
The Cost of Monotonicity in Distributed Graph

Searching

David Ilcinkas, Nicolas Nisse, David Soguet

To cite this version:

David Ilcinkas, Nicolas Nisse, David Soguet. The Cost of Monotonicity in Distributed
Graph Searching. Distributed Computing, Springer Verlag, 2009, 22 (2), pp.117-127.
<10.1007/s00446-009-0089-1>. <hal-00412063>

HAL Id: hal-00412063

https://hal.archives-ouvertes.fr/hal-00412063

Submitted on 31 Aug 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by HAL-UNICE

https://core.ac.uk/display/52789458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00412063

Noname manuscript No.
(will be inserted by the editor)

The Cost of Monotonicity in Distributed Graph Searching

David Ilcinkas · Nicolas Nisse· David Soguet

the date of receipt and acceptance should be inserted later

Abstract Blin et al. [5] (TCS 2008) proposed a dis-
tributed protocol enabling the smallest possible num-
ber of searchers to clear any unknown graph in a de-
centralized manner. However, the strategy that is actu-
ally performed lacks of an important property, namely
the monotonicity. This paper deals with the smallest
number of searchers that are necessary and sufficient
to monotonously clear any unknown graph in a decen-
tralized manner. The clearing of the graph is required
to be connected, i.e., the clear part of the graph must
remain permanently connected, and monotone, i.e., the
clear part of the graph only grows. We prove that a dis-
tributed protocol clearing any unknownn-node graph
in a monotone connected way, in a decentralized set-
ting, can achieve but cannot beat competitive ratio of
Θ(n

logn), compared with the centralized minimum
number of searchers. Moreover, our lower bound holds
even in a synchronous setting, while our constructive
upper bound holds even in an asynchronous setting.

Keywords Graph searching· Mobile agent· Mono-
tonicity · Competitive ratio

A preliminary version of this paper appeared in the proceed-
ings of the 11th International Conference On Principles Of Dis-
tributed Systems (OPODIS’07), LNCS 4878, pages 105-118.

D. Ilcinkas (corresponding author)
CNRS & Universit́e de Bordeaux (LaBRI)
bât. A30, 351 cours de la Lib́eration, 33405 Talence cedex,
France
Tel.: +33 540-006-912, Fax: +33 540-006-669
E-mail: david.ilcinkas@labri.fr

N. Nisse
MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis,
France. E-mail: nicolas.nisse@sophia.inria.fr

D. Soguet
LRI, Universit́e Paris-Sud, Orsay, France
E-mail: david.soguet@lri.fr

1 Introduction

The graph searching problem [6,17] consists, for a
team ofsearchers, in capturing an invisible arbitrarily
fast fugitive hidden in a graph (see [10] for a recent sur-
vey). Equivalently, an undirected connected graph can
be seen as a system of tunnels contaminated by a toxic
gas. In this latter setting, the searchers have to clear,
i.e., to decontaminate, the graph. We will use this latter
formulation in the paper.

Thesearch problem has been widely studied in the
design of distributed protocols for clearing a network
in a decentralized manner [5,7–9,14,16]. Initially, all
edges are contaminated and all searchers are placed
at a particular vertex of the graph, called thehome-
base. Subsequently the searchers stand at vertices of
the graph and move along the edges. An edge iscleared
when it is traversed by a searcher. A clear edgee is re-
contaminated as soon as there exists a pathP betweene
and a contaminated edge such that no searchers are oc-
cupying any vertex or any edge ofP. A search strategy
is a sequence of moves of the searchers along the edges
of the graph, such thatrecontamination never occurs,
that is, a clear edge always remains clear. A search
strategy is aiming at clearing the whole network. Given
a graphG and a homebasev0 ∈ V (G), the search prob-
lem consists in designing a distributed protocol that al-
lows the smallest possible number of searchers to clear
G starting fromv0. The search strategy performed by
the searchers is thus computed online by the searchers
themselves.

In this paper, we define a search strategy as satis-
faying two important properties. Firstly, a search strat-
egy ismonotone [4,13]. That is, the contaminated part
of the graph never grows. This ensures that the clear-
ing of the graph can be performed using a polynomial

number of steps (moves). Secondly, a search strategy
is connected [1,2], in the sense that, at any step of the
strategy, the clear part of the graph induces a connected
subgraph. This latter property ensures safe communi-
cations between the searchers. In the following, the
search number mcs(G,v0) of a graphG with homebase
v0∈V (G) denotes the smallest number of searchers re-
quired to clear the graph in a monotone connected way,
starting fromv0, in centralized settings.

Several distributed protocols have been proposed to
solve the search problem [1,5,7–9,14,16]. Two main
approaches have been used in the previous works. On
one hand, Blin et al. proposed a distributed protocol
that enablesmcs(G,v0)+ 1 searchers to clear anyun-
known asynchronous graphG, starting from any home-
basev0, in a connected way [5]. That is, the clearing
of the graph is performed without the searchers being
provided any information about the graph. However,
the search strategy that is actually performed is not
monotone and may use an exponential number of steps,
which is not surprising since the problem of computing
mcs(G,v0) is NP-complete [15]. On the other hand, the
distributed protocols that are proposed in [7–9,14,16]
enablemcs(G,v0) searchers to monotonously clear a
graphG, starting from a homebasev0, such that the
searchers are given some a priori information about
it. In all these works, an extra searcher is required as
soon as the network is asynchronous. In this paper,
we consider the problem from another point of view.
More precisely, we address the problem of the mini-
mum number of searchers necessary to solve the search
problem (again, the performed strategy must be con-
nected and monotone) without any a priori information
about the graph.

1.1 Model and definitions

We model the searchers by autonomous mobile com-
puting entities with distinct IDs in{1, · · · , |V (G)|}. A
network is modeled by an undirected connected and
simple graph. To strengthen our bounds, we assume
that the searchers as well as the network are synchro-
nous when proving our lower bound and asynchronous
when proving our upper bound. The network is anony-
mous, that is, nodes are not labeled. The deg(u) edges
incident to any nodeu are labeled from 1 to deg(u), so
that the searchers can distinguish the different edges in-
cident to a node. These labels are calledport numbers.
Every node of the network has a zone of local mem-
ory, calledwhiteboard, in which searchers can read,
erase, and write symbols. Moreover, it is assumed that
searchers can access these whiteboards in fair mutual
exclusion.

