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ABSTRACT

Context. Most multi-planetary systems are characterized by hot-Jupiters close to their central star, moving on eccentric orbits. From
a dynamical point of view, compact multi-planetary systems form a specific class of the general N-body problem (where N ≥ 3).
Moreover, extrasolar planets are found in prograde orbits about their host star, and often in mean motion resonances (MMR).
Aims. In a first step, we study theoretically a new stabilizing mechanism suitable for compact two-planet systems. This mechanism
involves counter-revolving orbits forming a retrograde MMR. In a second step, we investigate the feasibility of planetary systems
hosting counter-revolving planets. Dynamical stability, observations, and formation processes of these systems are analyzed and
discussed.
Methods. To characterize the dynamical behavior of multi-dimensional planetary systems, we apply our technique of global dynamics
analysis based on the MEGNO indicator (Mean Exponential Growth factor of Nearby Orbits) that provides the fine structure of the
phase space. In a few cases of possible counter-revolving configurations, we carry out new fits to the observations using the Pikaia
genetic algorithm. A statistical study of the stability in the neighborhood of different observed, planetary-systems is completed using
a Monte-Carlo method.
Results. We analyse the observational data for the HD 73526 planetary system and find that counter-revolving configurations may be
consistent with the observational data. We highlight the fine and characteristic structure of retrograde MMRs. We demonstrate that
retrograde resonances open a family of stabilizing mechanisms involving new apsidal precession behaviors.
Conclusions. Considering two possible formation mechanisms (free-floating planet and Slingshot model), we conclude that counter-
revolving configurations are feasible.
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1. Introduction

At present, 271 extrasolar planets have been detected around
233 stars (both solar and non-solar type)1. Among them, there
are 25 multiple-planet systems: 17 two-planet systems (e.g.
HD 82943, 47 UMa, HD 108874, HD 128311), 6 three-planet
systems (e.g. υ And, HD 69830, Gliese 876, Gliese 581), 1 four-
planet system (HD 160691) and more recently 1 five-planet
system (55 CnC). Observations indicate that Mean Motion
Resonances (MMR) frequently occur for planets of multiple-
planet systems: Gliese 876 (e.g. Rivera et al. 2005), HD 82943
(e.g. Ji et al. 2003; Mayor et al. 2004) and HD 128311 (Vogt et al.
2005) are in 2:1 MMR, HD 202206 is in 5:1 MMR (Correia et al.
2005), while 47 UMa is close to a 7:3 (Fischer et al. 2002) or 8:3
commensurability (Fischer et al. 2003).

This work is devoted to compact multi-planetary systems,
characterized by (a) giant Jupiter-like planets found close to their
central star, and (b) high eccentricities. These two peculiarities
lead to strong gravitational interactions between the planets and
may result in an unstable, dynamical behavior. However, we
observe many such planetary systems suggesting that they are
stable, and raising the question of why they are stable. From a

� Movies are available in electronic form at
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dynamical point of view, compact multi-planetary systems form
a specific class of the general N-body problem (with N ≥ 3)
whose analytical solutions are not necessarily known. A stabil-
ity analysis of planetary systems, using numerical methods to
explore multi-dimensional parameter space, typically leads to
stability maps in which rare islands of stability can be identi-
fied amidst large chaotic zones. The underlying mechanisms for
these stability zones must be identified.

In 2002, Kiseleva-Eggleton et al. (2002) showed that the
currently-published, orbital parameters place the planetary sys-
tems HD 12661, HD 38529, HD 37124, and HD 160691 in very
different situations from the point of view of dynamical distribu-
tion. Since this first study of the comparative stability of multi-
planetary systems, many studies have been carried out in this
direction. The role of the orbital mean motion resonances, in
particular with a 2:1 ratio, has been intensively studied by sev-
eral research groups (for example Hadjidemetriou 2002; Lee &
Peale 2002, 2003; Bois et al. 2003; Ji et al. 2003; Ferraz-Mello
et al. 2005b; Psychoyos & Hadjidemetriou 2005; Beaugé et al.
2006). As a result, it has been discovered that an extrasolar plan-
etary system, even with large planetary masses and eccentrici-
ties, can be stable if planetary orbits are close to stable, resonant,
and periodic orbits. It has also been established (see e.g. Chiang
& Murray 2002; Lee & Peale 2002; Libert & Henrard 2006)
that orbits in a large number of compact multi-planet systems,
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Table 1. Orbital parameters of the HD 73526 and HD 160691 planetary systems. Data come from Tinney et al. (2006) and McCarthy et al. (2004)
respectively.

