-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk
provided by HAL-UNICE

HAL

archives-ouvertes

Finite Elements for a Beam System With Nonlinear
Contact Under Periodic Excitation

Hamad Hazim, B. Rousselet

» To cite this version:

Hamad Hazim, B. Rousselet. Finite Elements for a Beam System With Nonlinear Contact
Under Periodic Excitation. Etude de la propagation ultrasonore en milieux non homogenes en
vue du controle non-destructif, Jun 2008, France. pp.149, 2008. <hal-00418504>

HAL Id: hal-00418504
https://hal-unice.archives-ouvertes.fr /hal-00418504
Submitted on 11 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche frangais ou étrangers, des laboratoires
publics ou privés.


https://core.ac.uk/display/52788944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-unice.archives-ouvertes.fr/hal-00418504

Finite Elements for a Beam System With
Nonlinear Contact Under Periodic Excitation

H. Hazim, B. Rousselet

Abstract Solar arrays are structures which are connected to saselitiring launch,
they are in a folded position and submitted to high vibragidn order to save mass,
the flexibility of the panels is not negligible and they mayk& each other; this may
damage the structure. To prevent this, rubber snubbersaueted at well chosen
points of the structure; a prestress is applied to the snbbtit is quite difficult to
check the amount of prestress and the snubber may act onlgeside; they will
be modeled as one sided springs (see fiure 2).

In this article, some analysis for responses (displaceshémtboth time and fre-
quency domains for a clamped-clamped Euler-Bernoulli beradel with a spring
are presented. This spring can be unilateral or bilateratifat a point. The mount-
ing (beam +spring) is fixed on a rigid support which has a sida& motion of
constant frequency.

The system is also studied in the frequency domain by swgdpaguencies be-
tween two fixed values, in order to save the maximum of digstants correspond-
ing to each frequency. Numerical results are compared wilctesolutions in par-
ticular cases which already exist in the literature.

On the other hand, a numerical and theoretical investigaifononlinear normal
mode (NNM) can be a new method to describe nonlinear belrs\hds work is in
progress.
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Fig. 1 At left: solar arrays from folded to final position, at rigipicture for the satellite AMC12
from Thales Alenia Space company

1 Introduction

1.1 Previous Works

In articles 1], [#1, [5] et [19], proposed by Thales Alenip&e research team, the
dynamic of a beam sytem with a nonlinear contact force, uageriodic excitation
given as an imposed acceleration form is studied both neailriand experimen-
tally. When sweeping frequencies in an interval which cost@igen frequencies
of the beam, resonance phenomena appear as well as newfcepieaused by the
unilateral contact.

Finite element method in space domain is used, followed byarical integration

of the ordinary differential systems using specific sofeviike 'STRDYN’ of the
finite element package DIANA.

The frequency sweeping is done in different ways, one ofehesy is such as the
frequencyf changes as a function of the timaccording to f (t) = f52%/60 where
sis the sweep rate in octaves/min afpds the start frequency of the sweep. Results
prove differences between sweep-down and sweep-up aragel eequencies of
the system where solutions are unstable.

At each value of the timg computation is done and the maximum of displacement
and acceleration are saved.

Finally, comparison is made in time and frequency domaiesyben linear and
nonlinear cases.



Finite Elements for a Beam System With Nonlinear ContactédiiReriodic Excitation 3

Solar Arrays
d(t d(t)

| [ |
V)’ M . i i B
o}
§ P 5 41 K }

y *
Rubber Snubber
o
o

Fig. 2 left: Simplified Mechanical Model, right: folded solar aysawith snubbers

1.2 Present Work

This work is part of the phd work of the author under the guaeof B. Rousselet
with the support of Thales Alenia Space, France.
Some analysis for responses (displacements) in both tirddraguency domain
for a clamped-clamped Euler-Bernoulli beam model with @dinspring are pre-
sented, the spring can be unilateral or bilateral fixed afiat pbhe mounting (beam
+spring) is fixed on a rigid support which has a sinusoidaliombf constant fre-
quency.
The system is also studied in the frequency domain by swgdpeguencies be-
tween two fixed values, such as saving the maximum of displaoés correspond-
ing to each frequency.

