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e-mail: bbigot@oca.eu
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ABSTRACT

Context. We present a self-consistent model of solar coronal heating in which we include the dynamical effect of the background
magnetic field along a coronal structure by using exact results from wave MHD turbulence.
Aims. We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active
regions and also coronal holes.
Methods. The coronal structures are assumed to be in a turbulent state maintained by the slow erratic motion of the magnetic foot-
points. A description of the large-scale and the unresolved small-scale dynamics are given separately. From the latter, we compute
exactly (or numerically for coronal holes) turbulent viscosites used in the former to self-consistently close the system and derive the
heating flux expression.
Results. We show that the heating rate and the turbulent velocity compare favorably with coronal observations.
Conclusions. Although the Alfvén wave turbulence regime is strongly anisotropic, and could reduce a priori the heating efficiency, it
provides an unexpected, satisfactory model of coronal heating for both magnetic loops and open magnetic field lines.
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1. Introduction

Information about the solar corona from spacecraft missions like
Yohkoh, SoHO (Solar & Heliospheric Observatory) or TRACE
(Transition Region And Coronal Explorer) launched in the
1990s reveals a very dynamical and complex medium structured
in a network of magnetic field lines. These observations clearly
demonstrated the fundamental role of the magnetic field on the
plasma dynamics in the solar atmosphere. The solar corona con-
tains a variety of structures over a broad range of scales from
about 105 km until the limit of resolution (about one arcsec). It
is very likely that structures at much smaller scales exist but have
not yet been detected. The new spacecrafts STEREO, Hinode or
SDO (Solar Dynamics Observatory) will help our understanding
of the small-scale nature of the corona.

Observations in UV and X-ray show a solar corona that is
extremely hot with temperatures exceeding 106 K – close to hun-
dred times the solar surface temperature. These coronal tempera-
tures are highly inhomogeneous: in the quiet corona much of the
plasma lies near 1−2× 106 K and 1−8× 106 K in active regions.
Then, one of the major questions in solar physics concerns the
origin of such high values of coronal temperature. The energy
available in the photosphere is clearly sufficient to supply the to-
tal coronal losses (Withbroe & Noyes 1977) which is estimated
to be 104 J m−2 s−1 for active regions and about one or two orders
of magnitude smaller for the quiet corona and coronal holes. The
main issue is thus to understand how the available photospheric
energy is transferred and accumulated in the solar corona, and
by what processes it is dissipated.

It is widely believed that the energy input comes from the
slow random motion of the convective layer below the photo-
sphere, but the mechanisms that heat the solar corona remain

controversial. Heating models are often classified into two cate-
gories: “AC” and “DC” heating. “AC” heating by Alfvén waves
was suggested for the first time by Alfvén (1947). In non-
uniform plasmas, this heating mechanism could be sustained by
the resonant absorption of Alfvén waves (Hollweg 1984), or by
phase mixing (Heyvaerts & Priest 1983). The necessary con-
dition for “AC” heating is that the characteristic time of mo-
tion excitation has to be shorter than the characteristic time of
wave propagation across the coronal loops. In the opposite sit-
uation, the most efficient heating is the “DC” heating by direct
current. In this case, the quasi-static energy input allows the ac-
cumulation of magnetic energy, the generation of currents and
finally heating, for example, by reconnection of magnetic field
lines (Priest & Forbes 2000) or by resistive dissipation of cur-
rent sheets. However, in this simple version, these mechanisms
are not efficient enough to explain coronal heating. Additional
processes are thus generally introduced like turbulence, which
can generate small scales where dissipation is much more effi-
cient (see, e.g., Gomez & Ferro Fontan 1988, 1992; Heyvaerts
& Priest 1992; Einaudi et al. 1996; Dmitruk et al. 1997; Galtier
& Pouquet 1998; Galtier & Bhattacharjee 2003; Buchlin et al.
2007). Moreover, turbulence could explain the measurements of
nonthermal velocities revealed by the width of EUV and FUV
lines. Observations of the transition region and corona of the
quiet Sun from SUMER onboard SoHO reveal nonthermal ve-
locities of about 30 km s−1 for temperatures around 3 × 105 K
with a peak up to 55 km s−1 for some S IV lines (Warren et al.
1997; Chae et al. 1998).

Many observations of the solar atmosphere tend to show
plasma in a turbulent state with a Reynolds number evaluated at
about 1012. In particular, the most recent Hinode pictures seem
to show a magnetic field controlled by plasma turbulence at all
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Fig. 1. Schematic view of the energy spectrum of the coronal plasma
in logarithmic coordinates. The spatial resolution of different space-
craft instruments is reported: EIT/SoHO (1850 km), TRACE (350 km),
SOT/Hinode (150 km) and Solar Orbiter (35 km). The gray zone indi-
cates currently unresolved small-scales which will be modeled by tur-
bulent viscosities.

scales (Nature 2007; see, also, Doschek et al. 2007). Thus, the
turbulent activity of the corona is one of the key issues to under-
stand the heating processes. In the framework of turbulence, the
energy supplied by the photospheric motion and transported by
Alfvén waves through the corona is transferred towards smaller
and smaller scales by nonlinear coupling between modes (the so-
called energy cascade) until dissipative scales are reached from
which the energy is converted into heating. The main coronal
structures considered in such a scenario are the magnetic loops
which cover the solar surface, in active and quiet regions. Each
loop is basically an anisotropic bipolar structure anchored in
the photosphere. It forms a tube – or an arcade – of magnetic
fields in which the dense and hot matter is confined. Because a
strong guiding magnetic field (B0) is present, the nonlinear cas-
cade that occurs is strongly anisotropic with small scales mainly
developed in the B0 transverse planes. In Fig. 1, we present a
schematic view of the turbulent energy spectrum expected for the
coronal plasma which follows a power law over several decades.
The larger scales may be determined directly by observation and
correspond to about 105 km. The inertial range – that deter-
mines the range of scales where the turbulent cascade operates –
roughly starts between 104 km and 103 km, and extends down to
unresolved (by spacecraft observations) scales which may be es-
timated, from dimensional analysis, as of a few meters. The spa-
tial resolution of different instruments is also reported to show
the gap that we need to fill in order to completely resolve the
heating processes that occur at the smallest dissipative scales.

The aim of the present study is coronal heating to perform of
modeling by magnetohydrodynamic (MHD) turbulence. We ex-
plain the connection between the large scales (at which energy is
injected at loop footpoints through photospheric motion) and the
smallest scales (at which energy is dissipated and converted into
heat). The input energy propagates through the network of mag-
netic field lines by “inward” and “outward” Alfvén waves which
nonlinearly interact and produce a turbulent cascade towards
small scales. The foundation of our model is the one originally
proposed by Heyvaerts & Priest (1992) where the unresolved
small-scales are modeled through turbulent viscosities. These
viscosities were extracted from an ad hoc EDQNM (Eddy-
Damped Quasi-Normal Markovian) closure model of MHD tur-
bulence developed in spectral space for isotropic flows (Pouquet
et al. 1976). Spacecraft missions like SoHO, TRACE, or more
recently Hinode show that this assumption is clearly not adapted

Fig. 2. Schematic view of the self-consistent heating model. The re-
solved large-scales coronal flow is described by the “large-scale” MHD
equations where turbulent (instead of standard) viscosity and resistiv-
ity are used to determine the inertial small-scale nonlinear dynamics.
From these equations we compute the energy flux function released by
the photospheric motion. The energy is transported by Alfvén waves
through the corona and the nonlinear interactions between wave pack-
ets generate an inertial cascade, i.e. a production of smaller and smaller
scales, that finally reach the dissipative smallest scales from which
the energy is converted into ohmic dissipation. The unresolved inertial
small-scales are described by the asymptotic equations of Alfvén wave
turbulence from which the turbulent transport coefficients are com-
puted. A self-consistent model is finally obtained by introducing the
expression of these turbulent viscosities into the energy flux function.
Then, the energy flux function is entirely determined and the heating
rate can be evaluated.

to magnetic loops which are characterized by a strong longitudi-
nal mean field B0, compared to the magnetic perpendicular com-
ponents, whose anisotropic nonlinear effects on the turbulent
plasmas dynamics are more than likely, as many numerical simu-
lations have shown. For that reason, in the present model, we use
turbulent viscosities computed from an asymptotic (exact) clo-
sure model of MHD turbulence (Galtier et al. 2000, 2002), also
called Alfvén wave turbulence. Signatures of such a regime have
been detected in the middle magnetosphere of Jupiter (Saur et al.
2002). In our turbulent heating model, the unresolved small-
scale equations are perturbatively developed around a strong
magnetic field B0 which leads to a strongly anisotropic turbu-
lence. From the derived equations, we compute the turbulent
viscosities which eventually allow us to obtain a self-consistent
free-parameter model of coronal heating from which we predict
a heating rate and a turbulent velocity that favorably compare
with observations. Figure 2 summarizes the schematic algorithm
followed to obtain a self-consistent heating model.