Planets
Mstar

(M�)
mPsin il

(MJ)
P

(days)
a

(AU)
e ω

(deg)
M

(deg)
HD 73526b
HD 73526c

1.08 ± 0.05 2.9 ± 0.2
2.5 ± 0.3

188.3 ± 0.9
377.8 ± 2.4

0.66 ± 0.01
1.05 ± 0.02

0.19 ± 0.05
0.14 ± 0.09

203 ± 9
13 ± 76

86 ± 13
82 ± 27

HD 160691b
HD 160691c

1.08 ± 0.05 1.67 ± 0.11
3.10 ± 0.71

645.5 ± 3
2986 ± 30

1.50 ± 0.02
4.17 ± 0.07

0.20 ± 0.03
0.57 ± 0.1

294 ± 9
161 ± 8

0
12.6 ± 11.2

are locked in Apsidal Synchronous Precessions (ASP hereafter),
i.e. that the apsidal lines precess, on average, at the same rate2.
A solution involving both MMRs and ASP describes well the
stability of eccentric, compact multi-planetary systems, but may
not however be unique. We note, for example, that other multi-
planetary systems have been found to be mainly controlled by
secular dynamics (cf. Michtchenko et al. 2006; Libert & Henrard
2006; Ji et al. 2007). In the present paper, we illustrate theoreti-
cally that other mechanisms can in addition provide the stability
in multi-planetary systems.

In the case of the HD 73526 system (2:1 MMR), Tinney et al.
(2006) found stability over 1 Myr. Based on the analytical classi-
fication of Hadjidemetriou (2002) established according to a hi-
erarchy of masses and eccentricities, this system could instead be
classified as unstable. Hadjidemetriou’s classification may how-
ever be too general to disprove the stability found by Tinney
et al. (2006). Be that as it may, we use the same data as Tinney
et al. (see Table 1) and our numerical method is outlined in the
following section. Exploring the stability of the HD 73526 sys-
tem in orbital parameter space, we find large chaotic regions. We
find that the published data can even be described by a chaotic
behavior. We note however that Tinney et al. (2006) used a dif-
ferent definition of stability3. Of course, we cannot exclude that
the observational data were insufficient to allow a reliable or-
bital fit or the fit itself was not adequate. On the other hand,
it is also possible that the underlying assumption of two pro-
grade orbits is wrong. When placing one of the two planets on
a retrograde orbit (which forms a system with counter-revolving
planets), the stability region becomes very large. We will show
below that this does not imply that the orbital fit is consistent
with this stability zone. It implies that, in the neighborhood of
the observational point, we can theoretically find stable solu-
tions for counter-revolving configurations. To distinguish be-
tween two resonance cases when both planets are in prograde
orbits, or when one planet is on a retrograde orbit, we call them
prograde and retrograde resonances, respectively.

Presently, all known extrasolar planets in multiple systems
are believed to revolve in the same direction about their corre-
sponding central star. Most fitted, orbital elements are derived

2 For the study of 3D, full 3-body problems, we introduced the termi-
nology ASP, for expressing that the apsidal lines precess on average in
a 3D space at the same rate: see Bois (2005); Bois et al. (2005). We note
that in the planar case this phenomenon is also called “apsidal corota-
tion” (ACR; Beaugé et al. 2003). In a number of papers, one may also
find the incorrect expression “apsidal secular resonances” (ASR). ACR
and ASP are in general not true secular resonances, as highlighted by
Ferraz-Mello et al. (2005a).
3 In the paper of Tinney et al. (2006), the claim of stability is ob-
tained from the dynamical behaviors of the resonant angles related to
the 2:1 MMR, rather than by characterizations of quasi-periodicity of
the orbital solution. Besides, the notion of stability is only presumed to
be acquired by the simple absence of planet ejection. We use instead the
usual definition of stability related to quasi-periodicity (see Sect. 2) and
suitable for conservative dynamical systems.

by assuming prograde orbits. This is expected according to cur-
rent theories for planetary formation in a circumstellar disk. In
order to obtain a planet in retrograde resonance, an additional
event is necessary such as violent, dynamical evolution of the
planetary system, or a capture of the retrograde planet. In our
Solar System, comets and the planetary satellites of Neptune,
Saturn and Jupiter are known to have retrograde orbits. It is,
therefore, important to investigate the stability of exoplanetary
systems with a retrograde planet in particular if the observations
do not yield a stable system when assuming all planets on pro-
grade orbits.

