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Abstract

This paper deals with region-of-interest (ROI) track-
ing in video sequences. The goal is to determine
in successive frames the region which best matches,
in terms of a similarity measure, a ROI defined in
a reference frame. Some tracking methods define
similarity measures which efficiently combine several
visual features into a probability density function
(PDF) representation, thus building a discriminative
model of the ROI. This approach implies dealing with
PDFs with domains of definition of high dimension.
To overcome this obstacle, a standard solution is to
assume independence between the different features in
order to bring out low-dimension marginal laws and/or
to make some parametric assumptions on the PDFs
at the cost of generality. We discard these assump-
tions by proposing to compute the Kullback-Leibler
divergence between high-dimensional PDFs using the
k-th nearest neighbor framework. In consequence, the
divergence is expressed directly from the samples, i.e.
without explicit estimation of the underlying PDFs.
As an application, we defined 5, 7, and 13-dimensional
feature vectors containing color information (including
pixel-based, gradient-based and patch-based) and
spatial layout. The proposed procedure performs
tracking allowing for translation and scaling of the
ROI. Experiments show its efficiency on a movie
excerpt and standard test sequences selected for the
specific conditions they exhibit: partial occlusions,
variations of luminance, noise, and complex motion.

Keywords: Region-of-interest tracking, high-dimensional pro-

bability density function, nonparametric estimation, k-th near-

est neighbor, Kullback-Leibler divergence.

1 Introduction

Tracking a region of interest (ROI) in a video is still
a challenging task. Various high-level applications
rely on tracking, e.g., motion picture indexing, ob-
ject recognition, video surveillance, audiovisual post-
production. . . The problem can be defined as follows:

∗Laboratoire I3S, UMR CNRS 6070, Sophia Antipolis, France
(boltz,debreuve,barlaud@i3s.unice.fr).

a ROI is defined in a reference frame and the purpose
is to determine in each subsequent frame the region
which best matches the ROI in terms of a given similar-
ity measure. Geometrically speaking, the two regions
can be deduced from one another by an apparent mo-
tion usually restricted to a given model. Two classical
similarity measures are the Sum of Squared Differences
(SSD) and the Sum of Absolute Differences (SAD) be-
tween the reference ROI and a candidate region in a
target frame.

1.1 A statistical approach

Similarity measures such as SSD and SAD impose a
strict geometric constraint since the underlying resid-
ual is computed with a deterministic pixel-to-pixel cor-
respondence between the reference ROI and the tar-
get region. In general, this apparent motion follows
a rather simple model so that the estimation of its
parameters remains well-posed. Therefore, it is not
adapted to complex motions. Moreover, this type of
similarity measures corresponds to implicit parametric
assumptions on the residual probability density func-
tion (PDF) (resp., Laplacian and Gaussian for the two
examples above [7]).

An alternative is to adopt a statistical point of view
by building a PDF from the ROI and using it as a
reference to be compared to a target PDF built from
a candidate region by means of a similarity measure.
Such statistical methods account for randomness and
uncertainty in the observations, and therefore for com-
plex motions. The PDFs can be defined in a radiomet-
ric space [16, 38], either in grayscale or color. How-
ever, to improve tracking accuracy, later developments
tend to show that more information is required than
just color. Different features were then integrated into
the ROI PDF model, e.g., recurring to filters such as
spatial derivative filters [35, 10, 9], Gabor or wavelet
filters [37], and temporal filters [10, 13]. A review of
methods based on this framework proposed for segmen-
tation was recently carried out [19].

While this increase of description features improves
accuracy, their combination leads to high-dimensional
PDFs. There exist efficient [40, 29] and fast [45] meth-
ods to estimate multivariate PDFs using Parzen win-
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dowing. However, due to the fixed cardinality of the
data set, a limitation known as the curse of dimen-
sionality [40] appears: as the dimension of the domain
of definition of the PDFs gets higher, the domain sam-
pling gets sparser. One can think of dilating the Parzen
window [13] so as to ensure that it will enclose enough
samples. However, the resulting PDF is oversmoothed.
Another standard solution is to assume independence
between the different features in order to bring out
low-dimension marginal laws [10] and/or to make some
parametric assumptions on the PDFs [20]. While these
solutions may be satisfactory in some cases, we will
discuss in Section 1.2 why they are inappropriate for
tracking.

1.2 High-dimensional feature space

The combination of color and geometry proved to be
efficient for tracking. In some works, spatial informa-
tion has been added by means of a Gaussian weighting
of the samples according to their distance to the center
of the ROI [16, 38]. This weighting can be seen as a
radial layout constraint. This approach has the advan-
tage not to add any dimension to the feature space.
However, it lacks generality. Geometry can instead be
added directly to the radiometric vector (or any other
feature vector), e.g., in the form of the Cartesian co-
ordinates of the pixels of the ROI [20]. Independence
between color and geometry cannot be assumed in or-
der to avoid to manipulate high-dimensional PDFs. In-
deed, geometry alone, seen as a random variable con-
ditionally to the ROI, follows a uniform distribution
regardless of the ROI and, therefore, brings no infor-
mation. While considering color and geometry jointly,
simplification can still be achieved by approximating
the PDFs with parametric laws [20]. Nevertheless, fully
data-driven nonparametric PDF estimation was advan-
tageously applied to segmentation [2, 30, 28] and this
is the approach we propose to follow.

We also propose to extend the color and geometry
feature space with the gradient of the luminance and
patches of the luminance. The former was motivated
by the fact that such a gradient has proved to increase
accuracy in another motion-related task: optical flow
computation [9]. The latter was motivated by stud-
ies or works such as [32, 11, 14]. Finally, we suggest
to use the k-th nearest neighbor (kNN) framework in
order to be able to handle the components of these
high-dimensional feature vectors jointly and to work
in a locally adaptive manner in the feature space, thus
avoiding under or oversmoothing in processing the data
set.

The following development applies to feature spaces
of arbitrary dimension. In practice, though, the ex-
periments that were performed to test the proposed
method involve features of dimension 5, 7, or 13.

Whether these dimensions can be considered as high
is, in our opinion, mostly a matter of context. First,
it is relative to the number of samples available. In
tracking, this number can be rather small since it is
given by the size of the (user-selected) ROI. Second,
it depends on the purpose the samples are to be used
for. When it comes to estimate statistical character-
istics (entropies, divergences. . . ), the denomination of
high dimensional space makes sense since classical ap-
proaches already show their limits when the dimension
gets higher than 2 or 3 (see Appendix A).

1.3 Similarity measure

Although kNN PDF estimators were proposed a long
time ago [22, 34], they did not received much attention
since they were known to be biased [42, 39]. Recently
though, corrective terms have been derived to cancel
the bias and led to consistent kNN-based statistical
measures such as entropy [31, 26]. Moreover, even if
the kNN PDF estimator is only adapted to high di-
mensions [42], the resulting entropy estimator appears
to be accurate in both low and high dimensions.

In this context, the Kullback-Leibler divergence be-
tween high-dimensional PDFs will be suggested as a
similarity measure for tracking. Although this mea-
sure has already been used for tracking [20], here the
divergence will be expressed non-parametrically, mak-
ing no assumptions, and directly from the samples, i.e.
without explicit estimation of the underlying PDFs.
This divergence estimator being well-adapted to high
dimensions, it can be used in an extended radiomet-
ric/geometric feature spaces [6].

1.4 Paper organization and notations

The paper is organized as follows: Section 2 first pro-
vides some notations and general comments and then
presents the kNN-based expressions of differential en-
tropy, cross-entropy, and Kullback-Leibler divergence;
Section 3 motivates the choice of geometry handling;
Section 4 details the ROI tracking algorithm; Finally,
Sections 5, 6, and 7 provide some results and comments
for several standard sequences.

