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Finiteness of π1 and geometri inequalities inalmost positive Rii urvatureErwann AUBRY∗AbstratWe show that omplete n-manifolds whose part of Rii urva-ture less than a positive number is small in Lp norm (for p > n/2)have bounded diameter and �nite fundamental group. On the on-trary, omplete metris with small Ln/2-norm of the same part ofthe Rii urvature are dense in the set of metris of any ompatdi�erentiable manifold.Keywords: Rii urvature, omparison theorems, fundamentalgroup1 IntrodutionA lassial problem in Riemannian geometry is to �nd topolog-ial, geometrial or analytial neessary onditions for the exis-tene on a manifold of a Riemannian metri satisfying a givenset of urvature bounds. For instane, S. Myers showed that aomplete n-manifold with Ric≥k(n−1) (where k>0) is ompat(the diameter is bounded by π√
k
) and has �nite π1, whereas, onthe ontrary, J. Lohkamp showed in [11℄ that on every n-manifoldwith n≥3 there exists a metri with negative Rii urvature. Thispaper is devoted to the study of the Riemannian manifolds satis-fying only an Lp-pinhing on the negative lower part of their Riiurvature tensors. Let Ric(x) = inf
X∈TxM

Ricx(X,X)/g(X,X) de-note the lowest eigenvalue of the Rii tensor at x ∈ M , and
f−(x)= max(−f(x), 0), for an arbitrary funtion f .Our �rst result is the following Bishop's type theorem,

∗Partially supported by FNRS Swiss Grant n◦20-101469.1



Theorem 1.1 Let (Mn, g) be a omplete manifold and p>n
2 .If ρp=∫

M

(
Ric−(n−1)

)p
− is �nite then g is of �nite volume and

Vol g≤Vol Sn(1 + ρ
9
10
p )(1 + C(p, n)ρ

1
10
p ).The lassial version of the Bishop theorem assumes Ric ≥

n−1 and so applies only for ompat manifolds with �nite π1 whihform a preompat family for the Gromov-Hausdor� distane onthe length spaes. On the ontrary, Theorem 1.1 applies for ev-ery ompat Riemannian manifold and some non-ompat ones(for instane hyperboli manifolds with �nite volume) whih forma set of metri spaes that is Gromov-Hausdor� dense amongsthe length spaes (see proposition 9.1). While the form of ourmajorant implies the lassial Bishop theorem, it is ertainly notoptimal. However, the ondition p > n/2 is optimal sine weshow that for any V > 0 and any ǫ > 0, there exists a large (a-tually dense amongs the length spaes for the Gromov-Hausdor�distane) familly of Riemannian manifolds of volume V and with
ρn

2
≤ ǫ (see proposition 9.2).Our seond result is the following myers's type theorem.Theorem 1.2 Let (Mn, g) be a omplete manifold and p > n/2.If ρp

VolM ≤ 1
C(p,n) , then M is ompat with �nite π1 and

Diam(M, g) ≤ π ×
(
1 + C(p, n)

( ρp
VolM

) 1
10

)
.A few omments are in order:1) Suh a diameter bound was obtained in [14℄ under stronger ur-vature assumptions but the �niteness of the π1 was a onjeture(see also [18℄). As notied in [14℄, if L∞ bounds on the urvaturetranfer readily to the universal over (even if it is non-ompat),that is not the same for integral pinhings. That is the reason whythere is, up to now, no property of the fundamental over impliedby purely integral pinhing on the Rii urvature, and it is themain point of this artile to prove that if a manifold has ρp/VolMsmall then its universal over satis�es the same pinhing.2) For any k > 0, a renormalization argument readily shows thatwe an replae ρp by ρkp= ∫M(Ric−k(n−1)

)p
− in Theorems 1.2 and1.1 provided we replae C(p, n) by C(p, n, k), and also Vol Sn by

Vol S
n

k
n
2

and π by π√
k
. The n-Eulidean spae makes obvious that itdoes not generalize to k ≤ 0.3) The artesian produt of a small S1 with a �nite volume hyper-boli manifold show that the ompatness and the π1-�nitenessannot be obtained if we only assume that ρp is small (or that2



ρp

VolM is �nite). We an also slightly modify the example A.2 of[8℄ to get a manifold with in�nite topology, �nite volume and �nite
ρp. By artesian produt with a small S1 we get a manifold within�nite topology, �nite volume and ρp as small as we want.4) In the ase p = 1 and n = 2 the theorem is still valid (π1-�niteness obviously follows from the Gauss-Bonnet theorem), butin ase p = n/2 and n ≥ 3 no generalization of the lassial resultsvalid under pointwise lower bound on the Rii urvature an beexpeted, as shows the following theorem,Theorem 1.3 Let (Mn, g) be any ompat Riemannian n-manifold(n ≥ 3). There exists a sequene of omplete Riemannian metris
(gm) on M that onverges to g in the Gromov-Hausdor� distaneand suh that

ρn/2(gm)

Vol gm
→ 0Sine 1941 several generalizations of Myers's theorem appeared,under roughly three di�erent kinds of hypothesis:a) some integrals of the Rii urvature along minimizing geodesisare ontrolled ([1℄, [5℄, [3℄, [10℄, [12℄),b) the Rii urvature is almost bounded below by n−1 but not al-lowed to take values under a given negative number ([7℄, [19℄,[16℄,[18℄),) the L∞ lower Rii urvature bound of ase b) is replaed bybounds on other Riemannian invariants (for example the volumebounded below or the diameter bounded above or the setionalurvature bounded).Sine we do not assume an L∞ lower bound on Rii urva-ture, we annot use the seond variation formula for the length ofgeodesis, whih is the lassial tool in the proof of Myers theo-rems of type a) and b). Tehniques, whih need a priori boundson some Sobolev onstants, have been developed to get generaliza-tions of the Myers theorem when the seond variation formula fails(see [4℄, [14℄, [7℄, [16℄). Until this present paper (see our propo-sition 8.1), only two bounds on Sobolev onstants were knownunder an integral ontrol of the Rii urvature: one by S. Gallotrequiring a bound on the diameter [8℄, one by D. Yang requiringa lower bound on the volume of the small balls [20℄. Suh extrahypotheses are natural (and neessary) for manifolds with almostnonnegative Rii urvature, but are not pertinent in our ontext:for instane the lower bound on volume would bound the ardi-nality of π1 whereas the set of n-manifolds with Rii urvaturebounded below by n−1 has �nite but not bounded ardinalities of

π1. 3



To avoid these unnatural extra hypothesis and to be able toontrol the Rii urvature of the universal over, we �rst developea tehnique based on measure onentration estimates (and whihmake no use of bounds on Sobolev onstant) to prove the followingloal version of our diameter bound,Lemma 1.4 Let (Mn, g) be a manifold (not neessarily omplete)whih ontains a subset T satisfying the following onditions:1. T is is star-shaped at a point x (see de�nition 2).2. B(x,RT ) ⊃ T ⊃ B(x,R0) for some RT ≥ R0 > π.3. ǫ = R2
T

[ 1

VolT

∫

T

(
Ric−(n−1)

)p
−

] 1
p ≤ B(p, n)

(
1− π

R0

)100Then Diam(Mn, g) ≤ π
(
1+C(p, n)ǫ

1
20

) (and M ⊂ T ).Remark. � The onneted sum of an n-sphere of diameter
2R0 − π with a Eulidean n-spae by a su�iently small ylindershows that in order to get the ompatness of M , it is importantthat T ontain a ball of radius R0 > π and also that the pinhingrequired on 1

VolT

∫
T

(
Ric−(n−1)