In Sect. 2, we present our method of global dynamics anal-
ysis. We show that there exists theoretically initial conditions in
the vicinity of observational data such that stability is only pos-
sible for a counter-revolving configuration. It raises the question
of whether such a configuration is consistent with the observa-
tional data of a given system (Sect. 3). In Sect. 4, we focus on the
statistical occurence of stable solutions related to both prograde
and retrograde resonances. This statistical approach is applied
to three systems in 2:1 MMR and two systems in 5:1 MMR. If
such systems harboring counter-revolving planets exist, we must
also consider how they form: we discuss this issue in Sect. 5. By
analyzing the parameter space in the vicinity of the best-fit of
the HD 73526 planetary system, we highlight the fine structure
of the 2:1 retrograde resonance (Sects. 6 and 7), and the nature
of associated apsidal precessions (Sect. 8). In addition, we com-
plete an analoguous study for a theoretical system in 5:1 retro-
grade MMR (Sect. 9).

2. Method

In order to explore the stability in the parameter space of known
exoplanetary system in the case of retrograde resonance, we
use the MEGNO (Mean Exponential Growth factor of Nearby
Orbits) method proposed by Cincotta & Simò (2000). This
method provides relevant information on the global dynamics
of multi-dimensional, Hamiltonian systems and the fine struc-
ture of their phase space (Cincotta et al. 2002). It simultane-
ously yields a good estimate of the Lyapunov Characteristic
Numbers (LCN) with a comparatively small computational ef-
fort (Cincotta & Giordano 2000). It provides a clear picture
of resonance structures, location of stable and unstable peri-
odic orbits, as well as a measure of hyperbolicity in chaotic do-
mains (i.e. the rate of divergence of unstable orbits). Using the
MEGNO technique, we have built the MIPS (Megno Indicator
for Planetary Systems) package specifically devoted to studying
multi-dimensional planetary systems and their conditions of dy-
namical stability. We use the property of stability in the Poisson
sense: stability is related to the preservation of a neighborhood
related to the initial position of the trajectory. Moreover, in the
Poincaré-Lyapunov sense applied to conservative systems, when
quasi-periodic orbits remain confined within certain limits, they
are called stable. We note that chaotic, in the Poincaré sense
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Fig. 1. Stability maps for the HD 73526 planetary system in the [ir,Ωr] parameter space. Panel a) is plotted with an integration time of 5000 yrs
while planel b) is plotted over one order of magnitude longer, namely 50 000 years. One observes the disappearance of the stable island (1). Only
the island (2) survives for longest timescales. Initial conditions come from the best fit of Tinney et al. (2006) (see Table 1). Relative inclinations
and relative longitudes of nodes are defined as follows: ir = ic − ib and Ωr = Ωc −Ωb (by convention, at t = 0, Ωb = 0◦ and ib = 0◦). Resolution of
the grid is 110 × 50 for panel a), 55 × 50 for panel b). Black and dark-blue colors represent highly stable orbits (〈Y〉 = 2 ± 3% and 〈Y〉 = 2 ± 5%
respectively, 〈Y〉 being the MEGNO indicator value) while warm colors refer to highly unstable orbits (〈Y〉 � 2).

means that the dynamical behavior is not quasi-periodic (accord-
ing to the conventional definition used for conservative dynami-
cal systems) and does not necessarily mean that the system will
disintegrate during limited period of time. We have already suc-
cessfully applied the MEGNO technique with the MIPS pack-
age to the study of dynamical stability of extrasolar planetary
systems in a series of previous papers (see e.g. Bois et al. 2003,
2004). In the MIPS package, let us note that the ib,c inclination
parameters refer to the dynamical, orbital-element independent
of the sin il line-of-sight inclination factor4.

By applying the observational data of the HD 73526 plan-
etary system (see Table 1)5, and scanning the non-determined
elements, namely the ir relative inclination (ir = ic − ib) and
the Ωr relative longitude of nodes (Ωr = Ωc − Ωb), we find two
main islands of stability, as shown in Fig. 1a. The first (1) is ob-
tained for ir ∈ [8◦, 97◦], and the other (2) for very high relative
inclinations, namely ir ∈ [173◦, 187◦]. In this stability map, we
highlight that stability does not allow coplanar prograde orbits.

The purpose of fast-chaos indicators, and in particular of
MEGNO, is to predict dynamical behavior over a long timescale
using short integration times. Our integration times do not mean
stability times or prediction limits but, using the MEGNO in-
dicator, they express the minimal times for knowing trajectory
future. As a result of the principle of MEGNO, stability is gener-
ally acquired for timescales far longer than the integration times.
The ratio of “prediction time” to “integration time” achieved by
MEGNO, is optimal.