The organization of the paper is as follows: the next Section
is dedicated to the large-scale description of magnetic loops
where, in particular, we rederive some main results obtained by
Heyvaerts & Priest (1992), using a more adapted notation. Then,
in Sect. 3, the small-scale description is given and the turbulent
viscosities are obtained. The model predictions (heating rate and
turbulent velocity) for magnetic loops in active regions and in
the quiet corona are given in Sect. 4. They are generalized to
open magnetic lines in coronal holes in Sect. 5. The last section
is devoted to the discussion and conclusion.

2. Large-scale description of magnetic loops

2.1. Geometry and boundary conditions

We consider a set of magnetic loops – an arcade – anchored in
the photosphere and subjected to the erratic motion of convective
cells. For simplicity, this arcade has a rectangular cross surface
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Fig. 3. Arcade geometry: the coronal plasma is confined in a volume
delimited by −h < x < +h, −∞ < y < +∞ and −� < z < +�. The
photosphere appears as two boundary planes at altitudes z = −� and
z = +�. Note the presence of Alfvén waves propagating in opposite
directions along B0.

which defines the perpendicular directions and it is elongated
along the longitudinal magnetic field B0 = B0ez that defines the
parallel direction as shown in Fig. 3. This magnetic structure
is filled by a plasma which will be modeled as an incompress-
ible MHD fluid. In the first part of this paper, we are concerned
with magnetic loops; later on we will extend our results to open
magnetic field lines for which the boundary conditions will be
modified. For a magnetic arcade, the boundary limits are made
of two planes at altitudes z = −� and z = +� which are connected
by the uniform magnetic field B0. Thus, the length of the loop
in the longitudinal direction is 2�. The cross surface is delimited
as −h < x < +h and −∞ < y < +∞. In other words, we assume
an arcade characterized by a thickness of 2h, where h is the co-
herence length of the magnetic field at the base of the corona,
and with a large depth compare to the other length scales, with a
translational invariance assumed in the y-direction. Note that we
do not treat the expansion of the magnetic field at the footpoint
loops where B0 has to be seen as an average value of the field at
the base of the corona rather than in the photosphere itself.

The energy reservoir for the solar corona resides in the sub-
photospheric convective layer. Indeed, the high-β plasma in the
photosphere constrains the magnetic field lines to be convected
by the plasma flow. These motions eventually induce a shear-
ing and a torsion of coronal magnetic field lines. The boundary
motions at footpoint loops are assumed to be perpendicular and
independent of the coronal plasma. More precisely, we assume
for the boundary velocity field parallel to the y-axis:

u(x, z = �) = −u(x, z = −�) = U(x)ey. (1)

This input of energy is then propagated through the coronal
medium where the low-β confines the plasma into the magnetic
arcade. These boundary motions are then able to produce and
maintain a state of full turbulence in the corona. Note finally the
absence of mass flow through the boundaries.

2.2. The MHD model

The standard incompressible MHD equations are used as a first
approximation to model the solar plasma, namely:

∂tu + u · ∇u = −∇P/ρ0 + j × B/ρ0 + νΔu, (2)

∇ · u = 0, (3)

∂tB = ∇ × (u × B) + ηΔB, (4)

∇ · B = 0, (5)

∂t

(
ρ0

u2

2
+

B2

2μ0

)
+ ∇ · F = S − D, (6)

F = u ·
(
ρ0

u2

2
+ P − ¯̄σ

)
+

E × B
μ0
, (7)

E + u × B = μ0η j, (8)

where u is the velocity, B the magnetic field (such as B = B0+b),
j = ∇ × b/μ0 the current density (where μ0 is the permeability
of vacuum), E the electric field, ¯̄σ the viscous stress tensor (with
σi j = ρ0ν(∂ui/∂r j + ∂u j/∂ri)), ν the kinematic viscosity, η the
magnetic diffusivity and ρ0 the uniform mass density, and P is
the gas pressure. In the energy Eq. (6), the right hand side termS
is the large-scale energy input created by the photospheric mo-
tion andD is the dissipation which mainly happens at the small-
est scales because of, e.g., viscous and resistive effects. The left
hand side term, ∇ ·F , denotes the nonlinear transfer of total (ki-
netic plus magnetic) energy. (Note that all terms in Eq. (6) are
expressed in unit volume.) Equation (7) describes how the total
energy is nonlinearly transferred at different scales by velocity
transport, by work due to the gas pressure, the viscous stress or
the electromagnetic work due to the Poynting vector (E×B/μ0).
Other (higher order) processes like thermal conductivity which
happens at microscopic scales are not considered here. Finally,
Eq. (8) is the standard Ohm’s law which allows us to close the
system.

The basic idea of this coronal model is the separation of the
non-resolved inertial small-scale dynamics (see Figs. 1 and 2)
from the large-scale dynamics detected with current instruments.
In practice, we assume that the previous MHD equations de-
scribe the large-scale behavior of the plasma; the nonlinear
small-scale processes (i.e. the effects of the inertial small-scales
on the large-scale dynamics) will be modeled through effective
dissipations, also called turbulent viscosity and resistivity. In
other words, the usual molecular viscosity and magnetic resis-
tivity are replaced by turbulent coefficients which are several or-
ders of magnitude larger. The expression of these turbulent vis-
cosities (hereafter denoted νt and ηt) will be derived in Sect. 3
and the MHD equations in the next section.

An important assumption to derive this heating model is that
the slow boundary motions are able to sustain a fully turbulent
state in the corona, with a typical photospheric time longer than
the coronal time scales. Basically, this statement means that the
characteristic time of the photosphere has to be longer than the
time needed for a perturbation to cross the coronal loops. For a
typical longitudinal direction � of 107 m and an Alfvén speed of
several 106 m/s, one finds a crossing time of the order of 1 s.
For a photospheric granule with a size λ = 106 m and a velocity
ū = 103 m/s, one finds a lifetime of about 103 s. In this case,
the time scale separation is thus well satisfied. However, a valid-
ity condition may arise if the turbulent nature of the photospheric
motion is taken into account since their velocities seem to follow
a Kolmogorov spectrum (Roudier et al. 1987; Chou et al. 1991;
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Espagnet et al. 1993). Then the photospheric velocity at a given
scale λ should scale as λ1/3 and the typical photospheric nonlin-
ear time as λ2/3, which decreases with the size of the granules.
The associated condition is discussed and used in Sect. 2.8.