We define asearch protocol P as a distributed
protocol that solves the search problem: for any con-
nected graphG and any homebasev0 ∈ V (G), a team
of searchers executingP can clearG in a monotone
connected way, starting fromv0. In these settings, the
searchers do not know in advance in which graph they
are launched in. The number of searchers used byP

to clearG is the maximum number of searchers that
stand at the vertices ofG over all steps of the execution
of P. The cost of a search protocolP in a graphG
with homebasev0 is measured by the ratio between the
number of searchers it uses to clearG and the search
numbermcs(G,v0) of G. This ratio, maximized over
all graphs and all starting nodes, is called thecompeti-
tive ratio r(P) of the protocolP.

1.2 Our results

We prove that any search protocol for clearingn-node
graphs has competitive ratioΩ(n

logn). Moreover, we
propose an optimal search protocol that has compet-
itive ratio O(n

logn). More precisely, we prove that for
any distributed protocolP, there exists a constantc
such that for any sufficiently largen, there exists an-
node graphG with a homebasev0 ∈ V (G), such that
P requires at leastc n

logn mcs(G,v0) searchers to clear
G, starting fromv0. Note that thisn-node graphG is
a tree with maximum degree 3. On the other hand,
we propose a distributed search protocol that uses at
most O(n

logn)mcs(G,v0) searchers to clear any con-
nected graphG in a monotone connected way, starting
from any homebasev0 ∈ V (G). Moreover, our proto-
col performs clearing ofn-node graphs using searchers
with at mostO(logn) bits of memory, and whiteboards
of sizeO(n) bits. Note that the lower bound holds even
in a synchronous setting, while our protocol can be im-
plemented even in an asynchronous setting.

1.3 Related work

In the problem of connected graph searching [1,2,11,
12,18], the clear part must remain connected during
all steps of the search strategy. This property is very
useful as soon as we want to ensure secure commu-
nications between the searchers. Contrary to the non-
connected graph searching [3,4,6,13,17] where mono-
tonicity can be ensured for free, monotonicity in the
connected version of the problem generally requires
more searchers. Indeed, Alspash et al. proved thatre-
contamination does help in the case of connected graph
searching [18] (see also [12]). That is, they describe
a class of graphs for which the smallest number of

2

searchers required to connectedly clear these graphs is
strictly less than the number of searchers necessary to
clear them in a monotone connected way. This result
has an important impact since it is not known whether
the decision problem corresponding to the connected
search number of a graph, i.e., the smallest number of
searchers required to clear a graph in a connected way,
belongs to NP. Moreover, monotone strategies are of
particular interest since, first, they perform in a polyno-
mial number of steps, and second, it is a priori difficult
to design non-monotone search strategies.

Several distributed protocols have been proposed to
solve the search problem for particular graph’s topolo-
gies. More precisely, Barrière et al. designed protocols
for clearing trees [1], Flocchini, Luccio and Song con-
sidered chordal rings and tori [7] and meshes [9], Floc-
chini, Huang and Luccio considered hypercubes [8],
and Luccio dealt with Sierpinski’s graphs [14]. Assum-
ing the searchers know the topology of the asynchro-
nous networkG they must clear, these protocols en-
able mcs(G,v0) + 1 searchers to clearG in a mono-
tone connected way, starting from any homebasev0 ∈
V (G). The extra searcher, in comparison with the cen-
tralized case, is necessary and due to the asynchrony
of the network [9]. In [5], Blin et al. proposed a dis-
tributed protocol allowingmcs(G,v0) +1 searchers to
clear any unknown asynchronous graphG in a con-
nected way, starting from any homebasev0 ∈ V (G).
In this case, the searchers do not need any a priori in-
formation about the graph in which they are placed.
However, the search strategy actually performed is not
monotone and may be performed using an exponential
number of steps. In [16], Nisse and Soguet proposed to
give to the searchers some information about the graph
by putting short labels on the nodes of the graph. They
proved thatΘ(n logn) bits of information are neces-
sary and sufficient to solve the search problem for any
n-node asynchronous graphG, starting from a home-
basev0 and usingmcs(G,v0)+1 searchers.

2 Lower Bound on the Competitive Ratio

In this section, we assume that the searchers and the
network are synchronous. This section is devoted to
prove a lower bound on the competitive ratio of any
search protocol. For this purpose, we consider a game
between an arbitrary search protocol and an adversary.
Roughly speaking, the adversary gradually builds the
graph, which is actually a ternary tree, as the search
protocol clears it in a monotone connected way. The
role of the adversary is to force the protocol to use
the maximum possible number of searchers to clear the
graph. The fact that the adversary can build the graph

during the execution of the search protocol is possible
since the searchers have no information on the graph
they are clearing.

We need the following definition. Apartial graph
is a simple connected graph which can have edges with
only one end. Edges with one single end (resp., two
ends) are calledhalf-edges (resp.,full-edges). Let G =
(V,H,F) be a partial graph, whereV is the vertex-set
of G, H its set of half-edges andF its set of full-edges.
Let G− be the graph(V,F), with the same vertex-set
thanG and edge-setF . Let G+ be the graph obtained
by adding a degree-one end to any half-edge ofG.

Let us give some definitions and results that will be
used in the following. Aternary tree is a tree of max-
imum degree at most three. A search strategy that is
not constrained to satisfy neither the connected prop-
erty, nor the monotone property is simply a sequence
of moves of the searchers along the edges of a graph
resulting in clearing the whole graph. Lets(G) denote
the smallest number of searchers that are necessary to
clear a graphG in such a way. A lot of research has
been done regarding the graph searching problem in
the class of trees. In particular, the following results
are known.

Theorem 1 Let T be a tree with n≥ 2 vertices,

– s(T)≤ 1+ log3(n−1) (Megiddo et al. [15])
– ∀v0 ∈ V (T), mcs(T,v0) ≤ 2s(T)−1 (Barri ère et

al. [2])

The remaining part of this section is devoted to the
proof of Theorem 2. Recall that a search protocol has
been defined as a distributed algorithm for clearing a
graph in a monotone connected way.

Theorem 2 Any search protocol for clearing n-node
graphs has competitive ratio Ω(n

logn).

Proof Let P be a (successful) search protocol. We
prove that there exists a constantc > 0, such that for
any n ≥ 5, there exists a ternaryn-node treeT (actu-
ally, T has exactly one internal vertex of degree two
if n is odd, and none otherwise), such thatP uses at
leastq searchers to clearT in a monotone connected
way, starting from any homebasev0 ∈V (T), with q ≥
c n

logn mcs(T,v0).
Fix n≥ 5. We will construct ann-node ternary tree

T , that P has to clear starting fromv0 ∈ V (T). Let
us describe the game executed turn by turn byP and
the adversaryA . This game progressively constructs a
partial graphTp that ends up being the treeT for which
the cost of the search protocolP is high.

Initially, the partial graphTp consists of a single
vertex, the homebasev0, incident to three half-edges.

