider an action g of G on J0 = X × U and its prolongations to
the jet spaces Jk. The prolongations of the infinitesimal generators on Jk

are denoted Vk = (Vk
1 , . . . ,V

k
r) while their prolongations to J are denoted

V = (V1, . . . ,Vr).

Definition 2.8 A differential invariant of order k is a function f of F(Jk)
such that Vk

1(f) = 0, . . . ,Vk
r (f) = 0.

A differential invariant of order k is thus a local invariant of the action pro-
longed to Jk. The ring of differential invariants of order k is accordingly de-
noted by FG(Jk). The ring of differential invariants of any order is FG(J).

The maximal dimension of the orbits can only increase as the action is pro-
longed to higher order jets. It can not go beyond the dimension of the group
though. The stabilization order is the order at which the maximal dimension
of the orbits becomes stationary. If the action on J0 is locally effective on
subsets (Fels and Olver, 1999, Definition 2.2), i.e. the global isotropy group
of any open set is discrete, then, for s greater than the stabilization order,
the action on Js is locally free on an open subset of Js (Olver, 1995, Theorem
5.11). We shall make this assumption of an action that acts locally effectively
on subsets. The dimension of the orbits in Js is then r, the dimension of the
group.

For any k, a cross-section to the orbits of g in Jk defines an invariantization and
a set of normalized invariants on an open set of Jk. As previously we tacitly
restrict to this open set though we keep the global notation Jk. Let s be equal
to or bigger than the stabilization order and Ps a cross-section to the orbits
in Js. Its pre-image Ps+k in Js+k by the projection map πs+k

s : Js+k → Js is a
cross-section to the orbits in Js+k. It defines an invariantization ῑ : F(Js+k) →
FG(Js+k). The normalized invariants of order s + k are the invariantizations
of the coordinate functions on Js+k. We note the set of those:

Is+k = {ῑx1, . . . , ῑxm} ∪ {ῑuα | u ∈ U , |α| ≤ s+ k}.
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We can immediately extend Theorem 2.4 and its Corollary 2.5 to show that
Is+k is a generating set of differential invariants of order s+ k endowed with
a trivial rewriting.

Theorem 2.9 Let s be equal to or greater than the stabilization order and
let Ps be a cross-section in Js. For f ∈ F(Js+k), k ∈ N, ῑf is the unique
differential invariant (of order s+ k) whose restriction to Ps+k is equal to the
restriction of f to Ps+k.

Corollary 2.10 For f ∈ F(Js+k), ῑf(x, uα) = f(ῑx, ῑuα).

In particular, if f ∈ FG(Js+k) then ῑf = f and f(x, uα) = f(ῑx, ῑuα).

We furthermore know the functional relationships among the elements in Is+k.
They are given by the functions the invariantization of which is zero. Those
are essentially characterized by Proposition 2.6.

Proposition 2.11 Let s be equal to or greater than the stabilization order.
Consider the cross-section Ps in Js that we assume given as the zero set
of P = (p1, . . . , pr) : Js → R

r, a map of maximal rank r along Ps. The
invariantization of f ∈ F(Js+k), for k ∈ N, is zero iff, in the neighbourhood of
each point of Ps+k, there exists a1, . . . , ar ∈ F(Js+k) such that f =

∑r
i=1 ai pi.

Example 2.12 We carry on with Example 1.6.

We can choose P = (x, u1−1) as cross-section in J1. This already implies that
ῑx = 0, ῑu0 = u0, ῑu1 = 1. The associated moving frame ρ : J1 → G is then
defined by ρ∗λ1 = u1, ρ

∗λ2 = −xu1 so that ῑui = ui

ui
1

since g∗ui = ui

λi
1

.

Example 2.13 We consider the action of G = R
∗
>0 ⋉ R

2 on J0 = X 2 × U1,
with coordinate (x, y, u), given by:

g∗x1 = λ1 x1 + λ2, g∗x2 = λ1 x2 + λ3, g∗u = u.

The derivations D̃1 = 1
λ1

D1 and D̃2 = 1
λ1

D2 allow to compute its prolongations:

g∗uij =
uij

λ
i+j
1

.

The action is locally free on J1 \ S where S are the points where both u10

and u01 are zero. The moving frame associated with the cross-section defined
by P = (x1, x2, u10 − 1) is ρ∗λ1 = u10, ρ

∗λ2 = −x1 u10, ρ
∗λ3 = −x2 u10. It is

defined only on a proper subset of J1 \ S, as are the normalized invariants:
ῑuij =

uij

u
i+j
10

On the other hand, if we choose the cross-section defined by

P =
(

x1, x2,
1

2
−

1

2
(u2

10 + u2
01)
)
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the associated moving frame is well defined on the whole of J1 \ S:

ρ∗λ1 =
√

u2
10 + u2

01, ρ∗λ2 = −x1

√

u2
10 + u2

01, ρ∗λ3 = −x2

√

u2
10 + u2

01.

as are the normalized invariants:

ῑx1 = 0, ῑx2 = 0, and ῑuij =
uij

(u2
10 + u2

01)
i+j

2

.

This shows that a nonlinear cross-section might have some desirable proper-
ties.

3 Invariant derivations

An invariant derivation is a total derivation that commutes with the infinites-
imal generators. It maps differential invariants of order k to differential invari-
ant of order k+1, for k large enough. Classically a basis of commuting invariant
derivations is constructed with the use of sufficiently many differential invari-
ants (Olver, 1995; Ovsiannikov, 1982; Kumpera, 1974, 1975a,b; Muñoz et al.,
2003). The novel construction proposed by Fels and Olver (1999) is based on
a moving frame. The constructed invariant derivations do not commute in
general. Their principal benefit is that they bring an explicit formula for the
derivation of normalized invariants. This has been known as the recurrence

formulae (Fels and Olver, 1999, Section 13). They are the key to most results
about generation and syzygies in this paper. All the algebraic and algorithmic
treatments of differential invariants and their applications (Mansfield, 2001;
Olver, 2007a; Hubert and Olver, 2007; Hubert, 2008) come as an exploitation
of those formulae.

In Theorem 3.6 we present the derivation formulae for any invariantized func-
tions. For the proof we take the dual approach of the one of Fels and Olver
(1999) which is therefore close in essence to the one presented by Mansfield
(2008), based on the application of the chain rule.

We always consider the action g of a connected r-dimensional Lie group G on
J0 = X × U and its prolongations. We make use of a basis of right invariant
vector fields v = (v1, . . . , vr) on G, and the associated infinitesimal generators:

• V = (V1, . . . ,Vr)
T is the vector of infinitesimal generators for the action g

of G on J
• v̂ = (v̂1, . . . , v̂r)

T is the vector of infinitesimal generators for the action of
G on itself by right multiplication.
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3.1 Infinitesimal criterion

Recall from Section 1.2 that total derivations are the derivations on J that
belong to the F(J)-module with basis (D1, . . . ,Dm), the total derivations with
respect to the independent variables x1, . . . , xm.

Definition 3.1 An invariant derivation D is a total derivation that commutes
with any infinitesimal generator V of the group action: D ◦ V = V ◦ D.

As an immediate consequence of this definition we see that if f is a differential
invariant and D an invariant derivation then D(f) is an differential invariant.

Proposition 3.2 Let A = (aij) be an invertible m×m matrix with entries in

F(J). A vector of total derivations D = (D1, . . . ,Dm)T defined by D = A−1 D
is a vector of invariant derivations if and only if, for all infinitesimal generator
V of the action,

V(aij) +
m
∑

k=1

Di(ξk) akj = 0, where ξk = V(xk), 1 ≤ i, j ≤ m.

proof: For all i we have Di =
∑m

j=1 aij Dj . By expanding the equality
[Di,V] =

∑m
k=1 Di(ξk) Dk (Proposition 1.5) we obtain, for all i,

m
∑

j=1

aij [Dj, V ] =
m
∑

j=1

(

V (aij) +
m
∑

k=1

Di(ξk)akj

)

Dj

Since A is of non-zero determinant [Dj , V ] = 0 for all j if and only if V (aij) +
∑m

k=1 Di(ξk)akj = 0, ∀i, j. 2

As illustration, a classical construction of invariant derivations is given by
the following proposition (Kumpera, 1974, 1975a,b; Olver, 1995; Ovsiannikov,
1982; Muñoz et al., 2003):

Proposition 3.3 If f1, . . . , fm are differential invariants such that the matrix
A = (Di(fj))i,j is invertible then the derivations D = A−1D are invariant
derivations.

proof: If aij = Di(fj) then, by Proposition 1.5,

V (aij) = V (Dj(fi)) = Dj(V (fi))−
∑

k

Dj(ξk) Dk(fi) = Dj(V (fi))−
∑

k

Dj(ξk) aik.

By hypothesis V (fi) = 0 so that the result follows from Proposition 3.2. 2

The above derivations commute. They can be understood as derivations with
respect to the new independent variables f1, . . . , fm.
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As a side remark, note that Definition 3.1 is dual to the infinitesimal condition
for a 1-form to be contact invariant (Olver, 1995, Theorem 2.91). The invari-
ant derivations of Proposition 3.3 are dual to the contact invariant 1-forms
dHf1, . . . , dHfm.

3.2 Moving frame construction of invariant derivations

Assume that there exists on Js a moving frame ρ : Js → G. As in Section 2 we
construct the additional maps

σ : Js+k → G × Js+k

z 7→ (ρ(z), z)

and π = g ◦ σ : Js+k → Js+k

z 7→ g(ρ(z), z)

(3.1)

Theorem 3.4 The vector of derivations D = (σ∗A)−1 D, where A is the
m×m matrix (Di(g

∗xj))ij
, is a vector of invariant derivations.

The matrix A has entries in F(G×J1). Its pull back σ∗A has entries in F(Js).
The above result is proved by checking that the formula of Proposition 1.5
holds.

proof: The equivariance of ρ implies ρ(g(etv , z)) = ρ(z)·e−tv so that ρ∗V = v̂.
Thus σ∗V = v̂+V that is σ∗V (aij) = v̂(Di(g

∗xj))+V (Di(g
∗xj)). As derivations

on F(G × Js), Di and v̂ commute while the commutator of Di and V is given
by Proposition 1.5. It follows that σ∗V (aij) = Di(v̂(g∗xj)) + Di(V(g∗xj)) −
∑m

k=1 Di(ξk) Dk(g
∗xj). By Proposition 1.1 the two first terms cancel and since

V (σ∗aij) = σ∗(σ∗V )(aij) we have V (σ∗aij) = −
∑m

k=1 Di(ξk) σ
∗akj . We can

conclude with Proposition 3.2. 2

Example 3.5 We carry on with Example 1.6 and 2.12.

We found that the equivariant map associated to P = (x, u1 − 1) is given by
ρ∗λ1 = u1, ρ

∗λ2 = −xu1. In addition D̃ = 1
λ1

D while V1 = x ∂
∂u

−
∑

k≥0 k uk
∂

∂uk

and V2 = ∂
∂x

.

Accordingly define D = 1
u1

D. We can then verify that [V1,D] = 0 and
[V2,D] = 0. The application of D to a differential invariant thus produces
a differential invariant. For instance

D

(

ui

ui
1

)

=
ui+1

ui+1
1

−
ui

ui+2
1

u2 =
ui+1

ui+1
1

−
ui

ui
1

u2

u2
1

.

Remembering that ῑui = ui

ui
1

we can observe that D(ῑui) = ῑui+1− ῑu2 ῑui. This

shows that D(ῑui) 6= ῑui+1 in general. The relationship between these two
quantities is the subject of Theorem 3.6 below. We shall furthermore observe
that nonetheless D( ui

ui
1

) = ῑ(D( ui

ui
1

)) (Corollary 3.7).
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3.3 Derivation of invariantized functions.