2.3. Large-scale solutions

The nonlinear solutions of the previous MHD equations are
non trivial and require direct numerical simulations on super-
computers. However, we are here mainly interested in the large-
scale behavior of the coronal flow which allows us to make some
simplifications. We will seek solutions of the form

u = u(x, z)ey, (9)

B = B0ez + b(x, z)ey, (10)

independent of y and t, which satisfy, in particular, the diver-
gence free conditions (3) and (5). These solutions do not depend
on time since we assume magnetic loops maintained in a station-
ary regime of turbulence. We also observe that the fluctuating
velocity and magnetic fields are taken perpendicular to the uni-
form magnetic field B0. This assumption is compatible with the
fact that, in strongly magnetized media, pseudo-Alfvén waves
are mainly along the uniform magnetic field whereas the nonlin-
ear dynamics is dominated by shear-Alfvén waves in the trans-
verse planes. We recall that shear-Alfvén and pseudo-Alfvén
waves are the two kinds of linear perturbations about the equi-
librium, the latter being the incompressible limit of slow mag-
netosonic waves. Replacing the previous solution types into the
MHD Eqs. (2) and (4) leads to

∂x(P + b2(x, z)/2μ0) = 0, (11)

∂z(P + b2(x, z)/2μ0) = 0, (12)

B0∂zb(x, z) + μ0 ρ0νtΔu(x, z) = 0, (13)

B0∂zu(x, z) + ηtΔb(x, z) = 0. (14)

These equations describe the large-scale evolution of the plasma
once the turbulent regime is established. In particular, they al-
low us to calculate the pressure field when the magnetic field
is known. The linear form of Eqs. (13) and (14) may be mis-
leading since the small-scale nonlinearities are concentrated in
the turbulent coefficient transports, namely the turbulent eddy
viscosity νt and magnetic diffusivity ηt. This assumption can be
justified when looking at the nonlinear evolution equations for
the energy spectra, as used in Sect. 3. Indeed, in Fourier space,
a nonlocal analysis leads to diffusive effects due to the small-
scale dynamics over the large scale motions, actually stemming
from absorption terms involved in the modeled energy transfers
between small and large scales.

2.4. Photospheric conditions

The photospheric forcing introduced in Eq. (1) mimics the large-
scale motion of magnetic footpoints imposed by the convective
cells. Following Heyvaerts & Priest (1992), we assume that the
frozen-in law is satisfied in the dense photosphere which leads,
when coupled with the Ohm’s law (8), to the boundary relation
for the electric field:

E(x, z = ±�) = ∓U(x)B0ex. (15)

In the close neighborhood of the photosphere, this relation is
modified to take into account the magnetic diffusivity. This gives
for the x-component:

Ex(x, z � ±�) = ∓ηt
∂b
∂z

(x, z) ∓ U(x)B0. (16)

The continuity of the tangential component of the electric field
implies that

∂b
∂z

(x, z = ±�) = 0. (17)

These photospheric conditions are of course compatible with
Eqs. (13) and (14) when z = ±�.

2.5. Energy flux injection

The aim of this section is to express the energy flux released by
photospheric motion along coronal loops. We are thus interested
in the z-component of the flux (7) at the boundaries z = ±�,
namely:

Fz(x, z = ±�) = ez ·
[
u ·

(
ρ0

u2

2
+ P − ¯̄σ

)
+

E × B
μ0

]
· (18)

The velocity boundary conditions (1) do not involve (convective)
mass flows through the photospheric planes since uz(z = ±l) = 0.
Therefore, the two first terms in expression (18) do not con-
tribute, and the input flux reduces to

Fz(x, z = ±l) = Πz + Pz, (19)

with

Πz = − (
u · ¯̄σ

)
z , Pz =

(
E × B
μ0

)
z

, (20)

i.e. only the viscous stress tensor and the Poynting vector con-
tribute to the energy flux transfer to the corona. One of the main
goal of this paper is to evaluate this energy flux by first solving
Eqs. (13) and (14), which depend on the turbulent viscosity and
resistivity, and second, by calculating these turbulent coefficients
from Alfvén wave kinetic equations.

2.6. Solving the large-scale dynamics

In this section, we solve Eqs. (13) and (14) to find the large-scale
plasma behavior. We develop the x-dependence of the velocity
and magnetic fields in Fourier series (since h is assumed to be
the coherence length of the magnetic and velocity fields in the
x-direction)

ξ(x, z) =
+∞∑
n=1

ξ(1)
n (z) cos

nπx
h
+

+∞∑
n=1

ξ(2)
n (z) sin

nπx
h
, (21)

where ξ is either u or b. Note that other solutions are possi-
ble with, e.g. a twisted flux tube (Inverarity & Priest 1995),
which do not drastically change the coronal heating predictions.
Substitution of (21) into (13) and (14) gives

B0
db(i)

n

dz
+ μ0 ρ0νt

(
d2

dz2
− n2π2

h2

)
u(i)

n = 0, (22)

B0
du(i)

n

dz
+ ηt

(
d2

dz2
− n2π2

h2

)
b(i)

n = 0, (23)

where (i) stands for indices (1) or (2), and finally

d4u(i)
n

dz4
−

⎡⎢⎢⎢⎢⎣ B2
0

μ0ρ0νtηt
+ 2

(nπ
h

)2
⎤⎥⎥⎥⎥⎦ d2u(i)

n

dz2
+

(nπ
h

)4
u(i)

n = 0. (24)
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Note that the magnetic field satisfies the same equation, only the
boundary conditions make the distinction between the two fields.
Using the following notation:

α =
B0√
μ0ρ0νtηt

, αλn =
nπ
h
, rm =

dm

d(αz)m
, (25)

Eq. (24) rewrites

r4u(i)
n − (1 + 2λ2

n)r2u(i)
n + λ

4
nu(i)

n = 0, (26)

whose solutions may be expressed in terms of exponentials. The
photospheric boundary conditions (1) and (17) combined with
Eq. (22) gives the relations

u(i)
n (z = ±�) = ±U (i)

n and
d2u(i)

n

dz2
(z = ±�) = ±α2λ2

nU (i)
n , (27)

which lead eventually to the solutions

u(i)
n (z) =

U (i)
n

�+n +�−n

[�−n sinh(�+nαz)

sinh(�+nα�)
+
�+n sinh(�−nαz)

sinh(�−nα�)
]
, (28)

where

�±n =
√

1 + 4λ2
n ± 1

2
· (29)

The substitution of (28) into (22) and (23) gives, after some
manipulations, the following expression for the magnetic field
Fourier coefficients

b(i)
n (z) =

B0U (i)
n

�+n +�−n

(�+n cosh(�−nαz)
ηα sinh(�−nα�)

− �
−
n cosh(�+nαz)
ηα sinh(�+nα�)

)
· (30)

2.7. Evaluation of the energy flux

From the solutions (28) and (30) it is now possible to calculate
the energy flux (19) at footpoint levels z = ±�. The contribution
of the Poynting vector to the flux is

Pz(x,±�) = ∓B0

μ0
U(x)b(x, z = ±�), (31)

and the contribution of the viscous stress tensor is

Πz(x,±�) = ∓ρ0νtU(x)σzy = ∓ρ0νtU(x)
∂u(x, z = ±�)

∂z
· (32)

The input flux coming from the photospheric boundaries (z =
±�) is calculated by averaging over the x-periodicity of the ve-
locity and magnetic fields (21):

|Fz(z = ±�)| = 1
2h

∣∣∣∣∣∣
∫ +h

−h

[Pz(x,±�) + Πz(x,±�)]dx

∣∣∣∣∣∣ . (33)

After some manipulations, we obtain the total flux (from the two
footpoint levels):

|Fz| = ρ0

∞∑
n=1

√
νt
ηt

B0√
ρ0μ0

U2
n

⎛⎜⎜⎜⎜⎜⎜⎝ sinh (α�)

cosh
[ √

1 + 4λ2
nα�

]
− cosh (α�)

+
(1 + 2λ2

n) sinh
[ √

1 + 4λ2
nα�

]
/
√

1 + 4λ2
n

cosh
[ √

1 + 4λ2
nα�

]
− cosh (αl)

⎞⎟⎟⎟⎟⎟⎟⎠ , (34)

with U2
n = U (1)2

n + U (2)2
n. Note the appearance of a turbulent

magnetic Prandtl number (νt/ηt) whose origin is directly linked

to the action of nonlinear small-scale processes on large-scales.
We will later show that this number may be taken equal to unity
in the Alfvén wave turbulence regime. Also note that the turbu-
lent viscosities enter in expression (34) through the coefficients α
and λn. The origin of the presence of νt and ηt is thus due, on the
one hand, to the large-scale MHD Eqs. (13), (14) and, on the
other hand, to the Poynting vector (31) and the viscous stress
tensor (32) which also include the small-scale nonlinear retroac-
tion. The energy injected from the magnetic footpoints is propa-
gated through the corona by Alfvén waves. Then, the collisions
between “upward” and “downward” wave packets lead to non-
linear dynamics which is characterized by a turbulent cascade
that transfers energy from the energy injection scales down to
the smallest dissipative scales where energy is destroyed, and
the corona heated. The coronal loops reach a stationary state of
fully developed turbulence when the dissipation equals the elec-
tromagnetic and viscous stress.