Please note that on-the-fly notations (used tem-
porarily in a specific section) will be introduced by
“:=”. Also note that a statistical measureM function
of a PDF fU (e.g., entropy) might appear as M(fU )
orM(U), where U is a set of samples drawn from fU ,
whether it refers to the definition of the measure or a
sample-based approximation of it.
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2 Similarity measure between

ROIs

2.1 Definition

Let Iref be the reference frame in which the ROI do-
main Ω is (user-)defined and let Itgt be the target frame
in which the region which best matches this reference
ROI (in terms of a given similarity measure) is to be
searched for. Assume Ω is sampled on a, e.g., Carte-
sian grid. At each grid node i, suppose a feature vector
of R

d describing the frame locally at i can be built.
For convenience, the set of grid nodes will also be de-
noted by Ω. Given the statistical approach chosen
in Sections 1.2 and 1.3, the region search mentioned
above amounts to finding the geometric transformation
Φ such that

Φ = argmin
ϕ

DKL(fTϕ
, fR) (1)

where DKL is the Kullback-Leibler divergence (or in-
formation gain) and fR, resp. fT , is the PDF which
generated the reference feature samples {R(i), i ∈ Ω}
in Iref , resp. the target feature samples {Tϕ(i), i ∈ Ω}
in Itgt. Whenever appropriate, U will be used as a
generic notation for either R or Tϕ.

The discussion below provides a motivation for
choosing the order of the arguments of the divergence1

(apparently not detailed in [20]).
Let us reformulate the problem in the following

way: fR is a reference PDF and the best Gaussian
approximation fG

Tϕ
of it must be found. Minimizing

DKL(fG
Tϕ
, fR) leads to a so-called zero-forcing solu-

tion [36]: wherever fR is close to zero, the solution
is strongly encouraged to be close to zero as well. As
a consequence, fG

Tϕ
“focuses” on the dominant mode

of fR, thus underestimating the variance of fR. This
solution is also called exclusive since it can exclude
some parts of fR. Minimizing DKL(fR, f

G
Tϕ

) leads to

a so-called zero-avoiding solution [36]: the solution is
encouraged to cover the whole support of fR. As a
consequence, fG

Tϕ
usually overestimates the variance

of fR (see Fig. 1). Various works proposed symmet-
ric versions of the Kullback-Leibler divergence, e.g., J-
divergence and Jensen-Shannon divergence [33]. Nev-
ertheless, for tracking, DKL(fTϕ

, fR) seems to be the
appropriate choice. Indeed, fTϕ

can never be identical
to fR due to noise, occlusion, motion blur, and the fact
that a frame is a projection onto a two-dimensional
plane of a three-dimensional scene. However, both
should have the same main modes if they correspond
to the same object. Thus, the zero-forcing divergence
enforces a relevant behavior in trying to “align” the

1Remember that the Kullback-Leibler divergence is not sym-
metric.

R
T minimizing KL(R,T) 
T minimizing KL(T,R) 

Figure 1: Order of the arguments of the Kullback-
Leibler divergence: zero-forcing and zero-avoiding solu-
tions (Image courtesy of Pierre Dangauthier, E-Motion
project, INRIA Rhône Alpes/LIG, Grenoble, France).

main modes of the PDFs. By the way, it follows the
same philosophy as the Bhattacharya distance, a mea-
sure widely used for tracking since a Mean-Shift-based
implementation has been proposed [16].

As a reminder, the Kullback-Leibler divergence is
equal to

DKL(fTϕ
, fR) =

∫

Rd

fTϕ
(t) log

(

fTϕ
(t)

fR(t)

)

dt (2)

= H×(fTϕ
, fR)−H(fTϕ

) (3)

where H is the differential entropy

H(fU ) = −
∫

Rd

fU (t) log fU (t) dt (4)

and H× is the cross entropy

H×(fU , fV ) = −
∫

Rd

fU (t) log fV (t) dt. (5)

2.2 k-th nearest neighbor (kNN) esti-
mation

◦ Kernel-based approaches

Since PDFs are a central element of the proposed
method, let us first discuss PDF estimation.

Kernel-based methods for PDF estimation make no
assumption about the actual PDF. Consequently, the
estimated PDF cannot be described in terms of a small
set of parameters, as opposed to, e.g., a Gaussian dis-
tribution defined by its mean and variance. These
methods are therefore qualified as non-parametric.
These estimators have the following general expression

fU (t) =
1

|U |
∑

s∈U

KU,s,t(t− s) (6)

where KU,s,t is a multivariate kernel which bandwidth
is a function of U , s, and t [42] and |U | is the cardinality
of the sample set U . Three cases can be distinguished
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• KU,s,t = Kσ where the bandwidth σ is a constant.
This is the Parzen approach. The choice of band-
width σ is critical [41, 40].

For a uniform kernel, estimator (6) approximates
the density at t with the relative number of sam-
ples k(t)/|U | falling into the open ball of volume
vσ centered on t

fU (t) =
k(t)

vσ |U |
. (7)

Unfortunately, this kind of estimation provides a
value too large when the underlying PDF has sev-
eral modes. More generally, the Parzen method
suffers from what is informally called the curse
of dimensionality. As the dimension of the data
space increases, the space sampling gets sparser.
Therefore, less samples fall into the Parzen win-
dows centered on each sample, making the PDF
estimation less reliable. Dilating the Parzen win-
dow does not solve this problem since it leads to
over-smoothing the PDF. In brief, this method
cannot adapt to the local sample density.

• KU,s,t = KU,s. This is the sample point ap-
proach [42, 17]. One bandwidth is chosen per sam-
ple s of U . Although it allows to adapt to the local
sample density, the following kNN framework was
preferred since it leads to interesting statistical es-
timators such as the Kullback-Leibler divergence
used in this paper.

• KU,s,t = KU,t. This is the balloon approach [34,
39]. The bandwidth is determined at each PDF es-
timation as a function of t. In the kNN framework,
the bandwidth is defined by the distance to the k-
th nearest neighbor of t among the samples of U .
For a uniform kernel, estimator (6) reads [23]2

fU (t) =
k

ρd
k(t) vd |U |

(8)

where ρd
k(t) vd is the volume of the open ball cen-

tered on t with a radius of ρk(t) equal to the dis-
tance to the k-th nearest neighbor of t in U ex-
cluding the sample located at t if any, and vd is
the volume of the unit ball in R

d.

◦ First approximation of the divergence

The entropy (4) can be approximated by the Ahmad-
Lin estimator [1]

HAL(U) = − 1

|U |
∑

s∈U

log pU (s) (9)

2See page 268.

where pU is the Parzen estimation (6) of the actual
PDF3. Approximation (9) converges in mean to the
differential entropy of U .

The kNN PDF estimation (8) is biased and does
not respect the fundamental PDF property of integrat-
ing to one. Nevertheless, these flaws get less critical
as the dimensionality increases and the estimator has
better overall performances in high dimensions than
fixed bandwidth estimators [42]. Let plug (8) into the
Ahmad-Lin entropy estimation (9)

HAL(U)
kNN
= − 1

|U |
∑

s∈U

log
k

ρd
k(U, s) vd |U |

(10)

= log
vd |U |
k

+
d

|U |
∑

s∈U

log ρk(U, s). (11)

Moreover, the cross entropy (5) is equal to

H×(fU , fV ) = EU [− log fV ] (12)

≃ − 1

|U |
∑

s∈U

log fV (s). (13)

Again, plugging the kNN PDF expression of fV

into (13) leads to

H×(U, V )
kNN
= log

vd |V |
k

+
d

|U |
∑

s∈U

log ρk(V, s). (14)

Subtracting (11) from (14), the following Kullback-
Leibler approximation is obtained

DKL(Tϕ, R)
kNN
= log

|R|
|Tϕ|

+
d

|Tϕ|
∑

s∈Tϕ

log
ρk(R, s)

ρk(Tϕ, s)
.