3

All searchers are placed atv0. Then,P andA play
alternatively, starting withP. At each round,Tp =
(V,H,F) corresponds to the part ofT thatP currently
knows. At each round, the search protocolP chooses
a searcher and it moves this searcher along an edgee
of Tp in such a way that recontamination does not oc-
cur. Such a move is always possible sinceP is a suc-
cessful search protocol, and thus, it eventually clears
T in a monotone connected way. Note thate may be
a half-edge or a full-edge. Ife is a full-edge, thenA
skips its turn. Otherwise, two cases must be consid-
ered. Either|V (T +

p)| < n− 1, or |V (T +
p)| = n− 1. In

the first case,A adds a new endv to e such thatv is
incident to two new half-edgesf and h. That is, the
partial graph becomesTp = (V ∪{v},Hnew,Fnew), with
Hnew = (H \ {e})∪{ f}∪ {h} andFnew = F ∪{e}. In
the second case,A adds a new endv to e such thatv
is incident to only one new half-edgef . Again, this is
possible sinceP does not know the graph in advance.
The game ends when|V (T +

p)|= n. At such a round,A
decides that the graphT is actuallyT +

p .
Let us first do the following easy remarks. At each

round of the game,T−p is a ternary tree, andT +
p is a

ternary tree with at least⌊(n′ + 2)/2⌋ leaves, where
n′ is the number of vertices ofT +

p (this can be easily
proved by induction on the number of rounds). More-
over,T−p is exactly the clear part ofT at this step of the
execution ofP. In other words, the half-edges ofTp

corresponds to the contaminated edges that are incident
to the clear part ofT . Since the execution ofP ensures
that the performed strategy is monotone, it follows that,
at any round of the game, the vertices incident to at
least one half-edge are occupied by a searcher. Let us
consider the last roundr, that is when|V (T +

p)| equals
n. We show that at this round the number of vertices of
T +

p occupied by searchers is at least⌊n/4⌋. From the
previous remarks, it follows thatT +

p at roundr, that is
T , is a ternary tree with at least⌊(n + 2)/4⌋ vertices
occupied by a searcher. Indeed, every parent of a leaf
in T must be occupied by a searcher, and every ver-
tex is parent of at most two leaves. Thus,P uses at
leastq≥⌊n/4⌋ searchers. By Theorem 1,mcs(T,v0)≤
1+2log3(n−1). Therefore,

q≥
mcs(T,v0)

1+2log3(n−1)
×⌊n/4⌋ .

It follows easily that there is a constantc > 0 such that
for anyn≥ 5 we have

q≥ c
n

logn
mcs(T,v0) ,

which concludes the proof of the theorem. ⊓⊔

3 An Algorithm of Optimal Competitive Ratio

In this section, we assume that both the searchers and
the network are asynchronous. We propose a search
protocol namedmc search (for monotone connected
search) having competitive ratio ofO(n

logn) for anyn-
node graph. The lower bound we proved in Section 2
shows that this distributed search protocol has thus an
optimal competitive ratio ofΘ(n

logn).
Before describing the search protocolmc search,

we need some definitions. In the following, thedepth
of a rooted treeT is the maximum length of the paths
between the root and any leaf ofT . Let v be a vertex
of the rooted treeT that is not the root, and letu be the
parent ofv. The edge{u,v} is called theparent-edge
of v.

A complete ternary tree is defined as follows. The
complete ternary treeT0, of depth 0, consists of a single
vertex, called its root. For anyk≥ 1, a complete ternary
treeTk, of depthk, is a ternary tree in which all internal
vertices have degree exactly three, and there exists a
vertex, called its root, that is at distance exactlyk from
all leaves.

Finally, for any graphG, we definemcs(G) to be
minv∈V (G) mcs(G,v).

Theorem 3 (Barrière et al. [2])
For any k ≥ 0, mcs(Tk) = k +1.

A graphH is a minor of a graphG if H is a sub-
graph of a graph obtained by a succession of edge
contractions1 of G. A well known result is that, for any
graphG and any minorH of G, s(G)≥ s(H) (folklore).
Note that this result is not valid for the search number
mcs, i.e., there exist some graphsG, andH minor ofG
such thatmcs(H) > mcs(G) [2].

3.1 General ideas of protocolmc search

Before going through the description of our protocol,
let us first consider some general characteristics of the
clearing of a connected graph by some simple search
protocol. At every step, the clear part of the graph in-
duces a connected subgraph containing the homebase.
Any vertex of the clear part that is incident to a contam-
inated edge is occupied by a searcher, preserving the
clear part from recontamination. The set of such ver-
tices is called theborder of the clear part. Thus, after
having cleared a contaminated edge, a searcher checks
whether it is preserving the clear part of the graph from

1 The contraction of the edgee with endpointsu,v is the re-
placement ofu andv with a single vertex whose neighbors are
the vertices that were neighbors ofu or v.

4

recontamination. If its current vertex is incident to at
least one contaminated edge and if it is not guarded by
another searcher, then the searcher has to stay at the
current vertex to prevent recontamination.

The main issue of the search protocol consists in
deciding the next contaminated edge to be cleared.
Note that, because of the connectedness of the strat-
egy, the next edge to be cleared must be an edge inci-
dent to a vertex in the clear part. Another issue of the
search protocol is to ensure that a searcher not stand-
ing at the border of the clear part of the graph is always
able to reach the chosen edge through the clear part.
We now briefly describe how our protocolmc search

deals with these issues.

Let G be a connectedn-node graph andv0 ∈V (G).
Throughout the execution of the algorithm,mc search

dynamically maintains a rooted ternary subtreeT of
the (current) clear part ofG. The root ofT will be used
to host all the currently “unused” searchers. More pre-
cisely, the treeT is required to cover all vertices occu-
pied by at least one searcher. Thanks to this property,
T will be used by the searchers to go from the root of
T to a vertex of the border of the clear part in order to
clear a contaminated edge. After having cleared a con-
taminated edge, and if the new position of the searcher
does not lie at the border of the clear part or is already
occupied by another searcher, the former searcher will
also useT to go back to the root ofT . This can easily
be done by performing a DFS ofT .

Furthermore, our protocolmc search maintains
the property that a searcher lies, at least, at every ver-
tex of the border of the clear part, and at every vertex
of degree 3 ofT . In addition, a goal of our protocol
is to keepT small and to use few agents. As a conse-
quence, if a searcher occupies a vertexv not incident to
any contaminated edge and of degree at most two, then
our protocol relieves this useless searcher and send it
to the root. Of course, ifv was the root, then the root is
also moved elsewhere in the tree. Additionally, ifv is
a leaf inT , then this leaf is removed together with the
longest path without searchers leading to it, because
this branch is of no use anymore to cover the vertices
occupied by searchers.