An essential property of the invariant derivations of Theorem 3.4 is that we
can write explicitly their action on the invariantized functions. Theorem 3.6
below is a general form for the recurrence formulae of Fels and Olver (1999,
Equation 13.7).

Assume that the action of g on Js is locally free and that P = (p1, . . . , pr)
defines the cross-section P . Let ρ : Js → G be the associated moving frame.
We construct the vector of invariant derivations D = (D1, . . . ,Dm) as in The-
orem 3.4.

Denote by D(P ) the m × r matrix (Di(pj))i,j
with entries in F(Js+1) while

V(P ) is the r×r matrix (Vi(pj))i,j
with entries in F(Js). As P is transverse to

the orbits of the action of G on Js, the matrix V(P ) has non zero determinant
along P and therefore in a neighborhood of each of its points.

Theorem 3.6 Let P = (p1, . . . , pr) define a cross-section P to the orbits
in Js, where s is equal to or greater than the stabilization order. Consider
ρ : Js → G the associated moving frame and ῑ : F(J) → FG(J) the associated
invariantization. Consider D = (D1, . . . ,Dm)T the vector of invariant deriva-
tions constructed in Theorem 3.4. Let K be the m × r matrix obtained by
invariantizing the entries of D(P ) V(P )−1. Then

D(ῑf) = ῑ(Df) −K ῑ(V(f)).

proof: From the definition of σ : z 7→ ( ρ(z), z ) and the chain rule we have

D(ῑf)(z) = D(σ∗g∗f)(z) = D(g∗f)(ρ(z), z) + (ρ∗D)(g∗f)(ρ(z), z). (3.2)

Recall the definition of D̃ in Section 1.2 that satisfies D̃j(g
∗f) = g∗(Djf) for

all f ∈ F(J). We have D(g∗f)(ρ(z), z) = (σ∗D̃(g∗f))(z) = σ∗g∗(Df)(z) =
ῑ(Df)(z) and (3.2) becomes

D(ῑf)(z) = ῑ(Df)(z) + σ∗(ρ∗D)(g∗f)(z). (3.3)

Since v̂ = (v̂1, . . . , v̂r) form a basis for the derivations on G there is a matrix 1

K̃ with entries in F(G × Js) such that ρ∗D = K̃ v̂.

We can write (3.3) as D(ῑf)(z) = ῑ(Df)(z) + σ∗
(

K̃v̂(g∗f)
)

(z) so that, by

1 With D known explicitly, we can write K̃ explicitly in terms of coordinates λ =

(λ1, . . . , λr). K̃ is the matrix obtained by multiplying the matrix D(ρ) =
(

Dj(ρ
∗λi)

)

with the inverse of v̂(λ) = (v̂i(λj)). Yet σ∗K̃ needs not have differential invariants
as entries and we shall seek ῑ(σ∗K̃) in a more direct way. See Example 3.9.
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Proposition 1.1,

D(ῑf)(z) = ῑ(Df)(z) − σ∗
(

K̃V(g∗f)
)

(z). (3.4)

This latter equation shows that σ∗
(

K̃V(g∗f)
)

= ῑ(Df)−D(ῑf) is a differential
invariant. As such it is equal to its invariantization and thus

σ∗
(

K̃V(g∗f)
)

= ῑ(σ∗K̃) ῑ(σ∗V(g∗f)).

For all z ∈ P , ρ(z) = e and therefore σ∗V(g∗f) and V(f) agree on P : for all
z ∈ P , σ∗V(g∗f) (z) = V(g∗f) (e, z) = V(f)(z) by Proposition 1.1. It follows
that ῑ(σ∗V(g∗f)) = ῑ(V(f)) so that (3.4) becomes

D(ῑf)(z) = ῑ(Df)(z) − ῑ(σ∗K̃) ῑ(V(f)). (3.5)

To find the matrix K = ῑ(σ∗K̃) we use the fact that ῑpi = 0 for all 1 ≤ i ≤ r.
Applying D and (3.5) to this equality we obtain: ῑ(Dpi) = K ῑ(V(pi)) so that
ῑ(D(P )) = K ῑ(V(P )). The transversality of P imposes that V(P ) is invertible
along P , and thus so is ῑ(V(P )).

We thus have proved that D(ῑf) = ῑ(Df) −K ῑ(V(f)) where K = ῑ(σ∗K̃) =
ῑ(D(P )V (P )−1). 2

If f is a differential invariant, D(f) is also a differential invariant, while D(f)
need not be. But if we invariantize this latter though we find nothing else than
D(f) . This follows immediately from the above way of writing the recurrence

formulae yet we have not seen the following corollary in previous papers on
the subject.

Corollary 3.7 If f is a differential invariant then D(f) = ῑ(D(f)) .

proof: If f is a differential invariant then ῑf = f and V(f) = 0. The result
thus follows from the above theorem. 2

By deriving a recurrence formula for forms, (Fels and Olver, 1999, Section 13)
derived explicitly the commutators of the invariant derivations . It can actually
be derived directly from Theorem 3.6 through the use of formal invariant

derivations (Hubert, 2008).

Proposition 3.8 For all 1 ≤ i, j ≤ m,
[

Di,Dj

]

=
m
∑

k=1

Λijk Dk where

Λijk =
r
∑

c=1

Kic ῑ(Dj(ξck)) −Kjc ῑ(Di(ξck)) ∈ FG(Js+1),

K = ῑ (D(P )V (P )−1), and ξck = Vc(xk).
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Example 3.9 We carry on with Example 1.6, 2.12, and 3.5.

We chose P = (x, u1 − 1) and showed that D = 1
u1

D while ῑui = ui

ui
1

. We

computed

D(ῑui) =
ui+1

ui+1
1

− i
ui

ui
1

u2

u2
1

= ῑui+1 − i ῑu2 ῑui.

We have D(P ) = ( 1 u2 ) and V(P ) =







x −u1

1 0





. The matrix K of Theo-

rem 3.6 is thus K = ῑ (D(P )V (P )−1) = (−ῑu2 1 ) and the formula is verified:

D(ῑui) = ῑui+1 − (−ῑu2 1 )







ῑV1(ui)

ῑV2(ui)





 since ῑV(ui) =
(

−i ui 0

)T

.

What we shall do next is illustrate the proof by exhibiting the matrix K̃ that
arises there. It is defined by ρ∗D = K̃ v̂ and the fact that σ∗K̃V(g∗f) is an
invariant for any f ∈ F(J).

We have v̂1 = −λ1
∂

∂λ1
, v̂2 = −λ1

∂
∂λ2

and saw that ρ∗λ1 = u1 and ρ∗λ2 =
−xu1. Thus

ρ∗D =
(

D(ρ∗λ1) D(ρ∗λ2)

)







∂
∂λ1

∂
∂λ2





 =
(

−u2

u1

1
λ1

u1+x u2

u1

1
λ1

)







v̂1

v̂2





 .

So here σ∗K̃ =
(

−u2

u2
1

, u1+xu2

u2
1

)

. We indeed have that ῑσ∗K̃ = K as used in the

proof. We verify here that σ∗
(

K̃V(g∗f)
)

is a vector of differential invariants.
We have

V(g∗x) =







λ1 x

λ1





 , V(g∗ui) =







−i ui

λi
1

0







so that σ∗K̃V(g∗x) = 1 and σ∗K̃V(g∗ui) = i u2

u2
1

u1

ui
1

= i ῑu2 ῑui.

Example 3.10 We carry on with Example 2.13.

We chose

P =
(

x1, x2,
1

2
−

1

2
(u2

10 + u2
01)
)

.

On one hand the prolongations of the infinitesimal generators to J are

V1 =
∂

∂x1
, V2 =

∂

∂x2
, V3 = x1

∂

∂x1
+ x2

∂

∂x2
−
∑

i,j≥0

(i+ j) uij

∂

∂uij
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so that

V(P ) =















1 0 0

0 1 0

x1 x2 u
2
10 + u2

01















while D(P ) =







1 0 v

0 1 w







where

v = −(u10u20 + u01u11) and w = −(u10u11 + u01u02).

Since ῑx1 = 0, ῑx2 = 0 and ῑ(u2
10 + u2

01) = 1, ῑV(P ) is the identity matrix so
that

K = ῑ(D(P )V(P )−1) =







1 0 ῑv

0 1 ῑw





 .

On the other hand the normalized invariants and invariant derivations are

ῑuij =
uij

(u2
10 + u2

01)
i+j

2

, ∀i, j; Di =
1

√

u2
10 + u2

01

Di, i = 1, 2.

We can thus check that







D1(ῑuij)

D2(ῑuij)





 =







ῑ(ui+1,j)

ῑ(ui,j+1)





−K















0

0

−(i+ j) ῑuij















,

as predicted by Theorem 3.6, and that [D2,D1] = ῑwD1 − ῑvD2, as predicted
by Proposition 3.8.

4 Finite generation and rewriting

The recurrence formulae, Theorem 3.6, together with the replacement the-
orem, Theorem 2.10, show that any differential invariant can be written in
terms of the normalized invariants of order s + 1, where s is the order of the
moving frame, and their invariant derivatives. The rewriting is effective.

In the case of a cross-section of minimal order, we exhibit another generating
set of differential invariants with bounded cardinality. This bound is mr in the
case of an action transitive on J0. When in addition we choose a coordinate
cross-section, this set consists of normalized invariants and we retrieve the
result of Olver (2007b). This was incorrectly stated for any cross-section by
Fels and Olver (1999, Theorem 13.3).
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4.1 Rewriting in terms of normalized invariants of order s+ 1

Let s be equal to or greater then the stabilization order and let P be a cross-
section to the orbits in Js defined by P = (p1, . . . , pr) with pi ∈ F(Js). Recall
from Section 2.3 that

Is+k = {ῑx1, . . . , ῑxm} ∪ {ῑuα | u ∈ U , |α| ≤ s+ k},

where ῑ : F(Js+k) → FG(Js+k) is the invariantization associated to P , forms a
generating set of local invariants for the action of g on Js+k. Those invariants
have additional very desirable properties: we can trivially rewrite any differ-
ential invariants of order s+ k in terms of them. Yet it is even more desirable
to describe the differential invariants of all order in finite terms.

Theorem 3.6 implies in particular that

ῑ(Diuα) = Di(ῑuα) +
r
∑

a=1

Kia ῑ(Va(uα))

where K = ῑ(D(P )V(P )−1) has entries that are function of Is+1. It is then an
easy inductive argument to show that any ῑuα can be written as a function of
Is+1 and their derivatives of order max(0, |α| − s − 1). Combining with the
replacement property, Theorem 2.10, we have a constructive way of rewriting
any differential invariants in terms of the elements of Is+1 and their deriva-
tives: A differential invariant of order k is first trivially rewritten in terms of
Ik by Theorem 2.10. If k ≤ s+ 1 we are done. Otherwise, any element ῑuα of
Ik with |α| = k is a ῑ(Diuβ), for some 1 ≤ i ≤ m and |β| = k − 1. We can
thus write it as:

ῑuα = ῑ(Diuβ) = Di(ῑuβ) +
∑

a

Kia ῑ (Va(uβ)) .

This involves only elements of Ik−1 and their derivatives. Carrying on recur-
sively we can rewrite everything in terms of the elements of Is+1 and their
derivatives.

This leads to the following result that will be refined in Section 5. Indeed the
rewriting is not unique: at each step there might be several choices of pairs
(i, β) such that uα = Diuβ.