(15)
Actually, this estimator has a slight bias. Neverthe-
less, the above development can help understanding
the philosophy of the following, unbiased version.

◦ Unbiased version

Since the Kullback-Leibler divergence can be ex-
pressed as the difference between a cross entropy and
an entropy, let us first present unbiased estimators of
these quantities in the kNN framework.

Entropy. A consistent and unbiased entropy esti-
mator was proposed for k = 1 [31]. This work was
extended to k > 1 with a proof of consistency under
weak conditions on the underlying PDF [26]

HkNN(U) = log(vd(|U |−1))−ψ(k)+
d

|U |
∑

s∈U

log ρk(U, s)

(16)
where vd is the volume of the unit ball in R

d, |U | is
the cardinality of the sample set U , ψ is the digamma

3Note that an entropy estimation following the same spirit
has been proposed more recently [43].
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function Γ′/Γ, and ρk(U, s) is the distance to the k-th
nearest neighbor of s in U excluding the sample located
at s if any. Informally, the main term in estimate (16)
is equal to the mean of the log-distances to the k-th
nearest neighbor of each sample. Note that (16) does
not depend on the PDF fU .

While the kNN PDF estimator is competitive in high
dimensions only, the entropy estimator is accurate even
in the univariate case [26]. Moreover, the choice of k
appears to be much less crucial than the choice of σ in
the Parzen method (see Appendix A). Actually, when
the kNN approach is used for parameter estimation [8]
(see Eq. (1)), k must be greater than the number of pa-
rameters, it must tend toward infinity when |U | tends
toward infinity, and such that k/|U | tends toward zero
when |U | tends toward infinity. An admissible choice
is k =

√

|U |.
Note that an estimate of the Rényi entropy using

a related graph-based kNN framework has also been
proposed for learning [18].

Cross entropy. Similarly, the cross entropy (also
called relative entropy or likelihood) of two sample sets
R and Tϕ can be approximated by [31]

H×
kNN(U, V ) = log(vd|V |)−ψ(k)+

d

|U |
∑

s∈U

log ρk(V, s).

(17)
Note again that estimator (17) does not depend on
any PDF and that its main term is the mean of the
log-distances to the k-th nearest neighbor among the
samples of R of each sample of Tϕ. Since a sample s of
Tϕ does not belong to R, the search for the k-th nearest
neighbor excluding s itself does not in fact exclude any
sample of R. This is why |R| appears in (17) whereas
|Tϕ| − 1 appears in (16).

Divergence. The Kullback-Leibler divergence can
then be approximated in the kNN framework, directly
from the sample sets R and Tϕ, using the entropy and
cross entropy estimators (16) and (17), resp.,

DKL(Tϕ, R)
kNN
= H×

kNN(Tϕ, R)−HkNN(Tϕ) (18)

= log
|R|
|Tϕ|−1

+
d

|Tϕ|
∑

s∈Tϕ

log
ρk(R, s)

ρk(Tϕ, s)
.

(19)

It has been proven that this estimator is consistent and
asymptotically unbiased [26, 31].

Remark about the biased version. Note that (19)
only differs from (15) by log(|Tϕ|/|Tϕ−1|) in absolute
value and that this difference tends toward zero when
the number of target samples |Tϕ| tends toward infin-
ity. Actually, concerning entropy and cross entropy, a
similar remark can be made. Besides the term |U |−1
in (16) instead of |U | in (11) (corresponding to the bias

just mentioned about the divergence), the entropy es-
timators (11) and (16), and the cross entropy estima-
tors (14) and (17) only differ by log(k)−ψ(k) in ab-
solute value. Functions ψ being very close to log, this
difference is also not very significant (see Table 1).

3 Feature space: handling ge-
ometry and radiometry

As noted earlier, the feature vectors combine radiom-
etry and geometry. Radiometry allows to check if the
ROI and the target region have similar colors and ge-
ometry allows to check with a given degree of strict-
ness if these colors appear at the same location in the
regions. For comparison purposes, Sections 3.1, 3.2,
and 3.3 describe three levels of strictness. Let us as-
sume that R and Tϕ only contain radiometric informa-
tion.

3.1 Geometry-free similarity measures

Classically, the similarity measure between the ROI
and the target region can be a distance between color
histograms or, similarly, PDFs. The knowledge of
where a given color was present within the region is
lost. For example, let us mention the Bhattacharya
distance [16, 38]

DBHA(fTϕ
, fR) =

∫

Rd

√

fR(t) fTϕ
(t) dt (20)

where d is equal to three if all color components are
used. The Kullback-Leibler divergence on geometry-
free PDFs will also be tested in Section 5.

Not accounting for the knowledge of where a given
color was present in the region allows to be more flexi-
ble regarding the geometric transformation ϕ between
the ROI and the target region. However, it increases
the number of potential matches and then the risk for
the tracking to fail after a few frames. This can be
avoided by using a geometry-aware similarity measure.

3.2 Similarity measures with strict ge-
ometry

Geometry can be involved by means of a motion model
(i.e., a constraint on ϕ) used to compute a pointwise
residual between the ROI and a candidate region. A
function of the residual can serve as a similarity mea-
sure: classically, the SSD or functions used in robust es-
timation [5] such as the SAD. The geometric constraint
being strictly defined by the motion model, these mea-
sures might be less efficient if the model is not coher-
ent with the actual motion. Indeed, this might gener-
ate too many outliers in the residual, including in the



PREPRINT – Published in IEEE Transactions on Image Processing 6

Table 1: Bias of the entropy estimator (11) and the cross entropy estimator (14) as a function of k.
Value of k 3 4 5 10 20 30 40

log(k) 1.09 1.39 1.61 2.30 2.99 3.40 3.69
log(k)−ψ(k) 0.18 0.13 0.10 0.05 0.03 0.02 0.01

framework of robust estimation. Moreover, even if the
model is globally coherent with the actual motion, the
choice of the function of the residual is implicitly linked
to an assumption on the PDF of the residual, e.g.,
Gaussian for SSD or Laplacian for SAD. This might
not be valid in case of occlusion for example.

To fix the ideas, let us assume that |Tϕ| = |R| and
let us define the following notations

DSSD(Tϕ, R) =
∑

i∈Ω

(Tϕ(i)−R(i))2 (21)

and

DSAD(Tϕ, R) =
∑

i∈Ω

φ(Tϕ(i)−R(i)) (22)

where φ can be either the absolute value or a smooth
approximation of it, e.g., φ(x) =

√
x2 + ǫ2 − ǫ [44].

3.3 Similarity measures with soft ge-
ometry

The geometric constraint can be soften, e.g., by cascad-
ing a strict geometry approach and a radiometric ap-
proach [3] or, as proposed here, by adding geometry to
the PDF-based approach presented in Section 3.1, i.e.,
by defining a joint radiometric/geometric PDF [20, 6].
Formally, the PDF fU corresponding to the sample set
{U(i), i ∈ Ω} is replaced with the PDF fU,i correspond-
ing to the sample set {(U(i), i), i ∈ Ω}. Therefore, the
color+geometry feature space is R

5. In general, i can
be any couple of independent spatial coordinates. For
the ROI tracking application presented here, normal-
ized Cartesian coordinates (x, y) were chosen: these
coordinates are relative to the center of the bound-
ing box of the ROI (i.e., (x, y) = (0, 0) at the center
of the bounding box) and max(max(|x|),max(|y|)) = 1
among the points of the ROI. Because geometry and ra-
diometry are not comparable data, it might be useful or
even necessary to weight one relatively to the other. It
was decided to multiply the normalized coordinates by
a spatial weight δ, resulting in max(max(|x|),max(|y|))
being equal to δ.