The protocolmc search also maintains a second
rooted subtreeS that is defined as a minor ofT . More
precisely,S is obtained fromT by contracting all edges
{u,v} of T such thatu is the parent ofv andv is not
occupied by a searcher. In other words,S represents
the structure ofT with respect to the searchers. That is,
if there is a path inT without searchers but connecting
two vertices occupied by some searchers, then this path
is contracted to a single edge inS. Thus, in some sense,

every vertex ofS is occupied by a searcher. We define
the root ofS to be the root ofT .

The subtreeS is used by Protocolmc search to de-
cide the next contaminated edge to be cleared. Indeed,
at each step, Protocolmc search decides to clear an
edge ofG that is chosen such thatS becomes as close
as possible to a complete ternary tree. More precisely,
at each step, Protocolmc search will choose the next
contaminated edge to be cleared in such a way thatS
remains of degree at most three and such that the depth
of S may be increased fromk≥ 0 tok+1 only if S was
isomorphic toTk at a previous step.

The intuitive reason of this choice is that the com-
plete ternary tree is the tree requiring the (asymptotic)
largest number of searchers compared to the size of the
tree, even for a centralized algorithm. Thus, if the ad-
versary forces our protocol to use a lot of searchers
by choosing a graph for which almost every cleared
edge leads to a new vertex (basic idea of the proof of
the lower bound), then our protocol forces the chosen
graph to have a large complete ternary tree as a minor,
and thus even a centralized algorithm needs a logarith-
mic number of agents to clear the graph. This is the
intuitive reason why our protocolmc search achieves
the optimal competitive ratioΘ(n/ logn).

Figure 1 shows a state of a graph at some step of
the execution of Protocolmc search. The light gray
part represents the clear part of the graph at this step.
The treeT rooted inr is depicted using bold edges.
Dotted edges represent those edges of the clear part
that belong to bothT andS. (That is,S is obtained from
T by contracting the non-dotted edges ofT .) Dark gray
vertices are those occupied by searchers at this step,
i.e., the vertices ofS. In this example, the next edge to
be cleared must be an edge incident toe or f .

b

d

r

c
r

a

e c b

a e

d

f

f

Fig. 1 Protocolmc search maintains two subtrees: a subgraphT
of the clear part covering the searchers (bold lines) and a minor
S of T (dotted lines). The clear part appears in light gray.S is
represented to the right.

3.2 Protocolmc search

In this section, we describe the main features of Pro-
tocolmc search that is also described in a more com-

5

pact way in Figure 6. For the purpose of simplifying
the presentation, we assume in Figure 6 that searchers
are able to communicate by exchanging messages of
sizeO(logn) bits. This assumption is satisfied by us-
ing an additional searcher. This extra searcher is used
to schedule the moves of the other searchers and to
transmit few information between the searchers. For
this purpose, the extra searcher performs a DFS of the
treeT that enables it to reach any other searcher. Using
this extra searcher enables Protocolmc search to clear
both synchronous and asynchronous networks. First,
we describe the data structure used bymc search.

The whiteboard of every vertexv ∈ V (G) contains
one vectorstatusv. For any edgee ∈ E(G) incident
to v, statusv[e] takes a value inL = {Contaminated,
Removed, Tree, Minor}. Initially, for any edgee with
endv, statusv[e] = Contaminated. To simplify the pre-
sentation, we assume that each edgee = {u,v} ∈ E(G)
has only one labelℓ(e) = statusv[e] = statusu[e]. This
simplification may easily be implemented by the extra
searcher. Indeed, each time an edgee is relabeled, the
extra searcher does a return trip throughe to synchro-
nize the labels of both its ends. Moreover, the white-
board of every vertexv contains a booleanrootv which
is true if and only ifv is the current root ofS andT .

The protocol is divided inO(|E(G)|) phases. At
each phase, Protocolmc search relabels at least one
edge. Moreover, an edge cannot be labeled twice us-
ing the same label. More precisely, an edge labeled
Contaminated can only be relabeledMinor or Remo-
ved. Similarly, an edge labeledMinor (resp.,Tree) can
only be relabeledTree or Removed (resp.,Removed).
Finally, the edges labeled withRemoved are never re-
labeled. This proves that Protocolmc search termi-
nates.

Let us define some notations. At any step,T is the
subgraph ofG induced by the edges labeledMinor or
Tree. In the next section, we prove thatT is indeed
a tree.S is the minor ofT obtained by contracting
all edges labeledTree. Initially, T and S are rooted
at v0, the homebase. Finally, for any vertexv ∈ V (G),
mv, tv, rv, cv denote the number of edges incident to
v that are respectively labeledMinor, Tree, Removed,
Contaminated.

Every searcher has an integer state variableℓeveℓ in
{0, · · · ,n}. Roughly, this variable indicates the distance
between the vertexv currently occupied by the searcher
and the root, in the treeS. SinceS is obtained fromT
by contracting the edges labeledTree and keeping the
edges labeledMinor, this variable gives precisely the
number of edges labeledMinor in the path between
v and the root in the treeT . Initially, every searcher
occupies the rootv0 and hasℓeveℓ = 0.

Let us describe a phase of the execution of Proto-
col mc search. A phase starts by the election of the
searcher that will perform moves and/or labellings of
edges. The purpose of this searcher is to make the tree
S as close as possible to a complete ternary tree. The
elected searcher is an arbitrary searcher with minimum
ℓeveℓ and that occupies a vertexv ∈ V (G) satisfying
one of the following four conditions. Each of the four
cases will be described in detail below.

Case a:mv + tv ≤ 2 andcv ≥ 1,
Case b:mv + tv = 1 andcv = 0,
Case c:mv + tv = 2, cv = 0 andv is not the root,
Case d:mv + tv = 2, cv = 0 andv is the root.

Roughly speaking, the goal in Case a is to make the
ternary treeS (and thusT) grow by adding new inci-
dent edges to nodes of degree at most two, by clearing
an incident contaminated edge. The other rules, Cases
b, c and d, are designed to prune the treeS (but not
necessarilyT) in nodes where it cannot grow anymore,
that is where the degree is less than three but where
there are no incident contaminated edges to be added.

We will prove that, at any phase, any searcher ac-
tually occupies a vertex ofS (more precisely, either the
root or a vertex whose parent-edge is labeledMinor).
Therefore, this election can easily be implemented by
the extra searcher performing a DFS ofT . Moreover,
that can be done withO(logn) bits of memory, since
the extra searcher only needs to remember the mini-
mum ℓeveℓ of a searcher satisfying one of the above
conditions that it meets during this DFS.