Theorem 4.1 Any differential invariant of order s+k can be written in terms
of the elements of Is+1 and their derivatives of order k − 1 and less.

4.2 Case of minimal order cross-section

A natural question is to determine a smaller set of differential invariants
that is generating. Olver (2007b) proved that when choosing a coordinate
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cross-section of minimal order the normalized invariants corresponding to the
derivatives of the coordinates functions which are set to constant form a gen-
erating set of differential invariants. Here we generalize the result to noncoor-
dinate cross-sections. The proof is based on the same idea.

Let s be equal to or greater than the stabilization order. A local cross-section
P in Js is of minimal order if its projection on Jk, for all k ≤ s, is a local
cross-section to the orbits of the action of g on Jk (Olver, 2007b). Assume
P = (p1, . . . , pr) defines a cross-section P of minimal order. Without loss of
generality we can assume that Pk = (p1, . . . , prk

) where rk is the dimension of
the orbits of the action of g on Jk, defines the projection of P on Jk.

Theorem 4.2 If P = (p1, . . . , pr) defines a cross-section for the action of g
on J such that Pk = (p1, . . . , prk

) defines a cross-section for the action of g on
Jk, for all k, then E = {ῑ(Di(pj)) | 1 ≤ i ≤ m, 1 ≤ j ≤ r} together with I0

form a generating set of differential invariants.

proof: The minimal order condition imposes that the r × rk matrix V(Pk)
has maximal rank rk on P , and therefore on an open neighborhood of each
point of P . As Vk has rank rk, for any f in F(Jk), V(f) is linearly dependent
on V(p1), . . . ,V(prk

). In a neighborhood of each point of Pk there is thus a
relation

V(f) =
rk
∑

i=1

ai V(pi), where ai ∈ F(Jk).

On one hand, by Theorem 3.6, we have ῑ(Df) = D(ῑf) + K ῑ(V (f)) so that
ῑ(Df) = D(ῑf) +

∑rk
i=1 ῑ(ai)K ῑ(V(pi)). On the other hand ῑ(pi) = 0 so that

ῑ(Dpi) = Kῑ(V(pi)). It follows that

ῑ(Df) = D(ῑf) +
rk
∑

i=1

ῑ(ai) ῑ(Dpi).

Note that ῑ(ai) can be written in terms of the ῑ(uβ) with |β| ≤ k. So the
formula implies that any ῑuα, with |α| = k + 1, can be written in terms of
{ ῑ(Dpi) | 1 ≤ i ≤ rk } and { ῑ(uβ) | |β| ≤ k } together with their derivatives
with respect to the invariant derivations D. By induction, it follows that any
ῑuα can be written in terms of the zero-th order normalized invariants together
with the elements of E and their derivatives. 2

In the case of a coordinate cross-section E is a subset of the normalized invari-
ants Is+1 that Olver (2007b) named the edge invariants for the representation
of the derivatives of a dependent function on a lattice. We shall extend this
name in the case of non coordinate cross-section though the pictorial repre-
sentation is no longer valid.

Minimality is necessary for the edge invariants to be generating in general.
Olver (2007a) exhibits a choice of non minimal (coordinate) cross-section for
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which the edge invariants are not generating. We review this example in Sec-
tion 6.2.

A consequence of Theorem 4.2 is that we can bound the number of differential
invariants necessary to form a generating set. The bound is mr + d0, where
d0 = m + n − r0 is the codimension of the orbits of the action of g on J0.
Transitive actions on J0 are of particular interest. There d0 = 0 and the bound
is simply mr. Hubert (2007a) exhibits a generating set of such cardinality even
in the case of non minimal cross-section.

Example 4.3 Consider Example 3.10 again. The chosen cross-section is of
minimal order. Specializing Theorem 3.6 we obtained







ῑ(ui+1,j)

ῑ(ui,j+1)





 =







D1(ῑuij)

D2(ῑuij)





− (i+ j) ῑuij







ῑv

ῑw







from which it is clear that all the normalized invariants can be inductively
written in terms of ῑu00, ῑv and ῑw, i.e the non constant elements of I0 ∪ E ,
and their derivatives.

5 Syzygies

Loosely speaking, a differential syzygy is a relationship among a (generating)
set of differential invariants and their derivatives. A set of differential syzygies
is complete if any other syzygies is inferred by those and their derivatives. In
this section we formalize a definition of syzygies by introducing the appropriate
differential algebra. We then show the completeness of a finite set of differential
syzygies on the normalized invariants of order s+ 1.

Fels and Olver (1999, Theorem 13.2) claimed a complete set of syzygies for
edge invariants, in the case of coordinate cross-section. It has so far remained
unproven 2 . As we are finishing this paper Olver and Pohjanpelto (2007) an-
nounce a syzygy theorem for pseudo-groups. The symbol module of the in-
finitesimal determining system takes there a prominent place: on one hand it
dictates the coordinate cross-section to be used and, on the other hand, its
(algebraic) syzygies prescribe the syzygies on the differential invariants. Let
us note here two immediate advantages of our result for Lie group actions: we
do not need to have any side algebraic computations (over a ring of functions)
nor are we restricted in our choice of cross-section. In particular we are neither
restricted to minimal order nor coordinate cross-section. Even if those latter
are often the best choice, there are needs for more options. Such is the case in
the symmetry reduction considered by Mansfield (2001). Also in Example 2.13

2 An necessary amendment of the statement is that K might be taken as the empty
set in (iii).
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the nonlinear cross-section is defined for the whole open set where the action
is regular, while a linear cross-section is only defined for a subset.

The commutation rules, Theorem 3.8, imply infinitely many relationships on
derivatives of normalized invariants. Fels and Olver (1999), as well as Olver and
Pohjanpelto (2007), considered those as syzygies. Our approach is in the line of
Hubert (2005b). We encapsulate those relationships in a recursive definition of
the derivations to work exclusively with monotone derivatives. The differential
algebra of monotone derivatives that arises there is a generalization of the
differential polynomial rings considered by Ritt (1950) and Kolchin (1973) to
model nonlinear differential equations. Of great importance is the fact that
it is endowed with a proper differential elimination theory (Hubert, 2005b).
This generalization is effective and has been implemented (Hubert, 2005a).

Refining the discussion of Section 4, we first observe that any differential
invariant can be written in terms of the monotone derivatives of the normalized
invariants of order s + 1. The rewriting is nonetheless not unique in general.
The syzygies can be understood as the relationships among the monotone
derivatives that govern this indeterminacy.

For the normalized invariants of order s+1 we introduce the concept of normal

derivatives. They provide a canonical rewriting of any differential invariant.
The set of differential relationships that allows one to rewrite any monotone
derivative in terms of normal derivatives is then shown to be a complete set
of syzygies for the normalized invariants of order s+ 1 (Theorem 5.14).

To prove these results we formalize the notion of syzygies by introducing the
algebra of monotone derivatives. We endow this algebra with derivations so as
to have a differential morphism onto the algebra of differential invariants. The
syzygies are the elements of the kernel of this morphism. It is a differential
ideal and Theorem 5.14 actually exhibits a set of generators.

5.1 Monotone and normal derivatives

In Section 4 we showed that any differential invariant can be written in terms
of Is+1 and its derivatives. However, this rewriting is not unique. We can
actually restrict the derivatives to be used in this rewriting, first to monotone

derivatives, then to normal derivatives. Normal derivatives provide a canonical
rewriting.

Definition 5.1 An invariant derivation operator Dj1 . . .Djk
is monotone if

j1 ≤ . . . ≤ jk. Such a monotone derivation operator is noted Dα where α =
(α1, . . . , αm) ∈ N

m and αi is the cardinality of {jl | jl = i}.

There is an inductive process to rewrite any normalized invariants, and there-
fore any differential invariants, in terms of the monotone derivatives of Is+1.
For the inductive rewriting of ῑuβ, for |β| > s + 1, in terms of the monotone
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derivatives of Is+1 we can proceed as follows: split β in β = β̂ + β̄ where
|β̄| = s + 1 and then rewrite ῑuβ − Dβ̂(ῑuβ̄) which is of lower order. There
might be several ways to split β, each leading to a different rewriting. The
following definition imposes a single choice of splitting 3 .

Notation 5.2 For β = (β1, . . . , βm) ∈ N
m, we denote

β̄ =







































β if |β| ≤ s+ 1

(0, . . . , 0, β ′
i, βi+1, . . . , βm) otherwise

with i = max {j | βj + . . .+ βm ≥ s+ 1}

and β ′
i = (s+ 1) − βi+1 − . . .− βm

and β̂ = β − β̄.

With those notations, β̂ = 0 when |β| ≤ s + 1 and |β̄| is always less or equal
to s+ 1.

Definition 5.3 The normal derivatives of Is+1 are the elements of the set

N = Is+1 ∪
{

Dβ̂(ῑuβ̄) | β ∈ N
m, |β| > s+ 1

}

.

The set N k of the normal derivatives of order k is the subset thereof with
|β̂| ≤ k.

We introduce a further notation to deal with tuples that is used in the com-
ing inductive proofs and in the description of a complete set of syzygies in
Theorem 5.14.

Notation 5.4 For β ∈ N
m, |β| > 0, we define f(β) and l(β) respectively as

the first and last non zero component of β, i.e.

f(β) = min {j | βj 6= 0} and l(β) = max {j | βj 6= 0}.

Note that the splitting of Notation 5.2 is such that l(β̂) ≤ f(β̄) for all β 6= 0.

Proposition 5.5 Any differential invariant is a function of the normal deriva-
tives N of Is+1.

This result follows from an easy inductive argument on the following lemma.

3 The idea is reminiscent of involutive division. Originally introduced by Riquier
(1910) and Janet (1929) for the completion of partial differential systems, gener-
alizations and algorithmic refinements have been worked out by several authors in
the past decade for polynomial systems as well within the framework of computer
algebra.
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Lemma 5.6 For all β ∈ N
m, β 6= 0, ῑuβ −Dβ̂(ῑuβ̄) ∈ FG(J|β|−1).

proof: This is trivially true for |β| ≤ s + 1 since then β̂ = (0, . . . , 0). We
proceed by induction for |β| > s+ 1.

Assume the statement is true for all β with s + 1 ≤ |β| ≤ k. Take β with
|β| = k + 1. Let i = f(β) and β ′ = β − ǫi. We have β̄ ′ = β̄, β̂ ′ = β̂ − ǫi

and Dβ̂ = DiD
β̂′

so that ῑuβ −Dβ̂(ῑuβ̄) = ῑ(Di(uβ′)) −DiD
β̂′

(ῑuβ̄′). Thus, by
Theorem 3.6,

ῑuβ −Dβ̂(ῑuβ̄) = Di

(

ῑuβ′ −Dβ̂′

(uβ̄′)
)

+
r
∑

a=1

Kia ῑ (Va(uβ′)) .

The entries of K are functions of Is+1, while the entries of ῑ (V(uβ′)) are

functions of Ik. By induction hypothesis Dβ̂′
(ῑuβ̄′)− ῑuβ′ ∈ FG(Jk−1) and thus

Di

(

Dβ̂′
(uβ̄′) − ῑuβ′

)

∈ FG(Jk). 2

Following the induction on Lemma 5.6, rewriting any ῑuβ in terms of the nor-
mal derivatives of Is+1 is an effective process. Now, the normalized invariants
ῑuβ are in one-to-one correspondence with the normal derivatives Dβ̂(ῑuβ̄)
of Is+1. Extending Proposition 2.11, which bears on normalized invariants,
we show that the rewriting of any differential invariants in terms of normal
derivatives N of Is+1 is unique, modulo P .