3.4 Enrichment of the radiometric con-
straint

As mentioned earlier, the proposed kNN framework is
valid for any feature space dimension d. In Section 5,
it will be clear that color and geometry as combined

in Section 3.3 can provide enough information even in
challenging situations. Yet, if it accounts for the corre-
lation between a color and its location of appearance, it
does not account for the correlation between the colors
of neighboring pixels. This could be done by involv-
ing, e.g., the color gradient or patches [32, 14] (see
Section 6). The influence of the chosen feature space,
involving geometry and radiometry in several ways, is
illustrated in Fig. 2. In our experiments, the following
cases will be tested:

• U(i) = I(i);

• U(i) = (I(i), γ∇IY (i));

• and U(i) = (Patch3×3(IY (i)), IU (i), IV (i));

where IY is the luminance component of I, (IU , IV )
are the chrominance components, Patch3×3(I(i)) is a
3×3-patch of I centered at i, and γ is a constant.

4 Tracking algorithm

4.1 The main steps

We propose to perform tracking by minimizing the
kNN Kullback-Leibler divergence (19) with respect to
ϕ, or actually a set of parameters defining ϕ. The cho-
sen motion model is “translation+scaling”

ϕ(i) = i+M(i) p (23)

=

[

x
y

]

+

[

x 1 0
y 0 1

]





α− 1
u
v



 (24)

where α is the scaling factor and (u, v) is the trans-
lation. The main steps of the tracking algorithm are
presented in Table 2. The tracking result is represented
by the set {ϕtgt}.

4.2 Series of minimizations

The minimization of (19) with respect to ϕ = (α, u, v)
can be performed by a series of minimizations in
(u, v) at α fixed, as illustrated in Table 2. This
decoupling allows to confine α to a reasonable in-
terval, e.g., [0.98, 1.02]. The minimizations in (u, v)
can be achieved by a gradient descent setting the α-
component of gradient (25) to zero. For computa-
tional considerations, they can instead be performed
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Figure 2: Influence of the feature space. The pixels in green are the 500 nearest neighbors of the pixel marked
with the white cross. The feature space is composed of (in lexicographical order) geometry only; grayscale
intensity only; grayscale intensity and geometry; grayscale intensity, geometry, and gradient; and 3×3-patch and
geometry. When the gradient is added to grayscale intensity and geometry, most of the neighboring pixels are
located on edges with a similar gradient norm and orientation (besides having a similar color and not being to
far away in the image plane) to the pixel of reference.
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Table 2: Tracking algorithm.

• Set the parameters

– Neighboring order: k
e.g.← 3

– Spatial weight: δ
e.g.← 1

– Scaling factors: λ
e.g.← {0.98, 0.99, 1, 1.01,

1.02}
– Radiometric function: U(i)

e.g.
= I(i)

• Manually select a ROI Ω in the reference frame
Iref

1. Let iR = (xR, yR) be the normalized Carte-
sian coordinate system relative to Ω
Perform either 2 or 3 depending on the min-
imization strategy (see below)

2. Either: Set Rα = {(Iref(iR), αδiR), iR ∈ Ω}
for all α ∈ λ

3. Or: Set R = {(Iref(iR), δiR), iR ∈ Ω}

• Let ϕ be the triplet (α, u, v) equal to (1, 0, 0) ini-
tially

• For each remaining frame Itgt taken sequentially

1. Let iT = (xT , yT ) be the normalized Carte-
sian coordinate system relative to ϕ(Ω)
Perform minimization using either strategy 2
or strategy 3

2. Either: Perform a series of minimizations as
follows

(a) For each β ∈ λ
– Determine the translation (m,n)

such that

(m,n) = argmin
(a,b)

DKL(T(a,b), Rβ)

where T(a,b) = {Itgt(iT +(a, b)), δiT ),
iT ∈ ϕ(Ω)} (see Section 4.2)

– Let Dβ be equal to DKL(T(m,n), Rβ)

(b) Determine the triplet (β̃, m̃, ñ) that gave
the lowest Dβ among the |λ| loops of 2a

3. Or: Perform a gradient descent in (α, u, v)
(see Section 4.3) to determine the triplet
(β̃, m̃, ñ) that minimizes DKL(T(m,n), Rβ)
where Rβ is obtained by multiplying the ge-
ometry stored in R by β

4. ϕ = (α, u, v)← (α β̃, u+ m̃, v + ñ)

5. ϕtgt ← ϕ

using a suboptimal search procedure such as the di-
amond search [46], thus following the approach for
block matching of standard video coders. Naturally,
more sophisticated search techniques such as parti-
cle filters [38]4, also known as sequential Monte Carlo
methods, can be used.

4.3 Mean-Shift-based gradient descent

Estimation (19) being defined in the kNN framework,
it is not differentiable. Alternatively, one could think
of using the Parzen formulation of the PDFs and the
Mean-Shift approximation to determine the derivative
of the Kullback-Leibler divergence (see Appendix B)
and then evaluating the derivative using the kNN
framework (see Appendix C)

∇ϕDKL(Tϕ, R)

= − 1

k |Tϕ|
∑

s∈Tϕ

Ds(Tϕ)











d+ 2

ρ2
k(R, s)

∑

t∈Wρk(R,s)

(t− s)

− d+ 2

ρ2
k(Tϕ, s)

∑

t∈Wρk(Tϕ,s)

(t− s) −
∑

t∈Tϕ

|t−s|=ρk(Tϕ,t)

t− s
ρk(Tϕ, t)











(25)

where Ds(Tϕ) is a 3 × d-matrix involving frame gra-
dients and Wρk(·,s) is a window of radius ρk(·, s) cen-
tered at sample s. (The definitions of all the involved
terms are given in the developments presented in Ap-
pendices B and C which lead to derivative (25).) As a
consequence, the ROI tracking could be solved by gra-
dient descent in the space of the parameters (α, u, v).
However, the sensitivity of the similarity measure with
respect to the scaling α is much higher than the sen-
sitivity with respect to translation. In practice, this
can lead to undesirable convergence behaviors such as
finding a match in the target frame at a scale different
from the scale of the reference ROI (i.e., the reference
could be matched to a region much larger or much
smaller). Therefore, a procedure based on a series of
minimizations might be preferable (see Section 4.2).

5 Experimental results - Part 1

5.1 Setup

The proposed kNN-based algorithm presented in Sec-
tion 4 will be referred to as kNN-KL-G where KL
stands for Kullback-Leibler and G stands for geometry.

4These methods are particularly efficient in case of total oc-
clusion of the target on several frames.
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It was compared to four other trackers: (i) a geometry-
free version of the proposed method (kNN-KL), (ii) a
version of the proposed method where the kNN ex-
pression (19) of the divergence was replaced with an
estimation based on Parzen windowing5 (Pz-KL-G),
(iii) an SAD version of the algorithm described in Ta-
ble 2 (i.e., replacing the Kullback-Leibler divergence in
step 2a by energy (22)), and (iv) a Mean-Shift-based
tracker whose implementation is publicly available [15].

Note that in these comparisons, we focused on the
pros and cons of the different similarity measures and
their approximations. To try to avoid “corruption” of
the results by other methodological aspects, we kept
the tracking algorithm simple, purposely setting aside
improvements such as reference update and motion
prediction. Moreover, for a fair comparison between all
these methods, the experimental setup of the above-
mentioned Mean-Shift implementation was followed,
namely, a rectangular ROI Ω (see Figs. 3, 4, and 6
for the dimensions) and a translation only motion ϕ
(i.e., λ = {1}) with a pixel resolution. The chosen ra-
diometric space was YUV simply because the standard
test sequences used in our experiments are available in
this color space.

