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Abstract—Sparse decompositions were mainly developed to
optimize the signal or the image compression. The sparsity
was first obtained by a coefficient thresholding. The matching
pursuit (MP) algorithms were implemented to extract the optimal
patterns from a given dictionary. They carried out a new insight
on the sparse representations. In this communication, this way
is followed. It takes into account the goal to obtain a sparse
multiscale decomposition with the different constraints: i/ to get
a sparse representation with patterns looking like to Gaussian
functions, ii/ to be able to decompose into patterns with only
positive amplitudes, iii/ to get a representation from a translated
and dilated pattern, iv/ to constrain the representation by a
threshold, v/ to separate the sparse signal from a smooth baseline.
Different greedy algorithms were built from the use of redundant
wavelet transforms (pyramidal and à trous ones), for 1D signals
and 2D images.

Experimentations on astronomical images allow one a gain of
about two in sparsity compared to a classical DWT thresholding.
A fine denoising is obtained. The results do not display any wavy
artifacts. This decomposition is an efficient tool for astronomical
image analysis.

I. INTRODUCTION

Many kinds of sparse decompositions were developed these

two last decades mainly in order to optimize the signal or

the image compression [1]. Among them the wavelet trans-

form appeared as a very efficient way to carry out sparse

representations for a large class of signals [2]. Since different

new transforms were proposed for optimizing sparsity for a

given signal class [3]. The sparsity was first obtained with

an available coefficient thresholding. The Discrete Wavelet

Transform (DWT) concentrates the significant information

onto the minimum of coefficients without any redundancy

between the data and the transform.

Sparsity can be also derived from overcomplete representa-

tions, by choosing optimally the projection vectors [4]. Match-

ing pursuit (MP) algorithms were implemented to extract the

representation elements from a given dictionary [5]. The non-

orthogonality between the alphabet patterns can lead to con-

vergence problems. The orthogonal matching pursuit (OMP)

algorithm [6] allows one to keep the orthogonality between

the representation and the residuals. Different algorithms were

proposed in order to extract in parallel the patterns [7], [8].

The basis pursuit [9] has given a new insight on the

sparse representations. The introduction of a ℓ1 constraint

on the representation has reduced significantly the number

of coefficients. Some algorithms were proposed in order to

solve the associated variational problem. The relation between

the different ways to obtain a sparse decomposition has been

carefully studied. If the sparsity is sufficient, the basis pursuit

algorithms minimizes also the norm ℓ0 [10] [11]

Here another insight is given, taking into account our goal,

obtaining a sparse multiscale decomposition of large images

with the following constraints:

• The dictionary has to be built from well-defined patterns.

Our goal does not consist in the search of the largest

sparsity but in the search of how to get a representa-

tion with simple patterns. This is required for a further

signal/image analysis for which a decomposition into

separate objects is needed. The alphabet is made of

monomodal, positive and symmetric patterns, looking like

to Gaussian functions.

• The patterns were chosen compact. This allows one to

increase the separation between them and thus improve

the pattern extraction.

• The pattern amplitudes can all be positive. This constraint

is connected to our scientific goal, i.e. to describe a

signal/image into positive separate objects. In specific

cases these amplitudes could all be negative.

• Our goal is also to get a representation as covariant as

possible with translations and dilations. This leads one to

generate the pattern set by translations and dilations of a

basic pattern.

• The decomposition is constrained by a threshold. In the

case of a noisy signal, this threshold is linked to false

alarm detections at each scale.

• The signal representation is the sum of the sparse de-

composition with a baseline. This baseline is such that

no significant pattern can be detected from it at each

examined scale, for the given threshold.

This last constraint plays an essential role in the algorithm.

This characteristic is introduced in order to take into account

our goal, the extraction of objects in astronomical images. In

this framework, a sky background is supposed to be superim-

posed on the objects field. The background is first computed

and then removed. Here, the background is considered as a

spurious component which is simultaneously determined with

the searched components.



II. THE GREEDY ALGORITHMS.

Hereafter, the algorithm is presented only in its 1D pyra-

midal version.