Proposition 5.7 Assume P = (p1, . . . , pr) are the r independent functions
of F(Js) that cut out the cross-section Ps to the orbits on Js. Let F ∈ F(Js+k)

be a function such that F (ῑx,Dβ̂(ῑuβ̄)) = 0. Then, in the neighborhood of each
point of P , there exist a1, . . . , ar ∈ F(Js+k) such that F =

∑r
i=1 ai pi.

proof: By Lemma 5.6, for |β| ≤ s + k, there exists ζβ in F(J|β|−1) such

that Dβ̂(ῑuβ̄) − ῑuβ = ῑζβ. We choose such a family of ζβ with ζβ = 0 for
|β| ≤ s+ 1. The map θ : F(Js+k) → F(Js+k) then defined by θ(uβ) = uβ + ζβ

is an automorphism of F(Js+k). It satisfies F (ῑx,Dβ̂ ῑuβ̄) = θ(F )(ῑx, ῑuβ) and
its restriction to F(Js+1) is the identity. In particular θ(pi) = pi.

If F
(

ῑx,Dβ̂(ῑuβ̄)
)

= 0 then, by Proposition 2.11, there exist b1, . . . , br ∈

F(Js+k) such that θ(F ) =
∑r

i=1 bi pi in the neighborhood of each point of
P . Let ai ∈ F(Js+k) be such that bi = θ(ai). We have F =

∑r
i=1 ai pi. 2

5.2 The differential algebra of monotone derivatives

When we apply the invariant derivation Di to a monotone derivative Dβ(ῑuα)
we do not obtain a monotone derivative unless i ≤ f(β). Yet the obtained re-
sult can be written in terms of monotone derivatives. This comes as a result of
the general Proposition 5.5, but we could also deduce it from the commutation
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rules on the derivations, Proposition 3.8. This is detailed by Hubert (2005b)
and leads to an appropriate definition of differential algebra in the presence
of non trivial commutation rules for the derivations. 4

We shall accordingly define a differential algebra where the differential in-
determinates are in one-to-one correspondence with the elements of Is+1 =
{ῑx1, . . . , ῑxm} ∪ {ῑuα | u ∈ U , |α| ≤ s + 1}. They are noted {x1, . . . , xm} ∪
{uα | |α| ≤ s+1}. The monotone derivatives Dβ(ῑxi) and Dβ(ῑuα) are then rep-
resented by the double-scripted indeterminates x

β
i and uβ

α. The correspondence
is encoded with a natural morphism from this differential algebra to FG(J)
given by x

β
i 7→ Dβ(ῑxi) and uα

β 7→ Dβ(ῑuα). We shall then define D1, . . . ,Dm

acting on the x
β
i and uα

β so that this becomes a differential morphism, i.e.

Djx
β
i 7→ DjD

β(ῑxi) and Dju
α
β 7→ DjD

β(ῑuα). The key idea comes from Hu-
bert (2005b): the formal invariant derivations D1, . . . ,Dm are given a recursive
definition.

We develop here the formalism to incorporate the functional aspect, as op-
posed to the polynomial case developed by Hubert (2005b). We thus define
first a sequence (Ak)k of manifolds 5 that correspond to the spaces of the
monotone derivatives of Is+1 of order k. A0 is isomorphic to Js+1 and there-
fore of dimension N = m + n

(

m+s+1
s+1

)

. The coordinate function on A0 are

noted {x0
1, . . . , x

0
m} ∪ {u0

α | |α| ≤ s + 1}. Then, for each k, Ak is a submani-

fold of Ak+1 and Ak is of dimension N
(

k+m

m

)

. A coordinate system is given by

{xβ | |β| ≤ k} ∪ {uβ
α | |β| ≤ k, |α| ≤ s + 1}. We actually focus on the algebras

of smooth functions F(Ak) and F(A), where A =
⋃

k≥0 Ak.

We can go back and forth from F(A) to F(J) and this is expressed with the
maps φ and ψ introduced in the next proposition. This latter is nothing else
than the statement that any differential invariants can be written in terms of
the monotone derivatives of Is+1 (Proposition 5.5).

Proposition 5.8 On one hand the ring morphism φ : F(Ak) → FG(Js+k+1)
defined by

φ(xα) = Dα(ῑx) and φ(uα
β) = Dα(ῑuβ), for all α ∈ N

m and |β| ≤ s+ 1,

is surjective.

On the other hand there exists a ring morphism ψ : F(Js+1+k) → F(Ak) such
that φ ◦ ψ(uα) = ῑuα. We can furthermore choose ψ so that ψ(xi) = x0

i and
ψ(uα) = u0

α, for |α| ≤ s+ 1.

4 The difficulty, and major difference, compared with the case considered for in-
stance by Kolchin (1973) or Yaffe (2001) is that the coefficients of the commutation
rules are themselves in the polynomial ring to be defined as opposed as to be in the
base field.
5 We shall simply think of them as open subsets of R

l for the right l.
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In other words, ψ(uα) is a function that allows one to rewrite ῑuα in terms of
the monotone derivatives of Is+1.

We proceed now to define on F(A) the derivations D1, . . . ,Dm that will turn
φ into a differential morphism.

Definition 5.9 Consider the maps φ and ψ as in Proposition 5.8. We define
the formal invariant derivations D1, . . . ,Dm from F(Ak) to F(Ak+1) by the
following inductive process:

Di(z
β) =















zβ+ǫi, if i ≤ f(β)

DfDi(z
β−ǫf ) +

m
∑

l=1

cifl Dl(z
β−ǫf ), where f = f(β), otherwise,

where

• z ranges over the differential indeterminates {x1, . . . , xm}∪{uα | |α| ≤ s+1}
• cijk = ψ(Λijl) ∈ F(A1), for all 1 ≤ i, j, l ≤ m, where {Λijl}1≤i,j,l≤m are the

commutator invariants defined in Proposition 3.8.

Endowed with the derivations (D1, . . . ,Dm), F(A) is the differential algebra
of monotone derivatives of Is+1.

Taking the notation Dα = Dα1

1 . . .Dαm
m of Definition 5.1 we have Dα(z0) = zα

but in general Dα(zβ) 6= zα+β, unless l(α) ≤ f(β). We nonetheless have the
following property 6 that allows to show that φ is a differential morphism,
thus justifying the definition of the formal invariant derivations. The proofs of
the two next results are reasonably straightforward inductions exploiting the
definition of the derivations.

Lemma 5.10 Dα(zβ)−zα+β ∈ F(A|α+β|−1), for any z ∈ {x1, . . . , xm}∪{uα | |α| ≤
s+ 1}.

proof: By definition of the derivations D, this is true whenever α or β is zero
and when l(α) ≤ f(β). It is in particular true when l(α) = 1 or f(β) = m.
The result is then proved by induction along the well-founded pre-order:

(α′, β ′) ≺ (α, β) ⇔











β ′ ≺f β or

f(β ′) = f(β) = f and β ′
f = βf and α′ ≺l α

where

β ′ ≺f β ⇔











f(β ′) > f(β) or

f(β ′) = f(β) = f and β ′
f < βf

6 which is expected for a differential elimination theory.
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and

α′ ≺l α ⇔











l(α′) < l(α) or

l(α′) = l(α) = l and α′
l < αl.

Assume the result is true for all (α′, β ′) ≺ (α, β). We only need to scrutinize
the case l = l(α) > f(β) = f . By definition of D then:

Dα(zβ) = Dα−ǫl

(

DfDl(z
β−ǫf )

)

+
∑

k

clfkDk(z
β−ǫf ).

We have β−ǫf ≺f β and thus, by induction hypothesis, Dk(z
β−ǫf ) = zβ−ǫf+ǫk +

F where F ∈ F(A|β|), for all k, and in particular for k = l. We apply then
the induction hypothesis on Df(z

β−ǫf+ǫl) and on Dα−ǫl(zβ+ǫl), observing that
β − ǫf + ǫl ≺f β while α− ǫl ≺l α. 2

Proposition 5.11 The map φ : F(A) → FG(J) defined in Proposition 5.8 is
a morphism of differential algebras i.e. φ ◦ Di = Di ◦ φ, for all 1 ≤ i ≤ m.

proof: We need to prove that

H(i, α) : φ(Di(z
α)) = Di(φ(zα))

for all α ∈ N
m. If this is true for all |α| ≤ k then φ(Di(F )) = Di(φ(F )) for all

F ∈ F(Ak). The proof is an induction along the well founded pre-order:

(j, β) ≺ (i, α) ⇔











|β| < |α| or

|β| = |α| and j < i.

H(i, α) is trivially true when α is zero or when i ≤ f(α). It is therefore true
whenever i = 1.

Assume H(j, β) holds for any (j, β) ≺ (i, α). Only the case i > f(α) = f

needs scrutiny. We have Di(z
α) = Df (Di(z

α−ǫf )) +
∑

k cifkDk(z
α−ǫf ). Since

Di(z
α−ǫf ) ∈ F(A|α|) while f < i, the induction hypothesis implies that φ

(

Df (Di(z
α−ǫf ))

)

=

Df (φ (Di(z
α−ǫf ))). And since |α−ǫf | < |α|, φ (Dk(z

α−ǫf )) = Dk(φ (zα−ǫf )), for
any k and in particular for k = i. Therefore

φ (Di(z
α)) = DfDi (φ(zα)) +

∑

k

ΛifkDk

(

φ(zα−ǫf )
)

.

This is equal to Di (φ(zα)) by Proposition 3.8. 2

Example 5.12 We carry on with Example 2.13, 3.10 and 4.3.

The stabilization order was s = 1 and we took a cross-section of that order.
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According to Theorem 4.1, or Proposition 5.5, the set I2 below forms a gen-
erating set of differential invariants:

I2 = {ῑx1, ῑx2, ῑu00, ῑu10, ῑu01, ῑu20, ῑu11, ῑu02}.

We accordingly introduce A0 with coordinates

A0 : (x00
1 , x

00
2 , u

00
00, u

00
10, u

00
01, u

00
20, u

00
11, u

00
02).

The coordinates on Ak are the zij where i + j ≤ k and z ranges over the
differential indeterminates { x1, x2, u00, u10, u01, u20, u11, u02 }:

Ak : (xij
1 , x

ij
2 , u

ij
00, u

ij
10, u

ij
01, u

ij
20, u

ij
11, u

ij
02), i+ j ≤ k.

Their images through φ : F(A) → FG(J) are the monotone derivatives of I2:

φ(xij
1 ) = Di

1D
j
2(ῑx1), φ(xij

2 ) = Di
1D

j
2(ῑx2), φ(uij

00) = Di
1D

j
2(ῑu00),

φ(uij
10) = Di

1D
j
2(ῑu10), . . . , φ(uij

02) = Di
1D

j
2(ῑu02).

Given that [D2,D1] = (ῑu10ῑu20 + ῑu01ῑu11)D2 − (ῑu10ῑu11 + ῑu01ῑu02)D1 we
define on F(A) the derivations D1 and D2 recursively as follows.

D1(z
i,j) = zi+1,j ,

D2(z
0,j) = z0,j+1,

D2(z
i+1,j) = D1D2(z

i,j) + (u00
10u

00
20 + u00

01u
00
11) D2(z

i,j) − (u00
10u

00
11 + u00

01u
00
02) D1(z

i,j).

According to Proposition 5.11, φ ◦ Di = Di ◦ φ. We have for instance, with
a+ b ≤ 2:

φ(D2(u
kl
ab)) = D2D

k
1D

l
2(ῑuab)

while
φ(D1(u

kl
ab)) = D1D

k
1D

l
2(ῑuab) = Dk+1

1 Dl
2(ῑuab) = φ(uk+1,l

ab ).