For the kNN-based methods, parameter k in (19)
was chosen equal to 3, which satisfies the conditions
mentioned after Eq. (16). An experimental study of
the stability of the proposed method with respect to
this parameter is presented in Section 5.7. The dis-
tance ρk(U, s) to the k-th nearest neighbor of s in U
was defined in the classical Euclidean sense. For its
computation, we used a publicly available implemen-
tation [27].

The components of the feature vectors were normal-
ized as follows: Y, U, and V were rescaled into the
interval [0, 1] and, as explained in Section 3.3, the co-
ordinates (x, y) were rescaled into [−1, 1], both in the
ROI and the candidate regions, the origin being located
at the center of the bounding box of the region. The
spatial weighting δ was taken equal to 1.

The minimization in ϕ = (u, v) was implemented
using a suboptimal search procedure known as the di-
amond search [46]. Tracking was performed with Iref
being set to I1 while Itgt was successively equal to It,
t = 2, 3, 4 . . . When searching for the ROI in frame It,
the search area was empirically limited to ±12 pixels
horizontally and vertically around the position of the
center of the ROI computed in frame It−1.

5.2 Partial occlusions

Sequence “Car” is an aerial car chase which is part
of the VIVID tracking testbed [15]. It is composed of

5This Kullback-Leibler implementation is publicly avail-
able [29].

Frame 1 Frames 30 & 60 (cropped)

Frames 90 & 120 (cropped) Frame 150
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kNN−KL−G
kNN−KL
Mean−Shift
SAD
Pz−KL−G
frame drop
occlusion

Figure 3: Tracking on sequence “Car” (frame indices
are relative to the reference frame). kNN-KL-G (pro-
posed method): green; kNN-KL: cyan; Pz-KL-G: pink;
Mean-Shift: red; SAD: white on the frames and black
in the diagram. There is a frame drop of several frames
at frame 38 (vertical dashed line in the diagram) and
the tracked car is partially occulted by trees from frame
42 to frame 122 (gray area in the diagram). The dia-
gram represents the shift (in percent of the ROI diago-
nal length in pixel) with respect to a manually defined
tracking as a function of the frame index. Ω: 95×47-
rectangle.

640×480-frames. Tracking was performed on 150 con-
secutive frames (see Fig. 3). kNN-KL eventually lost
the ROI and ended up tracking the second car which
has colors similar to the ROI. This is probably due to
the fact that it is based on radiometry only. Pz-KL-G
also failed in tracking the first car. Mean-Shift per-
formed quite well although the tracking shifted upward
when occlusion occurred in order to avoid including
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the green colors of the trees in the color PDF. Con-
cerning SAD, the translation model being fairly well
respected within the ROI, taking the pointwise resid-
ual makes sense while the use of the absolute value is
robust to the outliers arising from the occlusion. As a
consequence, the car was accurately tracked. Finally,
kNN-KL-G also performed very well.

5.3 Variations of luminance

Sequence “Crew” is composed of 352 ×288-frames.
Two faces were tracked on 80 consecutive frames (see
Fig. 4). kNN-KL-G tracked the faces successfully. The
other methods sooner or later lost the ROIs, apparently
due to the variations of luminance. This is particularly
obvious with (i) Mean-Shift which brutal changes in
tracking shift match the camera flashes in frames 16,
20, and 61 for the face on the left, and in frames 1,
7, and 61 for the face on the right, and (ii) kNN-KL
which tracking error seems to follow the curve of the
average intensity.

5.4 Noisy sequence

Sequence “Schnee” is composed of 768×576-frames.
Two cars were tracked on 160 consecutive frames (see
Fig. 5). This sequence can be considered noisy due to
the snowflakes which fall rather densely. Despite this
“Salt” noise, the two cars were accurately tracked by
kNN-KL-G. SAD also performed quite well. The ob-
jects being small and rather homogeneous, their mo-
tion could be considered as a translation. Therefore
the strict geometric constraint of SAD is not violated.
Clearly, Mean-Shift was disturbed by the noise. The
other two methods (kNN-KL and Pz-KL-G) worked
pretty well for one car but failed for the other one.
These methods have their similarity measure in com-
mon. However, only one involves geometry. This result
appears difficult to interpret and might only be fortu-
itous.

5.5 Complex motion

Sequence “Football” is composed of 352×288-frames.
Tracking was performed on 20 consecutive frames (see
Fig. 6). Note that part of the public has colors sim-
ilar to colors that can be found in the ROI. In some
frames, this area of the public is right above the ROI.
This is probably the reason why kNN-KL stayed stuck
in this region. Moreover, as the player runs, he turns
and almost faces the camera toward the end of the
sequence. Therefore, the translation model is not ap-
propriate. This can explain why SAD, which relies on
a strict translation model, lost the ROI in the first
frames. Mean-Shift succeeded to track the ROI ap-
proximately. However, it could not avoid being at-
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Figure 6: Tracking on sequence “Football” (frame in-
dices are relative to the reference frame). kNN-KL-G
(proposed method): green; kNN-KL: cyan; Pz-KL-G:
pink; Mean-Shift: red; SAD: white on the frames and
black in the diagram. This sequence is characterized
by a fast motion generating motion blur. Moreover,
the motion of the object of interest has a rotational
component responsible for the disappearance of some
areas and the exposure of others. The diagram repre-
sents the shift (in percent of the ROI diagonal) with
respect to a manually defined tracking as a function of
the frame index. Ω: 43×43-square.
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Figure 4: Tracking on sequence “Crew” (frame indices are relative to the reference frame). kNN-KL-G (proposed
method): green; kNN-KL: cyan; Pz-KL-G: pink; Mean-Shift: red; SAD: white on the frames and black in the
diagrams. There are two kinds of intensity changes in the sequence: a slight, continuous intensity increase as the
crew walks out of a dark area, and some strong and brief intensity peaks due to camera flashes (vertical dashed
lines in the diagrams). The diagrams represent the shift (in percent of the ROI diagonal length in pixel) with
respect to manually defined trackings as a function of the frame index. The diagram on the top corresponds to
the face on the left. The vertical axis on the right of each diagram corresponds to the blue dashed curves which
represent the evolution of the average intensity (Y component) within the manually defined trackings. The
average intensity in frame 1 is taken as the reference and the scale is in unit of intensity. Both the continuous
intensity increase and the camera flashes are noticeable. Ω: 33×52-rectangle.
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Figure 5: Tracking on sequence “Schnee” (frame indices are relative to the reference frame). kNN-KL-G
(proposed method): green; kNN-KL: cyan; Pz-KL-G: pink; Mean-Shift: red; SAD: white on the frames and
black in the diagrams. This sequence can be considered noisy due to the snowflakes. The diagrams represent
the shift (in percent of the ROI diagonal) with respect to manually defined trackings as a function of the frame
index. The diagram on the top corresponds to the car on the left. Ω: a 38×42-square for the car on the left
and a 34×42-square for the car on the right.
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Table 3: Summary of the comparisons on the four se-
quences “Car”, “Crew”, “Schnee”, and “Football”.
Fig. Best results Worst results
3 kNN-KL-G, SAD

& (to some extent)
Mean-Shift

kNN-KL & Pz-KL-G

4a kNN-KL-G kNN-KL & Mean-
Shift

4b kNN-KL-G & (to
some extent) SAD &
Pz-KL-G

kNN-KL & Mean-
Shift

5a kNN-KL-G & SAD kNN-KL & Mean-
Shift

5b kNN-KL-G, SAD,
kNN-KL & (to some
extent) Pz-KL-G

Mean-Shift

6 kNN-KL-G & Pz-
KL-G

kNN-KL & SAD

tracted by the public. The geometric constraint of
kNN-KL-G and Pz-KL-G allowed to avoid being at-
tracted by the public area (where the color spatial ar-
rangement is different from that of the reference ROI)
while being soft enough to deal with the mismatch be-
tween the translation model and the actual motion.
The resulting trackings are accurate. (Nevertheless,
kNN-KL-G performed better than Pz-KL-G, arguably
because it relies on variable kernel bandwidth.)

