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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52788944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-unice.archives-ouvertes.fr/hal-00418504


Finite Elements for a Beam System With
Nonlinear Contact Under Periodic Excitation

H. Hazim, B. Rousselet

Abstract Solar arrays are structures which are connected to satellites; during launch,
they are in a folded position and submitted to high vibrations. In order to save mass,
the flexibility of the panels is not negligible and they may strike each other; this may
damage the structure. To prevent this, rubber snubbers are mounted at well chosen
points of the structure; a prestress is applied to the snubber; but it is quite difficult to
check the amount of prestress and the snubber may act only on one side; they will
be modeled as one sided springs (see figure 2).
In this article, some analysis for responses (displacements) in both time and fre-
quency domains for a clamped-clamped Euler-Bernoulli beammodel with a spring
are presented. This spring can be unilateral or bilateral fixed at a point. The mount-
ing (beam +spring) is fixed on a rigid support which has a sinusoidal motion of
constant frequency.
The system is also studied in the frequency domain by sweeping frequencies be-
tween two fixed values, in order to save the maximum of displacements correspond-
ing to each frequency. Numerical results are compared with exact solutions in par-
ticular cases which already exist in the literature.
On the other hand, a numerical and theoretical investigation of nonlinear normal
mode (NNM) can be a new method to describe nonlinear behaviors, this work is in
progress.
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Fig. 1 At left: solar arrays from folded to final position, at right:picture for the satellite AMC12
from Thales Alenia Space company

1 Introduction

1.1 Previous Works

In articles [1], [4], [5] et [10], proposed by Thales Alenia Space research team, the
dynamic of a beam sytem with a nonlinear contact force, undera periodic excitation
given as an imposed acceleration form is studied both numerically and experimen-
tally. When sweeping frequencies in an interval which contains eigen frequencies
of the beam, resonance phenomena appear as well as new frequencies caused by the
unilateral contact.
Finite element method in space domain is used, followed by numerical integration
of the ordinary differential systems using specific software like ’STRDYN’ of the
finite element package DIANA.
The frequency sweeping is done in different ways, one of these way is such as the
frequencyf changes as a function of the timet according to :f (t) = f02st/60 where
s is the sweep rate in octaves/min andf0 is the start frequency of the sweep. Results
prove differences between sweep-down and sweep-up around eigen frequencies of
the system where solutions are unstable.
At each value of the timet, computation is done and the maximum of displacement
and acceleration are saved.
Finally, comparison is made in time and frequency domains, between linear and
nonlinear cases.
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Fig. 2 left: Simplified Mechanical Model, right: folded solar arrays with snubbers

1.2 Present Work

This work is part of the phd work of the author under the guidance of B. Rousselet
with the support of Thales Alenia Space, France.
Some analysis for responses (displacements) in both time and frequency domain
for a clamped-clamped Euler-Bernoulli beam model with a linear spring are pre-
sented, the spring can be unilateral or bilateral fixed at a point. The mounting (beam
+spring) is fixed on a rigid support which has a sinusoidal motion of constant fre-
quency.
The system is also studied in the frequency domain by sweeping frequencies be-
tween two fixed values, such as saving the maximum of displacements correspond-
ing to each frequency.

Numerical results are compared with exact solutions in particular cases which
already exist in the literature.
On the other hand, a numerical and theoretical investigation of nonlinear normal
mode (NNM) can be a new method to distinguish linear from nonlinear cases.

2 Simplified Mechanical Model

The study of the total dynamic behavior of solar arrays in a folded position with
snubbers are so complicated, that to simplify, a solar arrayis modeled by a clamped-
clamped Bernoulli beam with one-sided linear spring. This system is fixed on a
shaker which has a vibratory motiond(t) see figure (2).

The motion of this beam system is modeled by the following PDEs with bound-
ary conditions :u(0,t) = u(L,t) = d(t) and∂xu(0,t) = ∂xu(L,t) = 0:
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Bilateral spring: ρSü(x,t)+ EIu(iv)(x,t) = kr(d(t)−u(x0,t))δx0 (1)

Unilateral spring: ρSü(x,t)+ EIu(iv)(x,t) = kr(d(t)−u(x0,t))+ δx0 (2)

u+ is the function defined byu+ = u+|u|
2 L= 0.485 m beam length.

kr = spring stiffness. d(t) = − a
(2π f )2 sin(2π f t) is the shaker motion.

ρ = 2700kg/m3 beam density. S = 7,5.10−4 m2 cross sectional area.
E = 7.1010 N/m2 Young’s modulus. I = 1,41.10−8 m4 second moment of area.
This data are taken from[4]. The classical Hermite cubic finite element approxima-
tion is used here to find an approximate solution for equations (1) and (2), we find
then two ordinary differential systems in the form :

Mq̈ + Kq = kr(d(t)−qx0)
−→ex0 (3)

Mq̈ + Kq = kr(d(t)−qx0)+
−→ex0 (4)

M et K are respectively the mass and the stiffness assembled matrices,q is the vec-
tor of degree of freedom of the beam,qi = (ui,∂xui), i = 1,2, ...,n. To each node are
associated two degrees of freedom, the displacement and itsderivative.

To integrate numerically systems(3) and(4), we use the Scilab routines ”ODE’s”
followed by the FFT (Fast Fourier Transformation) to find frequencies of solu-
tions, there is no special treatment for ”ODE” routine to deal with the local non-
differentiable nonlinearity(d(t)−u(x0,t))+.