The MIPS maps presented in this paper were confirmed by
a second global analysis technique (e.g. Marzari et al. 2006),

4 In the present paper, masses of planets remain untouched whatever
the mutual inclinations may be. Our reference frame is related to the
planetary system itself, then dynamically autonomous relative to obser-
vations. Moreover, scanning the phase space, our stability maps express
the variations of two explicit parameters, without implicit and external
relations.
5 with in addition at t = 0, Ωb = Ωc = 0, ib = 0, and ic = 1◦ (because
of gravitational interactions of the whole 3-body problem, the relative
inclination ir = ic − ib � 0 is then free to evolve in a 3D space).

based on Laskar’s (1993) Frequency Map Analysis (FMA). The
FMA method uses the diffusion rates of intrinsic frequencies as a
measure for stability. The numerical values of these frequencies
are provided by this method. The lowest intrinsic frequencies
determine the necessary integration time. It is, therefore, possi-
ble that the FMA method requires longer integration times than
MEGNO.

While the necessary integration time for FMA is provided by
the lowest intrinsic frequency, one is a priori free to choose the
time when applying MEGNO. The advantage is that a shorter
integration time can be used. On the other hand, there is an un-
certainty about the good choice of the integration time which
might be too short. We, therefore, produce maps at different in-
stant of times and consider the evolution of the most stable re-
gions. Figures 1a and b show newly-obtained [ir,Ωr] maps for
the HD 73526 system at 5000 and 50 000 years respectively.
While the first island (1) of Fig. 1a completely disappears in
Fig. 1b, the second one remains always highly stable. Continuing
in time, island (2) persists. We also find three very small stable
islands (3)−(5). One of the islands (3) is separated by 180◦ in
Ωr from the center of the large island (2). The two other is-
lands, (4) and (5), are distributed symmetrically with respect
to the islands (2) and (3). As a consequence, due to the life-
time and size of each stability zone, the large island (2) with
ir ∈ [173◦, 187◦] and Ωr ∈ [173◦, 266◦] contains the most stable
orbits (i.e. the least “model dependent” on added perturbations)6.
This does not necessarily imply that the two observational plan-
ets of the HD 73526 system are counter-revolving planets7. As a
consequence, we study in the following section whether such a
counter-revolving configuration is consistent with observational
data.

6 Let us note that a relative inclination around 180◦ is equivalent to a
planar problem where one planet has a retrograde motion with respect
to the other. Therefore, considering a scale change of 180◦ in relative
inclinations, we will use the notation iretro

r = 1◦ instead of ir = 179◦, in
the following.
7 Counter-revolving planets mean that the orbital elements of the two
planets are orbiting in opposite directions about the central star.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078460&pdf_id=1
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Fig. 2. Dynamical velocity fit with measured velocities of the HD 73526
planetary system. The best dynamical fit leading to a stable two-planet
system is obtained for: mb = 2.4921 MJup, mc = 2.5919 MJup, Pb =
187.935 days, Pc = 379.795 days, ab = 0.6593 AU, ac = 1.0538 AU,
eb = 0.2401, ec = 0.2048, ib = 0◦, ic = 180◦, Ωb = 0◦, Ωc = 0◦,
ωb = 184.569◦ , ωc = 58.545◦ , Mb = 97.297◦ , and Mc = 221.361◦. The
velocity offset is: V0 = −25.201 m s−1. The corresponding rms residuals
are 6.34 m s−1 while the χ2 reduced factor is equal to 1.257.

3. Observational data fits

Error-bars in published, orbital elements are significant and a fit
including new observations may yield quite different orbital el-
ements. By using different orbital elements that are consistent
with observational data, Sándor et al. (2007) found stability for
the coplanar and prograde case. On the one hand, for lowest val-
ues of χ2 and rms (χ2 = 1.57 and rms = 7.9 m s−1 for the
best dynamical fit of Tinney et al. 2006), we find a weak chaotic
solution. On the other hand, Sándor et al. (2007) obtain four sta-
ble solutions but with values of χ2 and rms somewhat higher
than those of Tinney (χ2 ∈ [1.58; 1.87] and rms ∈ [8.04; 8.36]).
As a consequence, the right astrometric characterization of the
HD 73526 planetary system still remains open.