2.8. Turbulent spectrum of photospheric velocities

The coronal heating flux is now evaluated from (34). The tur-
bulent viscosities entering into this flux expression will be
computed in the next Section. Therefore, the last unknown is
the magnitude of the velocity at the photospheric boundaries
(namely Un). The goal of this section is to evaluate the scale
dependence of photospheric velocities.

As reported by different measurements (Roudier et al. 1987;
Chou et al. 1991; Espagnet et al. 1993), the photospheric veloc-
ities are assumed to follow a Kolmogorov isotropic spectrum

u2(k) =
2
3

ū2k2/3
in j k−5/3, (35)

with

ū2 =

∫ +∞

kin j

u2(k)dk =
+∞∑
n=1

U2
n/2, (36)

where ū is the photospheric rms velocity, U2
n is the power spec-

trum of the boundary velocity fluctuations, and kin j is the largest
scale at which energy is injected into the system; it corresponds
to the size of the largest granular cells, i.e. about 1000 km. In
other words, it is the integral scale of the turbulent photospheric
flow from which the inertial range starts. The wave number
kin j may be directly connected to the thickness of the arcade,
such that kin j = π/h. More generally, the wave number k and
the harmonic number n may be connected through the relation
k = nπ/h. Converting the sum in Eq. (36) into an integral gives
the relation

U2
n =

2π
h

u2(k) =
4
3

ū2n−5/3· (37)

The basic idea of the model is that Alfvén wave packets inter-
act nonlinearly along coronal magnetic structures in which the
plasma is assumed to be maintained in a fully turbulent state be-
cause of the slow photospheric motion. We have seen in Sect. 2.2
that a condition may arise on time-scales since the photosphere
is also turbulent and its typical nonlinear time, τph

nl , may be very
short for small granules. In order to satisfy this condition, we
impose that τph

nl (λ) > τcross, where τcross is the time needed for
a perturbation to cross half of the loops of length 2� at speed
B0/
√
ρ0μ0, namely

τcross ∼
�
√
ρ0μ0

B0
, (38)
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and τph
nl (λ) is the eddy turnover (nonlinear) time of granular

structures at a typical scale λ and velocity u(λ);

τ
ph
nl (λ) ∼ λ

u(λ)
∼ λ

2/3

ū

(
2π
kin j

)1/3

· (39)

This time-scale separation induces for the wave number k =
2π/λ, the inequality k < kcross, where

kcross =
π

h
Ncross, with Ncross =

(
2

h
�

B0/
√
ρ0μ0

ū

)3/2

· (40)

Hence, the upper limit of the summation on harmonic numbers
in (34) is given by Ncross which is a large number since the
Alfvén velocity is much larger than the photospheric rms ve-
locity. For that reason, the expression (34) may also be written
as an integral with

U2(k) =
4
3

(
π

h

)5/3
ū2k−5/3. (41)

The energy injection produced by the photospheric motion is
finally rewritten as follows:

|Fz| = ρ0

∫ kcross

kin j

√
νt
ηt

B0√
ρ0μ0

U2(k)Ψ(k)
h
π

dk, (42)

with

Ψ(k) =
sinh(α�)

cosh
[√
α2 + 4k2�

]
− cosh(α�)

+
α2 + 2k2

α
√
α2 + 4k2

sinh
[√
α2 + 4k2�

]
cosh

[√
α2 + 4k2�

]
− cosh(α�)

· (43)

Under the time-scale condition discussed above, the coronal
structure is submitted to slow external forcing. Note that other
time scales are present in our problem; namely, the nonlinear
coronal time, τnl, and the Alfvén time, τA, which has nothing
to do with the crossing time τcross introduced above. It may
be interpreted as the time of interaction between two counter-
propagating Alfvén wave packets. Both times will be used in
Sect. 3 where the nonlinear small-scale dynamics will be ana-
lyzed. The main assumption made in such wave turbulence dy-
namics is that the Alfvén time is smaller than the nonlinear coro-
nal time. Note that in MHD the transfer time-scale is built on τnl
and τA which makes a great difference in Navier-Stokes fluids
for which the transfer time is the nonlinear time. This point will
be further discussed in the next section. Then the following hier-
archy of times may be estimated

τA < τnl < τcross < τ
ph
nl . (44)

As seen in Sect. 2.2, the nonlinear photospheric time can be as
large as 103s and the crossing time is about 1s. For the two other
characteristic time scales, no observational constraints can be
used. However, recent direct numerical simulations (Bigot et al.
2008b) show clearly that a turbulent MHD flow evolving in a
strong uniform magnetic field (B0 > b) exhibits a time ratio
τA/τnl < 1, which decreases as the strength of the uniform field
increases.

3. Small-scale dynamics and anisotropy

In the previous section, we have been able to evaluate the flux
of energy released by photospheric motion along coronal loops.
The calculation has been greatly simplified by the assumption of
a scale separation between large and small (inertial) scales, and
thus the introduction of turbulent eddy diffusivities (νt and ηt).
In fact, all the complexity of the nonlinear dynamics is concen-
trated in these coefficients. We will now try to evaluate them by
going back to previous works on Alfvén wave turbulence. We
first summarise previous results on anisotropic MHD turbulence.
We then introduce the asymptotic equations of Alfvén wave tur-
bulence which are not rederived here (see Galtier et al. 2000),
and show their main properties. Finally, we derive the turbulent
viscosities from such nonlinear equations.

3.1. Role of anisotropy in MHD turbulence

The first description of incompressible MHD turbulence pro-
posed by Iroshnikov and Kraichnan (IK) in the 1960 s
(Iroshnikov 1964; Kraichnan 1965) is based on a modified ver-
sion of the Kolmogorov dimensional analysis where the large-
scale magnetic effects are taken into account although the fluid
is supposed to be globally isotropic. The IK’s heuristic model
includes Alfvén waves which approximate the magnetic field at
the largest scales as a uniform magnetic field. Then, it is the
sporadic and successive collisions between counterpropagating
Alfvén waves that produce the turbulent cascade. At leading
order, the nonlinear dynamics is driven by three wave interac-
tions, and the transfer time through the scales is estimated by
τtr ∼ τ2

nl/τA, where τnl ∼ λ/uλ is the nonlinear turnover time
whereas τA ∼ λ/B̃0 is the Alfvén wave period (where B̃0 stands
for the Alfvén speed, taken as the rms magnetic field fluctua-
tion). Hence, the energy spectrum is k−3/2.

The weakness of the IK phenomenology is the apparent con-
tradiction between the presence of Alfvén waves and the ab-
sence of a strong uniform magnetic field. This point and the
role of a strong external magnetic field B0 have been widely dis-
cussed in the literature, in particular during the last two decades
(Strauss 1976; Montgomery & Turner 1981; Shebalin et al.
1983; Oughton et al. 1994; Goldreich & Sridhar 1995; Ng &
Bhattacharjee 1996; Matthaeus et al. 1998; Galtier et al. 2000;
Nazarenko et al. 2001; Milano et al. 2001; Chandran 2005; Bigot
et al. 2008a). One of the most clearly established results is the
bi-dimensionalization of a turbulent flow with a strong reduction
of the nonlinear transfers along the B0 ambiant field.

In the case of coronal structures, like magnetic arcades or
open magnetic fields in coronal holes, a strong magnetic field
at large-scale is clearly present. This field is often modeled as
a uniform field through, for example, the approximation of re-
duced MHD (see, e.g., Dmitruk & Matthaeus 2003; Buchlin
et al. 2007). It was thought until recently (see e.g. Oughton
et al. 2004) that the reduced MHD approximation was only able
to describe the regime of strong turbulence but a recent work
(Nazarenko 2007) has extended its domain of application to the
wave turbulence regime as well. This point is particularly im-
portant for our model which is based on the latter regime. In
our model, the magnetic arcade is composed of a network of
parallel strands that are maintained in a fully developed turbu-
lent regime. Contrary to the isotropy hypothesis originally as-
sumed by Heyvaerts & Priest (1992), we include anisotropic ef-
fects through turbulent viscosities. In this approach, it is thus
necessary to distinguish between the perpendicular (⊥) and par-
allel (‖) directions to the uniform B0 field.