A. The basic patterns.

The multiresolution pyramid is defined by [12]:

F (i, k) =
1

2i
< f(x), φ(

x

2i
− k) > . (1)

where the scaling function φ(x) satisfies the dilation relation

[13]:
1

2
φ(

x

2
) =

∑

n=n1,n2

h(n)φ(x − n), (2)

Here h(n) is symmetric and n1 = −n2. The following

recursive relation is easily derived:

F (i + 1, k) =
∑

n=n1,n2

h(n)F (i, 2k + n). (3)

The coefficients can be also written as:

F (i, k) =
∑

m=m1,m2

h(i,m)F (2ik + m). (4)

The patterns h(i,m) are obtained by the following recursive

relation:

h(i + 1,m) =
∑

n=n1,n2

h(i,m − 2in)h(n). (5)

At scale 0 we have h(0, m) = δ(m), which leads to

h(1, n) = h(n). The bounds (m1,m2) increase exponentially

(m1 = n12
i and m2 = n22

i). The pyramidal algorithm

carries out the set of correlations of the signal with the

filters {h(i,m)}. These patterns are built by a pyramidal rule

(Equation 5), so, we call them pyrels for (pyramid elements).

These pyrels may also be called scalet pyrels taking into

account their construction from the scaling function. It can be

denoted that the patterns {h(i,m)} derives from the scaling

function, but it does not correspond to its sampled values.

B. The background removal.

Let us consider the wavelet transform which results from

the differences between two successive approximations:

w(i + 1, k) = F (i, k) − F̃ (i + 1, k) (6)

where F̃ (i + 1, k) is the approximation at scale i + 1 before

the decimation. The wavelet coefficients are independent of

the constant adding. Taking into account the relation (4) we

can write as:

w(i + 1, k) =
∑

m=m1,m2

g(i + 1,m)F (2ik + m) (7)

where:

g(i + 1,m) =
∑

m=m1,m2

h(i,m) − h(i + 1,m) (8)

Thus, the correlations in each point between the signal and

the patterns g(i,m) are obtained with this wavelet transform.

The highest amplitude coefficients can be identified and they

can be used for the representation in the framework of a

matching pursuit algorithm. This is equivalent to threshold the

wavelet transform and to restore the signal by inversion. The

result displays generally wavy artifacts. An iterative algorithm

can be applied on the residuals to reduce them, until we get

non significant wavelet coefficients. This process reduces the

sparsity and it carries out negative artifacts without physical

meaning. In order to avoid this difficulty, the signal will be

restored using pyrel patterns, even if the identification is done

from the wavelet coefficients. The wavelet transform will only

play the role to identify the significant pyrels in presence of

a background.

C. The pyrel identification.

The pyrels are selected on a criterion based on the highest

SNR. In the hypothesis of a white Gaussian noise, Relation (7)

allows one to estimate the w(i, k) standard deviation due to

the noise and thus its SNR. The wavelet coefficient w(i0, k0)
having the highest SNR identifies a pyrel at (i0, 2

i0−1k0). Let

us consider a pyrel a0(i0, k0). Its wavelet transform is:

w̄(i, k) = a0v(i, i0, k, k0)) (9)

v(i, i0, k, k0) is the pyramidal wavelet transform of h(i0,m+
2i0−1k0). Due to the decimation from a scale to the following

one, this function depends on k−2i0−ik0, up to scale i0. The

pyrel amplitude is first estimated by:

a(i0, k0) =
w(i0, k0)

v(i0, i0, 0, 0)
(10)

In the case of isolated pyrels, the amplitude is correctly

estimated by the relation (10). If two pyrels at the same scale

are too close, it is not possible to separate them directly

by scanning the extrema of the wavelet transform. But, if

the pyrels are not at the same scale, the largest scale pyrel

can be considered as background for the smallest one, and a

separation is then possible. The matching pursuit algorithm can

proceed at each step on the extrema set. All the extrema having

a SNR greater than the chosen threshold are simultaneously

considered. The extrema which correspond to the extrema of

the wavelet coefficients along the scale are kept, are called

suprema. Thus, the pyrel identification consists in two steps:

1) Identification, scale by scale, of the local extrema of the

wavelet transform which have a SNR greater than the

threshold;

2) Identification of the suprema, corresponding to the ex-

tremum along the scale of the wavelet transform.