)p
− tend to 0 when R0 tends to π.To prove lemma 1.4, we show that VolB

(
x, π

)
/VolB(x,R0)goes to 1 when the Lp-norm of (Ric−(n−1)

)
− tends to 0 and thatfor any B(y, r) ⊂ B(x,R0) the quotient VolB(y, r)/VolB(x,R0)is uniformly bounded below by a positive inreasing funtion of r.These two opposite behaviours of the onentration of the measurein B(x,R0) prevent the manifold from having points too far awayfrom x.To prove theorem 1.1, we onstrut a good deomposition ofMinto star-shaped subsets and show that eitherM has small volumeor lemma 1.4 apply to at least one of these subsets. The bound onthe volume is then infered by the volume estimates developed forthe proof of lemma 1.4. To show the π1-�niteness, we onstrut astar-shaped domain in the universal Riemannian over of (Mn, g)whih satis�es the assumptions of lemma 1.4.Under our urvature assumptions, we also get generalizationsof the Lihnerowiz and Bishop-Gromov theorems.Proposition 1.5 Let us denote by λ1, λ1

1 and λ̃1
1 respetively the�rst nonzero eigenvalue of the Laplaian on funtions, the �rsteigenvalue on 1-forms and on o-losed 1-forms of (Mn, g). Then:

λ1(M
n, g) = λ1

1(M
n, g) ≥ n×

(
1−C(p, n)

( ρp
VolM

) 1
p

)
,

λ̃1
1(M

n, g) ≥ 2(n−1) ×
(
1−C(p, n)

( ρp
VolM

) 1
p

)
.4



In the last setion we show that this result beomes false with
p=n

2 when n ≥ 3. By adapting the proofs of lemmas 5.1 and 4.1(see [2℄ for details), we further obtain:Proposition 1.6 If η10 =
ρp

VolM ≤ 1
C(p,n) then, for all x ∈ Mand all radii 0 ≤ r ≤ R, we have:

(Voln−1 S(x,R)

L1−η(R)

) 1
2p−1−

(Voln−1 S(x, r)

L1−η(r)

) 1
2p−1 ≤ η2(R−r)

2p−n
2p−1 ,

VolB(x, r)

VolB(x,R)
≥ (1−η) A1(r)

A1(R)
,where Lk(t) (resp. Ak(t)) stands for the volume of a geodesisphere (resp. ball) of radius t in (Sn, 1

kg), hene also:
Voln−1 S(x,R) ≤

(
1+η2

)
L1−η(R)

VolB(x,R) ≤
(
1+η

)
A1(R).In ontrast to the ase Ric ≥ (n−1), our assumptions do notyield an upper bound on the quotient Voln−1 S(x,.)

L1
for all possiblevalues of r beause the diameter of our manifolds an be greaterthan π. This results are similar to the results obtained in [15℄ and[14℄ under stronger urvature assumptions.Theorem 1.2 and proposition 1.6 imply that the set of n-manifolds satisfying ρp

VolM ≤ C(p, n), for a p > n/2, is pre-ompatfor the Gromov-Hausdor� distane. We show in the last setionthat this property is false in the ase n ≥ 3 and p = n/2, even forthe pointed Gromov-Hausdor� distane.This artile is organised as follows. For our proof of theorem1.2, we need to improve the estimates on volume established in [14℄(see also [8℄, [20℄ and [15℄ for other similar estimates and tehnis).Setion 2 is devoted to a brief survey on the properties of thevolume of star-shaped domains we need subsequently. In setion3, we establish a omparison lemma (see lemma 3.1), improvingthe similar omparison lemma of [14℄, and whih is fundamentalfor our proof of theorem 1.2: it provides a bound from above bya urvilinear integral of (Ric − (n−1)
)
− on the part less than

(n−1) cos r
sin r of the mean urvature of geodesi spheres of radius r.This lemma is used in setions 4 and 5 to get some bounds fromabove and below on the volume of geodesi balls. The proofs ofthe diameter and volume bounds of theorems 1.1 and 1.2 are givenin setion 6. Setion 7 is devoted to the proof of the �niteness of

π1(M), and setion 8 to the proof of proposition 1.5. Finally, wedisuss in setion 9 the ase p = n/2.5



I would like to thank S. Gallot for his friendly support duringmy PhD thesis [2℄ (from whih a part of this paper is extrated)and B. Colbois for his invitation to the UNINE during the year2003-2004.2 Volume and mean urvature of spheresNotation. Let x ∈ M . We denote by Ux the injetivity domainof the exponential map at x and we identify points of Ux\{0x}with their polar oordinates (r, v) ∈ R∗
+×Sn−1

x (where Sn−1
x is theset of normal vetors at x). We wright vg for the Riemannianmeasure and set ω = exp∗

xvg = θ(r, v) dr dv, where dv and dr arethe anonial measures of Sn−1
x and R∗

+. Heneforth, we extend θto (R∗
+×Sn−1

)
\Ux by 0.For all (r, v) in Ux\{0}, we denote by h(r, v) the mean urvatureat expx(rv) (for the exterior normal ∂

∂r ) of the sphere entered at
x and of radius r. This funtion h is de�ned on Ux and satis�esthe formula ∂θ

∂r (t, v) = h(t, v)θ(t, v) (f [17℄, p. 329).For all real k, we set hk = (n−1)
s′k(r)
sk(r) for the orrespondingfuntion on the model spae (Snk , gk) (n-dimensional, simply on-neted, with setional urvature k) where, as usual,

sk(r) =
sinh(

√
|k|r)√

|k|
when k < 0, sk(r) = r when k = 0,

sk(r) =





sin(
√
kr)√
k

if r ≤ π√
k

0 if r > π√
k
,

when k > 0.On Ux (resp. on Ux∩B(0, π√
k
) if k > 0), we set ψk = (hk−h)−.Following [15℄, we will use:Lemma 2.1 Let u be an element of Sn−1

x and Iu =]0, r(u)[ theinterval of values t suh that (t, u)∈Ux. The funtion t 7→ψk(t, u) isontinuous, right and left di�erentiable everywhere in Iu∩]0, π√
k
[and it satis�es:

{
1) lim

t→0+
ψk(t, u) = 0,

2) ∂ψk

∂r +
ψ2

k

n−1 + 2ψkhk

n−1 ≤ ρk,(where this di�erential inequality is satis�ed by the right and leftderivatives of ψk and where ρk =
(
Ric−k(n−1)

)
−).Proof. � Apply the well known Bohner formula g(∇△f,∇f) =

1
2△|∇f |2 + |Ddf |2 +Ric(∇f,∇f) to the distane to x funtion dx.6



Sine |∇dx| = 1 and the Hessian Dd(dx) is zero on R∇dx andequal to the seond fondamental form of the geodesi sphere ofenter x on ∇d⊥x , we infer that h satis�es the following Riatiinequation,
∂h

∂r
+

h2

n− 1
+ Ric

( ∂
∂r
,
∂

∂r

)
≤ 0This inequation beomes an equation on the model spaes

(Snk , gk), whih easily gives inequality 2) of lemma 2.1. Sine
h ∼ (n−1)/r + o(1) (see [17℄ for details), we also easily get 1).

q.e.d.Volume of star-shaped domains:De�nition. � Let x∈M and T ⊂ M . We say that T is star-shaped at x if for all y ∈ T there exists a minimizing geodesifrom x to y ontained in T . Equivalently, we may assume that
T = expx

(
Tx
), where Tx is an a�ne star-shaped subset of Ux ⊂

TxM .Given T , a subset of M star-shaped at x, let AT (r) denotethe volume of B(x, r) ∩ T . In the same way, LT (r) stands forthe (n−1)-dimensional volume of (r Sn−1
x )∩Ux∩Tx for the mea-sure θ(r, .) dv. Note that LT (r) =