Numerical results are compared with exact solutions ini@#gr cases which
already exist in the literature.
On the other hand, a numerical and theoretical investigaifononlinear normal
mode (NNM) can be a new method to distinguish linear from imaar cases.

2 Simplified Mechanical Model

The study of the total dynamic behavior of solar arrays inld€d position with
snubbers are so complicated, that to simplify, a solar asrapodeled by a clamped-
clamped Bernoulli beam with one-sided linear spring. Tlyistem is fixed on a
shaker which has a vibratory motiaitt) see figure[(2).

The motion of this beam system is modeled by the following PEh bound-
ary conditions u(0,t) = u(L,t) = d(t) anddku(0,t) = dku(L,t) = O:
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Bilateral spring: pS(x,t) + Elu™(x,t) =k (d(t) —u(xo,t))d, (1)
Unilateral spring: pSti(x,t) + Elu™ (x,t) = ke (d(t) —u(xo,t))+ &,  (2)

u.. is the function defined by, = “*2‘“‘ L= 0.485 m beam length.

k- = spring stiffness. d(t) = —ﬁz sin(2mft) is the shaker motion.
p = 2700kg/m® beam density. S=7,5.10"4n?¥ cross sectional area.
E = 7.10'°N/n? Young’'s modulus. | =1,41.10"8 m* second moment of area.

This data are taken frof@]. The classical Hermite cubic finite element approxima-
tion is used here to find an approximate solution for equal@n and ﬂ!), we find
then two ordinary differential systems in the form :

M@+ Kag = ki (d(t) — k)8 ©)

M@+ Kg =k (d(t) — 0x)+ 8¢ 4)

M etK are respectively the mass and the stiffness assembledtesris the vec-
tor of degree of freedom of the beagn~= (ui, deui), i = 1,2, ...,n. To each node are
associated two degrees of freedom, the displacement aderitative.

To integrate numerically syster@) and@), we use the Scilab routines "ODE’s”
followed by the FFT (Fast Fourier Transformation) to findguencies of solu-
tions, there is no special treatment for "ODE” routine to ldeih the local non-
differentiable nonlinearityd(t) — u(xp,t)) .

3 Numerical Results

3.1 Highlights on the linearized system and the nonlineafesfts

There are two linear cases, the first one when there is nogspttached to the
beam, and the second case is such as a linear spring is alttestseal to the beam
( bilateral spring ). The system becomes nonlinear whenphiegbecomes one-
sided when the prestress is not well tuned. The nonlinelsitya special form, it is
locally not differentiable but it is lipchitz.

Without spring, the motion has the following linear systeiheguation :

M§+Kg=0 (5)

The eigen frequencies of the motion are easily calculatecbioyputing the gener-
alized eigen values dfl andK, this calculus can be done using software like Scilab
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[H]. We are interested by the first three eigen frequencies ofykem, we note
that the precision depends on the number of the finite elesnesgd for the mod-
eling of the system. We verify that ten finite elements givebadyapproximation
for the first three eigen frequencies and their values apemsely :33421622H z,
921488191z and 180779684z As known, the eigen-frequencies of a Bernoulli
beam could be calculated using this formula:

fi = 5=/t sea, Wi i =1,2,3,...n are given in[f]. = 4.73, g, = 7.853 and
Uz = 10.996 give f; = 3341988Hz, f, = 921199961z and f3 = 1806143Hz
The nonlinearity on the system modifies the motion by addiey frequencies,
subharmonics and superharmonics, besides the eigen freigaeWhen the system
is under periodic excitation, new frequencies appear #i&ve are many combina-
tions of the excitation frequency with the system frequescrhese new frequencies
appears in FFT of the system and also in the sweep test. Theraany ways to
calculate these frequencies, harmonic balance method@rithear normal mode
(MNN) and asymptotic expansions methd(fd) .