D. The pyrel coupling.

The pyrels are previously assumed to be separated. A pyrel

is identified, its amplitude evaluated and the pyrel subtracted,

and so one. But the pyrels are not orthogonal patterns. They

are identified from the wavelet coefficients, and the wavelet

functions are not also orthogonal. So a coupling exists between

the pyrels. The signal is restored by the relation

F̄ (k) =
∑

l

a(il, kl)h(il, k − 2il−1kl) (11)



where l is the pyrel index, (l ∈ (1, L). The wavelet transform

of the reconstructed signal is:

w̄(i, k) =
∑

l

a(il, kl)v(i, il, k, kl) (12)

The pyrel amplitudes being determined from their wavelet

coefficients at the same location, both in scale and position,

the following coupling equation results:

w̄(il, kl) =
∑

l′

a(il′ , kl′)v(il, il′ , kl, kl′) (13)

An implicit procedure is done for inverting Equation (13).

It takes into account the wavelet transform of the image

reconstructed from the pyrels. A Van Cittert correction [14] of

the amplitude is done by adding iteratively on each amplitude

a term proportional to the difference between the original

wavelet coefficient and its restored one.

E. The greedy algorithm from a pyramidal representation.

The pyrel representation from the pyramidal wavelet trans-

form is derived from the previous analysis:

1) Computation of the pyramidal wavelet transform

2) Determination of the extrema of the wavelet transform

at each scale

3) Determination of the suprema.

4) Estimation of the maximum SNR, Qmax. A threshold

equal to αQmax is chosen for the suprema selection. If

Qmax is little than a given threshold, the loop is stopped

and the algorithm goes to step [9].

5) The detected wavelet coefficients w(ij , kj), j ∈ (1, J),
are multiplied by a factor which takes into account the

ratio between the pyrel amplitude and the wavelet one.

6) The identified pyrels are added to the previous detected

ones, which leads to a set {a(0)(il, kl)} where l corre-

sponds to the set of identified pyrels for all the iterations.

7) An inverse algorithm is done in order to determine the

new set {a(∞)(il, kl)} such that the signal reconstructed

with these pyrels carries out after a wavelet transform

which has the wavelet coefficients w(il, kl) at the pyrel

locations.

8) An image is built from the pyrels. Its pyramidal wavelet

transform is computed and it is subtracted to the original

one. A test is done if significant wavelet coefficients still

exist. If yes, the algorithm goes to step [2].

9) If the restored signal has to be close to the original one,

a baseline is added. The baseline is estimated as the

difference between the last approximation of the signal

and the last approximation of the pyrel representation.

As the sampling is progressively reduced, the baseline

is reinterpoled by a set of correlations with 2h(n), after

the insertion at each step a 0 between two values. At the

largest scale, the baseline can be reduced to a constant.

F. The algorithm tuning.

The algorithm depends on different parameters.

The low-pass filter. The choice of the low-pass filter is gov-

erned by the following constraints:

• Its length must be as short as possible in order to reduce

the computations and the boundary artifacts.

• The corresponding scaling function φ(x) must be always

positive and must display only one maximum, in order

to associate a pyrel to a maximum.

• The filter must be symmetric, in order to get available

pyrel positions.

• φ(x) must be as regular as possible, taking into account

its length. This will avoid to introduce pyrels due to the

irregularities of the scaling function.

The binomial filter {h(n) = Cn+l
2l }, for −l ≤ n ≤ l,

corresponds to the centered B-spline of order 2l − 1 for

the scaling function. It fully satisfies the constraints. In our

application, we use the filter for l = 2 that corresponds to the

cubic centered B-spline.

The α factor. In the algorithm description, an α factor has

been introduced in order to select the suprema which have to

be processed in parallel. In the program, it was set to 0.5.

With this value it is assumed not to select suprema whose the

values would be too contaminated by the new identified pyrels.