∫
S

n−1
x

1lTxθ(r, v)dv and AT (r) =∫ r
0
LT (t) dt. Finally, the funtions orresponding to θ, A and Lon the model manifold (Snk , gk) will be denoted by θk, Ak and Lkrespetively. The regularity properties of the funtions LT and

AT used subsequently are summarized in the following lemma:Lemma 2.2 Let T a star-shaped subset of (M, g).(i) LT is a right ontinuous, left lower semi-ontinuous funtion,(ii) AT is a ontinuous, right di�erentiable funtion of derivative
LT .(iii) Given α ∈]0, 1], the funtion
f(r) =

(
LT (r)

Lk(r)

)α
− α

Vol Sn−1

∫ r

0

∫

S
n−1
x

(LT (s)

Lk(s)

)α−1

1lTxψk
θ

θkis dereasing either on R∗
+ (if k ≤ 0) or on ]0, π√

k
[ (if k > 0).Proof. � To prove (i), note that θ(r, v)1lTx is the produtof rn−11lTx(r, v) by the Jaobian of expx, hene r 7→θ(r, v)1lTx ispositive on an interval ]0, r(v)[, vanishes on [r(v),+∞[, and so isright ontinuous and left lower semi-ontinuous on R. We inferalso that 1lTxθ is bounded on every ompat of TxM . This yieldsthe boundedness of LT on every ompat subset of [0,+∞[. Weinfer (i) from the Lebesgue dominated onvergene theorem and7



the Fatou lemma. Property (ii) now follows (i) by the de�nitionof AT .To omplete the proof of lemma 2.2, we note that, by de�ni-tion of LT , and sine VolM\expx(Ux) = 0, we may assume that
Tx ⊂ Ux. For all integers m ≥ 1 let T (m)

x = (1− 1
m)Tx ⊂ Tx bethe image of Tx by the homothety of enter 0 and fator (1− 1

m )in Tx0M and set T (m) = expx(T
(m)
x ). By the monotone onver-gene theorem, we have AT = lim

m→∞
AT (m) and LT = lim

m→∞
LT (m) .Hene, it only remains to show (iii) for T (m). We will use thefollowing elementary lemma:Lemma 2.3 A funtion f : [a, b]→R is dereasing if and only ifit satis�es the two onditions(a) for all x∈[a, b[, lim suph→0+

f(x+h)−f(x)
h ≤ 0,(b) for all x∈]a, b], lim infh→0− f(x+ h) ≥ f(x).As for LT and AT , the funtion r 7→
∫

S
n−1
x

1l
T

(m)
x

ψk
θ
θk

(r, v) dv isright ontinuous, left lower semi-ontinuous on Ik =]0,+∞[ if k ≤
0 (resp. on Ik =]0, π√

k
[ if k > 0), and r 7→ ∫ r

0

∫
S

n−1
x

1l
T

(m)
x

ψk
θ
θk

isontinuous, right di�erentiable on Ik; so the funtion f satis�esthe inequality (b) of lemma 2.3. We now prove (a):For all r > 0 let Sr
T (m) = {v∈Sn−1

x / rv∈T (m)
x }. We denoteby L̃(r+t) the volume of (r+t).Sr

T (m) for the measure θ(r+t, .)dv.Sine T (m)
x is star-shaped at x, we have L̃(r+t) ≥ LT (m)(r+t)(with equality if t = 0). Hene
lim
t→0+

L
(m)
T (r+t) − L

(m)
T (r)

t
≤ lim

t→0+

L̃(r+t) − L̃(r)

tSine L̃(r+t) =
∫

Sr

T (m)

θ(r+t, v)dv and ∂θ
∂r = h θ, we obtain, bydi�erentiating this integral expression of L̃ (Note that hθ and ψkθare integrable on the set Sr

T (m) (whih ould be false for T andthis is why we introdued the sets T (m)): for any t∈[0, 1
m−1r[,the losure of (r+t).Sr

T (m) in TxM is ompat and belongs to
Ux\{0x} beause the ut-radius is ontinuous on S

(n−1)
x (see [17℄)and bounded below by m

m−1r > r+t on Sr
T (m) ; But, the funtion

h = 1
θ
∂θ
∂r is smooth on Ux\{0x}, and so uniformly bounded onevery set (r+t).S

(m)
T (r)),

lim
t→0+

L̃(r+t)−L̃(r)

t
=

∫

S
n−1
x

h1lT (m)θ dv ≤
∫

S
n−1
x

(ψk+hk)1lT (m)θ dv8



Combining the last two inequalities, we get:
limt→0+

LT (m)(r+t) − LT (m)(r)

t
≤ hk(r)LT (m)(r)+

∫

S
n−1
x

1lT (m)ψkθ.The ase α = 1 of (a) easily follows, noting that Lk has derivative
hkLk:
lim sup
t→0+

L
T (m) (r+t)

Lk(r+t) −L
T(m) (r)

Lk(r)

t
=

lim sup
t→0+

LT (m)(r+t)−LT (m)(r)

tLk(r)

+ lim
t→0+

[
LT (m)(r + t)

1

t

( 1

Lk(r+t)
− 1

Lk(r)

)]

=
1

Vol Sn−1θk(r)

[
lim sup
t→0+

LT (m)(r+t) − LT (m)(r)

t
−hk(r)LT (m) (r)

]Let B = 1
Vol Sn−1

∫
S

n−1
x

1l
S
(m)
T

ψk
θ
θk
dv. For all ǫ > 0, there exists

tǫ > 0 suh that for all t∈]0, tǫ[, we have L
(m)
T (r+t)

Lk(r+t) ≤ L
(m)
T (r)

Lk(r) +

t(B+ǫ). Moreover, by onavity, we get:
(
L

(m)
T (r)

Lk(r)
+ t(B+ǫ)

)α
−
(
L

(m)
T (r)

Lk(r)

)α
≤ α

(
L

(m)
T (r)

Lk(r)

)α−1

η(B+ǫ)It follows that lim supt→0+
F (r+t)−F (r)

t ≤ α(B+ǫ)

(
L

(m)
T (r)

Lk(r)

)α−1for every ǫ > 0 and we get inequality (b) for any α∈]0, 1] by letting
ǫ tend to 0.

q.e.d.3 Comparison lemma on mean urvatureThe following lemma improves lemma 2.2 in [15℄ and theorem2.1 in [14℄. We provide a pointwise bound on ψk whih, in ase
k > 0 admits a sharp polynomial blow-up when r→ π√

k
; these bothimprovements are neessary for our proof of theorem 1.2 (see theproof of lemma 4.1).Lemma 3.1 Let k∈R, and p > n/2 and r > 0; assume r ≤ π

2
√
kif k > 0. We have:

ψ2p−1
k (r, v) θ(r, v) ≤ (2p−1)p

(
n−1

2p−n

)p−1 ∫ r

0

ρpk(t, v)θ(t, v) dt.9



Moreover if k > 0 and π
2
√
k
< r < π√

k
, then

sin4p−n−1(
√
kr)ψ2p−1

k (r, v) θ(r, v)

≤ (2p−1)p
(
n−1

2p−n

)p−1 ∫ r

0

ρpk(t, v)θ(t, v) dtThese two inequalities hold for all normal vetor v∈Sn−1
x , even ifwe replae θ everywhere by 1l[0,sv[ θ (for any sv ≥ 0).Remark. � The bounds diverge when p tends to n/2 exept inthe ase n = 2 (whih then yields a ontrol of ψk by the L1-normof ρk).Proof. � Let φ be a nonnegative, C1 funtion on Ux\{0},bounded in the neighborhood of 0. By lemma 2.1, the funtion

r 7→φ(r, v)ψ2p−1
k (r, v) θ(r, v) is ontinuous and right di�erentiableon Iv, and its derivative satis�es:

∂

∂r
(φψ2p−1

k θ) ≤ (2p−1)ρk φψ
2p−2
k θ −

(
2p−n
n−1

)
φψ2p

k θ

+
(4p−n−1

n−1
hk −

1

φ

∂φ

∂r

)
−
φψ2p−1

k θwhere we used ∂θ
∂r = hθ ≤ hkθ+ψkθ. Setting X =

(∫ r
0 φψ

2p
k θ dt

)and integrating, we get:
0 ≤ φψ2p−1

k θ(r) ≤ (2p−1)
(∫ r

0

φρpkθ dt
)1/p

X1− 1
p −

(2p−n
n−1

)
X

+
[∫ r

0

(4p−n−1

n−1
hk−

1

φ

∂φ

∂r

)2p

−
φ θ dt

]1/2p
X1− 1

2p (∗)where we used lim
t→0

φ(t, v)ψ2p−1
k (t, v) θ(t, v) = 0. Dividing out by

X1− 1
p , we obtain a quadrati polynomial that takes a non-negativevalue at X 1

2p and we infer:
(∫ r

0

φψ2p
k θ dt

) 1
2p ≤

√
(n−1)(2p−1)

2p−n
(∫ r

0

φρpk θ dt
)1/2p

+
n−1

2p−n

(∫ r

0

(
hk

2p−1+(2p−n)

n−1
− ∂φ/∂r

φ

)2p

−
φ θ dt

)1/2p

.We prove the �rst inequality of lemma 3.1 by taking φ(r, v) = 1.Indeed then, the above inequality and the positivity of hk yield:
∫ r

0

ψ2p
k θ dt ≤

(
(2p−1)(n−1)

2p−n

)p ∫ r

0

ρpkθ dt.10



Plugging this into the above inequality (∗), we obtain
ψ2p−1
k θ(r) ≤ (2p−1)p

( n−1

2p−n
)p−1

(∫ r

0

ρpkθ dt

)
.For the seond inequality, we set φ = sin4p−n−1(

√
kr) and observethat, in this ase, the last term of inequality (∗) vanishes. So weget for all r < π√

k
:

sin4p−n−1(
√
kr)ψ2p−1

k θ ≤ (2p−1)p
( n−1

2p−n
)p−1

∫ π√
k

0

ρpkθ dt.

q.e.d.4 Hyper-onentration of the measureIn this setion we prove the �rst volume estimate required in ourproof of theorem 1.2. It says that, if the Rii urvature on-entrates su�iently above n−1 on a star-shaped subset T of Mat x, then the Riemannian measure of T is almost ontained in
B(x, π)∩T .Lemma 4.1 There exists an expliit onstant C(p, n) suh thatif (Mn, g) ontains a subset T , star-shaped at a point x, on whih:

ǫ = R2
T

[ 1

VolT

∫

T

(
Ric−(n−1)

)p
−

] 1
p ≤

(π
6

)2− 1
p ,where RT is suh that T ⊂ B(x,RT ), then, for all radius RT ≥

r ≥ π:
LT (r) ≤ C(p, n)

r
ǫ

p(n−1)
2p−1 VolT.Remark. � The same onlusion holds in ase n = 2 and p = 1by letting n = 2 and p→1 in the proof below.Proof. � Lemma 2.2 (with 0 < t ≤ r < π√

k
, α = 1

2p−1 and
k > 0 �xed) yields:
(LT (r)

Lk(r)

) 1
2p−1 −

(LT (t)

Lk(t)

) 1
2p−1

≤ 1

2p−1

∫ r

t

(LT
Lk

) 1
2p−1−1 1

Vol Sn−1

∫

Tx

ψk
θ

θk
.As

(
LT/Lk

) 2(1−p)
2p−1

Vol Sn−1

∫

Tx

ψk
θ

θk
≤ 1
(
Lk
) 1

2p−1

(∫

Tx

ψ2p−1
k θ

) 1
2p−1

,11



we get:
1

VolSn−1

∫ r

t

(LT (s)

Lk

) 2−2p
2p−1

∫

Tx

ψk
θ

θk
dvds

≤
∫ r

t

(
√
k)

n−1
2p−1

sin2(
√
ks)

(∫

Tx

sin4p−n−1(
√
ks)ψ2p−1

k θ

Vol Sn−1
dv
) 1

2p−1

ds.Lemma 3.1 implies:
( LT (r)

sinn−1(
√
kr)

) 1
2p−1 −

( LT (t)

sinn−1(
√
kt)

) 1
2p−1

≤
( (n−1)

(2p−1)(2p−n)

) p−1
2p−1

(∫

T∩B(x,r)

ρpk

) 1
2p−1

∫ r

t

1

sin2(
√
ks)

dsSetting ǫ′ = ǫ
p

2p−1 , k = (π−ǫ′)2
r2 and assuming t∈[ π

2(π−ǫ′)r, r], andsine, by onavity of the sine funtion, ∫ rt 1
sin2(

√
krs)

ds ≤ πr
2ǫ′ , wehave:

LT (r)
1

2p−1

(sin(
√
krr))

n−1
2p−1

− LT (t)
1

2p−1

(sin(
√
krt))

n−1
2p−1

≤ π

2R
1

2p−1

T

(
n−1

(2p−1)(2p−n)

) p−1
2p−1

Vol(T )
1

2p−1Multiplying this inequality by (sin(r
√
kr))

n−1
2p−1 ≤ (ǫ′)

n−1
2p−1 , we inferthat for all t∈[ π

2(π−ǫ′)r, r],
LT (r)

1
2p−1 ≤ LT (t)

1
2p−1

(
ǫ′

sin((π−ǫ′) tr )

) n−1
2p−1

+
π

2R
1

2p−1

T

(
n−1

(2p−1)(2p−n)

) p−1
2p−1

VolT
1

2p−1 ǫ′
n−1
2p−1 .Using the inequality (a+b)α ≤ 2α−1(aα+bα) (for all a, b ≥ 0), with

α = 2p−1, and the fat that sin[(π−ǫ′) tr ] ≥ sin(π6 ) = 1
2 , when

t∈[ π
2(π−ǫ′)r,

5π
6(π−ǫ′)r], we get:

LT (r) ≤ 22p+n−3ǫ
p(n−1)
2p−1 LT (t)

+
π2p−1

2RT
Vol(T )ǫ

p(n−1)
2p−1

(
n−1

(2p−1)(2p−n)

)p−1

,for all t∈[ π
2(π−ǫ′)r,

5π
6(π−ǫ′)r] (note that 5π

6(π−ǫ′)r ≤ r, hene t
r ≤ 1).12



By the mean value property, there exists t∈[ π
2(π−ǫ′)r,

5π
6(π−ǫ′)r]suh that LT (t) is bounded above by 3(π−ǫ′)

πr

∫ 5πr
6(π−ǫ′)

πr
2(π−ǫ′)

LT (s) ds whihis less than 3
r

∫ RT

0 L = 3
r Vol(T ). In summary, we onlude:

LT (r) ≤
[
3.22p+n−3+

π2p−2

2

(
n−1

(2p−1)(2p−n)

)p−1
]

Vol(T )

r
ǫ

p(n−1)
2p−1 .