3.2 One Node Finite Element Model Without Periodic Excitati

In this case, the beam is modeled by two finite elements withetiodic excitation.
Equations of displacement and its derivative are indepenidere because of the

structure of the mass and stiffness matrices:
M — <O.3647893 0 > andK — 1661090 0 >

0 0.0005500 0 32560825)°
To find eigen frequencies of the system in the linear casegsywithout contact),
we juste have to calculate the generalized eigen valubsaridK.
The motion is divided into two phases: the first one when thebéouches the
spring and another one when the beam does not touch the sphiegpring mass is
negligible beside the beam mass, the equations of dispkterfithese two phases

are respectively :

M(1,1)i+ (K(1,1)+k)u=0
M(1,1)i+K(1,1)u=0

The boundary conditions are(0,t) = u(L,t) = 0 anddsu(0,t) = dxu(L,t) = 0.
The period of the solution will be the sum of the half periodiué first phase and

the second phase :
B s s

= +
\/Kll(l-,l) \/K11(1,1)+k,
Mi1(1,1) M11(1,1)
the numerical value of the motion frequen%sys 384741861 zthis is in agreement
with the numerical calculus. In figurg](3The Fast Fourier Transformation shows

frequencies of the system, the first peak correspond to thltaral value. The
motion in the phase plane shows a periodic conservativéisolu
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FFT of the displacement of the second node (log scale), bilateral spring, tf=0.1s, kr=10"6, u(x,0)=0.4 Phase without spring

Iog(FFT)

Fig. 3 Left: FFT of the displacement of the second node with unitdtepring contact with initial
conditionsu(x,0) = 0.4, u(x,0) = 0. Right: solution in the phase space.

3.3 One Node Finite Element Model, Beam Under Periodic
Excitation

The beam is modeled by two finite elements under periodicpied displacement
d(t). The spring is always fixed in the middle of the beam on a ndaan be uni-
lateral or bilateral.

Figure ﬂl) shows the displacement of the second node (in ithéi@) of the beam
with bilateral and unilateral spring, the period of the matchanges with unilateral
spring. FigureI]S) shows frequencies of the beam with bigd&nd unilateral cases;
In the bilateral case, there are two frequencies, the eigeguéncy (430 Hz) and
the frequency of the shaker (500 Hz); In the unilateral ctiere are the system
frequency, the shaker frequency and many other superh&samd subharmonics
frequencies due to the contact.

3.4 Ten Finite Elements

In this section, the beam is modeled with ten finite elemehis,approximation is
quite good if we are interested by the first two eigen freqiesnaf the system.

The spring is always fixed in the middle of the beam on a nodcan be unilateral
or bilateral, the whole system is fixed on a shaker which ha®gie prescribed
displacement(t), we compare the linear with the nonlinear case for the safoe va
of parameters.

Figure @S) shows the displacement in the time domain fortdyiéd and unilateral
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case and their corresponding frequencies using FFT. Initlear case (bilateral
spring), the first and the third eigen frequencies are sholmenshaker frequency
also(500 Hz); The middle of the beam is node of the second modke nonlinear

case (unilateral spring), frequencies correspondingédfitst and the third eigen
frequencies of the linear case and also the shaker freq@eashown; Many other
superharmonics, subharmonics and combination with thkesiHeequency appear
also due to the non linear contact.

4 Frequency Sweep Excitation

Frequency sweep excitation is usually used in the expetsnercheck the dynamic
behavior of mechanical systems. As mentioned before, tamhg under periodic
excitation given as a displacement form

d(t) = —ﬁ sin(2rrft), that means that the beam is under an effort (acceleration)

d(t) = asin(2rmft), ain m/s? is the amplitude of the acceleration ahih Hzis the
frequency of excitation.

We are just interested by a sweep-up test, for a initial givequencyfy and a
fixed value ofa. We compute the solution of differential systems, then we $he
maximum of the acceleration and the displacement. In a sktioe, we add a fixed
value tofyp, the frequency stedf. We compute again fofy + df and we save the
same quantities for this iteration, the initial conditiare fixed on zero again. We
continue our test to reach a fixed frequerigghosen such as to cover the first and
the second eigen frequency of the system.

Finally, we plot the maximum saved in each sweep test, thecongoare linear
with nonlinear cases, we study also the effect of the ang#ituand the frequency
step on the system.