If this factor decreases, the algorithm may consider the bumps

of the coupling function. Experimentally, this factor appears

also as a good compromise between sparsity (which increases

with α) and computing time (which also increases with α).

The break parameter in the inversion. The pyrel amplitudes

are determined by inversion which takes into account the

coupling matrix. This inversion is done by a Van Cittert

iterative algorithm. The iterations are stopped when the highest

residual is greater than rQmax. A value of r = 0.25 was

experimentally a good compromise .

The Van Cittert convergence factor. The Van Cittert iterative

algorithm was designed in order to solve Y = AX , where A

is smoothing operator. The iterations are written as:

X(n+1) = X(n+1) + β[Y − AX(n)]. (14)

β is not necessary equal to 1. The stability needs 0 < β < 2,

generally β = 1. The algorithm instability in case of a bad

matrix conditioning is well known in deconvolution problems.

After experiments, we set in the algorithm β = 0.5.

G. The monosign pyrel decomposition.

In the previous algorithm the pyrel amplitude could be either

positive or negative, according to the supremum sign. Our

scientific purpose was to build objects from pyrels. The more

often astronomical images display positive objects drowned in

a background. It is thus convenient, and easy, to modify the

algorithm in order to force the detection of only positive (or

only negative) peaks.

We note that the wavelet transform of a real negative peak

leads to two positive peaks due to the bumps of the wavelet

function. Therefore, in case of a positive decomposition, a

peak which significantly corresponds to a negative object can

be identified as positive structures. Nevertheless, the bump

amplitudes are lower than the central peak and some signifi-

cant negative peaks can remain after the decomposition. Tests



on the residual wavelet coefficients can alarm that significant

negative (or positive) peaks still remain.

H. Some properties.

The effect of translations. Due to the decimation, the decompo-

sition is not shift-covariant. It is possible to get this covariance

if no decimation is done from one scale to the following one.

The algorithm complexity is increased.

Dyadic dilation or contraction. The pyrels are generated by

dilation of a generic pattern. If the signal is dilated by

the same dilation, as a first approximation, the same pyrels

would be identified at the above scales. But, in details some

small changes may appear. For the contraction, the pyrel

decomposition can differ sensibly from a simple shift along

the scales.

Non linearity of the decomposition. The algorithm is covariant

with the scalar multiplication if the threshold is multiplied by

the same scalar. Let us consider now two signals {F1(k)}
and {F2(k)} leading to pyrel decompositions {a1l(il, kl)} and

{a2l(il, kl)}. The signals are added:

• For pyrels in the signals at the same location, the resulting

pyrel amplitude is the sum of their amplitudes. If they

have not the same sign, the new amplitude may be less

than the threshold and the pyrel will not be detected.

• Added pyrels may merge into a larger one, more signifi-

cant.

• If pyrels of each signal have compact separate support,

the adding is kept. If not, the decomposition is modified

by the pyrel coupling.

The pyrel decomposition of the result is thus generally dif-

ferent of the union of the pyrels coming from each decompo-

sition. Due to the thresholding and the coupling between the

pyrels, this decomposition is not linear.

Invariance to a baseline addition. This algorithm is built to

be invariant to the addition of a constant. More generally, the

algorithm may be invariant to the adding of a non constant

baseline whereas its wavelet transform does not modify the

detection at the chosen threshold, in the scale range.

One pyrel identification. Let us consider a signal composed

only of a pyrel a0(i0, k0). If the amplitude is sufficiently high,

the algorithm only detects it. The other extrema (due to the

wavelet bumps) are removed taking into account the suprema

identification rules. The wavelet amplitude is converted into

one pyrel. The pyrel is computed and subtracted. The residuals

are null, apart the computational errors. A single pyrel is

correctly restored.

Multiple pyrels recognition. Let us consider now a signal

composed by L pyrels {al(il, kl)}. The question is to know if

the algorithm would restore these pyrels. Evidently this could

be possible only if the wavelet coefficients related to the pyrels

at the same scales and locations would be greater than the

threshold.

But even if this condition is satisfied, there are reasons for

which the full identification is not possible:

• The merging of pyrels into larger ones;

• The coupling between them which leads to increase the

number of identified pyrels.