To support these conclusions, the distance between
the reference ROI and candidate regions in frame 20
was computed as a function of the translation parame-
ters for SAD, kNN-KL, Pz-KL-G, and kNN-KL-G (see
Fig. 7). The red spot at the center of the plane repre-
sents the correct motion. The SAD minimum is shifted
as a result of the inappropriateness of the translation
model between frame 1 and frame 20. kNN-KL has sev-
eral local minima as there are several possible matches
when accounting for radiometry only. By adding ge-
ometry, Pz-KL-G allows to find a unique minimum,
although not at the right location. This is certainly
due to the reduced accuracy of the Parzen-based esti-
mator of the statistical measure in R

5. Finally, kNN-
KL-G has a minimum that matches the correct motion.
Also note that the kNN-KL-G criterion seems strictly
convex in a large window around the minimum. This
property is interesting for the convergence of optimiza-
tion algorithms (diamond search in our case).

5.6 Summary

The previous comparisons could be coarsely summa-
rized by selecting the two or three best and worst meth-
ods for each of the four sequences (see Table.3). The
conclusions that could be made are:

Table 4: Stability of kNN-KL-G with respect to k: av-
erage norm of the tracking shifts, norm of the sum of
the shifts (both in percent of the ROI diagonal length
in pixel), and orientation of the sum of the shifts (in
degree) taking the result obtained with k = 3 as a ref-
erence.

Value of k 3 10 20 43=
√

|Ω|
Avg norm Ref. 0.46 1.69 2.65
Sum norm Ref. 0.60 1.80 1.30
Sum angle Ref. 118 -68 117

• kNN-KL almost always fails. This is a known ef-
fect of not taking geometry into account (see Sec-
tion 3.1);

• Mean-Shift fails in most of our tests (variation of
illuminance and noise) but can also perform quite
well;

• SAD might represent a computationally efficient
alternative to kNN-KL-G if accuracy is not a ma-
jor requirement. Unfortunately, it can fail com-
pletely when the motion is complex (see Fig. 6)
since it relies on a strict geometric constraint (see
Section 3.2);

• The performance of Pz-KL-G ranges from rea-
sonably good to totally unacceptable. It relies
on the Parzen approach instead of the proposed
kNN framework to estimate the chosen statisti-
cal measure and therefore allows to illustrate the
expected advantages of kNN (see Section 2.2 and
Appendix A);

• Finally, kNN-KL-G represents the best option in
all cases.

5.7 Stability with respect to k

To evaluate the stability of kNN-KL-G with respect
to the choice of parameter k, tracking was performed
on sequence “Football” with various values of k that
comply the conditions mentioned in Section 2.2. The
tracking obtained for k equal to 3 was taken as a refer-
ence and the average shifts over the 20 frames resulting
from using other values were measured (see Table 4).
In each frame, the vectorial shift between the bounding
box obtained for k = 3 and the bounding box obtained
for another value of k was determined. The second line
in Table 4) corresponds to the average of their norm.
It tells us that, as k gets further away from the chosen
value of reference, the solution of the tracking has also
a tendency to shift away from the solution of reference.
This is not surprising and, looking at the numbers, this
behavior is not excessive. The third and fourth lines of
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Figure 7: Distance between the reference ROI of sequence “Football” and candidate regions in frame 20 as a
function of horizontal and vertical translations: (in lexicographical order) SAD, kNN-KL, Pz-KL-G, and kNN-
KL-G (proposed method). The dashed box is a 12×12-square (same size as the search window). The red spot
at its center represents the correct translation. The SAD and Pz-KL-G minima are shifted, kNN-KL has two
local minima, and the minimum of kNN-KL-G seems accurate.

Table 4) correspond to, resp., the norm and the orienta-
tion of the sum of the the shift vectors in the successive
frames. They tell us about the coherence of the shifts
for the different values of k. Apparently, there is no
such coherence, the summed shifts being of negligible
norms with various orientations. In conclusion, as k in-
creases, the tracking shift tends to oscillate more and
more around the solution for k = 3, but confined in an
acceptable range and without any obvious coherence.
Therefore, the method appears to be quite stable with
respect to k.

6 Experimental results - Part 2

6.1 Setup

From now on, the proposed method will be com-
pared with variants of itself. Consequently, there are
no constraints on the experimental setup and then
scaling will be taken into account by choosing λ =
{0.98, 0.99, 1, 1.01, 1.02}, and the gradient of the lumi-
nance and patches of the luminance will be optionally
used as additional radiometric features.

The frames of the sequences already presented were
available in the YUV color space. In the following,
another sequence [21] will be used. It was available
in the RGB space but will be converted to the YUV
space before processing. The components of the feature
vectors were normalized as follows: Y, U, and V, were
rescaled into the interval [0, 1], the gradient of the lumi-
nance Y (whenever used) was computed using the filter
[−1, 9,−45, 0, 45,−9, 1]/60 and rescaled using γ = 10,
and, as a reminder, the coordinates (x, y) were rescaled
into [−1, 1]. The spatial coordinates were further mod-
ified by applying the spatial weighting δ for the tar-
get and the scaling αδ for the reference, meaning that
(xR, yR) actually belongs to the interval [−αδ, αδ]2 and
(xT , yT ) belongs to [−δ, δ]2.

The minimization in ϕ = (α, u, v) was either per-
formed by a series of minimizations at α fixed (see Sec-

tion 4.2) implemented using a suboptimal search proce-
dure known as the diamond search [46], or by a gradient
descent procedure: for stability, the gradient (25) was
normalized such that the translation component has a
norm equal to one and the scaling component is either
0.99 or 1.01. The former minimization strategy will be
referred to as “Discrete search” and the latter one as
“Gradient search”.

The other aspects of the setup were identical to Sec-
tion 5.1.

6.2 A first example with scaling

Sequence “WaterObject” is composed of 352×288-
frames. Tracking was performed on 95 consecutive
frames using the discrete search with δ = 1 and ra-
diometry limited to the color information (see Fig. 8).

6.3 Influence of δ

A tracking was performed on 60 consecutive frames of
sequence “Crew” using the discrete search and two val-
ues of δ: 0.6 and 1. The radiometric information was
limited to color (see Fig. 9). As expected, the spa-
tial weighting has an influence on the tracking quality.
Nevertheless, it is not dramatic since it seems to play
mostly on the duration the tracking can be considered
accurate rather than acting on the stability of the pro-
cessing.

6.4 Gradient as an additional radio-
metric feature

A tracking was performed on 150 consecutive frames
of sequence “Crew” using the discrete search and δ =
0.6. The feature space was either color+geometry
or color+gradient of the luminance+geometry (see
Fig. 10). Clearly, the addition of the gradient infor-
mation improved the tracking accuracy. As mentioned
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Figure 8: Tracking on sequence “WaterObject” (frame
indices are relative to the reference frame). This se-
quence is characterized by zooms in and out. The di-
agram represents the scaling of the ROI (parameter α
times 100) as a function of the frame index. To deduce
the scaling in terms of area, the value must be divided
by 100 and squared. At the highest point, the ROI is
almost 1.7 times larger in area than Ω, a 48×28-square,
and around 0.7 times smaller at the lowest point.

earlier, any other feature can be added without algo-
rithm modifications (it only add terms to the Euclidean
distance computation between the feature vectors dur-
ing the kNN search). It does not necessarily mean that
more features implies better tracking accuracy (see Sec-
tion 6.6).