B. Bigot et al.: An anisotropic turbulent model for solar coronal heating 331

An important anisotropic property discussed in the literature
(Higdon 1984; Goldreich & Sridhar 1995; Galtier et al. 2005;
Boldyrev 2006) is the interdependence of perpendicular and par-
allel scales. According to direct numerical simulations (see, e.g.,
Cho & Vishniac 2000; Maron & Goldreich 2001; Shaikh & Zank
2007; Bigot et al. 2008b), one of the most fundamental results
seems to be the (critical) balance between the nonlinear and
Alfvén times which leads to the scaling relation k‖ ∼ k2/3

⊥ . In
other words, a turbulent MHD flow evolving in a strongly mag-
netized medium seems to be characterized by an approximately
constant ratio (generally smaller than one) between the Alfvén
and the nonlinear times. This result (generally) implies a dynam-
ics mainly driven by Alfvén wave interactions.

3.2. Alfvén wave turbulence

The incompressible MHD Eqs. (2)−(5) may be reformulated in
terms of the Elsässer fluctuations

zs = u + sb̃, (45)

with magnetic fields written in velocity units (b̃ = b/
√
μ0ρ0),

and in the inviscid case (i.e. in the absence of the dissipative
terms proportional to the kinematic viscosity and the magnetic
diffusivity),

∂t zs − sB̃0 · ∇zs = −z−s · ∇zs − ∇P∗, (46)

∇ · zs = 0. (47)

Here, s = ±, stands for the directional polarity, indicating the
propagating direction of waves along B̃0 = B0/

√
μ0ρ0; P∗ is the

total (kinetic plus magnetic) pressure. Note that the present anal-
ysis is focused on the nonlinear plasma dynamics from which
the turbulent transport coefficients will be derived. In the pres-
ence of a strong uniform magnetic field, MHD turbulence may
be dominated by wave dynamics for which the nonlinearities are
weak, and thus τA  τnl. In this limit, a small formal parameter
ε can be introduced to measure the strength of the nonlinearities
to give, for the jth-component(
∂t − sB̃0∂‖

)
zs

j = −εz−s
m ∂mzs

j − ∂ jP∗ (48)

(with Einstein’s notation used for indices). Note that the parallel
direction (‖) corresponds to the z-direction.

We will Fourier transform such equations, with the following
definitions for the Fourier transform of the Elsässer field compo-
nents zs

j(x, t):

zs
j(x, t) =

∫
as

j(k, t) ei(k·x+sωkt) dk, (49)

where ωk = B̃0k‖ is the Alfvén frequency. The quantity as
j(k, t) is

the wave amplitude in the interaction representation, hence the
factor eisωkt. The Fourier transform of Eq. (48) thus is

∂ta
s
j(k) = −iεkmP jn

∫
a−s

m (κκκ)as
n(L)eisΔωtδk,κκκLdκκκ dL. (50)

Here, P jn is the projector on solenoidal vectors such that
P jn(k) = δ jn − k jkn/k2; δk,κL = δ(k − κκκ − L) reflects the triadic
interaction, and Δω = ωL−ωk−ωκ is the frequency mixing. The
appearance of an integration over wave vectors κκκ and L is di-
rectly linked to the quadratic nonlinearity of Eq. (48) (as a result
of the Fourier transform of a correlation product).

Equation (50) is the compact expression of the incompress-
ible MHD equations when a strong uniform magnetic is present.

It is the point of departure of the wave turbulence formalism
which consists of writing equations for the long time behavior
of second order moments. In such an asymptotic and statisti-
cal development, the time-scale separation, τA/τnl  1, leads
to the destruction of some nonlinear terms, including the fourth
order cumulants, and only the resonance terms survive (Galtier
et al. 2000, 2002). It allows one to obtain a natural asymptotic
closure for the moment equations. In such a statistical develop-
ment, the following general definition for the total (shear- plus
pseudo-Alfvén wave) energy spectrum is used;

〈as
j(k)as

j(k′)〉 = Es(k) δ(k + k′)/k⊥, (51)

where 〈〉 stands for ensemble average and k⊥ = |k⊥|. In absence
of helicities and in the case of an axially symmetric turbulence,
the asymptotic equations simplify. For the shear-Alfvén waves,
the energy spectrum is given by

Es
shear(k⊥, k‖) = f (k‖)Es

⊥(k⊥), (52)

where f (k‖) is a function fixed by the initial conditions (i.e. there
is no energy transfer along the parallel direction). The transverse
part obeys the following nonlinear equation (the small parameter
ε is now included in the time variable)

∂tE
s
⊥(k⊥) =

π

B̃0

∫ ∫
cos2 φ sin θ

k⊥
κ⊥

E−s
⊥ (κ⊥)

× [
k⊥Es

⊥(L⊥) − L⊥Es
⊥(k⊥)

]
dκ⊥dL⊥, (53)

where φ is the angle between k⊥ and L⊥, and θ is the angle be-
tween k⊥ and κκκ⊥ with the perpendicular wave vectors satisfy-
ing the triangular relation k⊥ = L⊥ + κκκ⊥ (see Fig. 4). Note that
from the axisymmetric assumption, the azimuthal angle integra-
tion has already been performed, and we are only left with an
integration over the absolute values of the two wave numbers,
κ⊥ = |κκκ⊥| and L⊥ = |L⊥|. In the same way, equations can be
written for pseudo-Alfvén waves which are passively advected
by shear-Alfvén waves, namely

∂tE
s
‖ (k⊥) =

π

B̃0

∫ ∫
sin θ

k⊥
κ⊥

E−s
⊥ (κ⊥)

×
[
k⊥Es

‖(L⊥) − L⊥Es
‖(k⊥)

]
dκ⊥dL⊥, (54)

with by definition

Es
pseudo(k⊥, k‖) = f̃ (k‖)Es

‖(k⊥), (55)

where f̃ (k‖) is a function fixed by the initial condition.
Equations (53) and (54) – called wave kinetic equations –
only involve perpendicular nonlinear dynamics (with a depen-
dence only on the perpendicular components of the wave vec-
tors), a situation expected from previous works (Strauss 1976;
Montgomery & Turner 1981; Shebalin et al. 1983; Oughton et al.
1994; Goldreich & Sridhar 1995; Ng & Bhattacharjee 1996;
Matthaeus et al. 1998) that showed the decrease of the parallel
nonlinear transfers with the increasing strength of the external
magnetic field B̃0.

3.3. Anisotropic turbulent viscosities

The main goal of this Section is the derivation of turbulent vis-
cosities in the context of strongly anisotropic MHD turbulence.
We have seen that wave turbulence leads to the inhibition of non-
linear transfers in the B̃0 direction, and to the bidimensional re-
duction of the dynamics. This result makes a strong difference to
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Fig. 4. Triadic interaction k = κκκ + L and its projection in the plane
perpendicular to B0 (such that k⊥ = κκκ⊥ + L⊥).

purely isotropic MHD turbulence from which the turbulent vis-
cosities were derived in the original model (Heyvaerts & Priest
1992). We believe that taking into account the flow anisotropy
is an important improvement in the description of the coronal
heating problem.