Nevertheless, it is clear that the recognition of input pyrels

works well their supports are disjoined. The decomposition

algorithm can also recognize pyrels even if this condition is not

satisfied. The main difficulty lies into its capability to detect

the pyrels at their correct location (position and scale) during

the identification phase.

A basic condition to recognize a set of pyrels is their linear

independence. If the pyrels are not independent, their Gram-

Schmidt matrix is singular and the inversion fails.

Stability of the decomposition. Let us consider a signal which

leads to a set of pyrels {a
(0)
l (i

(0)
l , k

(0)
l )} after decomposition

with a threshold T . The signal is reconstructed from the pyrels

and the decomposition algorithm is applied on it, with the

same threshold. The decomposition algorithm is stable on this

signal if the restored set {a
(1)
l (i

(1)
l , k

(1)
l )} is equal to the initial

one.

An exact stability is not generally strictly reached, taking

into account the computational accuracy. The decomposition

is also sensitive to the threshold. In the case of pyrels having

amplitudes close to the threshold, computational errors may

also lead to remove these features. Numerical experiments

showed that stability was not assumed on studied signals. The

restored signals are quite identical, but the number of pyrels,

their positions, their scales and their amplitudes may sensibly

differ.

I. Relation to a variational approach.

This instability shows that this greedy algorithm does not

bring the global minimum of a given functional. The algorithm

carries out a decomposition interesting for a given analysis. An

associated variational approach, if it exists, would improve its

stability.

The data attachment. This attachment is generally done by the

l2 distance between the observed data and the restored ones.

Here, the removal of the background avoids the application of

this principle. The algorithm identifies pyrels from the extrema

in the wavelet space, up to a given scale. The identification is

based on a thresholding. The data attachment is thus connected

to the pseudo-norm:

W∞,I = maxi=1,I,k=1,K |
w(i, k) − w(i, k)

σi

| (15)

The condition W∞,I ≤ t indicates that a variational version

would be connected to a minimax approximation [15] in the

wavelet transform space (WTS). A function in this space

w(i, k) is decomposed with the set {v(i, ip, k, kp)} , where

p covers all the scales and positions for a pyrel.

The prior condition. Today the prior on the decomposition

is often linked to the ℓ1 norm, i.e. the sum of the absolute

coefficient values. The basis pursuit corresponds to this varia-

tional constraint [9]. An algorithm which minimizes ℓ1 taking

into account W∞,I would converge to a sparse decomposition.

Nevertheless, the proposed algorithm is based on a direct

identification of the pyrels, starting from the most significant



ones. The goal is to reduce the number of elements allowing

one to represent the image such that W∞,I reaches a given

value. So, the prior is not connected to the sum of the absolute

values of the coefficients, but to their number.

It was shown previously that the results were not stable,

but the variations correspond to quite insignificant coefficients

resulting of progressive approximations. An algorithm which

constrains to minimize the number of pyrels with W∞,I ≤ t,

t being a given threshold, would bring the stability. Greedy

algorithms which proceed by decreasing the identification

thresholds are a natural way to solve the problem, but they

do not allow to carry out the stable solution which would

correspond to the global minimum in case of non convexity.

Minimax approximations are extensively used in order to

approximate functions by rational approximations. The ex-

change algorithm allows one to get the decomposition, if the

Haar condition on the decomposition is satisfied [15]. In the

present variational problem, this condition is not satisfied, so

that another class of algorithm has to be developed.

J. Two dimensional algorithm.

The 2D multiresolution pyramid. The multiresolution pyramid

is defined by:

F (i, k) =
1

4i
< f(x), φ(

x

2i
− k,

y

2i
− l) > . (16)

The following recursive relation is derived in case of separate

variables:

F (i + 1, k, l) =
∑

n

h(n)h(m)F (i, 2k + n, 2l + m). (17)

The derived patterns. Taking into account the separation

between the variables, the coefficients can be also written as:

F (i + 1, k) =
∑

p=p1,p2

∑

q=q1,q2

h(i, p)h(i, q)

F (2i+1k + p, 2i+1k + q), (18)

the filters h(i, p) being the 1D pyrels.