5.3 Complete set of syzygies

As a rather immediate consequence of Theorem 3.6, the following differential
relationships hold among the first order derivatives of Is+1:

Di(ῑxj) = δij −
r
∑

a=1

Kia ῑ (Va(xj)) , 1 ≤ i, j,≤ m

Di(ῑuα) = ῑuα+ǫi
−

r
∑

a=1

Kia ῑ (Va(uα)) , |α| ≤ s

Di(ῑuα) −Dj(ῑuβ) =
r
∑

a=1

Kjaῑ (Va(uβ)) −Kiaῑ (Va(uα)) , α + ǫi = β + ǫj ,

|α| = |β| = s+ 1,
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where δij = 1 or 0 according to whether i = j or not while ǫi was defined in
Notation 1.3.

The first two sets of equations describe how the invariant derivations act on the
elements of Is in terms of Is+1. The last set of equations describes the cross-
derivatives of the elements of Is+1\Is. The indices α and β and the derivations
Di and Dj are chosen so that uα and uβ have a common derivative uγ = uα+ǫi

=
uβ+ǫj

. The idea here is that there are more than one way to rewrite ῑuγ in terms
of the monotone derivatives of Is+1: on one hand ῑuγ = Di(ῑuα)+Kiaῑ (Va(uα))
and on the other hand ῑuγ = Dj(ῑuβ) +

∑r
a=1Kjaῑ (Va(uβ)); both should be

equivalent.

Using the setting introduced in the previous subsection we formalize and prove
that those relationships form a complete set of differential syzygies for Is+1.
We actually prove the result for a subset obtained by restricting the range of
(i, j) for the third type of relationships which bears on Is+1 \Is. Indeed, some
of those relationships can be deduced from the others. More specifically, if we
write T α,i

β,j for this latter relationship and if γ + ǫk = α + ǫi = β + ǫj then

T
α,i
β,j = T

α,i
γ,k − T

β,j
γ,k .

Definition 5.13 Let φ : F(Ak) → FG(Js+k+1) be as in Proposition 5.8. An
element of F(Ak) is a (differential) syzygy on the monotone derivatives of Is+1

if its image by φ is zero on the cross-section in Jk.

Since differential invariants are locally determined by their restriction to the
cross-section, this is the same as requesting that the image is zero on an open
set that contains the cross-section. Furthermore, by Proposition 5.11, the set
of syzygies is a differential ideal: if f is a syzygy then so is Di(f), for all
1 ≤ i ≤ m.

Theorem 5.14 Let s be greater or equal to the stabilization order 7 and
assume a cross-section is defined as the zero set of P = (p1, . . . , pr) : Js → R

r.
Let F(A) = ∪k≥0F(Ak) be the differential algebra of monotone derivatives of
Is+1, the normalized invariants of order s+ 1.

Consider the map φ : F(A) → FG(J) defined by φ (xα) = Dα(ῑx), and

φ
(

uα
β

)

= Dα(ῑuβ), ∀α, β ∈ N
m, |β| ≤ s+1. It is surjective and its kernel is a dif-

ferential ideal for the formal invariant derivations, D1, . . . ,Dm (Definition 5.9).
Let ψ : F(Js+1) → F(A0) be the morphism define by ψ(x) = x0, ψ(uβ) = u0

β.

A generating set for the kernel of φ is given by the union of the three following
finite subsets of F(A1)

• R = { p1(x
0, u0

α), . . . , pr(x
0, u0

α) } ⊂ F(A0)

7 Under our assumption of a locally effective action on J0, the generic orbits in Js

are of the same dimension r as the group.
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• S = {Si
xj
| 1 ≤ i, j ≤ m } ∪ {Si

uα
| |α| ≤ s, 1 ≤ i ≤ m } ⊂ F(A1) where

Si
xj

= xǫi
j − δij −

r
∑

a=1

ψ (KiaVa(xj))

and

Si
uα

= uǫi
α − u0

α+ǫi
−

r
∑

a=1

ψ (KiaVa(uα))

• T = { T i
uβ

| |β| = s+ 1 and f(β) < i ≤ m } ⊂ F(A1) where, with f = f(β),

T i
uβ

= uǫi

β − u
ǫf

β+ǫi−ǫf
−

r
∑

a=1

ψ
(

KiaVa(uβ+ǫi−ǫf
) −KfaVa(uβ)

)

.

The result is deduced from the following lemma. It shows that any monotone
derivative of Is+1 can be rewritten in terms of the normal derivatives modulo
S ∪ T.

Lemma 5.15 For any α ∈ N
m and |γ| ≤ s+ 1 there exists a linear operator

Lα
uγ

of order |α| − 1 in D1, . . . ,Dm such that, for β = α + γ,

uα
γ − u

β̂

β̄
− Lα

uγ
(S,T) ∈ F(A|α|−1).

proof: We consider first the case where |γ| = s+1 and prove that there exists
a homogeneous linear operator Hα

uγ
of order |α| − 1 in D1, . . . ,Dm such that

uα
γ − u

β̂

β̄
−Hα

uβ
(T) ∈ F(A|β|−1). The proof is by induction along the following

well founded pre-order on N
m:

γ ≺ γ′ ⇔



























|γ| < |γ′|

or |γ| = |γ′| and l(γ) < l(γ′)

or |γ| = |γ′| and l = l(γ) = l(γ′) and γl < γ′l

Let Eβ = {γ′ | |γ′| = s+ 1, ∃α′ such that α′ + γ′ = β}. Note that γ ∈ Eβ and

that β̂ is the minimal element of Eβ according to ≺.

If l(α) ≤ f(γ) then β̂ = α and β̄ = γ and the result needs no further argument.

Otherwise assume the result is true for all γ′ ∈ Eβ with γ′ ≺ γ. Let l = l(α) >
f(γ) = f . We have:

uα
γ = Dα−ǫl(uǫl

γ )

= Dα−ǫl

(

u
ǫf

γ−ǫf+ǫl
+ T l

uγ
+
∑r

a=1 ψ
(

KlaVa(uγ−ǫf+ǫl
) −KfaVa(uγ)

))

.
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On one hand, the argument of ψ belongs to F(Js+1) so that its image belongs

to F(A0). On the other hand Dα−ǫl

(

u
ǫf

γ−ǫf+ǫl

)

−u
α+ǫf−ǫl

γ−ǫf +ǫl
∈ F(A|α|−1) according

to Lemma 5.10. Thus

uα
γ − u

α+ǫf−ǫl

γ−ǫf+ǫl
− Dα−ǫl

(

T l
uγ

)

∈ F(A|α|−1).

Since γ − ǫf + ǫl ≺ γ we can conclude our induction argument.

We are left to prove that, for all |γ| ≤ s and α ∈ N
m, there is a µ ∈ N

m with
|µ| = s+ 1 − |γ| and a differential operator Lα

uγ
such that

uα
γ − u

α−µ
γ+µ − Lα

uγ
(S) ∈ F(A|α|−1).

For that it is sufficient to lead an inductive argument on the fact that

uα
γ = Dα−ǫl

(

uǫl
γ

)

= uα−ǫl
γ+ǫl

+ Dα−ǫl

(

Sl
uγ

+
r
∑

a=1

ψ (KlaVa(uγ))

)

,

where l = l(α). 2

proof: (of the theorem). Taylor’s formula with integral remainder shows the
following (Bourbaki, 1967, Paragraph 2.5). For a smooth function f on an
open set U × I1 × . . . × Il ⊂ R

k × R
l, where the Ii are intervals of R that

contain zero, there are smooth functions f0 on U , and fi on U × I1 × . . .× Ii,
1 ≤ i ≤ l such that f(x, t1, . . . , tl) = f0(x) +

∑l
j=1 tj fj(x, t1, . . . , tj).

Let us restrict the Ak to appropriate neighborhoods of the zero set of S, T

and their derivatives. Take f ∈ F(Ak+1). By first applying Lemma 5.15 for
|α + γ| = k + 1, we can first write it as:

f(uα
γ , u

α′

γ′ ) = f1(u
β̂

β̄
, uα′

γ′ ) +
∑

|α+γ|=k+1

Lα
uγ

(S,T)F α
uγ

where (γ, α) range over |α + γ| = k + 1 while (γ′, α′) range over |α′ + γ′| ≤ k

so that β ranges over |β| = k + 1 and F α
uγ

∈ F(Ak+1). We can iterate this

process on the uα′

γ′ , with |α′ + γ′| = k, in f1. Induction then shows that

f(uα
γ ) = F (uβ̂

β̄
) +

∑

|α+γ|≤k+1

Lα
uγ
F α

uγ

where now (α, γ) range over |α + γ| ≤ k + 1 and β over |β| ≤ k + 1.

Thus φ(f) = φ(F ). By Lemma 5.7, if f belongs to the kernel of φ then F is a
linear combination of elements of R. 2

Example 5.16 We carry on with Example 2.13, 3.10, 4.3 and 5.12.

Recall that

V1 =
∂

∂x1
, V2 =

∂

∂x2
, V3 = x1

∂

∂x1
+ x2

∂

∂x2
−
∑

i,j≥0

(i+ j) uij

∂

∂uij
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while P =
(

x1, x2,
1
2
− 1

2
(u2

10 + u2
01)
)

, so that

K =







1 0 ῑv

0 1 ῑw





 where v = −(u10u20 + u01u11) and w = −(u10u11 + u01u02).

According to Theorem 5.14 a complete set of syzygies on I2, i.e. a basis for
the kernel of φ : F(A) → FG(J), consists of the following elements.

R, the functional relationships implied by the choice of the cross-section.

x00
1 , x00

2 ,
1

2
−

1

2

(

(u00
10)

2 + (u00
01)

2
)

S, the relationships describing the derivations of the elements of Is:

S1
x1

: x10
1 S2

x1
: x01

1

S1
x2

: x10
2 S2

x2
: x01

2

S1
u00

: u10
00 − u00

10, S2
u00

: u01
00 − u00

01,

S1
u10

: u10
10 − u00

20 + u00
10 v, S2

u10
: u01

10 − u00
11 + u00

10 w,

S1
u10

: u10
01 − u00

11 + u00
01 v, S2

u10
: u01

01 − u00
02 + u00

01 w,

where

v = −u00
10 u00

20 − u00
01 u00

11 = ψ(v), w = −u00
10 u00

11 − u00
01 u00

02,= ψ(w).

T, the relationships obtained by cross-differentiating the elements Is+1 \ Is:

T 2
u20

: u01
20 − u10

11 − 2 u00
20 w + 2 u11v

T 2
u11

: u01
11 − u10

02 − 2 u00
11 w + 2 u00

02 v.

Yet from Theorem 4.2 we know that {ῑu, ῑv, ῑw} form a generating set. As ῑv
and ῑw are the coefficients of the commutation rules, we can perform a differ-
ential elimination to obtain a complete set of syzygies bearing on {ῑu, ῑv, ῑw}
(Hubert, 2003, 2005b). We obtain:

D1(w) − D2(v) = 0, D1(u)2 + D2(u)2 = 1.

6 Classical examples

We treat two very classical geometries, curves and surfaces in Euclidean 3-
space, in order to illustrate the general theory of this paper on well-known
cases.
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For surfaces we shall use the classical cross-section, show how the mean and
Gauss curvature relate to the exhibited generating set of differential invariants
and how the Gauss-Codazzi equation on the principal curvatures arises as the
syzygy.

For curves we shall choose some non classical cross-sections that can come of
use. We first illustrate Theorem 4.2 for a cross-section of minimal order that
is not a coordinate cross-section and therefore not covered by Olver (2007b).
The edge invariants are explicitly shown to form a generating set of differential
invariants and endowed with a rewriting procedure. The syzygies there are
trivial.