q.e.d.5 Lower Bound on the volume of geodesiballsIn this setion, we bound from below the relative volume of thegeodesi balls. It is the seond step of the proof of theorem 1.2.Lemma 5.1 Let n ≥ 2 be an integer and p > n/2 be a real.There exist (omputable) onstants C(p, n) > 0 and B(p, n) suhthat when (Mn, g) ontains a star-shaped subset T whih satis�es
ǫ = R2

T

[ 1

VolT

∫

T

(
Ric
)p
−

] 1
p ≤ B(p, n), then we have(i) for all 0 < r ≤ R ≤ RT , AT (r)

AT (R) ≥
(
1−C(p, n)ǫ

p
2p−1

)
rn

Rn .(ii) if T = B(x,R0), y∈T and r ≥ 0 satisfy d(x, y)+r ≤ R0 then
( VolB(y, r)

VolB(x,R0)

) 1
2p′−1 ≥

( r
R0

) n
2p′−1

[(2

3
−C(p, n)ǫ

p′

2p′−1

)( r
R0

) 2n
2p′−1−C(p, n)ǫ

p′

2p′−1

]
,where p′ = max(n, p).Proof. � Lemma 2.2 (with k = 0 and α = 1) and the Hölderinequality yield, for all t ≤ r ≤ RT :

LT (r)

rn−1
−LT (t)

tn−1
≤
∫ r

t

LT (s)1−
1

2p−1

sn−1

(∫

S
n−1
x

1lTxψ
2p−1
0 θ dv

) 1
2p−1

dsLemma 3.1 implies then
LT (r)

rn−1
−LT (t)

tn−1
≤ C(p, n)

∫ r

t

LT (s)1−
1

2p−1

sn−1

(∫

B(x,s)∩T
ρp0

) 1
2p−113



≤ C(p, n)

tn−1

(∫

T

ρp0

) 1
2p−1

∫ r

t

L
1− 1

2p−1

T .Multiplying this inequality by nrn−1tn−1, using the inequality
∫ r
t L

1− 1
2p−1

T ≤ (r−t) 1
2p−1

(
AT (r)−AT (t)

)1− 1
2p−1 , and integratingthe result with respet to t from 0 to r. We get

d

dr

(AT
rn

)
≤
(AT (r)

rn

)1− 1
2p−1

C(p, n)

(∫

T

ρp0

) 1
2p−1

nr
1−n
2p−1(sine AT (r)

rn is right di�erentiable). Integrating one again yields
[AT (R)

Rn

] 1
2p−1−

[AT (r)

rn

] 1
2p−1≤ C(p, n)

(∫

T

ρp0

) 1
2p−1

R
2p−n
2p−1 .

(
Er,RT

)Inequality (ET,R,RT

) implies
[

AT (R)

AT (RT )Rn

] 1
2p−1

≥ R
−n

2p−1

T

(
1−C(p, n)ǫ

p
2p−1

)
≥ 1

2
R

−n
2p−1

Tas soon as B(p, n) is su�iently small. This and (Er,RT ) imply (i).To show (ii), we may assume, by the Hölder inequality, that
p∈]n/2, n]. Let y∈B(x,R0) and (r,R) suh that 0 < r ≤ R ≤
R0−d(x, y). Multiplying (EB(y,R),r,R

) by ( 1
Ax(R0)

) 1
2p−1 and not-ing the inlusion B(y,R) ⊂ B(x,R0), we get

( Ay(R)

Ax(R0)

) 1
2p−1 ≤ C(p, n)

(R2ǫ

R2
0

) p
2p−1

+
(R
r

) n
2p−1

( Ay(r)

Ax(R0)

) 1
2p−1

.We will onstrut a sequene of dereasing balls Bi = B(yi, Ri)suh that B1 = B(y, r), Bk is almost onentri to B(x,R0), and
Bi ontains a ball entered at yi+1 and of radius ri+1 lose to Ri.Let γ : [0, d(x, y)] → M be a minimizing geodesi from xto y and α = α(p, n) < 1 lose enough to 1 suh that we have
−Logα ≤ 2Log(2−α) and (2−α)

2p−n
2p−1 α

n
2p−1 < 1. For all integers

1 ≤ i ≤ k = E
[
1+

Log
(

d(x,x0)+r
r

)
Log(2−α)

], let
yi = γ

(
d(x, x0)+r−(2−α)i−1r

)
, ri = α(2−α)i−2r,

Ri = (2−α)i−1rThen B(yi+1, ri+1) ⊂ B(yi, Ri) ⊂ B(x,R0) and so, by the aboveinequality (in whih we replae y by yi+1, R by Ri+1 and r by
ri+1), we get
(Ayi+1(Ri+1)

Ax(R0)

) 1
2p−1 14



≤ C(p, n)
(r2ǫ
R2

0

) p
2p−1

(2−α)
2pi

2p−1 +
((2−α)nAyi(Ri)

αnAx(R0)

) 1
2p−1

,hene also
(Ayi(Ri)

Ax(R0)

) 1
2p−1

≤
(2−α

α

)n(i−1)
2p−1

[( Ay(r)

Ax(R0)

) 1
2p−1

+
C(p, n)( r

2ǫ
R2

0
)

p
2p−1

( (2−α)n−2p

αn )
1

2p−1−1

]For i = k, we have d(x, yk) ≤ (1−α)Rk, soB(yk, Rk) ⊃ B(x, αRk).Inequality (i) thus yields
(Ayk

(Rk)

Ax(R0)

) 1
2p−1 ≥

(
1−C(p, n)ǫ

p
2p−1

)(
α
Rk
R0

) n
2p−1

≥
(
1−C(p, n)ǫ

p
2p−1

)
α

n
2p−1 (2−α)

n(k−1)
2p−1

( r
R0

) n
2p−1These two estimates on Ayk

(Rk)

Ax(R0) , and the fat that by assumption
α

n(k−1)
2p−1 ≥

(
r

r+d(x,y)

) −nLogα
(2p−1)Log(2−α) ≥

(
r
R0

) 2n
2p−1 , imply that thereexist onstants C(p, n) > 0 and B(p, n) > 0 suh that when ǫ ≤

B(p, n),
( Ay(r)

Ax(R0)

) 1
2p−1

≥
( r
R0

) n
2p−1

[(2
3
−C(p, n)ǫ

p
2p−1

)( r
R0

) 2n
2p−1−C(p, n)ǫ

p
2p−1

]
,where we have assumed α n

2p−1 ≥ 2
3 .

q.e.d.In the ase (n, p) = (2, 1), the following lemma holdsLemma 5.2 There exists onstants B > 0 and C > 0 suh thatwhen a surfae (S2, g) ontains a star-shaped subset T on whihthe setional urvature K satis�es ǫ =
R2

T

VolT

∫
T
K− ≤ B, then

(i)
AT (r)

VolT
≥
( r

RT

)2(
1−ǫLog

(RT

r

))
,for all r ≤ RT . If T = B(x,R0), y∈T and d(x, y)+r ≤ R0, then

(ii)
VolB(y, r)

VolB(x,R0)
≥
( r
R0

)4(
1−3ǫ

(R0

r

)2)15



Proof. � An easy omputation gives that the onstant C(p, n)involved in the di�erential inequality satis�ed by AT

rn in the aboveproof satis�es C(p, n) = 2p−1
2p

(
n−1

(2p−1)(2p−n)

) p−1
2p−1 . In ase n = 2we may let p tend to 1 in that di�erential inequality and get

d
dr

(
A
r2

)
≤ 1

r

∫
T
K− whih, integrated, yields A(R)

R2 −A(r)
r2

≤ (LogR−Logr)
∫
T

K−, proving (i).
(ii) is proved as in lemma 5.1 (note that, in this ase, we maylet α tend to 1, whih simpli�es the �nal formula).