The identification from the wavelet transform. Similarly, the

wavelet transform is built on the difference between two

successive approximations. The suprema of the resulting trans-

form are identified, taking into account a threshold, derived

from the noise level.

In order to avoid identifying first spurious pyrels, the

threshold is progressively decreased, with the same rule that

the one used for the 1D.

The algorithm. Taking into account the previous considera-

tions, the 2D algorithm is simply copied from the 1D one.

The image can be decomposed with only positive (or negative)

pyrels, taking into account the suprema sign.

III. AN APPLICATION ON AN ASTRONOMICAL IMAGE.

On Figure 1 left, the image of the planetary nebula NGC40,

taken in the near infrared, is plotted. This image is char-

acteristic of the astrophysical images. A bright central star

illuminates a shell, which splitted in two parts. The image

contains star-like objects and extended diffuse ones.

0.5 1 1.5

0.2

0.4

0.6

0.8

1

1.2

NGC 40

Fig. 1. The infrared image of the planetary nebula NGC40.

ResidualsMSMPPy2 pyrel decomposition

Fig. 2. The reconstructed image of the planetary nebula NGC40 from pyrels
identified with the pyramidal algorithm (left). The residual image looks like
to a white noisy image (right).

On Figure 2 the image of the planetary nebula NGC40

after the application of this decomposition algorithm, with the

unsigned analysis. Here, the number of pyrels corresponds to

3.1% of the number of pixels.

On Figure 3 the image is reconstructed from the decom-

position based on only positive pyrels. Now, the number of

pyrels corresponds to only 2.6% of the number of pixels.

Using this decomposition, the reduction of the number of

significant coefficients is a factor 2 compared to the thresh-

olded orthogonal discrete wavelet transform. Not only the

sparsity is seriously increased, but also the reconstruction does

not display the wavy artifacts connected to the inverse wavelet

transform.

IV. CONCLUSION

In the present paper, we propose a new way to decompose a

signal or an image. Its main specificity is the local background

Pyramidal postive decomposition Residuals

Fig. 3. The reconstructed image of the planetary nebula NGC40 from
positive pyrels identified with the pyramidal algorithm (left). The residual
image is quite a white noisy image (right). Nevertheless in the central part
quite significant structural features can be discerned.



removal. In the framework of a multiresolution analysis that

leads to examine the suprema of the wavelet transform in

order to reconstruct with scalet patterns, here called pyrels.

The matching pursuit is then done simultaneously for a set of

coefficients, while their amplitudes are greater than a threshold

which progressively decreases up to a given level. Sufficiently

separated suprema are kept at each step. An amplitude cor-

rection is also made in order to recover the observed wavelet

coefficients at the pyrel locations.

The algorithm (MSMPPy1) was presented for a 1D signal,

with the use of an pyramidal wavelet transform. The applica-

tion of the undecimated wavelet transform increased the com-

plexity, but it leads to a shift invariant transform (MSMPAT1).

The two-dimensional algorithms (MSMPPy2 and MSMPAT2)

are their natural extensions to the two-dimensional field.

MSMPAT1 is quite fast and it can be applied on a large

size signal. Nevertheless, MSMPPy1 is more appropriate to

process long series. For an image, MSMPPy2 is the useful

tool for the analysis of large images, but MSMPAT2 brings a

better description. A careful analysis of small images is more

convenient with this tool. For these four algorithms a signed

decomposition (positive or negative) can be done.

The pyramidal algorithms carry out a sparse decomposition.

For example, on the planetary nebula image, a gain around 2
was obtained in the number of coefficients, compared to a

classical wavelet thresholding. The different experiments on

astronomical images shows that this gain was the more often

higher. The image compression is thus a direct application of

these algorithms.

These algorithms were built for the analysis of multiband

astrophysical images. For each band, it is easy to determine

the amplitude of each pyrel taking into account the same

identification set. The merging of pyrels into objects allows

one to give a full description of the images. A complete

multiband vision was then derived [16].
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