We remark that obtained curves are similar to curveE BT, it is an another
method to find frequencies for mechanical systems.

4.1 Two Finite Elements

The beam is modeled by two finite elements, the spring is firgtle middle, the
Bernoulli beam is clamped in its both extremities, we justeha free node of two
degrees of freedom, the first is the displacement, the seésdhd derivative of the
displacement. The eigen frequency of the linearized systethis case is around
33z the sweep-up begin from 1B to 100Hz, the frequency stedf = 5Hz
and the amplitude of excitaticin= 50m/s’.

In each iteration, the integration timeti§ = 0.1s, the initial conditions are al-
ways fixed at 0 g(x,0) = §(x,0) = 0, kr = 1C°PN/m.
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In figure @), the peak in the bilateral case correspondsecethen frequency of
the system, its abscissa is 480 In the unilateral case, the peak corresponds to the
eigen frequency too, its abscissa is B&4Other peaks appear; they are due to the
unilateral contact. These results conform well with the Firfigure @S).

4.2 Ten finite elements

The beam is modeled by ten finite elements, the spring alwajtsel middle, the
other parameters are the same defined in seftithn 4

In figure @), the peak in the bilateral case correspondsdditht eigen frequency
of the system, the second eigen frequency does not appeandeethe imposed
displacement is not enough to excited(t) = —ﬁz sin(2rrft) very small when
f become so high). Peaks in the unilateral case show themsyfsbguencies corre-
sponding to the eigen frequency of the linear system and &dguencies due to the
contact. These results conform with the FFT in figl[le (6) mitherval[100 1000
Hz.

Displacement of the second node, bilateral spring, t1=0.1s, kr=10"6, f=500Hz, a=50 Displacement of the second node, unilateral spring, t/=0.15, kr=10"6, f=500Hz, a=50

Displacement
S

000 001 002 003 004 005 006 007 008 009 010 011 000 001 002 003 004 005 006 007 008 009 010 011

time t time t

Fig. 4 Displacement of the second node wiiitateral and unilateral spring contact under peri-
odic excitation of 500 Hz (Two finite element model)
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FFT of the displacement of the second node (log scale), bilateral spring, t=0.1s, kr=10"6, a=50 FFT of the displacement of the second node (log scale), unilateral spring, tf=0.1s, kr=10"6, a=50
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Fig. 5 FFT of the displacement of the second node \bitateral and unilateral spring contact
under periodic excitation of 500 Hz (Two finite element mdel
Displacement of the sixth node, bilateral spring, tf=0.1s, kr=10"6, {=500Hz, a=50 Displacement of the sixth node, unilateral spring, tf=0.1s, kr=10"6, f=500Hz, a=50
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FFT of the displacement of the sixth node (log scale), bilateral spring, tf=0.1s, kr=10"6, a=50 FFT of the displacement of the sixth node (log scale), unilateral spring, tf=0.1s, kr=10"6, a=50
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Fig. 6 Displacement and their FFT of the sixth node viittateral and unilateral spring contact
under periodic excitation of 500 Hz (Ten finite element mpdel
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Fig. 7 Maximum of absolute value of the displacement for hioitateral and unilateral spring,
two finite element modekr = 10°N/m, a = 50m/s?, t f = 0.1s (Sweep-up test)

log of maximum of absolute value of displacement of all nodes, bilateral spring, t=0.1s, kr=10"6, a=50 log of maximum of absolute value of displacement of all nodes, unilateral spring, t/=0.1s, kr=10"6, a=50
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Fig. 8 Maximum of absolute value of the displacement of all noadesécale) for bottbilateral
and unilateral spring, ten finite element modé = 10°, tf = 0.1s, a= 50m/s? (sweep-up test)

5 Conclusion

We have presented some preliminary numerical results tgpaogrthe vibrations of

a beam equipped with a bilateral or a unilateral spring. Astyrtic expansions using
some results of S. Junc@]() are in project and compared with numerical results in
order to asses the quality of both approaches. In partiesleurate computations of
non linear normal modes (s@) will be considered.
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