The wave kinetic equations are assumed to describe the non-
linear dynamics at small inertial scales. These scales correspond
to the scales unresolved by the current spacecrafts which are re-
ported in Fig. 1. The turbulent viscosities represent the average
effect of nonlinearities at these small scales, and they appear in
the large-scale Eqs. (13), (14). In practice, we make a Taylor
expansion of the wave kinetic equations for nonlocal triadic in-
teractions (Pouquet et al. 1976) that satisfy the relation

k⊥  κ⊥, L⊥, (56)

which leads to

L⊥ � κ⊥ − k⊥ cos θ, (57)

for triadic interactions k⊥ = κκκ⊥ + L⊥ (see Fig. 4). Then, re-
lation (57) is substituted into the kinetic Eqs. (53), (54) for,
respectively, the shear-Alfvén waves

∂tE
s
⊥(k⊥) = −k2

⊥Es
⊥(k⊥)

×
∫
π

B̃0
E−s
⊥ (κ⊥)dκ⊥

∫ 2π

0
cos2 θ sin2 θ dθ, (58)

and the pseudo-Alfvén waves

∂tE
s
‖ (k⊥) = −k2

⊥Es
‖(k⊥)

×
∫
π

B̃0
E−s
⊥ (κ⊥)dκ⊥

∫ 2π

0
sin2 θ dθ. (59)

Finally, we obtain:

∂tE
s
⊥(k⊥) = −νs

⊥k2
⊥Es
⊥(k⊥), (60)

∂tE
s
‖ (k⊥) = −νs

‖k
2
⊥Es
‖(k⊥), (61)

where νs⊥ and νs
‖ are the so-called turbulent viscosities, cor-

responding respectively to shear- and pseudo-Alfvén waves,
defined as

νs
⊥ =

π2

4B̃0

∫
E−s
⊥ (κ⊥) dκ⊥, (62)

νs
‖ =
π2

B̃0

∫
E−s
⊥ (κ⊥) dκ⊥. (63)

The turbulent viscosities are thus directly obtained after inte-
gration over the θ angle. Note that, similarly to the original
paper (Heyvaerts & Priest 1992), the integration is made from
the beginning of the inertial range (at κin j) where the injec-
tion of energy is made; this choice contrasts with some models
where a wavenumber cut-off is chosen inside the inertial range
which gives a k-dependence of the turbulence viscosity (see e.g.
Bærenzung et al. 2008). An evaluation of the turbulent viscosi-
ties is now possible by the use of the exact power law solutions
of the integro-differential Eqs. (53) and (54). This is first made in
the context of a magnetic arcade for which the inward and out-
ward Alfvén waves are exactly balanced (balanced case). This
approach is then generalized to open magnetic fields for which
outward Alfvén waves are dominant (unbalanced case).

3.4. Balanced turbulence for a magnetic arcade

For balanced turbulence, as said before, it is not necessary to
distinguish outward from inward Alfvén waves. We thus drop
the directional polarity s, and we obtain

ν⊥ =
π2

4B̃0

∫
E⊥(κ⊥) dκ⊥, (64)

ν‖ =
π2

B̃0

∫
E⊥(κ⊥) dκ⊥. (65)

In this case, the exact power law solution of Eq. (53) is (Galtier
et al. 2000)

E⊥(k⊥) = CKB̃1/2
0 P1/2

⊥ k−2
⊥ , (66)

where CK is the Kolmogorov constant whose value is about
0.585, and P⊥ is the constant energy flux of shear-Alfvén waves
whose definition is

∂tE⊥(k⊥) = −∂k⊥P⊥(k⊥). (67)

It is important to note that it is the condition of constant en-
ergy flux that allows to find (by the Zakharov transformation)
the exact power law solution of the nonlinear wave turbulence
equation. The introduction of (66) into (64) and (65) gives

ν⊥ =
π2

4

√
P⊥
B̃0

CK

κin j
, (68)

ν‖ = π2

√
P⊥
B̃0

CK

κin j
· (69)

Note the relation ν‖ = 4ν⊥ between the turbulent coefficients
corresponding to pseudo- and shear-Alfvén waves. In particular,
this means that the pseudo-Alfvén wave energy is susceptible to
decay faster than the shear-Alfvén one. Actually, this property
has been detected recently in numerical simulations of freely de-
caying MHD turbulence (Bigot et al. 2008a). Finally note that in
this wave turbulence regime, there is an automatic equipartition
state between the kinetic and magnetic energies. Therefore, no
distinction will be made between the average nonlinear effects
acting on the velocity and on the magnetic field. A unit turbulent
magnetic Prandtl number will then be taken (i.e. νt/ηt = 1).

4. Magnetic arcade heating

4.1. Connection between large- and small-scale dynamics

The magnetic arcade being supposed in a fully turbulent state,
the energy transfer rate is then assumed to be constant at each

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079227&pdf_id=4
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scales in the inertial range, from the largest photospheric scales
at which energy is injected, down to the small dissipative scale
fom which heating starts to occur. This fundamental remark al-
lows us to link the first estimate of the energy flux (42), based
on the photospheric motions, to the flux through the anisotropic
arcade scales, estimated from the turbulent eddy viscosity and
magnetic diffusivity.

According to relations (52) and (67) the energy flux P⊥,
introduced above, satisfies the general relation

∂tEshear(k⊥, k‖) = − f (k‖) ∂k⊥P⊥. (70)

We remind that f is an arbitrary dimensionless function which
reflects the absence of nonlinear transfers along the B̃0 direction.
The coronal heating in a fraction of the arcade, say Q, can thus
be estimated from the small-scale dynamics by

Q = 2� 2h L ρ0P⊥
∫

f (k‖)dk‖, (71)

where L delimits a fraction of the arcade thickness in the
y-direction and Q is measured in J s−1 (note the presence of
the constant mass density). In the same manner, we may eval-
uate the coronal heating from the large-scale energy flux |Fz|. It
gives for the same coronal volume:

Q = 2h L |Fz|. (72)

Hence, the relation between both photospheric and turbulent
fluxes:

P⊥ =
|Fz|

2�ρ0

∫
f (k‖)dk‖

· (73)

4.2. General expression of the heating flux

The small-scale analysis gives two turbulent viscosities com-
ing from, respectively, the shear- and pseudo-Alfvén wave en-
ergy. To be consistent with our model, we will only consider the
former one since, in the strongly anisotropic limit of wave tur-
bulence, the pseudo-Alfvén waves fluctuate only in the parallel
direction to the ambiant magnetic field. However, we note that
the inclusion of the pseudo waves effect modifies only slightly
the form of the turbulent viscosity (by a factor 5). Then, relation
(73) gives (with νt ≡ ν⊥)

16
π4
νt

2B̃0

κ2in j

C2
K

=
|Fz|

2�ρ0

∫
f (k‖)dk‖

· (74)

Together with the injection wave number κin j = π/h, related to
the arcade thickness, we obtain

|Fz| = 32

π2C2
K

νt
2

h2
�ρ0B̃0

∫
f (k‖)dk‖. (75)

The substitution of (42) into (75) leads to the relation

32
π

νt
2�

C2
Kh3

∫
f (k‖)dk‖ =

∫ kcross

kin j

U2(k)Ψ(k) dk, (76)

where a unit turbulent magnetic Prandtl number is taken (νt =
ηt). The above expression also gives

Λ0 α
2
∫ kcross

kin j

Ψ(k)k−5/3dk = 1, (77)

where

Λ0 =
πC2

K

24

(
π

h

)5/3 h3ū2

�B̃2
0

1∫
f (k‖)dk‖

· (78)

In the next section, we use the following approximation:∫
f (k‖) dk‖ = π/�. (79)

4.3. Different scale contributions

According to the specific value of the k wave number, different
estimates may be made for the function Ψ(k) that enters in the
expression (42) of the energy injection by photospheric veloci-
ties, namely

α  k : Ψ1(k) � k
α
, (80)√

α

�
 k  α : Ψ2(k) � 2, (81)

k 
√
α

�
: Ψ3(k) � α

k2�
· (82)

We recall that α = B0/
√
μ0ρ0νtηt = B̃0/νt; it is therefore a way

to measure, for example, the relative importance of the diffusive
terms in Eqs. (13) and (14) which can be rewritten as

α∂zb̃(x, z) + Δu(x, z) = 0, (83)

α∂zu(x, z) + Δb̃(x, z) = 0. (84)

On can also more easily evaluate the relative importance of the
Poynting vector (31) and the stress tensor (32) to the flux with
the relation

Pz(x,±�) + Πz(x,±�) = ∓ρ0U(x)νt
×[αb̃(x, z = ±�) + ∂zu(x, z = ±�)].