We have performed orbital fits for counter-revolving con-
figurations using a genetic algorithm (called Pikaia; see
Charbonneau 1995) based on a fitting method8. We find stable
retrograde solutions for values of χ2 and rms smaller than the
prograde fits of Tinney et al. (2006) and Sándor et al. (2007)
(χ2 = 1.257 and rms = 6.34 m s−1). The radial velocity curve
of the best stable fit is shown in Fig. 2. It is very similar to the
radial velocity curve given by Tinney et al. (2006) and Sándor
et al. (2007). As a consequence, we point out that the possi-
bility of counter-revolving planets should not be discarded in
observational-data fits.

Nevertheless, whatever the directions of motions of the two
planets are, the χ2 values are significantly above the expected
value of 1.0. More observations would enable better fits to be
derived. However in these conditions, the possibility may not
be excluded that the HD 73526 planetary system is a counter-
revolving system. Anyway, the counter-revolving configuration
related to the HD 73526 planetary system is consistent with the
observational data. From a dynamical point of view, counter-
revolving orbits are all the more plausible because they have
larger highly stable regions.

8 Orbital fitting process are notably explained in Beaugé et al. (2007).

Table 2. Statistical results about possibility of stable systems to be in
retrograde resonance. 1000 random systems have been integrated in
their errors bars and assuming prograde coplanar orbits or retrograde
ones. The number of stable systems is indicated in each case. Data
come from Tinney et al. (2006), Mayor et al. (2004), Vogt et al. (2005),
McCarthy et al. (2004) and Correia et al. (2005; Table 4) respectively.

System sources Period ratio
Prograde

MMR
Retrograde

MMR
HD 73526 2/1 17 500
HD 82943 2/1 755 1000
HD 128311 2/1 249 137
HD 160691 5/1 0 320
HD 202206 5/1 0 631

4. Statistical approach

By integrating 1000 random systems (according to a Monte-
Carlo method) within the error-bars proposed by Tinney et al.
(2006), we obtain statistically more stable solutions for coplanar
counter-revolving orbits than for prograde ones. For prograde
coplanar orbits, we find only 17 stable systems while for counter-
revolving coplanar orbits, we obtain 500 stable systems.

The occurence of stable counter-revolving systems also ap-
pears in the neighborhood of other two-planet systems. The sta-
tistical results for their stability in the prograde case and in the
counter-revolving one are presented in Table 2 for two addi-
tional 2:1 and two 5:1 resonance cases. In all cases, a signifi-
cant number of stable systems in retrograde resonances is found.
The high statistical occurence of stable retrograde configurations
justifies the study of such solutions, whether or not they corre-
spond at present to observational data. On the other hand, we
are well aware of the cosmogonic problem for obtaining plan-
ets in retrograde resonances within the frame of current theories
of planetary formation. During the early dynamical evolution of
planetary systems, planets may end up on retrograde orbits (as
discussed in the following section).

5. Formation of counter-revolving planets

Up to now, few works have been carried out on the forma-
tion of highly-inclined or counter-revolving orbits. For instance,
Thommes & Lissauer (2003) showed that a planetary migration
leading to resonance capture in 2:1 MMR may cause a signifi-
cant increase in the mutual inclinations of the planets. However,
the resulting configuration never seems to exhibit retrograde mo-
tions. That is why, in this section, we propose two novel mecha-
nisms of formation of counter-revolving configurations.

It has been known for a few years that free-floating
planetary-mass objects have been located in interstellar space
(see for instance Zapatero Osorio et al. 2000; and Lucas et al.
2005). These free-floating planets may interact with planetary
systems in their host cluster; they are either scattered or captured.
The recent studies of Varvoglis (2008) show that by integrating
the trajectories of planet-sized bodies that encounter a coplanar,
two-body system (a Sun-like star and a Jupiter mass), the proba-
bility of capture is significant, and almost half of the temporary
captures are found to be of the counter-revolving type. Although
captures of free-floating planets remain speculative, this could be
a feasible mechanism for generating counter-revolving orbits.

Forming close-in planets by using the slingshot model re-
visited by Nagasawa et al. (2008) is another possibility. Starting
from a hierarchical 3-planet system and considering a migra-
tion mechanism including process of planet-planet scattering

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078460&pdf_id=2
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Fig. 3. Stability maps in the [ab, eb] and [ac, ec] parameter spaces based on the HD 73526 planetary system, taking into account initial conditions (C)
(iretro

r = 1◦ and Ωr = 216◦). Color scale is the same as in Fig. 1. Resolution of the grid is 50 × 50. The pseudo-observational point is indicated by
the intersection of horizontal and vertical lines. V-shape structures correspond to the 2:1 retrograde MMR (2:-1 MMR).

and tidal circularization, the authors show indeed that close-in
planets may be formed. In a few cases, due to the Kozai mech-
anism (involving exchanges between eccentricities and inclina-
tions), one planet enters a retrograde motion.