q.e.d.6 Diameter bound6.1 Proof of lemma 1.4Note that if B(p, n) is su�iently small then lemma 5.1 implies
AT (R)
VolT ≥ Rn

2Rn
T
hene we may assume that T = B(x,R0) and π <

R0 ≤ 2π. Fix δ ∈]0, R0−π
2 [. If y ∈ M is at a distane greaterthan (π+δ) from x, then we have B(y, δ) ⊂ B(x, π+2δ)\B(x, π).Lemma 4.1 now yields the bounds

VolB(y, δ)≤
∫ π+2δ

π

L ≤ 2C(p, n)A(R0)δǫ
p(n−1)
(2p−1)(where A(R0) = VolB(x,R0)). On the other hand, lemma 5.1 (ii)provides:

VolB(y, δ) ≥
( δ
2π

)n[1
2

( δ
2π

) 2n
2p′−1−C(p, n)ǫ

p′

2p′−1

]2p′−1

A(R0)by taking B(p, n) small enough (still setting p′ = max(p, n)).At this stage, we an distinguish two ases:either ( δ2π) 2n
2p′−1 ≤ 4C(p, n)ǫβ, where β = 2np(n−1)

(2p−1)(2p′−1)(3n−1) ,or the above inequality beomes (sine β ≤ p′

2p′−1 )
VolB(y, δ) ≥ C(p, n)

( δ
2π

)n
A(R0)ǫ

(2p′−1)βThese two estimates on VolB(y, δ) imply a bound on δ:
π+δ ≤ π+C(p, n)ǫβ

2p′−1
2n ≤ π+C(p, n)ǫ

1
10 < R016



We infer that M ⊂ B(x,R0). Let z be any point of M . We have
ρ
(p)
z,R0

≤
(

VolB(x,R0)
VolB(z,R0)

) 1
p

ǫ. But B(x,R0−π−C(p, n)ǫ
1
10 ) ⊂ B(z,R0)and so lemma 5.1 (i) implies:

VolB(z,R0)

VolB(x,R0)
≥
(
R0−π−C(p, n)ǫ

1
10

)n

2(2π)n
≥ (R0−π)n

4(2π)nWhat has done above for x an be done for any z ∈ M (justreplae ǫ by 4(2π)n/p

(R0−π)n/p ǫ, for ρ(p)
z,R0

≤ 4(2π)n/p

(R0−π)n/p ǫ), whih ompletesthe proof.6.2 Proof of the geometri inequalities of theo-rem 1.2Let (Mn, g) be a omplete manifold suh that ∫M(Ric−(n−1)
)p
− is�nite and let (B(xi, 2π)

)
i∈I be a maximal family of disjoint ballsin M . The Dirihlet domains Ti =

{
y / d(xi, y) < d(xj , y), ∀j 6=i

}satisfy the three following lassial fats:1) B(xi, 4π) ⊃ Ti ⊃ B(xi, 2π),2) Ti is star-shaped at the xi and3) exept for a set of zero measure, M is the disjoint union of thesets Ti.Thus, setting α = infi∈I

[
1

VolTi

∫
Ti

(
Ric−(n−1)

)p
−

] 1
p , we have

∫

M

(
Ric−(n−1)

)p
− =

∑

i∈I

∫

Ti

(
Ric−(n−1)

)p
−

≥ αp
∑

i∈I
VolTi = αp VolMIf α >

[
B(p,n)

210116π2

]p (where B(p, n) is the onstant of lemma 1.4),then VolM ≤ C(p, n)ρ(p)(M) (where C(p, n) is a universal on-stant). Elsewhere, there exists a star-shaped set Ti satisfyingthe assumptions of lemma 1.4. In the latter ase (whih is theonly possible one under the stronger assumption ρ
(p)
M ≤ VolM

C(p,n) ,with C(p, n) su�iently large) we bound the diameter of M withLemma 1.4 and the volume of M using lemma 5.1.7 Fundamental group �nitenessTo show the π1-�niteness of the manifolds that satisfy ρp

VolM ≤
1

C(p,n) , we just have to show their the universal overs are om-17



pat. We will apply lemma 1.4 to the universal Riemannian ov-ering spae (M̃, g̃), and so we have to onstrut a good star-subsetsubset in M̃ (i.e. a star-shaped subset on whih the pinhing onthe Rii urvature is ontrolled by ρp

VolM ).The fundamental group ats freely and isometrially on theuniversal Riemannian over. For all x̃∈M̃ and any subset T of
M̃ , we denote by mT (x̃) the ardinality of T∩π1.x̃. Set x̃0∈M̃and x̃∈B(x̃0, 2π) that maximizesmB(x̃0,2π). Sine we may assume
DiamM ≤ 2π, we have 1 ≤ mB(x̃0,2π)(y) ≤ N and mB(x̃0,6π)(y) ≥
N for all y∈B(x̃0, 2π) (where N = mB(x̃0,2π)(x̃)). For all y in
B(x̃0, 2π), we hoose N distints points y1, · · ·, yN in π1.y thatare loser to x̃0 than the other points of π1.y, and let T be theunion of these {y1, · · ·, yN} for all y∈B(x̃0, 2π). Hene B(x̃0, 6π) ⊃
T ⊃ B(x̃0, 2π) and mT≡N on M̃ . We infer

1

VolT

∫

T

(
Ric−(n−1)

)p
− dvg̃ =

1

VolM

∫

M

(
Ric−(n−1)

)p
− dvgIt only remains to show that T is a star-shaped subset of (M̃, g̃).Set y∈T and let γ be a minimizing geodesi from y to x̃0. Assumethere exists z∈γ\T . Sine mT (z) = N , there exist (σ1, · · ·, σN )in π1(M)\{id} suh that σi.z∈T for all 1 ≤ i ≤ N . But everyelement of π1(M)\{id} ats without �xed points on M̃ , thus thereexists 1 ≤ i0 ≤ N suh that σi0 .y /∈T . Sine σi0 ats isometrially,we have

d(x̃0, y) ≤ d(x̃0, σi0 .y), d(x̃0, z) ≥ d(x̃0, σi0 .z),

d(z, y) = d(σi0 .z, σi0 .y).The relations above ombined with d(x̃0, y) = d(x̃0, z)+d(z, y) andthe triangle inequality provide
d(x̃0, y) = d(x̃0, σi0y) = d(x̃0, σi0z)+d(σi0z, σi0y).We infer that there exists a minimizing geodesi segment from

σi0 .y to x̃0 whih ontains σi0 .z. But d(σi0 .z, σi0 .y) = d(z, y) <
d(x̃0, y) ≤ d(x̃0, σi0 .y), so there is only one geodesi minimiz-ing the distane between σi0 .z and σi0 .y, whih implies that thegeodesi σi0(γ) ontains x̃0. Sine d(z, x̃0) = d(σi0 .z, x̃0), we have
σi0 .x0 = x0, ontraditing the fat that σi0 has no �xed point.8 Spetral lower boundsTo prove proposition 1.5 we need bounds on some Sobolev on-stants. In [8℄, S. Gallot provides suh bounds under the pinh-ing Diam(M)2

(
1

VolM

∫
M (Ric)p−

) 1
p ≤ ǫ(p, n), where p > n/2 and18



ǫ(p, n) > 0 is a universal onstant. Combined with theorem 1.2this yieldsProposition 8.1 Let (Mn, g) be a omplete Riemannian mani-fold. If ρ
(p)
M