We then consider the cross-section introduced by Olver (2007b) to show that
the minimal order condition on the cross-section is necessary for Theorem 4.2
to hold, i.e. for the edge invariants to be a generating set of differential invari-
ants. There are then non trivial differential syzygies on the generating set of
normalized invariants. Elimination on those allows to diminish the number of
generators.

As should come clear from those examples, the only data we start with are the
infinitesimal generators of the action and a choice of cross-section. Of course,
the art of choosing the appropriate cross-section for a given application should
not be underestimated.

For the benefit of a lighter notation system, we skip the Gothic notation of
the formalism introduced in Section 5 when formalizing the notion of syzygies.
Therefore ῑuα will in turn represent a local invariant, i.e. an element of FG(J),
or the coordinate function u0

α of A.

6.1 Surfaces in Euclidean geometry

We shall show how to retrieve the Codazzi equation as the syzygy between
the two generators for the differential invariants.

We choose coordinate functions (x1, x2, u) for R
2 × R. We consider x1, x2 as

the independent variables and u as the dependent variable.

The infinitesimal generators of the classical action of the Euclidean group
SE(3) on R

3 are:

V0
1 =

∂

∂x1
, V0

2 =
∂

∂x2
, V0

3 =
∂

∂u
,

V0
4 = x1

∂

∂u
− u

∂

∂x1
,V0

5 = x2
∂

∂u
− u

∂

∂x2
,V0

6 = x1
∂

∂x2
− x2

∂

∂x1
,
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so that their prolongations are

V1 =
∂

∂x1
, V2 =

∂

∂x2
, V3 =

∂

∂u
,

V4 =
∑

α

Dα(x1 + u00u10)
∂

∂uα

− u00 D1,V5 =
∑

α

Dα(x2 + u00u01)
∂

∂uα

− u00 D2,

V6 = x1 D2 − x2 D1 +
∑

α

Dα(x2u10 − x1u01)
∂

∂uα

.

Let us choose the classical cross-section defined by P = (x1, x2, u00, u10, u01, u11).
The Maurer-Cartan matrix of Theorem 3.6 is

K =

















1 0 0 ῑu20 0
ῑu21

ῑu20 − ῑu02

0 1 0 0 ῑu02
ῑu12

ῑu20 − ῑu02

















.

Applying Proposition 3.8 we have

[D2,D1] =
ῑu21

ῑu20 − ῑu02
D1 +

ῑu12

ῑu20 − ῑu02
D2. (6.1)

Given that ῑx1, ῑx2, ῑu00, ῑu10, ῑu01, ῑu11 = 0 the non zero elements of S in
Theorem 5.14 are

S1
u20

= D1(ῑu20) − ῑu30, S2
u20

= D2(ῑu20) − ῑu21,

S1
u02

= D1(ῑu02) − ῑu12, S2
u02

= D2(ῑu02) − ῑu03,

while the elements of T are

T 2
u12

= D2(ῑu12) −D1(ῑu03) −
ῑu12

ῑu20 − ῑu02
(ῑu21 + ῑu03),

T 2
u30

= D2(ῑu30) −D1(ῑu21) −
ῑu21

ῑu20 − ῑu02
(ῑu12 + ῑu30),

T 2
u21

= D2(ῑu21) −D1(ῑu12) −
ῑu21 ῑu03 + ῑu12 ῑu30 − 2 ῑu21

2 − 2 ῑu12
2

ῑu20 − ῑu02
+ (ῑu20 − ῑu02) ῑu02 ῑu20.

Theorem 4.2 predicts that {ῑu20, ῑu02, ῑu21, ῑu12} form a generating set. From
S we see furthermore that all the third order normalized invariants can be
expressed as derivatives of {ῑu20, ῑu02}. This latter set therefore already forms
a generating set of invariants. Indeed, with Theorem 2.10, we can write the
Gauss and mean curvatures in terms of {ῑu20, ῑu02} (Berger and Gostiaux,

37



1988, (10.6.5)), (Ivey and Landsberg, 2003, (1.3))

σ =
u20u02 − u2

11

(1 + u2
10 + u2

01)
2

= ῑu20 ῑu02,

π =
1

2

(1 + u2
01)u20 − 210u01u11 + (1 + u2

10)u02

(1 + u2
10 + u2

01)
3

2

=
1

2
(ῑu20 + ῑu02).

Our generators {ῑu20, ῑu02} are thus the principal curvatures. Let us write
κ = ῑu20 and τ = ῑu02. From S we have

ῑu30 = D1(κ), ῑu21 = D2(κ), ῑu12 = D1(τ), and ῑu03 = D2(τ).

Making the substitution in T we obtain

D2D1(τ) −D1D2(τ) −
D1(τ)

κ− τ
(D2(κ) + D2(τ))

D2D1(κ) −D1D2(κ) −
D2(κ)

κ− τ
(D1(κ) + D1(τ))

D2
2(κ) −D2

1(τ) −
D1(κ)D1(τ) + D2(κ)D2(τ) − 2D2(κ)

2 − 2D1(τ)
2

κ− τ
+ (κ− τ) κ τ.

The two first functions vanish when one rewrites D2D1(τ) and D2D1(κ) in
terms of monotone derivatives using (6.1). The last function provides the
Gauss-Codazzi equation (Ivey and Landsberg, 2003, Exercise 2.3.1).

6.2 Curves in Euclidean geometry

For this example we will first work with a cross-section of minimal order. The
edge invariants are then generating and submitted to no non trivial syzygies.
When we then use a cross-section that is not of minimal order, a non trivial
syzygie appears on the predicted generating sets.

We consider the classical action of SE(3) on space curves. We have J0 =
X 1 × U2 with coordinate (x, u, v). The infinitesimal generators of the action
are:

V0
1 =

∂

∂x
, V0

2 =
∂

∂u
, V0

3 =
∂

∂v

V0
4 = v

∂

∂u
− u

∂

∂v
, V0

5 = x
∂

∂u
− u

∂

∂x
, V0

6 = x
∂

∂v
− v

∂

∂x
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so that their prolongations are given by

V1 =
∂

∂x
, V2 =

∂

∂u
, V3 =

∂

∂v
, V4 =

∑

k

vk

∂

∂uk

− uk

∂

∂vk

,

V5 = −u0 D +
∑

k

Dk(x− u0 u1)
∂

∂uk

−
∑

k

Dk(u0 v1)
∂

∂vk

,

V6 = −v0 D −
∑

k

Dk(v0 u1)
∂

∂uk

+
∑

k

Dk(x− v0 v1)
∂

∂vk

.

The action is transitive on J1 and becomes locally free on J2 with generic
orbits of codimension 1.

Minimal order cross-section

We choose a non classical cross-section of minimal order: P = (x, u0, v0, u1, v1, v2−
u2). Then:

ῑ(D(P )) =
(

1 0 0 ῑu2 ῑu2 ῑ(v3 − u3)

)

.

On one hand we know from Theorem 4.1 that I3 = {ῑx, ῑu0, ῑu1, ῑv1, ῑu3, ῑv3}
is a generating set of differential invariants and rewriting any differential in-
variants in terms of them is a recursive process described in Section 4, or more
specifically by Proposition 5.5. One can check that the complete set of syzygies
on I3 given in Theorem 5.14 boils down to R = {ῑx, ῑu0, ῑv0, ῑu1, ῑv1, ῑv2− ῑu2}
since S = {0} and T = ∅.

On the other hand Theorem 4.2 implies that E = {ῑu2, ῑw}, where w = v3−u3,
is a generating set of differential invariants. For the purpose of rewriting any
other differential invariants in terms of them we write every element of I3 in
terms of E .

From Theorem 3.6 we have D(ῑu2) = ῑu3 −
1
2
ῑw since

K =
(

1 0 0
ῑw

2 ῑu2
ῑu2 ῑu2

)

while ῑ (V(u2)) =
(

0 0 0 ῑu2 0 0

)T

. Thus

ῑv2 = ῑu2, ῑu3 = D(ῑu2) +
ῑw

2
, and ῑv3 = D(ῑu2) −

ῑw

2
.

Note that ῑu2 is a differential invariant of order 2 and is therefore a function
of the curvature, while ῑ(u3 − v3), as a differential invariant of order 3 is
a function of the curvature κ and the torsion τ . There are several ways to
compute the algebraic expression for ῑu2, ῑu3 and ῑv3 (Fels and Olver, 1999;
Hubert and Kogan, 2007a,b). But conversely, given the analytic expression
for the curvature and the torsion (Berger and Gostiaux, 1988, (8.4.13.1) and
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(8.6.10.2)) it is easy to write them in terms of ῑu2, ῑu3 and ῑv3 thanks to
Theorem 2.10.

κ =
√

2 ῑu2
2, τ =

ῑu3 − ῑv3

2 ῑu2

.

Non minimal cross-section

We consider now the third order cross-section P = (x, u0, v0, v1, v2, v3 − 1).
Olver (2007b) introduced it to show that the minimal order condition is nec-
essary for Theorem 4.2.

As a consequence of Theorem 4.1, {ῑu1, ῑu2, ῑu3, ῑu4, ῑv4} is a generating set
of differential invariants. According to Theorem 5.14 the following functions
form a complete set of differential syzygies.

D(ῑu1) = ῑu2 +
1 + ῑu1

2

3 ῑu1

(

ῑu3

ῑu2
− ῑv4

)

D(ῑu2) = 2 ῑu3 − ῑu2 ῑv4

D(ῑu3) = ῑu4 −

(

4

3
ῑu3 +

ῑu2
2

ῑu1

)

ῑv4 +
ῑu1

2 + 1

ῑu2
+

4

3

ῑu3
2

ῑu2
+
ῑu2 ῑu3

ῑu1

From the two first equations we can deduce ῑu3 and ῑv4 in terms of {ῑu1, ῑu2}
and their derivatives. Substituting in the last equation we can do the same for
ῑu4 so that {ῑu1, ῑu2} is a generating set. Concomitantly, given their explicit
expressions, we can write the curvature and the torsion in terms of those
through Theorem 2.10:

κ =

√

√

√

√

ῑu2
2

(1 + ῑu2
1)

3
, τ =

1

ῑu2(1 + ῑu2
1)
.

7 Three independent variables

The indefinite orthogonal group O(m1, m2) is defined as the subgroup of
GL(m1+m2) that leaves the bilinear form x2

1+. . .+x2
m1

−x2
m1+1−. . .−x

2
m1+m2

invariant. The groups O(m1, m2) and O(m1, m2) ⋉ R
m1+m2 arise as symme-

tries of physical differential systems. For instance, O(m, 0) ⋉ R
m is a group of

symmetry for the Laplacian, ux1x1
+ . . . + uxmxm

, while O(m − 1, 1) ⋉ R
m is

a symmetry group for the D’Alembert equation ux1x1
− ux2x2

− . . . − uxmxm
.

Their differential invariants of all orders were determined by Xu (1998).

In the case m = m1 +m2 = 3 we offer here a classification of the generating
sets in the differential sense. As far as we know very few examples dealing with
three independent variables have been studied by a moving frame approach.
To provide those examples we have substantially applied our symbolic compu-
tation software aida (Hubert, 2007b). The corresponding worksheet is avail-
able at http://www-sop.inria.fr/cafe/Evelyne.Hubert/aida/syzygies/
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E3l.html

7.1 Linear action of O(3 − l, l) on the independent variables

With the help of a parameter ǫ we shall treat both the orthogonal group
O(3, 0) and O(2, 1) at once. When we specialize ǫ = 1 we shall retrieve the
result for O(3, 0) and when ǫ = −1 we shall retrieve the result for O(2, 1). The
moving frame approach was applied to this action of O(3, 0) in (Fels and Olver,
1999, Example 15.3) which provides us with a double check while providing
the analysis for O(2, 1).