Considering (1) these two feasible mechanisms of forma-
tion of counter-revolving orbits, (2) the dynamical fit obtained in
Sect. 3, and (3) the statistical occurence of retrograde solutions
(Sect. 4), we may say that counter-revolving theoretical config-
urations are serious candidates for real systems (that could be
observed later). In the future, we will study these two formation
processes more deeply. In the following sections, we focus on
the specific dynamical behavior of systems harboring counter-
revolving planets.

6. Fine structure of the resonance

Due to the retrograde motion of planet c9, the orbital resonance
of a given planetary system (e.g. the HD 73526 planetary sys-
tem) is called a 2:1 retrograde MMR (that we also annotate as a
2:-1 MMR). Studying the fine structure of this MMR provides a
key to understand the stability of the system. We assume initial
conditions taken from the stability island (2) of the [ir,Ωr] map
(Fig. 1b), that is to say the elements of Table 1 and in addi-
tion Ωr = 216◦ and iretro

r = 1◦. This set of initial conditions is
noted (C)10. We then obtain the two [ab, eb] and [ac, ec] stability
maps presented in Fig. 3. The presence of a strong MMR gener-
ates clear instability zones with a prominent V-shape structure in
Fig. 3a. We note the narrowness of the V-shapes, approximately
0.006 AU wide for the inner orbit (when eb = 0) and 0.0015 AU
wide for the outer one (when ec = 0). As a comparison, V-shape
structures of the Sun-Jupiter-Saturn system are five times and
twice as large respectively (for Jupiter and Saturn). We note in
addition how the pseudo-observational point lies at the edge of
the V-shapes (Fig. 3).

9 By convention, the orbital plane of the planet b is chosen as a refer-
ence plane. The planet b is supposed moving in the prograde direction
while the planet c in the retrograde direction. Results remain analogu-
ous with the reverse assumption (b retrograde and c prograde).
10 For Ωr = 216◦ and iretro

r = 1◦, the value of χ2 obtained with the
velocity offset V0 = −38 m s−1 is 2.44. The rms residuals are 12.31.

7. Evidence for a retrograde resonance

Maps for extrasolar-planet systems, with stability regulated by
a prograde MMR, are characterized by small islands of stabil-
ity (or linear stable strips in [ab, ac] maps) inside large zones
of instability. By contrast, in the case of retrograde resonance
and when assuming the initial conditions (C), we detect a dense,
stable regime in a series of maps (e.g. [ab, ac]), except for one
unstable zone related to the MMR. In several cases of resonant
prograde systems, it has been shown that planets on highly sta-
ble orbits may avoid close approaches due to their adequate po-
sitions over their orbits and apsidal line locking (see Bois et al.
2003). This mechanism of stability is not lost during the dynam-
ical evolution of the system when the apsidal lines on average
precess at the same rate (i.e. the ASP phenomenon). Without
such a protection mechanism of 2:1 MMR combined to an ASP,
disturbing close approaches between the planets are theoretically
possible in various planet positions. In the case of the 2:1 retro-
grade MMR, one planet being retrograde, orbital motions occur
then in opposite directions. As a consequence, the length of time
that planets spend in conjunction, is much shorter for counter-
revolving orbits than for prograde ones. This could explain the
narrowness of the V-shapes in Fig. 3.

In Gayon & Bois (2008), we showed that, in cases of very
compact planetary systems obtained by a scale reduction of a
given observed system, “retrograde” stable islands survive, in
contrast to “prograde” ones that disappear. This scale reduction
and the V-shapes of Fig. 3 illustrate the efficiency of retrograde
MMRs for providing stability. In addition, this MMR mecha-
nism is coupled to specific behaviors of the apsidal lines, as
shown in the following section.

8. A new mechanism of apsidal precession
at retrograde resonance

In the case of the 2:1 retrograde MMR (2:-1 MMR), the ex-
pressions for the resonance angles θ1 and θ2, and the ASP an-
gle θ3 are:

θ1 = −λb − 2λc + 3ω̃b

θ2 = −λb − 2λc + 3ω̃c

θ3 = 3 (ω̃b − ω̃c)

where λ is the mean longitude, and ω̃ is the apsidal longitude,
defined by λ = M + ω̃ and ω̃ = Ω +ω respectively, for prograde

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078460&pdf_id=3
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Fig. 4. Stability map in the [ω̃b, ω̃c] parameter space based on the
HD 73526 planetary system taking into account initial conditions (C)
(iretro

r = 1◦ and Ωr = 216◦). The pseudo-observational point is inside
the stability linear strip. Color scale is the same as in Fig. 1. Resolution
of the grid is 50 × 50.

orbital motion of a planet; for retrograde motion, these variables
are defined to be: λ = −M+ω̃ and ω̃ = Ω−ω. The general expres-
sion for the relative apsidal longitude is: ∆ω̃ = ω̃b − ω̃c = θ3/q,
where q is the order of the resonance. A more thorough investi-
gation of retrograde resonances, using an analytical approach, is
in preparation (Gayon et al. 2008).