Once the extra searcher has performed this DFS
and has gone back to the root ofT , let k be the min-
imum ℓeveℓ, satisfying one of the above conditions,
it has met. Then, the extra searcher performs a new
DFS to reach a searcherA with ℓeveℓ = k satisfying
one of the conditions. Letv be the vertex occupied by
the searcherA. We now go further into the details of
the four conditions listed above. In the following, when
we refer to the root, we mean the current root ofT , and
thus, ofS.

Case a.mv + tv ≤ 2 andcv ≥ 1. This case is depicted
in Figure 2.
In this case,v has degree at most two inT and is
incident to at least one contaminated edgee. The
purpose of this case is to clear the edgee. If this
edge leads to a new vertex, thene is added to both
T andS.
More precisely, the extra searcher leads an addi-
tional searcherB from the root to the vertexv dur-
ing its second DFS. The searcherB, followed by
the extra searcher, clearse and reaches its other end
u ∈ V (G). If there is an other searcher atu, then

6

the extra searcher labelse with Removed, i.e.,e is
clear but does not belong toT . ThenB and the extra
searcher go back to the root. Otherwise, i.e., ifu is
a newly discovered vertex, the extra searcher labels
e with Minor, i.e.,e is added to bothS andT . Then
B remains atu to guard it and takesℓeveℓ = k +1.
The extra searcher goes back to the root.

b

d

c
r

a

e

f

b

d

c
r

a

e

f g

Fig. 2 Situation when Case a will be executed at vertexe (left).
Situation after the execution of Case a (right).

In Figure 2, the light gray part represents the clear
part of the graph, the dark gray vertices are those
occupied by the searchers. The treeT is rooted in
r and its edges are depicted in bold lines, and the
dotted lines represent the edges ofS. This case is
applied to the vertexe. Note that the newly cleared
edge could have been chosen incident tof as well
(that is, this case could have been applied tof be-
causef ande have the same level).

Case b.mv + tv = 1 andcv = 0. This case is depicted
in Figure 3.
In this case,v is a leaf in T and S, and is inci-
dent to no contaminated edge. In other words, all
edges incident tov are labeledRemoved except one
edge, saye, that is labeledMinor or Tree. (The lat-
ter case occurs only ifv is the root.) It means that
the searcher occupyingv does not protect the clear
part of the graph from recontamination and thus,
either it can go back to the root, or it can move
away with the root, ifv is the root. Moreover, re-
call that we want the treeT to be a small subtree
spanning the vertices occupied by searchers. Thus,
e can be pruned fromT . For this purpose, the edge
e is relabeledRemoved. However, the treeT may
be pruned more. Indeed, letu be the end ofe dif-
ferent fromv and assume that, before relabelinge,
we hadmu + tu = 2, cu = 0, andu was not occu-
pied by any searcher. Then after relabelinge, the
vertexu is a leaf ofT that is of no use to cover the
vertices occupied by the searchers. Therefore this
leaf can be pruned as well. In this case, the edge
of T incident tou and different frome is pruned
by being relabeledRemoved. This process is exe-
cuted recursively until a vertexw satisfying at least
one of the following three conditions is reached:
(1) the vertex is occupied, (2) the vertex is not of

degree 2 inT , (3) the vertex is incident to at least
one contaminated edge. (Note that the condition (1)
is in fact sufficient. Indeed, we will prove later that
each of (2) and (3) implies (1).) Finally, ifv was the
root, thenw becomes the new root. The level of all
searchers are updated if necessary.
In other words, ifP = (v,v1, · · · ,vr,w), r≥ 0, is the
longest path ofT such that, for anyi, 1≤ i ≤ r, vi

is not occupied by any searcher,vi has degree two
in T (i.e.,mvi + tvi = 2), andvi has no contaminated
incident edge (i.e.,cvi = 0), then all edges ofP are
relabeledRemoved. This process corresponds, in
T , to prune the branch containingv and, inS, to
simply remove the leafv.
More precisely, the pruning operation is performed
in the following way: the searcherA occupying ver-
texv traverses the edgee = {v,v1} labeledMinor or
Tree, relabeling itRemoved. If v was the root, then
v1 becomes the new root, i.e., the booleansrootv
androotv1 are updated and all searchers occupying
v go tov1. Oncee has been removed fromT , if v1

has degree one inT , is incident to no contaminated
edge, and was not occupied before the removal ofe,
then the searcherA traverses{v1,v2} relabeling it
Removed. If v1 was the root, then the root is moved
to v2, and all searchers that were occupyingv1 go
to v2. This process is done recursively while it is
possible. Then, the extra searcher and searcherA
go back to the root and takesℓeveℓ = 0. Again, it is
possible thanks to a DFS ofT .
Finally, if, at the beginning of this phase,v was the
root, then the level of any searcher that was not
standing atv is decreased by one. (Their distance
to the root inS has been decreased by one in the
operation. Indeed we prove later that exactly one
edge labeledMinor is pruned.) To do so, the extra
searcher can perform a DFS ofT .

b

c

u

a

b

c

a

w r r

Fig. 3 Situation when Case b will be executed at vertexr (left).
Situation after the execution of Case b (right).

In Figure 3, the light gray part represents the clear
part of the graph, the dark gray vertices are those
occupied by the searchers. The treeT is rooted in
r and its edges are depicted in bold lines, and the
dotted lines represent the edges ofS. This case is
applied to the leafr. The pathP is the path ofT

7

betweenr andw. At the end of the process,w is the
new root ofS andT .

Case c.mv + tv = 2, cv = 0 andv is not the root. This
case is depicted in Figure 4.
In this case,v is not the root, has degree two in
T , and is incident to no contaminated edge. Note
first that the parent-edgee of v is labeledMinor
because a vertex different from the root and occu-
pied by a searcher always has its parent-edge la-
beledMinor (this will be proved by Claim 3 in the
proof of Lemma 1). The purpose of this case is to
removev from S because the searcherA is not used
to prevent recontamination and is not at a degree-3
vertex ofT . This is done by sendingA back to the
root and by contracting the edgee in S. That corre-
sponds to relabelingTree the parent-edgee of v in
T that was labeledMinor. Finally the level of some
searchers are updated.
More precisely, the searcherA traverses the parent-
edgee of v, labeling itTree. Then, it goes back to
the root and takesℓeveℓ = 0. Since this case cor-
responds to the contraction ofe in S, we need to
update, i.e., to decrease by one, the level of any
searcher standing at a descendant ofv. For this pur-
pose, the extra searcher can perform a DFS ofTv,
the subtree ofT rooted atv. Finally, the extra sear-
cher goes back to the root.

b

c

a

r

b

c

a

r
e

v

Fig. 4 Situation when Case c will be executed at vertexv (left).
Situation after the execution of Case c (right).