From the knowledge of the infinitesimal generators for the action of O(3− l, l)
and a choice of a (minimal order) cross-section we exhibit a complete set of
syzygies for the second order normalized invariants. This is a direct application
of Theorem 5.14. The set of second order normalized invariants is generating
but so is the much smaller set of edge invariants. This allows us to prove that
an alternative set of equal cardinality is also generating. This latter makes
computations easier. By differential elimination on the syzygies of the second
order normalized invariants we can retrieve a complete set of syzygies for this
new and smaller generating set.

Those above computations are performed without the knowledge of the moving
frame nor the explicit expression to the invariants. We nonetheless provide the
expressions for those latter elements for illustration.

7.1.1 Action

We accordingly define O(3− l, l), for l = 0 or 1, as the subgroup of GL(3) that
preserves the bilinear form x2

1 + x2
2 + ǫ x2

3, where ǫ = (−1)l. We consider its
linear action on the independent variables {x1, x2, x3}. The dependent variable
is left unchanged by those transformations.

The infinitesimal generators are then:

V0
1 = x2

∂

∂x1
− x1

∂

∂x2
,V0

2 = x3
∂

∂x1
− ǫ x1

∂

∂x3
,V0

3 = x3
∂

∂x2
− ǫ x2

∂

∂x3
.

7.1.2 Generators

We choose the minimal order cross-section

P : x1 = 0, x2 = 0, u100 = 0.

The edge invariants: E = {ῑx3, ῑu000, ῑu200, ῑu110, ῑu101} form a generating set
(Theorem 4.2). Furthermore, since u000 is invariant, and therefore V(u000) = 0,
we deduce from Theorem 3.6 that ῑu010 = D2(ῑu000) and ῑu001 = D3(ῑu000). It
will be convenient to use the following set of generators:

41

http://www-sop.inria.fr/cafe/Evelyne.Hubert/aida/syzygies/E3l.html


ρ =
1

ῑx3
, σ = ῑu000, φ =

ῑu200

ῑu010
− ǫ

ῑu001

ῑu010 ῑx3
, ζ =

ῑu110

ῑu010
, ψ =

ῑu101

ῑu010

as we can then write the matrix K of Theorem 3.6 as

K =



















φ ρ 0

ζ 0 ρ

ψ 0 0



















.

Hubert (2007a) actually shows that the entries of this matrix, the Maurer-
Cartan matrix, together with I0, always form a generating set of invariants.
It is arguably a more appropriate generating set for practical purposes. Here,
for instance, it saves us dealing with denominators. We then deduce from
Proposition 3.8 that:

[D1,D2] = φD1 + ζ D2, [D1,D3] = ρD1 + ψD2, [D3,D2] = ψD1 − ρD2.

7.1.3 Syzygies

According to Theorem 5.14 a complete set of syzygies for I2 is given by:

R { ῑx1 = 0, ῑx2 = 0, ῑu100 = 0,

S







































D1(ῑx3) = 0, D2(ῑx3) = 0, D3(ῑx3) = 1,

D1(ῑu000) = 0, D2(ῑu000) = ῑu010, D3(ῑu000) = ῑu001,

D1(ῑu010) = ῑu110, D2(ῑu010) = ῑu020 − ǫ ρ ῑu001, D3(ῑu010) = ῑu011,

D1(ῑu001) = ῑu101, D2(ῑu001) = ῑu011 + ρ ῑu010, D3(ῑu001) = ῑu002,

and

T



































































































D3(ῑu011) −D2(ῑu002) = ψ ῑu101 − 2 ρ ῑu011,

D3(ῑu020) −D2(ῑu011) = 2ψ ῑu110 − ζ ῑu101 − ρ ῑu020 + ǫ ρ ῑu002,

D2(ῑu101) −D1(ῑu011) = −ζ ῑu011 − φ ῑu101,

D3(ῑu101) −D1(ῑu002) = −ψ ῑu011 − 2 ρ ῑu101,

D2(ῑu110) −D1(ῑu020) = ζ ῑu200 − ζ ῑu020 − 2φ ῑu110 − ǫ ρ ῑu101,

D3(ῑu110) −D1(ῑu011) = ψ ῑu200 − ψ ῑu020 − φ ῑu101 − ρ ῑu110,

D2(ῑu200) −D1(ῑu110) = −2 ζ ῑu110 − φ ῑu200 + φ ῑu020 + ǫ ρ ῑu011,

D3(ῑu200) −D1(ῑu101) = −2ψ ῑu110 + φ ῑu011 − ρ ῑu200 + ǫ ρ ῑu002.

42



By differential elimination we can rewrite any normalized invariants of order
2 and less in terms of {ρ, σ, ψ, φ, ζ} and find a complete set of syzygies for
those. The first part

ῑx1 = 0, ῑx2 = 0, ῑx3 =
1

ρ
, ῑu000 = σ,

ῑu100 = 0, ῑu010 = D2(σ), ῑu001 = D3(σ),

ῑu200 = φD2(σ) + ǫ ρD3(σ), ῑu110 = ζ D2(σ), ῑu101 = ψD2(σ),

ῑu020 = D2
2(σ) + ǫ ρD3(σ), ῑu011 = D2D3(σ) − ρD2(σ), ῑu002 = D2

3(σ)

allows us to rewrite any other differential invariants in terms of {ρ, σ, ψ, φ, ζ}.
The second part provides a complete set of syzygies for {ρ, σ, ψ, φ, ζ}:

D1(ζ) −D2(φ) = ζ2 + φ2 + ǫ ρ2,

D1(ψ) −D3(φ) = φ ρ+ ψ ζ,

D1(σ) = 0, D1(ρ) = 0, D2(ρ) = 0, D3(ρ) = −ρ2

We observe that ζ can actually be written in terms of {φ, ψ, ρ, σ} so that this
latter is already a generating set. The first two syzygies then become:

ψ (D2
1(ψ) −D1D3(φ)) = D3(φ)2 + 2D1(ψ)2 − 3D1(ψ)D3(φ) + φρ (2D3(φ) − 3D1(ψ))

+ψ2D2(φ) + ψρD1(φ) + φ2 ρ2 + ǫ ψ2 ρ2 + ψ2φ2

since

ζ =
D1(ψ) −D3(φ) − φρ

ψ
.

7.1.4 Generating differential invariants

For completion on this example, let us give the explicit expressions for a set of
generating differential invariants. We split that into giving the expressions for
{ῑx3, ῑu001, ῑu010} as we can write {ρ, σ, φ, ψ} in terms of them. To determine
{ῑx3, ῑu001, ῑu010} we follow Hubert and Kogan (2007a,b) so as to compute
global invariants through algebraic elimination. We accordingly avoid intro-
ducing radicals by giving the algebraic combinations of {ῑx3, ῑu001, ῑu010} that
are global invariants. The actual expression for {ῑx3, ῑu001, ῑu010}, with sign
determination, should be deduced from those according to the point of the
cross-section in the neighborhood of which we wish to work. In this neigh-
bourhood ῑf and f must agree on the cross-section.
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ῑx3
2 = x3

2 + ǫ x1
2 + ǫ x2

2,

ῑx3 ῑu001 = x3u001 + x1u100 + x2u010,

ῑx3
2ῑu010

2 = x1
2
(

u001
2 + ǫ u010

2
)

+ x2
2
(

u001
2 + ǫ u100

2
)

+ x3
2
(

u100
2 + u010

2
)

−2 ǫ x3x1u100u001 − 2 ǫ x3x2u001u010 − 2 ǫ x1x2 u100 u010,

ῑx3
2ῑu010

2ῑu200 = x1
2
(

u010
2u002 + u001

2u020 − 2u001u011u010

)

+x2
2
(

u002u100
2 − 2u001u101u100 + u200u001

2
)

+ x3
2
(

u200u010
2 + u020u100

2 − 2u100u110u010

)

−2 ǫ x3x1

(

u100u001u020 + u101u010
2 − u110u001u010 − u100u010u011

)

−2 ǫ x3x2

(

u011u100
2 − u010u101u100 + u200u001u010 − u100u110u001

)

+x2x1

(

2u100u011u001 + 2u010u101u001 − 2u002u100u010 − 2u001
2u110

)

,

ῑx3
2ῑu010 ῑu101 = ǫ x1

2 (−u101u010 + u110u001) − ǫ x2
2 (u110u001 − u011u100) + x3

2 (u101u010 − u011u100)

+x3 x1 (u200u010 − ǫ u002u010 + ǫ u011u001 − u110u100)

+x3 x2 (u110u010 − u020u100 − ǫ u101u001 + ǫ u002u100)

−ǫ x2 x1 (u200u001 + u011u010 − u020u001 − u101u100)

7.1.5 Invariant derivations

We can obtain an expression, depending on ǫ for the moving frame of both
the action of O(3, 0) and O(2, 1). It is given by the matrix Aǫ below





















x3u010 − ǫ x2u001

ῑu010 ῑx3

ǫx1u001 − x3u100

ῑu010 ῑx3

x2 u100 − x1u010

ῑu010 ῑx3

aǫ bǫ cǫ

ǫx1

ῑx3

ǫx2

ῑx3

x3

ῑx3





















,

where

aǫ =
(x3

2 + ǫx2
2)u100 − ǫx1 x2 u010 − ǫx1 x3u001

ῑx3
2ῑu010

bǫ =
(x3

2 + ǫx1
2)u010 − ǫx2x3 u001 − ǫ x1x2u100

ῑx3
2ῑu010

cǫ =
ǫ (x2

2 + x1
2)u001 − x3 x1u100 − x3 x2 u010

ῑx3
2ῑu010

.

When ǫ = 1 the matrix belongs to O(3, 0) so that A−1
1 = AT

1 . The invariant
derivations are then given by D = A1D. When ǫ = −1 the matrix belongs to
O(2, 1) and the invariant derivations are then given by D = A−T

−1 D.
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7.2 Affine action of O(3 − l, l) ⋉ R
3 on the independent variables

The action of E(3) = O(3, 0) ⋉ R
3 was considered by Mansfield (2001) in the

context of the symmetry reduction for a differential elimination problem.

We show here that the differential invariants of second order are generating.
We provide a complete set of syzygies for a generating set of three second
order differential invariants.

7.2.1 Action

Compared with the action of O(3 − l, l) treated above, we have additionally
translation. The infinitesimal generators are then:

V0
1 = x2

∂

∂x1
− x1

∂

∂x2
, V0

2 = x3
∂

∂x1
− ǫ x1

∂

∂x3
, V0

3 = x3
∂

∂x2
− ǫ x2

∂

∂x3
,

V0
4 =

∂

∂x1
, V0

5 =
∂

∂x2
, V0

6 =
∂

∂x3
.

7.2.2 Generators

We choose the minimal order cross-section

P : x1 = 0, x2 = 0, x3 = 0, u100 = 0, u010 = 0, u110 = 0.