VolM ≤ 1
C(p,q,n) (for p > n/2 and q > n), then we have(i) for all u∈H1,2(M), ‖u‖ 2q

q−2
≤ Diam(M)C(p, q, n)‖du‖2+‖u‖2.(ii) for all u∈H1,q(M), supu− inf u ≤ Diam(M)C(p, q, n)‖du‖q.We now prove proposition 1.5. Let α be a 1-form on M suhthat ‖α‖2

2 = 1 and △α = λα. The Bohner formula (see [17℄)yields
∫

M

g(△α, α)

VolM
= ‖Dα‖2

2+

∫

M

(
Ric−(n−1)

)
(α, α)

VolM
+(n−1)Combined with Hölder's inequality, this implies:

λ ≥ ‖Dα‖2
2−
( ρp
VolM

) 1
p ‖α‖2

2p
p−1

+(n−1)Sine we may assume DiamM ≤ 2π, proposition 8.1:
‖α‖2

2p
p−1

≤ C(p, n)‖Dα‖2
2 + 2‖α‖2

2 .We infer (
λ−(n−1)+2ǫ

)
≥
(
1−C(p, n)

( ρp
VolM

) 1
p
)
‖Dα‖2

2 (∗).Splitting orthogonally the 2-tensor Dα into antisymmetri part
dα
2 , traeless symmetri part and salar part − δα

n g, we obtain
‖Dα‖2

2 ≥ 1
n‖δα‖2

2+
1
2‖dα‖2

2. Combining the splitting with the in-equality (∗) above and distinguishing the ase dα = 0 (where
‖δα‖2

2 = λ) and the ase δα = 0 (where ‖dα‖2
2 = λ), we easily getproposition 1.5.9 L

n
2 -pinhing on the Rii urvatureIn the ase n = 2 and p = 1, the π1-�niteness follows readily fromthe Gauss-Bonnet theorem. The proofs of Theorems 1.1 and 1.2,Lemma 1.4, and Propositions 1.5 and 1.6 may be easily adapted.For instane, to prove Lemma 1.4 we just use Lemma 5.2 in plaeof Lemma 5.1. To prove Proposition 1.5, we may assume λ ≤ 2nand use the Sobolev inequality ‖u‖4 ≤ C‖du‖2+‖u‖2 to show byMoser's iteration that ‖α‖∞ ≤ C′; this implies that inequality (∗)still holds and then we �nish the proof as in the ase p > 1.We now fous on ounter-examples or density results announedin the introdution. Let σ (resp. σ(x)) stand for the setional ur-vature (resp. the smallest setional urvature of tangent planes at

x). 19



Proposition 9.1 Set n ≥ 3. For any p, ǫ > 0, the n-Riemannianmanifolds with ∫
M

|σ|p ≤ ǫ and Vol(M) ≤ ǫ are dense in (pointed)Gromov-Hausdor� distane amongs all the (non ompat) lengthspaes.Proof. � The (n−1)-Riemannian manifolds are obviousely GH-dense amongs all the �nite graphs (by performing some onnetedsums of spheres Sn−1 to get small slightely thikened graphs).Then, just take Riemannian produt of these manifolds with asu�iently small S1.
q.e.d.The next density results are more interesting sine we want tokeep a ontrol on the volume of our family of manifolds.Proposition 9.2 For any reals K and V0 > 0, any integer n ≥ 3and real any ǫ > 0 the ompat Riemannian n-manifolds (Mn, g)that satisfy

∫

M

(
σ −K

)n
2

− < ǫ and VolM = V0are dense in (pointed) Gromov-Hausdor� distane amongs all the(non ompat) length spaes.We an also replae ∫M(σ−K)n
2

− by ∫M |σ|n
2 or by ∫M |σ|p forany p < n/2.With the same kind of glueing tehniques, it is not di�ultto onstrut omplete, non ompat n-manifolds with non �nitevolume and whih satisfy ρn/2 ≤ ǫ (for any n ≥ 3 and any ǫ > 0).Proposition 9.3 Let (Mn, g) be any ompat Riemannian n-ma-nifold (n ≥ 3). There exists a sequene of omplete Riemannianmetris (gm) that onverge to g in the Gromov-Hausdor� distaneand suh that

ρn/2(gm)

Vol gm
→ 0 Vol(gm) → ∞ ∀l ∈ N, λl(gm) → 0where λl denote the l-th eigenvalue of the Laplaian on funtions.Proof. � We de�ne the following �ve families of ylinders

I×Sn−1 with warped-produt metri dt2+b(t)2gSn−1

• C
−1
ν = [0,

√
ν]×Sn−1 with b(t) = η(t2+ν2)α/2, where α =

1+ 1√
−Log(ν)

and η =
√

1+ν

α(ν+ν2)
α−1

2

for any ν > 0.
• Fν = [θ−π

2 , 0] × S
n−1 with b(t) = η′ cos t, θ = tan−1(

√
ν
α (1+ν))and η′ =

√
α2+ν(1+ν)2

α = 1
cos θ . 20



• Fν = [0, η
′π
2 ] × Sn−1 with b(t) = η′ cos t

η′ .
• C

0
ν = [0,

√
ν(1+ν)
2α ] × S

n−1 with b(t) = t+
√
ν(1+ν)
2α .

• C
0

ν,L = [0, L] × Sn−1 with b(t) = ν
α+1

2

α(1+ν)
α
2

−1 .If (X,Y ) is an orthonormal family of tangent vetors to Sn−1,then the setional urvatures σ(X,Y ) of the manifolds Fν , Fν ,
C

−1
ν and C

0
ν are equal to

1

b2
−
(
b′

b

)2

=





0 on C
0
ν or C

0

ν,L,
ν2α2

(t2+ν2)2 − α2

t2+ν2

(
1 − 1

1+ν

(
ν+ν2

t2+ν2

)α−1
) on C

−1
ν ,

1 − sin2 θ
cos2 t on Fν ,

1
η′2 on Fν .If X is a unit vetor tangent to Sn−1, then

σ(X,
∂

∂r
) = −b

′′

b
=





0 on C
0
ν or C

0

ν,L,

−α(2−α)ν2

(t2+ν2)2 − α(α−1)
t2+ν2 on C

−1
ν ,

1 on Fν ,
1
η′2 on Fν .We now obtain readily the following upper bounds (∀ν ≤ 1

C(n) )
∫

Fν

(σ−1)
n
2
− ≤ C(n)

∫ π
2 −θ

0

sinn θ

cos t
dt ≤ C(n) sinn θ ≤ C(n)

(
− ln ν

)n−2
4

,

∫

Fν

(σ−1)
n
2
− ≤ C(n)

∫ η′π
2

0

sinn θ

cosn θ
cosn−1 t

η′
dt

≤ C(n) sinn θ ≤ C(n)
(
− ln ν

)n−2
4

,

∫

C0
ν

(σ−1)
n
2
− ≤ C(n)ν

n
2 ≤ C(n)

(
− ln ν

)n−2
4

.Conerning C
−1
ν , �rst note that σ(X,Y ) is dereasing on [0,

√
ν]and so σ(X,Y ) ≥ 0 for ν small enough. Hene, using √a

2+
√

b
2 ≤

√
a+b ≤ √

a+
√
b, we have

∫

C
−1
ν

(σ−1)
n
2
−

≤ C(n)ηn−1

[
νn
∫ √

ν

0

(t2 + ν2)
α(n−1)

2 −n dt+

∫ √
ν

0

(t2 + ν2)
α(n−1)

2 dt21



+(α− 1)n/2
∫ √

ν

0

(t2 + ν2)
α(n−1)

2 −n
2 dt

]

≤ C(n)ηn−1
[
ν(α−1)(n−1) + (ν +

√
ν)(n−1)α+1

+(α− 1)
n
2 −1(ν +

√
ν)(α−1)(n−1)