For the case α  k, it is clear that the main contribution to
the flux comes from the stress tensor, whereas for the two other
k inequalities, the main contribution comes from the Poynting
vector. Relation (77) can thus be written in these different
regimes as:

(i) α  kin j,

Λ0α
2
∫ kcross

kin j

Ψ1(k)k−5/3dk = 1; (85)

(ii) kin j  α k2
in j�,

Λ0α
2

⎛⎜⎜⎜⎜⎝∫ α

kin j

Ψ2(k)k−5/3dk +
∫ kcross

α

Ψ1(k)k−5/3dk

⎞⎟⎟⎟⎟⎠ = 1; (86)

(iii) k2
in j�  α kcross,

Λ0α
2

⎛⎜⎜⎜⎜⎜⎝
∫ √

α/�

kin j

Ψ3(k)k−5/3dk +
∫ α

√
α/�

Ψ2(k)k−5/3dk

+

∫ kcross

α

Ψ1(k)k−5/3dk

)
= 1; (87)
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(iv) kcross  α k2
cross�,

Λ0α
2

⎛⎜⎜⎜⎜⎜⎝
∫ √

α/�

kin j

Ψ3(k)k−5/3dk +
∫ kcross

√
α/�

Ψ2(k)k−5/3dk

⎞⎟⎟⎟⎟⎟⎠ = 1; (88)

(v) k2
cross�  α,

Λ0α
2
∫ kcross

kin j

Ψ3(α, k)k−5/3dk = 1. (89)

These relations simplify respectively to:

(i) 3Λ0α
(
k1/3

cross − k1/3
in j

)
= 1; (90)

(ii) 3Λ0

(
αk1/3

cross + α
2k−2/3

in j − 2α4/3
)
= 1; (91)

(iii) 3Λ0

(
α3

8�
k−8/3

in j +
7
8
α5/3�1/3 + αk1/3

cross − 2α4/3

)
= 1; (92)

(iv) 3Λ0

(
α3

8�
k−8/3

in j − α2k−2/3
cross +

7
8
α5/3�1/3

)
= 1; (93)

(v)
3
8
Λ0
α3

�

(
k−8/3

in j − k−8/3
cross

)
= 1. (94)

These five different regimes correspond to a different intensity
of the small-scale nonlinearities. This intensity is measured in
terms of an equivalent wave number α and it is compared to
the two available scales, namely kin j and kcross. Case (i) is the
situation where the small-scale nonlinearities are the strongest:
they are felt beyond kin j. Case (v) is the situation where the
small-scale nonlinearities are the weakest: the diffusive terms in
Eqs. (83), (84) are then negligible.

4.4. Predictions for a coronal plasma

We define the following basic coronal quantities:

h = 106H m, (95)

� = 107L m, (96)

B0 = 10−2B0 T, (97)

ū = 103U m s−1, (98)

ρ0 = 10−12M kg m−3, (99)

which give the estimates:

B̃0 = 8.9 × 106B0M−1/2 m s−1, (100)

kin j = 3.1 × 10−6H−1 m−1, (101)

kcross = 2.4 × 10−4H1/2L3/2U3/2 B−3/2
0 M−3/4 m−1, (102)

Λ0 = 1.2 × 10−1H4/3U2 B−2
0 M m4/3. (103)

With these values, the only satisfied equation is (93) which
corresponds to the inequality of case (iv). The solution of
Eq. (93) is:

α = 4.1 × 10−3H−4/3B2/3
0 M−1/3 U−2/3 m−1. (104)

Then, it gives the following estimate for the turbulent viscosity:

νt = 2.2 × 109H4/3U2/3 B1/3
0 M−1/6 m2 s−1. (105)

Fig. 5. Coronal hole geometry: the coronal plasma is confined in a vol-
ume delimited by −h < x < +h and −∞ < y < +∞, and may escape
from the low coronal medium at the top of the structure (for z > �).
The photosphere appears as a (single) lower boundary plane at altitude
z = −�. The interplanetary inhomogeneity allows the reflection of a
fraction of outward Alfvén waves which produces inward waves.

Hence, the heating flux per unit area

|Fz| = 1249H2/3U4/3 B5/3
0 M1/6 J m−2 s−1. (106)

The turbulent velocity of the coronal plasma may be found from
relation

u2
⊥ =
π

h

∫ +∞

kin j

CK B̃1/2
0 P1/2

⊥ k−2
⊥ dk⊥. (107)

Only the perpendicular fluctuating velocity is taken into ac-
count since we are only concerned with shear-Alfvén waves in a
strongly anisotropic turbulence. We substitute P⊥ by its expres-
sion (73) to finally obtain the following prediction:

u⊥ = 50H1/2U1/3 B2/3
0 M−1/6L−1/2 km s−1. (108)

These results compare favorably with observations, in particu-
lar, in the quiet corona with a heating flux large enough to ex-
plain the observations. Note that the heating prediction is mostly
sensitive to the magnetic field intensity B0 which has the larger
power law index by 5/3. Thus, B0 = 3−4 (B0 = 3−4 × 10−2 G)
leads to a factor about ten times larger for the heating flux with a
value close to the measurements 104 J m−2 s−1 for active regions.

5. Coronal hole heating

5.1. Geometry of open magnetic field lines

In this section, the model prediction for the heating rate is ex-
tended to coronal holes where the plasma is guided along a
large-scale magnetic field which expands into the interplanetary
medium. It is along such structures (mainly at the poles) that
the fast solar wind is released whereas the slow wind is freed at
lower latitudes around the equatorial plane. In these configura-
tions of open magnetic lines, the reflection of outward Alfvén
waves, due to some inhomogeneities, produces inward waves
which eventually sustain nonlinear interactions. In this case, the
coronal heating is clearly dependent on the reflection rate of
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Alfvén waves (Velli et al. 1993; Dmitruk & Matthaeus 2003).
The precise origin of the partial reflection of Alfvén waves is
still under debate. Therefore, any theoretical prediction is use-
ful for the comparison between observations and models, and
eventually for the understanding of the solar corona dynamics.
In this Section, we seek theoretical predictions like the reflec-
tion rate needed to sustain an efficient coronal heating localized
in coronal holes. We see that a small reflection rate of 15−20%
is enough to recover the coronal heating observations. This re-
sult may constrain the efficiency of the mechanisms invoked to
produce reflected Alfvén waves.

Figure 5 shows a schematic view of open magnetic field
lines which only differs from the magnetic loop configuration
(Fig. 3) is the upper boundary condition. This second photo-
spheric surface is replaced by a permeable boundary from which
outward Alfvén waves may be partially reflected. Note that the
first model of magnetic arcades corresponds to the case where
outward Alfvén waves are totally reflected and where outward
and inward waves are balanced.

5.2. Reflection rate versus cross-helicity

To quantify the reflection rate of Alfvén waves (also called the
Alfvénicity), a characteristic quantity is the normalized cross-
helicity σc defined as

σc =
z+2 − z−2

z+2 + z−2
, (109)

where z+ is the Alfvén inward wave and z− is the outward wave
(with zs = |zs|, s = ±). Such a quantity provides a measure of
the relative importance between outgoing and ingoing Alfvén
waves. In particular, σc = ±1 involves the presence of only one
type of polarity, and consequently, the absence of nonlinear in-
teractions (thus no heating at dissipative scales), whereas a bal-
ance between z+ and z− waves implies σc = 0 leading to more
important nonlinear interactions (between waves of different po-
larity) as was assumed in the magnetic arcade (loop) configura-
tion analyzed in previous sections. The reduced cross-helicity is
indeed related to the wave reflection rate, R, such as

R = 1 − |σc|
1 + |σc| · (110)

The case R = 1 (all outward waves are reflected) is similar to the
loop configuration in which there is the same number of inward
and outward waves, whereas in the case of R = 0 no waves are
reflected.