In Fig. 4 we plot the [ω̃b, ω̃c] parameter space that shows
a stable linear strip, in dark-blue, including the “pseudo-
observational” point. We learn that stable solutions are possi-
ble only when ω̃b and ω̃c precess, on average, at the same rate.
The stabilizing mechanism of the system involves a synchronous
precession of the apsidal lines. The two longitudes of periastron
do not precess however in the same direction. The outer orbit
is affected by a retrograde precession (−ω̃c) relative to the inner
orbit’s precession (ω̃b) (see Figs. 5c vs. b). Writing the longi-
tudes of periastron as directed angles, we find that the relative
apsidal longitude ∆ω̃ neither circulates nor librates clearly, as
shown in Fig. 5a. ∆ω̃ presents a strange motion composed of:
(1) a phase of prograde circulation including librations with am-
plitudes of ±8◦, then following a sharp reversal of circulation di-
rection, (2) a phase of fast retrograde circulation, until a second,
sharp reversal. These two phases alternate successively accord-
ing to alternations (or rocking) of 180◦, which correspond to a
sort of cusp11. We note that ω̃c, in contrast to the case for ω̃b,
does not uniformly circulate but presents retrograde circulation
phases interrupted with short libration intervals (Figs. 5c vs. b).
In spite of the opposite directions of their precession, both or-
bits precess, on average, at the same rate. As a consequence,
the planetary system is affected by an apsidal synchronous pre-
cession. Considering the alternating behavior of the ∆ω̃ angle
or the unusual presence of cusp in the ∆ω̃ behavior, we refers
to this new stabilizing factor as either an alternating ASP, or a
rocking ASP (or RASP). We have produced movies illustrating
the mechanisms introduced in the present paper, in particular the
phenomenon of RASP12.

11 At phase transitions, a scattering of dots appears. When the outer-
orbit eccentricity goes to zero, the ω̃c angle that depends on the
(a − r)/ae ratio is not defined.
12 Movies are downloadable from: http://www.oca.eu/gayon/
Extrasolar/Retro_MMR/movies.html and
http://www.aanda.org

Fig. 5. Time variation of the ∆ω̃ angle a), ω̃b b), and ω̃c c) for initial
conditions (C). In panel b), the slope of ω̃b is positive while the one of
ω̃c (panel c)) is negative. Panel a) expresses the behavior of the ∆ω̃ com-
bination of ω̃b and ω̃c (see text).

Relations between the eccentricity of the inner orbit and the
∆ω̃ angle exist. In [∆ω̃, eb] parameter space, we can see from
Fig. 6 how the 2:1 retrograde MMR spreads out its resources:

(1) Inside the 2:-1 MMR (i.e. inside the [a, e] V-shape), both
apsidal lines on average precess at the same rate and in the
same prograde direction. The 2:1 retrograde MMR is then
combined with a uniformly prograde ASP (island (1)).

(2) Close to the 2:-1 MMR (i.e. outside but close to the [a, e]
V-shape), both apsidal lines on average precess at the same
rate but in opposite directions. The 2:1 retrograde near-
MMR is combined with the mechanism of rocking ASP (is-
land (2)).

(3) The division between these two islands is related to the de-
gree of closeness to the 2:1 retrograde MMR. We highlight
the fact that, for a long timescale, the third island in the
[∆ω̃, eb] map, is proved to be a chaotic zone (island (3)
where ∆ω̃ ∈ [80◦, 280◦]).

We note that a mechanism of stability involving an ASP may per-
sist far from the MMR in the prograde case, while it disappears
for short distance to the MMR in the counter-revolving case.
Hence, moving away from the [a, e] V-shape of the 2:-1 MMR

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078460&pdf_id=4
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Fig. 6. Stability map in the [∆ω̃, eb] parameter space based on the
HD 73526 planetary system, taking into account initial conditions (C)
(Table 1 with in addition iretro

r = 1◦). The pseudo-observational point
is inside the stability large island (2) characterized by a 2:1 retrograde
near-resonance and an alternating ASP. Color scale is the same as in
Fig. 1. Resolution of the grid is 50 × 50.