6.5 Discrete search vs. gradient search

Sequence “Poltergay” [21] is composed of 720×576-
frames in JPEG format. Tracking was performed
on 100 consecutive frames using either the discrete

Frame 1 (cropped) Frame 20 (cropped)

Frame 40 (cropped) Frame 60 (cropped)

Figure 9: Tracking on sequence “Crew” (frame indices
are relative to the reference frame). δ = 1: dotted line;
δ = 0.6: dashed line. Ω: 33×52-rectangle.

search or the gradient search with δ = 0.8 and the
feature space defined as color+gradient of the lumi-
nance+geometry (see Fig. 11). As expected, the dis-
crete search performed better than the gradient search
due to the presence of local minima which can mislead
a gradient descent (the gradient search performed very
decently, though). However, this is at the cost of a
computational time 7 times higher.

6.6 Noisy sequences

A tracking was performed on 100 consecutive frames
of two degraded versions of sequence “Poltergay” us-
ing the discrete search, δ = 0.8 and the feature space
being either (i) color+geometry, (ii) color+gradient
of the luminance+geometry, or (iii) “patch 3×3 on
Y”+U+V+geometry (space of dimension 13). The
first degradation was obtained by compressing each
frame at a very low rate using a JPEG2000 coder (see
Fig. 12). The original frames in JPEG format have
a size of around 32 kB. The JPEG2000 compression
rate was chosen such that the size went down to 4kB.
For the second degradation, each color channel of each
frame was corrupted by a Gaussian noise of mean zero
and variance equal to 9 (see Fig. 12).

The proposed method being independent of the ROI
shape, the rectangular shape used so far for Ω was re-
placed with an ellipse with a bounding box of 63×101
pixels.

Both feature spaces (i) and (ii) dealt very well with
the JPEG2000 artifacts (see Fig. 13). Therefore, fea-
ture space (iii) was not even considered. However,
since the Gaussian noise largely corrupted the gradi-
ent of the frames, the color+gradient+geometry fea-
ture space did not allow to track the object. Although
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Figure 12: Detail of frame 1 of sequence “Poltergay” (in lexicographical order) uncorrupted, corrupted by
JPEG2000 compression artifacts, and corrupted by a Gaussian noise.
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Figure 13: Tracking on sequence “Poltergay” in the presence of JPEG2000 compression artifacts (frame indices
are relative to the reference frame). Without the gradient of the luminance (feature space (i)): green; with the
gradient (feature space (ii)): yellow. Ω: ellipse with a bounding box of 63×101 pixels.
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Figure 14: Tracking on sequence “Poltergay” in the presence of Gaussian noise (frame indices are relative to the
reference frame). Without the gradient of the luminance (feature space (i)): green; with the gradient (feature
space (ii)): yellow; with the patches (feature space (iii)): blue. Ω: ellipse with a bounding box of 63×101 pixels.
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Figure 10: Tracking on sequence “Crew” (frame in-
dices are relative to the reference frame). Without the
gradient of the luminance: green; with the gradient:
yellow. The diagram represents the scaling of the ROI
(parameter α times 100) as a function of the frame in-
dex for the solution that used the gradient. To deduce
the scaling in terms of area, the value must be divided
by 100 and squared. At the highest point, the ROI
is more than 3 times larger in area than Ω, a 33×52-
rectangle.

not satisfying, the color+geometry space produced a
more acceptable tracking (actually, it is even quite ac-
curate until frame 22 (not shown in Fig. 14)). It is only
when considering patches (feature space (iii)) that the
tracking becomes fully accurate (see Fig. 14). This ro-
bustness to noise of patches is not surprising since they
were used for denoising [11, 12].
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Figure 11: Tracking on sequence “Poltergay” (frame
indices are relative to the reference frame). Discrete
search: dashed line; gradient search: plain line. The
diagram represents the scaling of the ROI (parameter
α times 100) as a function of the frame index for the
solution using the discrete search. To deduce the scal-
ing in terms of area, the value must be divided by 100
and squared. At the highest point, the ROI is more
than 4 times larger in area than Ω: 63×101-rectangle.

7 Conclusion and ongoing works

This paper presents a general framework for estimat-
ing high-dimensional statistical measures to perform
ROI tracking. We focused on a measure derived from
entropy as proofs of consistency and unbiasedness ex-
ist [26, 31].

The kNN-based PDF estimate has two advantages
for dealing with high-dimensional data. First, it re-
lies on a non-parametric approach which uses variable
size kernels to adapt to the local density of samples.
Second, it allows to derive expressions of PDF-based
measures (such as entropy or the Kullback-Leibler di-
vergence) without computing explicitly the PDFs. Al-
though the kNN framework was mentioned in a semi-
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nal work on Mean-Shift a while ago [24], it has rarely
been used in image processing so far, except for high-
dimensional clustering [25]. To our knowledge, no
tracking method has never been proposed in this frame-
work yet.

In term of comparison with other approaches, the
proposed method can be characterized by such key-
words as statistical, non-parametric, variable kernel
bandwidth (kNN), joint color and geometry processing,
and soft geometric constraint. (i) SAD, or similar non-
robust and robust similarity measures, is deterministic
in essence although it corresponds to solving the track-
ing problem with a parametric assumption on the resid-
ual PDF. The strict geometrical constraint does not al-
low much tolerance regarding motion model mismatch
and the parametric PDF assumption prevents data fit-
ting. (ii) kNN-KL can adapt to the data thanks to its
non-parametric nature and the use of a variable kernel
bandwidth. Because of its statistical point of view, it
can account for some color variability of the ROI. Un-
fortunately, as it is well known, the absence of geomet-
ric constraint is a serious penalty. (iii) Pz-KL-G does
include a soft geometrical constraint. However, the
approximation of a PDF-based measure using a fixed
kernel bandwidth, i.e., without adjustment to the local
density of the samples, is a weakness, as is clear from
the experimental results. (iv) The Mean-Shift-based
tracker used in the comparisons [16, 15] rely on an-
other statistical measure: the Bhattacharya measure.
Whether the differences observed between this tracker
and the proposed method in the experimental results
presented here depends on the measure itself or on the
way geometry is involved6 is unclear. Finally, (v) to a
certain extent, the proposed method seems to provide
answers to the problems (i) to (iii).

Current works will focus on extending the kNN
framework to other statistical measures such as mu-
tual information [43] or the Bregman divergence [4].
Moreover, a study of the kernel bandwidth estima-
tion approach, including the balloon estimation (kNN),
the sample point estimation [17], or a hybrid estima-
tion [39], will be carried out.

A Parzen windowing method
and limitations

The duality between (7) (number of samples in a fixed
volume) and (8) (volume necessary to contain a fixed
number of samples) appears clearly. These two ap-
proaches were compared in a simple situation: let P
and Q be two sets of samples of R

d drawn from two

6A Gaussian weighting of the features according to their dis-
tance to the center of the ROI (which can be seen as a radial
layout constraint) for the Mean-Shift-based tracker versus a joint
radiometric/geometric processing for kNN-KL-G.

normal laws of mean 128 in each dimension and 132 in
each dimension, resp., and two different, randomly gen-
erated, diagonally dominant covariance matrices. The
Kullback-Leibler divergence DKL(P,Q) was estimated
using the Parzen-based method of toolbox [29] and us-
ing the kNN-based expression (19) choosing k = 3.
Two series of experiments were performed: (i) with a
fixed sample size |P | = |Q| = 1000 and the feature
space dimension varying between 1 and 10; and (ii)
with a fixed dimension d = 5 and a sample size7 varying
between 100 and 10000. The estimations were repeated
100 times (i.e., using 100 different sample drawings for
each set of parameters) and averaged (see Fig. 15)8.
These experiments illustrate the curse of dimension-
ality and suggest that the kNN framework is better
adapted to estimate the Kullback-Leibler divergence
than the Parzen approach, especially in high dimen-
sion and even with few samples.