In Figure 4, the light gray part represents the clear
part of the graph, the dark gray vertices are those
occupied by the searchers. The treeT is rooted inr
and its edges are depicted in bold lines, and the dot-
ted lines represent the edges ofS. This case is ap-
plied to the vertexv. The searcher occupyingv goes
back to the root and the edgee is contracted (i.e.,
relabeledTree). Moreover, the level of the searcher
occupyinga is decreased by one.

Case d.mv + tv = 2, cv = 0 andv is the root. This case
is depicted in Figure 5.
In this case,v is the root, has degree two inT , and is
incident to no contaminated edge. Lete be the first
edge labeledMinor to be traversed when perform-
ing some DFS traversal ofT from v. Let u be the
vertex such thate is its parent-edge. The purpose

of this case is to move the root tou because the
current rootv is not used to prevent recontamina-
tion and is not a degree-3 vertex ofv. This is done
by moving the root tou and contracting the edge
e in S. That corresponds to relabeling the edgee
with Tree. Finally the level of some searchers are
updated.
More precisely, all searchers standing atv (the root)
perform an arbitrary but common DFS traversal of
T until traversing an edgee labeledMinor. While
traversing it, they relabel it withTree. Let u be
their current position. The vertexu becomes the
new root, i.e., the booleansrootv androotu are up-
dated. Again, we need to update, i.e., to decrease by
one, the level of any searcher that was standing at a
descendant ofv in the subtree containingu (when
v was the root ofT). This can be done by the ex-
tra searcher by a DFS traversal, as in the previous
cases. Finally, the extra searcher goes back to the
new root.

b

c
r

a

u

b

c

a

r
e

Fig. 5 Situation when Case d will be executed at vertexr (left).
Possible situation after the execution of Case d (right).

In Figure 5, the light gray part represents the clear
part of the graph, the dark gray vertices are those
occupied by the searchers. The treeT is rooted in
r and its edges are depicted in bold lines, and the
dotted lines represent the edges ofS. This case is
applied to the rootr that is moved tou. Note that
the root could have been moved toa as well, de-
pending on the order in which the arbitrary DFS of
T is performed.

3.3 Correctness of Protocolmc search

This section is devoted to prove the correctness of Pro-
tocol mc search. For this purpose, we first prove the
following technical lemma.

Lemma 1 Let us consider the end of a phase of the ex-
ecution of Protocol mc search. Let T be the subgraph
of G induced by the edges labeled Minor or Tree. Let
S be the minor of T when all edges labeled Tree have
been contracted.

8

Initially all searchers stand at the rootv0 with ℓeveℓ = 0.
During the execution ofmc search, T is the tree that con-
sists of edges labeledTree or Minor. At the beginning, we
haveT = ({v0}, /0).

Description of the execution of any phase ofmc search.

While there exists an edge labeledContaminated do
1. Election of a searcherA occupying a vertexv, with min-

imum ℓeveℓ, sayL, such that one of the four following
conditions is satisfied.
(Case a)mv + tv ≤ 2, cv ≥ 1
(Case b) mv + tv = 1, cv = 0
(Case c) mv + tv = 2, cv = 0 andv is not the root
(Case d) mv + tv = 2, cv = 0 andv is the root

2. (Case a)
An additional searcherB from the root goes tov.
Let e be an edge incident tov and labeled
Contaminated; B clearse.
Let u be the other end ofe.
if u is occupied by another searcherthen

Labele Removed.
SearcherB goes back to the root.

elseLabele Minor; SearcherB setsℓeveℓ = L+1 endif

(Case b)
Let e be the edge incident tov labeledMinor or Tree.
Labele Removed.
Let u be its other end.
if v is the rootthen u becomes the new root; any

searcher not standing atv decreases its level by one;
all searchers standing atv go tou; endif

(mu andtu have been updated when relabelinge)
While mu + tu = 1, cu = 0 andu was not occupieddo

Let f be the edgeMinor or Tree incident tou.
Label f Removed.
Let u′ be the other end off . A goes tou′.
if u is the rootthen u′ becomes the new root

and all searchers standing atu go tou′ endif
u← u′ (again,mu andtu have been updated)

EndWhile
SearcherA goes to the root.

(Case c)
Let e be the parent-edge ofv and letu be its other end.
Labele with Tree.
Let Tv be the subtree ofT obtained by removinge and
containingv.
Any searcher occupying a vertex ofTv decreases its
ℓeveℓ by one.
SearcherA goes to the root.

(Case d)
Let e be the first edge labeledMinor traversed when
performing some DFS ofT from v and letu be the ver-
tex such thate is its parent-edge.
Labele with Tree.
Let T ′ be the subtree ofT obtained by removinge and
containingu. Any searcher occupying a vertex ofT ′

decreases itsℓeveℓ by one.
u becomes the new root.
All searchers that were standing atv go tou.

endWhile

Fig. 6 Protocolmc search

1. T and S are rooted trees with maximum degree at
most three;

2. the set of vertices of G occupied by a searcher ex-
actly consists of: the root, and the vertices whose
parent-edge is labeled Minor;

3. if S has depth k ≥ 1, then there exists a previous
phase when S was the complete ternary tree Tk−1.

Proof The proof is by induction on the phase number.
Let p≥ 1 be the number of a phase of the execution of
mc search and let us assume that the result is valid at
the beginning of phasep. Trivially this induction hy-
pothesis holds whenp = 1, sinceT ansS are restricted
to the one-vertex tree that consists of the homebase
where all searchers are standing. LetT ′ be the sub-
graph ofG induced by the edges labeledMinor or Tree
at the beginning of phasep, and letS′ be the minor cor-
responding to the contraction of edges labeledTree. T
andS are the corresponding objects at the end of phase
p. The proof of Lemma 1 proceeds in four claims. First
we prove thatS andT are trees.

Claim. 1 S andT are trees, andT has maximum de-
gree at most three.

Proof. Note that, by definition, for any vertexv∈V (G),
mv + tv is the degree ofv in T ′. According to the induc-
tion hypothesis,T ′ is a tree with maximum degree at
most three. Let us show that at the end of phasep, T
is a tree with maximum degree three. We consider the
four cases a, b, c and d.

Case a. Either an edgee = {v,u} is added toT ′, i.e.,
T = (V (T ′)∪{u},E(T ′)∪{e}), or T ′ remains un-
changed, i.e.,T = T ′. In the first case, we have
v ∈ V (T ′) andu /∈ V (T ′). ThusT is a tree in both
cases. Moreover,mv + tv was at most two, thusv
has degree at most two inT ′. ThusT has maximum
degree at most three.