(Fig. 3), we find that both apsidal lines precess in opposite direc-
tions but at different rates.

By studying the parameter-space in the vicinity of the best-fit
of the HD 73526 planetary-system and searching for stable con-
figurations with similar values of rms, a new, theoretical mech-
anism of stability has been discovered. It is characterized by a
2:1 retrograde, near-MMR combined to a rocking ASP. Such a
stability also allows a large range of eccentricities (see for in-
stance planet b in Fig. 6). Such a mechanism is particularly ro-
bust on large timescales. It is why such mechanisms involving
such resources of the 2:-1 orbital resonance could prove to be
relatively generic and suitable for the stability of a class of com-
pact multi-planetary systems where other solutions of the 3-body
problem are not possible.

9. The 5:1 retrograde MMR

The mechanism of stability involving both a retrograde MMR
and an ASP is also found for the 5:1 orbital period ratio by scan-
ning initial conditions in the vicinity of the HD 160691 planetary
system (McCarthy et al. 2004, planets b and c, see Table 1). By
detecting a fourth planet, we note that new observations of this
system have modified the orbital structure of the entire system
(Pepe et al. 2007). The observations of Pepe et al. (2007) show
furthermore that a new coplanar fit of prograde orbits and a new
fourth planet seems to solve the problem without the need for
retrograde resonance. We note that in the vicinity of the best fit
solution of McCarthy et al. (2004), it is possible to find an ex-
ample of 5:1 retrograde resonance. We consider this possibility
as an academic investigation of this order of MMR.

The important point is that this 3-body system is completely
unstable for prograde orbits. Nevertheless, by scanning the non-
determined parameter space, only one island of stability ex-
ists (for ir ∈ [156◦, 204◦] and Ωr ∈ [7◦, 180◦]) and after an
analysis we highlight the retrograde motion of the outer planet.
Moreover, scanning the [∆ω̃, eb] parameter space of the system
in 5:1 retrograde MMR, as for the HD 73526 planetary sys-
tem in 2:1 retrograde MMR, we observe the distribution of the
different apsidal behaviors (see Fig. 7). Islands (1) and (3) are
characterized by an ASP with an apsidal alignement. More pre-
cisely, both longitudes of periastron (ω̃b and ω̃c) on average pre-
cess at the same rate, both in the retrograde direction, while the

Fig. 7. Stability map in the [∆ω̃, eb] parameter space based on the
HD 160691 planetary system (data from McCarthy et al. (2004) shifted
to the 5:1 retrograde MMR (i.e. ab = 1.44 AU), see Table 1 with in ad-
dition iretro

r = 1◦). Islands (1) and (3) are characterized by a 5:-1 MMR
and an ASP with apsidal alignement while islands (2) and (4) by an
5:-1 MMR and a circulation of the ∆ω̃ variable. Color scale is the same
as in Fig. 1. Resolution of the grid is 50 × 50.

∆ω̃ variable librates about 0◦: it is a uniformly retrograde ASP.
Within islands (2) and (4), ω̃b and ω̃c precess in opposite di-
rections but according to different rates: ∆ω̃ circulates. Hence,
no apsidal line locking is required for stability. We find fine,
V-shape structures in [a, e] maps corresponding to the 5:1 ret-
rograde MMR. The width is 0.02 AU for the inner planet (when
eb = 0) and only 0.002 AU for the outer one (when ec = 0).
Consequently, the dynamical study of this case derived from
the HD 160691 planetary system allows us to find another the-
oretical possibility of stability involving resources of a retro-
grade MMR.

10. Conclusion

We have found novel mechanisms giving rise to stability that
could be suitable for a class of compact planetary systems. Such
mechanisms involve counter-revolving orbits forming a retro-
grade MMR occuring in a quasi-identical plane. High statistical
occurence of stable counter-revolving orbits is found. Our study
of retrograde MMRs indicates the large stability domains and
the specific behaviors of the precession and resonant angles. We
propose that these large stability domains are caused by close
approaches much faster and shorter for counter-revolving con-
figurations than for the prograde ones. Scanning the HD 73526
planetary system, we find evidence for a new type of apsidal
precession (the rocking ASP). We find that the difference be-
tween the longitudes of periastron reveals a specific alternation
mode at retrograde resonances. We emphasize that the counter-
revolving configuration studied for the HD 73526 planetary sys-
tem is consistent with the observational data. Free-floating plan-
ets or the Slingshot model might explain the origin of such
counter-revolving systems.
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