]
≤ C(n)

(− ln ν)
n−2

4

.The metris of these ylinders are normalized to yield a C1 metriwhen the small (resp. the large) onneted omponent of theboundary of Fν is identi�ed with the large onneted omponentof the boundary of C0
ν (resp. with the boundary of Fν). Similarly,note that for any ν > 0 small enough, there exists β < 1 suh thatwe get a C1 metri by identifying a onneted omponent of theboundary of C−1

βν with the small onneted omponent of C0
ν . Weset Bν for the manifold C

0
v#C

−1
βν#C

−1
βν#C

0
v#Fν#Fν :

We then have ∫
Bν

(σ−1)
n
2
− ≤ C(n)

(− ln ν)
n−2

4

, also DiamBν ≤ 2π and
VolBν ≥ 1

C(n) for any ν small enough. For all N∈N, there existsa small ν′ to have C
0
ν ontaining at least N disjoint balls of radius√

ν′(1+ν′)
α(ν′) . Exise these balls from one of the C

0
ν part of Bν andglue the resulting manifold to N manifolds Bν′ along the spheresof radius √

ν′(1+ν′)
α(ν′) of their boundaries. Taking N =

(
− ln ν

)n−2
8and multiplying the metri by 1

(− ln ν)
n−2
8n

, we get a manifold Bνwhih is di�eomorphi to Bn and satis�es DiamBν ≤ 4π

(− ln ν)
n−2
16n

,
VolBν ≥ (− ln ν)

n−2
16

C(n) and ∫Bν
(σ−1)

n
2
− ≤ C(n)

(− ln ν)
n−2

8

.To prove proposition 9.3, �x a point x0 in the ompat mani-foldM . For any m∈N, there exists a r∈]0, inj(M, g)[ and a metri
g′ on M whih is equal to g on M\B(x0, 2r), is �at on B(x0, r)and is at Gromov-Hausdor� distane from g bounded above by
1

2m . For any ν > 0 suh that √
ν(1+ν)
α < r we obtain a newmetri g′ν on M by replaing the �at metri on B(x0,

√
ν(1+ν)
α )by the metri of Bν . We an �nd νm small enough to have aGromov-Hausdor� distane between g and g′νm

less than 1
m , andalso Vol(g′νm

) ≥ mC(n) and 1
Vol g′νm

∫
(M,g′νm

)

(
σ−1

)n
2

− ≤ 1
m . We22



then set gm = g′νm
. It only remains to show the ollapsing ofthe eigenvalues of the metris gm. In that purpose, �rst on-sider on Bν the ontinuous funtion f that is equal to 1 on thepart C

0
ν#Fν#Fν , equal to 0 on the part C

0
ν#C

−1
ν and equal to

f(t) = t√
βν

on the remaining part C
−1
βν . For this funtions f , wehave

∫
Bν

|∇f |2∫
Bν

|f |2 ≤ ηn−1

C(n)η′n−1

∫ √
ν

0

∣∣∣∂f
∂t

∣∣∣
2

(t2+ν2)
α(n−1)

2 dt ≤ C(n)ν
n−2

2 .

(Mn, gm) ontains (− ln νm
)n−2

8 manifolds Bν′
m
whose metri hasbeen multiplied by 1

(− ln νm)
n−2
8n

. We extend to M by zero thefuntion f orresponding to eah Bν′
m
part of (Mn, gm). Thus, weobtain (− ln νm

)n−2
8 L2-orthogonal funtions on (Mn, gm), whoseRayleigh quotients are bounded above by C(n)ν

n−2
2

m

(
ln 1

νm

)n−2
8n .As we an suppose that νm tends to 0, the min-max prinipleimplies the ollapsing of all eigenvalues to 0 (this ollapsing impliesthat the gm do not tend to g in the C0 sense and that the Sobolevonstants are not bounded under Ln

2 pinhing, otherwise the proofof Proposition 1.5 would hold).We now adapt the above onstrution to prove Proposition 9.2.Note that on C
−1
ν we have−α(2−α)ν2

(t2+ν2)2 − α(α−1)
t2+ν2 ≤ σ(t) ≤ ν2α2

(t2+ν2)2 +

α2να−1

(1+ν)2−α(t2+ν2)α , and so we have, for any p < n/2, ∫
C

−1
ν

|σ|p ≤
C(n, p)ν

n
2 −p. There exists β < 1 suh that a onneted omponentof the boundary of C

−1
βν glue metrially in a C1-way with thesmall onneted omponent of C

0
ν . We set B

2
ν,L the manifold

Fν#Fν#C
0
v#C

−1
βν#C

0

βν,L#C
−1
βν#C

0
v#Fν#Fν :

we set also B
1
ν,L = C

0
v#C

−1
βν#C

0

βν,L#C
−1
βν#C

0
v#Fν#Fν :

and B
0
ν,L = C

0
v#C

−1
βν#C

0

βν,L#C
−1
βν#C

0
v:
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It is now easy to see that for any L > 0, ǫ > 0 and K ∈
R we an hoose two sequenes (Ll) and λl suh that the se-quene B0,L

l,ǫ =
(
λnB

0
1/l,Ll

) (resp. B1,L

n,ǫ =
(
λlB

1
1/l,Ll

) or B2,L

l,ǫ =(
λlB

2
1/l,Ll

)) are at Gromov-Hausdor� distane from the segment
[0, L] less than ǫ and the integrals ∫

B
i,L
l,ǫ

(
σ−K

)n
2

− tend to 0 (resp.and the volume of Bi,Ll,ǫ tends to any given real in ]0, C(ǫ,K, L)]).Note also that if we take m large enough we an glue a num-ber as large as needed of manifolds B1,L

m,ǫ or B0,L

m,ǫ to one of the
C

0 part of Bi,Ll,ǫ . We dedue that, for any �nite graph, we anglue a family Bik,Lk

lk,ǫ2
(with the np large enough) to get a manifoldwhih is at Gromov Hausdor� distane from the graph less than

ǫ/2 and whih satis�es ∫ (σ − K
)n

2

− ≤ ǫ/2 and with volume lessthan V0/2. To get a volume equal to V0 we glue enough opiesof B1,ǫ2

l,ǫ4 (for K = 1
ǫ8 ): the small hange on the distane to thegraph does not depend on the number of these opies and thatwe an hoose the volume of eah opies of these B1,ǫ2

l,ǫ4 equal toany number in ]0, C(ǫ2, 1
ǫ8 , L)[. Sine the �nite graph are dense inGromov Hausdor� distane this ends the proof of theorem 9.2.To prove the version of theorem 9.2 with the pinhing on∫

M |σ|n
2 or ∫M |σ|p (p < n/2) we just have to replae the parts

Fν#Fν in the above de�nition of the Bi,Ll,ǫ by some small �at n-torus and remark that for the metris ontruted by this way wehave σ ≤ 0.
q.e.d.Note that in the proof of Proposition 9.3 above we only needthat VolM and ∫

M

(
σ−1

)n
2

− are �nite. It is lassial that anymanifold supports a omplete metri with �nite volume but we donot know if both �nitenesses above are always ful�lled for at leastone omplete metri on any (nonompat) manifold. Note alsothat the �niteness of ∫
M

(
σ−1

)n
2

− does not imply VolM <∞ sine,for any ǫ > 0, we an start from B
2
ν,1 and then iteratively gluesome B

1
νk,1

to the remaining free C
0

βνk−1
element with a sequene

νk hosen so as to get a omplete manifold with in�nite volumeand ∫
M

(
σ−1

)n
2
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