Case b.T is obtained fromT ′ by recursively removing
leaves ofT ′. Thus,T , asT ′, is a tree of maximum
degree three.

Cases c and d. At most one edge ofT ′ may be rela-
beledTree, thusT ′ = T .

It follows thatT is a tree with maximum degree at most
three. SinceS is obtained fromT by edge contractions,
S is also a tree. ⋄

We now prove a structural property that will be
used in the subsequent claims.

Claim. 2 Any vertex belonging to the treeT but not
occupied by any searcher has degree exactly 2 inT .

Proof. First of all, when a vertex appears for the first
time in T , it is occupied (initialization or case a). We

9

then note that when a searcher leaves a vertex unoccu-
pied, either this vertex is removed fromT (case b), or
it is of degree 2 (cases c or d). Moreover, the degree
in T of a vertex can only increase in case a, and thus
only if this vertex is occupied. Thus the degree of an
unoccupied vertex is at most 2.

Besides, the degree inT of a vertex can only de-
crease in case b, if it is the vertexw incident to the last
pruned edge. Thus assume that the degree ofw goes
from 2 to 1 by application of case b at some vertexv.
By definition of case b, the vertexw satisfies at least
one of the following two conditions: (1) the vertex is
occupied, (3) the vertex is incident to at least one con-
taminated edge. Ifw satisfies (3), then it is occupied,
because our protocol maintains a searcher at any vertex
belonging to the border of the clear part. Thus in both
cases,w is occupied. As a consequence, the degree of
an unoccupied node cannot be one.

This concludes the proof of the claim. ⋄

Before proving that the maximum degree ofS is
three, we prove the second property.

Claim. 3 The set of vertices occupied by a searcher
exactly consists of: the root, and the vertices whose
parent-edge is labeledMinor.

Proof. We consider the four cases a, b, c and d. LetV ′M,
resp.VM, be the set of vertices such that their parent-
edge are labeledMinor at the beginning, resp. end, of
phasep.

Case a. The edgee = {v,u}, labeledContaminated at
the beginning of phasep, is the only edge to be re-
labeled. It is relabeled eitherRemoved or Minor.
In the first case,VM = V ′M and the searchers oc-
cupy exactly the same vertices than at the begin-
ning of phasep, thus the property holds. In the
second case,u is a new leaf ofT (and S), ande
is the parent edge ofu. ThusVM = V ′M ∪ {u}. In
both cases the vertices occupied by a searcher are
exactly the root and the elements ofVM. Thus the
property holds.

Case b. LetP = (v, · · · ,w) be the path removed from
the treeT at this phase. We first prove thatw is
occupied. By construction, the vertexw satisfies at
least one of the following three conditions: (1) the
vertex is occupied, (2) the vertex is not of degree 2
in T , (3) the vertex is incident to at least one con-
taminated edge. By Claim 2, we now that (2) im-
plies (1). Moreover, as we already noticed before,
if w satisfies (3), then it is occupied, because our
protocol maintains a searcher at any vertex belong-
ing to the border of the clear part. Thus, in any case
w is occupied.

Assume first thatv was the root at the beginning of
the phase. This means that the only edge ofP that
was labeledMinor was the parent-edge ofw, that is
the edge incident tow and belonging toP. Thus, we
haveVM =V ′M \{w}. Moreover,w becomes the new
root. On the other hand, the set of occupied vertices
remains the same except forv that was occupied but
is not anymore. Therefore, the vertices occupied by
a searcher are exactly the root and the elements of
VM.
Assume now thatv was not the root at the begin-
ning of the phase. This means that the only edge
of P that was labeledMinor was the edge incident
to v, that is the parent-edge ofv. Thus, we have
VM = V ′M \ {v}. On the other hand, the set of oc-
cupied vertices remains the same except forv that
was occupied but is not anymore. Therefore, the
vertices occupied by a searcher are exactly the root
and the elements ofVM.
Thus the property holds in both subcases.

Case c. The parent-edgee of v is the only edge rela-
beled. According to the induction hypothesis, edge
e is labeledMinor at the beginning of the phase
becausev is occupied by a searcher at this time.
Hence,e is relabeled fromMinor to Tree. Thus
VM = V ′M \ {v}. Since the searcher leavesv to go
to the root, the property holds.

Case d. Lete be the edge relabeled in phasep. Letu be
the vertex such thate is its parent-edge. The edgee
is the only edge relabeled, and it is relabeled from
Minor to Tree. ThusVM = V ′M \{u}. Moreover, all
searchers from the old root go to the new rootu. Fi-
nally, although the root changes, the child extrem-
ity of any edge other thane labeledMinor does not
change. Thus the vertices occupied by a searcher
are exactlyVM∪{u} (=V ′M) and the property holds.

Therefore, at the end of phasep, the second property
holds. ⋄

We prove now that the maximum degree ofS is at
most three.

Claim. 4 S has maximum degree at most three.

Proof. By Claim 3, the child extremityv of any edge
{u,v} labeledTree is not occupied by any searcher,
and thus by Claim 2, it has degree exactly two. Thus,
when this edge{u,v} is contracted to obtainS from T ,
the vertex resulting from the fusion ofu andv has the
same degree asu had before the contraction. Therefore,
S has maximum degree at most three, likeT . ⋄

To conclude the proof of the lemma, let us prove
the third property.

10

Claim. 5 If S has depthk≥ 1, then there exists a previ-
ous phase whenS was the complete ternary treeTk−1.

Proof. First, for any searcher occupying a vertexv, its
level is the number of edges labeledMinor between
v and the root. This can be easily proved by induc-
tion. Let k ≥ 1 and let us consider the first phasep′ at
which the depth ofS becomesk. The phasep′ consists
of the clearing of a contaminated edgee = {u,v} with
v ∈ V (T) occupied by a searcher with levelk−1, and
u ∈ V (G) \V (T). Since the move performed at phase
p′ is executed by a searcher with levelk−1, it means
that no searcher with level less thank− 1 can move
according to the rules. That is, all internal vertices of
S have degree exactly three (because of cases c and d)
and all leaves ofS are at distancek−1 from the root
(because of cases a and b), i.e.,S = Tk−1. ⋄

This concludes the proof of the lemma. ⊓⊔

We can now prove the main theorem.

Theorem 4 Let G be a connected n-node graph and let
v0 be one of its vertices. Protocol mc search enables
O(n

logn mcs(G,v0)) searchers to clear G in a monotone
connected way, starting from v0.