5.3. Unbalanced turbulence for coronal holes

The integro-differential kinetic Eqs. (53) for the Alfvén waves
are numerically integrated with a logarithmic subdivision of the
k axis : ki = δk2i/F , where i is an integer (i = 1,N), δk = 0.125
is the smallest wave number reached in the computation, and
F = 8 is the refinement of the grid. (This method was previously
performed and optimized in Galtier et al. 2000.) This numeri-
cal technique allows to reach larger Reynolds numbers since, for
a wave number resolution N = 157, the maximum wave num-
ber reached, kmax, is around 105 (the magnetic Prandtl number is
equal to unity). Note that dissipative terms are introduced in the
inviscid kinetic equations to avoid numerical instabilities, and
the viscosity is fixed to 10−5. The initial Elsässer fields are in-
jected in the wave number range [δk, 44] with an energy spec-
trum proportional to k3⊥ exp

(
−k2⊥/2

)
, peaking at k⊥0 ∼ 1. The

Fig. 6. Energy spectra of shear-Alfvén waves E+⊥ (solid line) and E−⊥
(dashed line) with R = 25% (σc = 0.8). The straight line follows a k−2⊥
law which is the theoretical prediction for the balanced turbulence case
(R = 100% and σc = 0). Inset: compensated product of energy spectra
as E+⊥ E−⊥ k4⊥.

corresponding Urms and integral scale L0 are, respectively, about
4.75 and 1.5, which gives an initial Reynolds number (UrmsL0/ν)
of about 106. The flow is then left to freely evolve.

In Fig. 6, we show instantaneous energy spectra of the shear-
Alfvén waves, E+⊥ and E−⊥, obtained for, respectively, z+⊥ and z−⊥
fluctuations with a cross-helicity of 0.8 (R = 25%). (In the fol-
lowing we respectively consider z−⊥ and z+⊥ as the inward (re-
flected) and outward waves) The chosen time is the one at which
the energy spectra are the most developed, i.e. the most extended
towards large wave numbers k⊥. Different behaviors are clearly
found for the E+⊥ and E−⊥ spectra with, at large scales, a domi-
nation of inward Alfvén waves linked to the choice of the initial
conditions. At smaller scales, we see the appearance of an ex-
tended inertial range where the inward waves (E−⊥) slightly dom-
inate. Note that the energy spectra product, E+⊥E−⊥, follows a k−4⊥
scaling law as predicted theoretically (Galtier et al. 2000), and
shown in the inset of Fig. 6. Finally the two energy spectra over-
lap at dissipative scales. From such a numerical simulation, we
are able to compute the turbulent viscosities for unbalanced tur-
bulence by integration of the spectra over wave numbers, from
the beginning of the inertial range up to the dissipative scales.
This computation is done for several simulations corresponding
to different reflection rates.

5.4. Parametric study and predictions

A parametric study of the heating flux according to the reflection
rate of outward waves is performed. The turbulent viscosities are
calculated for different values of the reflection rate by integrating
the shear-Alfvén wave spectra, from the injection scale (normal-
ized to unity in the numerical simulation) up to the dissipative
scales, and by using relation (62) to estimate νs⊥. In such a cal-
culation, the chosen time is the one at which the energy spec-
tra are most developed. Since the result depends on the initial
amount of energy taken in the simulation, the flux is normalized
to the flux obtained in the loop case (see Sect. 4) for which a
balanced turbulence is assumed. With this method, we are able
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Fig. 7. Evolution of the heating flux according to the reflection rate of
outward Alfvén waves. The heating flux is normalized to the flux ob-
tained in the balanced turbulence case (Sect. 4), i.e. for R = 100%.

to approximately predict the variation of the relative heating flux
as a function of the reflection rate.

From the turbulent flux expression (75), we obtain the
relations

|F s
z (R)|
|Fz| �

(
νs⊥(R)
ν⊥

)2

=

[∫
E−s⊥ (R) dκ⊥

]2

[∫
E⊥ dκ⊥

]2
, (111)

which depend on the reflection rate of outward waves R. F s
z and

Fz are, respectively, the heating fluxes in the unbalanced and
balanced turbulent cases. The presence of the directional polar-
ity s = ± keeps track of the advection between waves of dif-
ferent polarity. The calculation made here concerns the heating
flux at the lower boundary (z = −�) since the upper boundary
condition previously used is no longer the same. We have also
assumed, in particular, that the Kolmogorov constant does not
change drastically for different reflection rates. Figure 7 shows
the flux ratio as a function of the reflection rate R. As expected,
the curve decreases with the reflection rate, meaning that the tur-
bulent heating is clearly less efficient for smaller values of R.
Finally, the flux ratio goes to zero when only one type of wave
remains (since in this case the nonlinear interactions disappear).
Note that the decreasing function is close to a linear curve with
a flux ratio of about 40% for R = 50%.

The heating flux prediction in coronal holes is known and es-
timated as around 100 J m−2 s−1 (Withbroe et al. 1977). Since the
background magnetic field is still about 10−2 T, we may find the
reflection rate in coronal holes by using both the relation (106)
and the curve in Fig. 7. The value R = 25% leads to a flux ratio
of about 15%−10%, a small enough value to recover the heating
flux for coronal holes (without taking into account the fast solar
wind). We see that a relatively small reflection rate is therefore
enough to produce an efficient coronal heating due to anisotropic
MHD turbulence.

6. Discussion and conclusion

In this paper, we have developed an analytic model for strongly
anisotropic structures in order to recover well known coronal
heating rates for the quiet sun, active regions and coronal holes.
The coronal structures are assumed to be in a turbulent state

maintained by the slow motion of the magnetic footpoints an-
chored on the photospheric surface. The main difficulty is that
existing spacecraft are unable to resolve all the inertial (small)
scales, and a fortiori the dissipative scales. So, firstly, the in-
jected energy at large scale is resolved from incompressible
MHD equations, and for specific boundary conditions satisfying
the divergence free condition. Secondly, the (unresolved) small-
scale dynamics is modeled by turbulent viscosities derived from
an asymptotic (exact) closure model of wave turbulence for the
case of the loop configuration (also called balanced turbulence),
i.e. when there are as many inward as outward waves which non-
linearly interact. In the open magnetic line configuration the non-
linear interactions are sustained by the conversion of outward
waves into inward waves by reflection (unbalanced turbulence).
We have numerically integrated the kinetic equation of Alfvén
waves for different values of the reflection rate, and plotted the
evolution of the coronal heating flux according to this rate, as
a measure of the relative magnitude of ingoing and outgoing
waves. Finally these results are compared to the balanced tur-
bulence flux (loop configuration).

For standard loop geometry parameters, and for a magnetic
field intensity of B0 = 10−2 T, we find a heating flux prediction
of about 1.2×103 J m−2 s−1 which is close to the value measured
in the quiet sun (103 J m−2 s−1). Moreover, the prediction for the
turbulent velocity (50 km s−1) compares favorably with the mea-
surements of nonthermal velocities (30 km s−1) in the quiet solar
corona, as well as with the maximal values of some line profiles
(55 km s−1) found by the SUMER instrument (Chae et al. 1998).
For active regions, our estimation tends toward a value of about
104 J m−2 s−1 for a magnetic field intensity stronger (3−4 times
larger) than for the quiet sun, which is an expected value for
strong solar activity. For the heating rate prediction in open mag-
netic lines, we take as a reference the loop configuration (for
which there is a balanced turbulence) and the same parameters
as for the quiet sun. We can recover the well known estimates
for coronal holes of about 100 J m−2 s−1 (without taking into ac-
count the fast solar wind) for a reflection rate of outward waves
of about 15−20%.

The previous predictions do not take into account the coro-
nal heating by pseudo-Alfvén waves (nor the heating due to the
pure 2D state – with wave vectors such as (k⊥, k‖ = 0) – which
is not described by Alfvén wave turbulence), since their par-
allel fluctuations are excluded by the boundary conditions (in-
volving only perpendicular fluctuations). Thus, their insertion
should heat slightly more the solar corona and raise our predic-
tions slightly. Moreover, in the computation of heating flux for
the unbalanced turbulence case, only the heating due to outward
Alfvén waves is considered. The heating due to inward waves
should modify slightly the heating prediction for coronal holes,
and therefore allows a slight decrease of the reflection rate with
a heating rate maintained around at 100 J m−2 s−1.
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