B Derivative of the Kullback-
Leibler divergence

B.1 Expression

The Kullback-Leibler divergence is equal to

DKL(fTϕ
, fR) = H×(fTϕ

, fR)−H(fTϕ
) (26)

where the cross entropy H×(fTϕ
, fR) can be approxi-

mated by (13)

H×(fTϕ
, fR) ≃ − 1

|Tϕ|
∑

s∈Tϕ

log fR(s), (27)

and the differential entropy H(fTϕ
) can be approxi-

mated by the Ahmad-Lin estimator [1]

HAL(Tϕ) = − 1

|Tϕ|
∑

s∈Tϕ

log fTϕ
(s). (28)

In (28), the PDF is by definition equal to

fTϕ
(s) =

1

|Tϕ|
∑

t∈Tϕ

Kσ(s− t). (29)

The same estimation (replacing Tϕ with R) will be used
in (27).

Therefore, we have

E(ϕ) :=
∑

s∈Tϕ

log fR(s)− log fTϕ
(s) (30)

≃ −|Tϕ| DKL(fTϕ
, fR). (31)

7Still with the condition |P | = |Q|.
8Note that the covariance matrices in Experiment (i) (i.e.,

|P | = |Q| = 1000) for d = 5 and Experiment (ii) (i.e., d = 5) for
|P | = |Q| = 1000 were different. Therefore, the corresponding
divergences do not match.
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Figure 15: Comparison of the estimations of the
Kullback-Leibler divergence between two normal laws
using a Parzen-based method and the kNN approach.
Theoretical divergence: gray line; Parzen-based es-
timation: star-shaped dots; kNN-based estimation:
square-shaped dots. (in lexicographical order) Fixed
sample size (1000) and varying dimension; Fixed di-
mension (5) and varying sample size.

Note that |Tϕ| is constant for all candidate regions
in a given frame. Consequently, taking the derivative
of (30) with respect to ϕ does not require to care about
the interval of summation. Let the transformation ϕ
be a translation (u, v) combined with a scaling by α.
Sample set Tϕ is equal to

Tϕ = {(Itgt(x+u, y+ v), x/α, y/α), (x, y) ∈ Ω}. (32)

The derivative of (30) with respect to ϕ = (α, u, v) is

equal to

∇E(ϕ) =
∑

s∈Tϕ





1

fR(s)

1

|R|
∑

t∈R

∂

∂ϕ
Kσ(s− t)

− 1

fTϕ
(s)

1

|Tϕ|
∑

t∈Tϕ

∂

∂ϕ
Kσ(s− t)



 (33)

=
∑

s∈Tϕ





1

fR(s)

1

|R|
∑

t∈R

Ds(Tϕ) ∇Kσ(s− t)

− 1

fTϕ
(s)

1

|Tϕ|
∑

t∈Tϕ

∂

∂ϕ
Kσ(s− t)



 (34)

where

Ds(Tϕ) =





0 0

∇IY
tgt

(

sx + u
sy + v

)

∇IU
tgt

(

sx + u
sy + v

)

0 − 1
α2 [sx sy]

∇IV
tgt

(

sx + u
sy + v

)

[

0
]

[2×2]



 .(35)

Matrix Ds has p lines corresponding to the number
of parameters of the motion model ϕ and d columns
corresponding to the dimension of the feature space
(here, (Y, U, V, x, y)). After some steps, one gets

∇E(ϕ) =
∑

s∈Tϕ

Ds(Tϕ)





∇fR(s)

fR(s)
− ∇fTϕ

(s)

fTϕ
(s)

+
1

|Tϕ|
∑

t∈Tϕ

∇Kσ(t− s)
fTϕ

(t)



 . (36)

B.2 Term interpretation

Let us focus on the following term of (36)

A(s) :=
1

|Tϕ|
∑

t∈Tϕ

∇Kσ(t− s)
fTϕ

(t)
. (37)

When the number of samples |Tϕ| tends toward infinity,
A tends toward

A∞(s) =

∫

Rd

fTϕ
(t)
∇Kσ(t− s)
fTϕ

(t)
dt. (38)

Kernel Kσ is radially symmetric. Therefore, for all x
and y such that x = −y, we have

∇Kσ(x) = −∇Kσ(y). (39)

Consequently, (38) convergences (at least weakly) to-
ward zero.
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C Derivative of the divergence:

Mean-Shift-based approxima-
tion and kNN implementa-
tion

C.1 Mean-Shift

In the context of tracking, Mean-Shift is often used to
refer to a Mean-Shift-based algorithm. Here, it refers
to the original meaning of approximation of ∇f/f
using the shift from the mean of neighboring sam-
ples [24, 23]9

∇f(s)

f(s)
≃ d+ 2

σ2
(s̄σ − s) (40)

where

s̄σ =
1

n

∑

t∈Wσ(s)

t (41)

is the mean of the samples (which happen to be n in
number) contained in a window Wσ of radius σ cen-
tered at s. If f is a normal distribution with mean µ
and variance σ2, then the Mean-Shift has the following,
simple analytical expression

∇f(s)

f(s)
=
µ− s
σ2

. (42)

C.2 kNN-based expression

The first two terms enclosed in parentheses in (36) can
be approximated using the Mean-Shift (40). The ex-
pression of the mean (41) can be replaced with its kNN
equivalent [24]

s̄ρk(s) =
1

k

∑

t∈Wρk(s)

t. (43)

In the third term enclosed in parentheses in (36), the
PDF fTϕ

can also be replaced with its kNN expres-
sion (8). Therefore, using the Mean-Shift approxima-
tion, the derivative of the Kullback-Leibler divergence
can be written as a kNN-based expression

k ∇E(ϕ) =
∑

s∈Tϕ

Ds(Tϕ)





d+ 2

ρ2
k(R, s)

∑

t∈Wρk(R,s)

(t− s)

− d+ 2

ρ2
k(Tϕ, s)

∑

t∈Wρk(Tϕ,s)

(t− s)

+vd

∑

t∈Tϕ

ρd
k(Tϕ, t) ∇Kρk(Tϕ,t)(t− s)





(44)

9In [23], see page 534.

where Kρk(Tϕ,t)(· − s) is a window of radius ρk(Tϕ, t)
centered at s.

C.3 Term approximation

Let us now focus on the following term of (44) (which
corresponds to the kNN version of (37))

AkNN(s) :=
∑

t∈Tϕ

ρd
k(Tϕ, t) ∇Kρk(Tϕ,t)(t− s). (45)

In light of Appendix B.2, this term could be neglected
if |Tϕ| is large enough. Nevertheless, let us propose an
approximation of it.

Window Kρk(Tϕ,t)(· − s) at t is equal to

1/(ρd
k(Tϕ, t) vd) if |t − s| ≤ ρk(Tϕ, t) and zero other-

wise. A finite difference approximation can be used to
write

∇Kρk(Tϕ,t)(t−s) =

{

1
ρd

k
(Tϕ,t) vd

s−t
|s−t| if |s−t| = ρk(Tϕ, t)

0 otherwise.

(46)
Therefore, term (45) can be approximated by

AkNN(s) ≃ 1

vd

∑

t∈Tϕ

|t−s|=ρk(Tϕ,t)

s− t
ρk(Tϕ, t)

. (47)

This approximation leads to the final expression (25) of
the kNN-based derivative of (19). Note that, in prac-
tice, the summation condition |t−s| = ρk(Tϕ, t) should
be understood as |t− s| ∈ ρk(Tϕ, t)± ǫ for a small ǫ.
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