Proof Let us first prove that the protocolmc search

clearsG in a monotone connected way. Initially, all
edges are labeledContaminated and the label of an
edgee becomesMinor or Removed as soon ase is
traversed by a searcher. Moreover, after this traversal,
each of its ends is occupied by a searcher (Case a). The
strategy is obviously monotone since a searcher is re-
moved from a vertexv if either v is occupied by an
other searcher (Case a), or no contaminated edge is in-
cident tov, i.e.,cv = 0, (Cases b, c and d). Furthermore,
the strategy is connected since it is monotone and starts
from a single vertexv0. Finally, Protocolmc search

eventually clearsG. Indeed, at each step, an edge is la-
beled, and any edge is relabeled at most three times:
Minor,Tree, andRemoved in this order. Thus, no loop
can occur. Moreover, we proved above thatT is a tree.
Therefore, at any step, at least the searchers occupying
its leaves satisfy the conditions of one of the cases a, b,
c, or d. Thus, while there remains a contaminated edge,
a searcher will eventually be called to clear this edge.

It remains to show that Protocolmc search uses
q = O(n

logn mcs(G,v0)) searchers. Let us considerk to
be the maximum depth ofS during the clearing ofG.
By the three properties of Lemma 1 we have

q≤ |V (Tk)|=
|V (Tk)|

log|V (Tk)|
× log|V (Tk)| .

Moreover, by the third property of Lemma 1,Tk−1 is a
minor of G, thus

s(Tk−1)≤ s(G)≤mcs(G,v0) and|V (Tk−1)| ≤ |V (G)|.

By Theorem 3, we have

log|V (Tk)|= O(k) = O(mcs(Tk−1))

and by Theorem 1,

mcs(Tk−1)≤ 2s(Tk−1).

Thus we have log|V (Tk)|= O(mcs(G,v0)).
Finally, since the function x

logx is strictly increas-
ing, and

|V (Tk)|= 3|V (Tk−1)|+1≤ 3|V (G)|+1 = 3n+1 ,

we obtain:

q = O

(

n
logn

×mcs(G,v0)

)

,

which concludes the proof of the theorem. ⊓⊔

To conclude this section, let us estimate the number
of moves done by the searchers during the execution of
Protocolmc search. As we already mentioned, at each
phase, at least one edge is relabeled, and each edge is
relabeled at most three times. This proves that there are
O(m) phases during the clearing of any graph withm
edges. During any phase, one “move consuming” oper-
ation consists of the DFSs performed by the searchers.
In the worst case, the extra searcher will execute a con-
stant number of DFSs ofT , while any other searcher
will follow the extra searcher during at most one DFS.
The other “move consuming” operation consists of the
moves of all the searchers currently standing at the root
that must follow the root when it is moved, leading to
possiblyO(q · n) moves in a single phase. This leads
to an upper bound ofO(q · n ·m) moves executed by
the searchers to clear an-nodem-edge graph usingq
agents.

4 Further Work

It would be interesting to establish a tradeoff between
the optimal competitive ratio of a search protocol and
the amount of information provided to the searchers.
Another difficult problem is to improve the competi-
tive ratio of a search protocol by allowing the search
strategy to be not monotone while it is still performed
in a polynomial number of steps. Moreover, since the
search problem assumes performing in an hostile envi-
ronment, it would be interesting to design fault tolerant
and/or self stabilizing algorithms for clearing a graph.

Acknowledgements David Ilcinkas received additional support
from the ANR projectAladdin and the INRIA projectCepage.
Nicolas Nisse received additional support from the CONICYT
via the projectAnillo en Redes, ACT08 and from the European
projects 1ST FET AEOLUS.

11

References

1. L. Barrìere, P. Flocchini, P. Fraigniaud, and N. Santoro.
Capture of an intruder by mobile agents. InProceedings of
the 14th ACM Symposium on Parallel Algorithms and Ar-
chitectures (SPAA), pages 200–209, 2002.

2. L. Barrìere, P. Fraigniaud, N. Santoro, and D. M. Thilikos.
Searching is not jumping. InProceedings of the 29th Inter-
national Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG), number 2880 in LNCS, pages 34–45,
2003.

3. D. Bienstock. Graph searching, path-width, tree-width and
related problems (a survey).DIMACS Ser. in Discrete Math-
ematics and Theoretical Computer Science, 5:33–49, 1991.

4. D. Bienstock and P. D. Seymour. Monotonicity in graph
searching.J. Algorithms, 12(2):239–245, 1991.

5. L. Blin, P. Fraigniaud, N. Nisse, and S. Vial. Distributed
chasing of network intruders.Theor. Comput. Sci., 399(1-
2):12–37, 2008.

6. R. L. Breisch. An intuitive approach to speleotopology.
Southwestern Cavers, 6:72–78, 1967.

7. P. Flocchini, M. J. Huang, and F. L. Luccio. Decontaminat-
ing chordal rings and tori using mobile agents.Int. J. Found.
Comput. Sci., 18(3):547–563, 2007.

8. P. Flocchini, M. J. Huang, and F. L. Luccio. Decontamina-
tion of hypercubes by mobile agents.Networks, 52(3):167–
178, 2008.

9. P. Flocchini, F. L. Luccio, and L. X. Song. Size optimal
strategies for capturing an intruder in mesh networks. In
Proceedings of the 2005 International Conference on Com-
munications in Computing (CIC), pages 200–206, 2005.

10. F. V. Fomin and D. M. Thilikos. An annotated bibliogra-
phy on guaranteed graph searching.Theor. Comput. Sci.,
399(3):236–245, 2008.

11. P. Fraigniaud and N. Nisse. Connected treewidth and con-
nected graph searching. InProceedings of the 7th Latin
American Symposium (LATIN), number 3887 in LNCS,
pages 479–490, 2006.

12. P. Fraigniaud and N. Nisse. Monotony properties of con-
nected visible graph searching.Information and Computa-
tion, 206(12):1383–1393, 2008.

13. A. S. LaPaugh. Recontamination does not help to search a
graph.Journal of the ACM, 40(2):224–245, 1993.

14. F. L. Luccio. Contiguous search problem in sierpinski
graphs.Theory of Computing Systems, 44:186–204, 2009.

15. N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and
C. H. Papadimitriou. The complexity of searching a graph.
J. Assoc. Comput. Mach., 35, 1988.

16. N. Nisse and D. Soguet. Graph searching with advice.
Theor. Comput. Sci., 410(14):1307–1318, 2009.

17. T. D. Parsons. The search number of a connected graph. In
Proceedings of the 9th Southeastern Conference on Combi-
natorics, Graph Theory, and Computing (Florida Atlantic
Univ., Boca Raton, Fla., 1978), pages 549–554, 1978.

18. B. Yang, D. Dyer, and B. Alspach. Sweeping graphs
with large clique number. InProceedings of the 15th
International Symposium on Algorithms and Computation
(ISAAC), pages 908–920, 2004.

12