The edge invariants E = {ῑu000, ῑu200, ῑu020, ῑu101, ῑu011, ῑu210, ῑu120, ῑu111} thus
form a generating set (Theorem 4.2). Furthermore, since u000 is invariant, and
therefore V(u000) = 0, we know from Theorem 3.6 that ῑu001 = D3(ῑu000). It
will be convenient to use the following set of generators:

σ = ῑu000, φ = ǫ
ῑu200

ῑu001
, ψ = ǫ

ῑu020

ῑu001
, κ =

ῑu101

ῑu001
, τ =

ῑu011

ῑu001
,

Γ =
ῑu200ῑu011 − ῑu210ῑu001

ῑu001 (ῑu200 − ῑu020)
, Λ =

ῑu020ῑu101 − ῑu120ῑu001

ῑu001 (ῑu200 − ῑu020)
, Ω =

2 ῑu011ῑu101 − ῑu111ῑu001

ῑu001 (ῑu200 − ῑu020)
,

as we can then write the Maurer-Cartan matrix K of Theorem 3.6 as

K =















Γ φ 0 1 0 0

Λ 0 ψ 0 1 0

Ω ǫ κ ǫ τ 0 0 1















.
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We then deduce from Proposition 3.8 that:

[D1,D2] = ΓD1 + ΛD2, [D1,D3] = φD1 + ΩD2 − κD3,

[D3,D2] = ΩD1 − ψD2 − τ D3.

7.2.3 Syzygies

According to Theorem 5.14 a complete set of syzygies for I2 is given by:

R { ῑx1 = 0, ῑx2 = 0, ῑx3 = 0, ῑu100 = 0, ῑῑu010 = 0, ῑu110 = 0,

S











































































































D1(ῑu000) = 0,D2(ῑu000) = 0,D3(ῑu000) = ῑu00,

D1(ῑu001) = ῑu101,D2(ῑu001) = ῑu011,D3(ῑu001) = ῑu002,

D1(ῑu200) = ῑu300 − 2φ ǫ ῑu101,D2(ῑu200) = ῑu210,D3(ῑu200) = ῑu201 − 2κ ǫ2ῑu101,

D1(ῑu101) = ῑu201 − Γ ῑu011 + φ ῑu200 − φ ǫ ῑu002,D2(ῑu101) = ῑu111 − Λ ῑu011,

D3(ῑu101) = ῑu102 − Ω ῑu011 + κ ǫ ῑu200 − κ ǫ2ῑu002,

D1(ῑu020) = ῑu120,D2(ῑu020) = ῑu030 − 2ψ ǫ ῑu011,D3(ῑu020) = +ῑu021 − 2 τ ǫ2ῑu011,

D1(ῑu011) = ῑu111 + Γ ῑu101,D2(ῑu011) = ῑu021 + Λ ῑu101 + ψ ῑu020 − ψ ǫ ῑu002,

D3(ῑu011) = ῑu012 + Ω ῑu101 + τ ǫ ῑu020 − τ ǫ2ῑu002,

D1(ῑu002) = +ῑu102 + 2φ ῑu101,D2(ῑu002) = +ῑu012 + 2ψ ῑu011,

D3(ῑu002) = +ῑu003 + 2κ ǫ ῑu101 + 2 τ ǫ ῑu011,
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and

T



























































































































































































































D3(ῑu012) −D2(ῑu003) = Ω ῑu102 + 2κ ǫ ῑu111 + 2 τ ǫ ῑu021 − τ ǫ2ῑu003 − 3ψ ῑu012,

D3(ῑu021) −D2(ῑu012) = 2Ω ῑu111 + κ ǫ ῑu120 + τ ǫ ῑu030 − 2 τ ǫ2ῑu012 − Λ ῑu102

−2ψ ῑu021 + ψ ǫ ῑu003,

D3(ῑu030) −D2(ῑu021) = 3Ω ῑu120 − 3 τ ǫ2ῑu021 − 2Λ ῑu111 − ψ ῑu030 + 2ψ ǫ ῑu012,

D2(ῑu102) −D1(ῑu012) = +2ψ ῑu111 − Λ ῑu012 − Γ ῑu102 − 2φ ῑu111,

D3(ῑu102) −D1(ῑu003) = −Ω ῑu012 + 2κ ǫ ῑu201 − κ ǫ2ῑu003 + 2 τ ǫ ῑu111 − 3φ ῑu102,

D2(ῑu111) −D1(ῑu021) = Λ ῑu201 − Λ ῑu021 + ψ ῑu120 − ψ ǫ ῑu102 − 2Γ ῑu111 − φ ῑu120,

D3(ῑu111) −D1(ῑu012) = Ω ῑu201 − Ω ῑu021 + κ ǫ ῑu210 − κ ǫ2ῑu012 + τ ǫ ῑu120

−τ ǫ2ῑu102 − Γ ῑu102 − 2φ ῑu111,

D2(ῑu120) −D1(ῑu030) = 2Λ ῑu210 − Λ ῑu030 − 2ψ ǫ ῑu111 − 3Γ ῑu120,

D3(ῑu120) −D1(ῑu021) = 2Ω ῑu210 − Ω ῑu030 − κ ǫ2ῑu021 − 2 τ ǫ2ῑu111 − 2Γ ῑu111 − φ ῑu120,

D2(ῑu201) −D1(ῑu111) = ψ ῑu210 − 2Λ ῑu111 − Γ ῑu201 + Γ ῑu021 − φ ῑu210 + φ ǫ ῑu012,

D3(ῑu201) −D1(ῑu102) = κ ǫ ῑu300 − 2Ω ῑu111 − 2κ ǫ2 ῑu102 + τ ǫ ῑu210 + Γ ῑu012

−2φ ῑu201 + φ ǫ ῑu003,

D2(ῑu210) −D1(ῑu120) = Λ ῑu300 − 2Λ ῑu120 − ψ ǫ ῑu201 − 2Γ ῑu210 + Γ ῑu030 + φ ǫ ῑu021,

D3(ῑu210) −D1(ῑu111) = Ω ῑu300 − 2Ω ῑu120 − 2κ ǫ2ῑu111 − τ ǫ2ῑu201

−Γ ῑu201 + Γ ῑu021 − φ ῑu210 + φ ǫ ῑu012,

D2(ῑu300) −D1(ῑu210) = 2Γ ῑu120 + 2φ ǫ ῑu111 − 3Λ ῑu210 − Γ ῑu300,

D3(ῑu300) −D1(ῑu201) = 2φ ǫ ῑu102 − 3Ω ῑu210 − 3κ ǫ2ῑu201 + 2Γ ῑu111 − φ ῑu300.

By differential elimination we can rewrite any normalized invariants of order
2 and less in terms of {Ω,Λ,Γ, κ, φ, τ, ψ, σ} and find a complete set of syzy-
gies for those. It is nonetheless easier to obtain the syzygies for the Maurer-
Cartan invariants {Ω,Λ,Γ, κ, φ, τ, ψ} from the structure equations (Mansfield
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and van der Kamp, 2006; Hubert, 2007a). The first part

ῑu001 = D3(σ)

ῑu200 = φǫD3(σ), ῑu101 = κD3(σ), ῑu020 = ψǫD3(σ), ῑu011 = τD3(σ), ῑu002 = D2
3(σ),

ῑu300 = ǫD3(σ) (D1(φ) + 3φκ) , ῑu210 = ǫD3(σ) (Γψ − Γφ+ τφ) ,

ῑu120 = ǫD3(σ) (κψ + Λψ − Λφ) , ῑu111 = D3(σ) (2 κτ − ǫΩφ + ǫΩψ) ,

ῑu102 = 2 κD2
3(σ) + D3(κ)D3(σ) + ΩτD3(σ) − φκD3(σ),

ῑu201 = φǫD2
3(σ) + D3(σ)D1(κ) − ǫφ2D3(σ) + ΓτD3(σ) + κ2D3(σ),

ῑu030 = ǫD3(σ) (D2(ψ) + 3ψτ) ,

ῑu021 = ǫψD2
3(σ) + D3(σ)D2(τ) − ǫψ2D3(σ) − ΛκD3(σ) + τ 2D3(σ),

ῑu012 = 2 τD2
3(σ) + D3(τ)D3(σ) − ΩκD3(σ) − ψτD3(σ),

ῑu003 = D3
3(σ) − 2 ǫκ2D3(σ) − 2 ǫτ 2D3(σ),

allows us to rewrite any other differential invariants in terms of {Ω,Λ,Γ, κ, φ, τ, ψ, σ}.
The second part consist of a complete set of syzygies for {Ω,Λ,Γ, κ, φ, τ, ψ, σ}:

D2(Γ) −D1(Λ) = −ǫ φ ψ − Γ2 − Λ2,

D1(Ω) −D3(Γ) = Ω Λ + φΓ + κΩ + φ τ,

D3(Λ) −D2(Ω) = Ω Γ − ψ Λ − τ Ω + κψ,

D2(φ) = (ψ − φ) Γ, D1(ψ) = (ψ − φ) Λ,

D2(κ) = ǫ(ψ − φ) Ω − τ Λ + κ τ, D1(τ) = ǫ (ψ − φ) Ω + κΓ + κ τ,

D3(φ) − ǫD1(κ) = ǫ τ Γ − ǫ κ2 − φ2,

D2(τ) − ǫD3(ψ) = κΛ + τ 2 + ǫ ψ2,

D1(σ) = 0, D2(σ) = 0.

We see that we can actually write the third order differential invariants {Γ,Ω,Λ}
in terms of the second order differential invariants {φ, ψ, κ, τ}, so that this lat-
ter is already a generating set.

Γ =
D2(φ)

ψ − φ
, Λ =

D1(ψ)

ψ − φ
,

Ω = ǫ
τ D1(ψ)

(ψ − φ)2
+ ǫ

D2(κ)

ψ − φ
− ǫ

τ κ

ψ − φ

The coefficient of the commutation rules can now be expressed in terms of the
first order derivatives of {φ, ψ, κ, τ}. We can therefore still apply the differen-
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tial elimination of Hubert (2005b) to obtain a complete set of syzygies on the
generating set {φ, ψ, κ, τ}. We obtain:

D2(τ) − ǫD3(ψ) = ǫ ψ2 + τ 2 +
κ

ψ − φ
D1(ψ),

D1(κ) − ǫD3(φ) = ǫ φ2 + κ2 −
τ

ψ − φ
D2(φ),

D1(τ) −D2(κ) = τ
D1(ψ)

ψ − φ
+ κ

D2(φ)

ψ − φ
,

D2
2(φ) −D2

1(ψ) =
D1(ψ)D1(φ)

ψ − φ
+

D2(φ)D2(ψ)

ψ − φ
− 2

D1(ψ)2

ψ − φ
− 2

D2(φ)2

ψ − φ
− ǫ (ψ − φ)φψ,

D2
1(τ) − ǫD2D3(φ) = κ

D1D2(φ)

ψ − φ
+ 2

D1(τ)D1(ψ)

ψ − φ
+ 2 ǫ

D3(φ)D2(φ)

ψ − φ
− ǫ

D3(ψ)D2(φ)

ψ − φ

+κ
D1(φ)D2(φ)

(ψ − φ)2 − 3 κ
D1(ψ)D2(φ)

(ψ − φ)2 − τ
D2(φ)2

(ψ − φ)2

−τ 2D2(φ)

ψ − φ
− 2 τ κ

D1(ψ)

ψ − φ
− ǫ ψ (ψ − 2φ)

D2(φ)

ψ − φ
+ 2 κD1(τ) + ǫ τ φ ψ.

From the first equation we see that κ can be written in terms of {φ, ψ, τ}.
Substituting the expression for κ in the other three equations we obtain a
complete set of syzygies for those. As the expression grow considerably we do
not give them explicitly here.

We can actually compute the expressions for the normalized second order dif-
ferential invariants by algebraic elimination (Hubert and Kogan (2007a,b)).
Alternatively Fushchich and Yegorchenko (1992); Xu (1998) provided a func-
tionally independent set of second order differential invariants for this action.
They can be easily rewritten in terms of I2. With additional manipulation we
can then find the expression for our generating set.
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