3 Numerical Results

3.1 Highlights on the linearized system and the nonlinear effects

There are two linear cases, the first one when there is no spring attached to the
beam, and the second case is such as a linear spring is always attached to the beam
( bilateral spring ). The system becomes nonlinear when the spring becomes one-
sided when the prestress is not well tuned. The nonlinearityhas a special form, it is
locally not differentiable but it is lipchitz.
Without spring, the motion has the following linear system of equation :

Mq̈+ Kq = 0 (5)

The eigen frequencies of the motion are easily calculated bycomputing the gener-
alized eigen values ofM andK, this calculus can be done using software like Scilab
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[9]. We are interested by the first three eigen frequencies of thesystem, we note
that the precision depends on the number of the finite elements used for the mod-
eling of the system. We verify that ten finite elements give a good approximation
for the first three eigen frequencies and their values are respectively :334.21622Hz,
921.48815Hz and 1807.7966Hz. As known, the eigen-frequencies of a Bernoulli
beam could be calculated using this formula:

fi = 1
2π

√

µ4
i

EI
Ml4

, µi i = 1,2,3, ...n are given in[6]. µ1 = 4.73, µ2 = 7.853 and

µ3 = 10.996 give f1 = 334.19889Hz, f2 = 921.19996Hz and f3 = 1806.1432Hz.
The nonlinearity on the system modifies the motion by adding new frequencies,
subharmonics and superharmonics, besides the eigen frequencies. When the system
is under periodic excitation, new frequencies appear also,there are many combina-
tions of the excitation frequency with the system frequencies. These new frequencies
appears in FFT of the system and also in the sweep test. There are many ways to
calculate these frequencies, harmonic balance method and nonlinear normal mode
(MNN) and asymptotic expansions methods([7]) .

3.2 One Node Finite Element Model Without Periodic Excitation

In this case, the beam is modeled by two finite elements without periodic excitation.
Equations of displacement and its derivative are independent here because of the
structure of the mass and stiffness matrices:

M =

(

0.3647893 0
0 0.0005500

)

andK =

(

1661090 0
0 32560.825

)

.

To find eigen frequencies of the system in the linear case (system without contact),
we juste have to calculate the generalized eigen values ofM andK.
The motion is divided into two phases: the first one when the beam touches the
spring and another one when the beam does not touch the spring. The spring mass is
negligible beside the beam mass, the equations of displacement of these two phases
are respectively :

M(1,1)ü+(K(1,1)+ kr)u = 0

M(1,1)ü+ K(1,1)u = 0

The boundary conditions are :u(0,t) = u(L,t) = 0 and∂xu(0,t) = ∂xu(L,t) = 0.
The period of the solution will be the sum of the half period ofthe first phase and
the second phase :

T =
π

√

K11(1,1)
M11(1,1)

+
π

√

K11(1,1)+kr
M11(1,1)

the numerical value of the motion frequency1
T is 384.74186Hz this is in agreement

with the numerical calculus. In figure (3), The Fast Fourier Transformation shows
frequencies of the system, the first peak correspond to the analytical value. The
motion in the phase plane shows a periodic conservative solution.
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Fig. 3 Left: FFT of the displacement of the second node with unilateral spring contact with initial
conditionsu(x,0) = 0.4, u̇(x,0) = 0. Right: solution in the phase space.

3.3 One Node Finite Element Model, Beam Under Periodic
Excitation

The beam is modeled by two finite elements under periodic prescribed displacement
d(t). The spring is always fixed in the middle of the beam on a node, it can be uni-
lateral or bilateral.

Figure (4) shows the displacement of the second node (in the middle) of the beam
with bilateral and unilateral spring, the period of the motion changes with unilateral
spring. Figure (5) shows frequencies of the beam with bilateral and unilateral cases;
In the bilateral case, there are two frequencies, the eigen frequency (430 Hz) and
the frequency of the shaker (500 Hz); In the unilateral case,there are the system
frequency, the shaker frequency and many other superharmonics and subharmonics
frequencies due to the contact.

3.4 Ten Finite Elements

In this section, the beam is modeled with ten finite elements,this approximation is
quite good if we are interested by the first two eigen frequencies of the system.
The spring is always fixed in the middle of the beam on a node, and can be unilateral
or bilateral, the whole system is fixed on a shaker which has periodic prescribed
displacementd(t), we compare the linear with the nonlinear case for the same value
of parameters.
Figure (6) shows the displacement in the time domain for bilateral and unilateral
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case and their corresponding frequencies using FFT. In the linear case (bilateral
spring), the first and the third eigen frequencies are shown,the shaker frequency
also(500 Hz); The middle of the beam is node of the second mode. In the nonlinear
case (unilateral spring), frequencies corresponding to the first and the third eigen
frequencies of the linear case and also the shaker frequencyare shown; Many other
superharmonics, subharmonics and combination with the shaker frequency appear
also due to the non linear contact.

4 Frequency Sweep Excitation

Frequency sweep excitation is usually used in the experiments to check the dynamic
behavior of mechanical systems. As mentioned before, the beam is under periodic
excitation given as a displacement form
d(t) = − a

(2π f )2 sin(2π f t), that means that the beam is under an effort (acceleration)

d̈(t) = asin(2π f t), a in m/s2 is the amplitude of the acceleration andf in Hz is the
frequency of excitation.

We are just interested by a sweep-up test, for a initial givenfrequencyf0 and a
fixed value ofa. We compute the solution of differential systems, then we save the
maximum of the acceleration and the displacement. In a second time, we add a fixed
value to f0, the frequency stepd f . We compute again forf0 + d f and we save the
same quantities for this iteration, the initial conditionsare fixed on zero again. We
continue our test to reach a fixed frequencyf1 chosen such as to cover the first and
the second eigen frequency of the system.

Finally, we plot the maximum saved in each sweep test, then wecompare linear
with nonlinear cases, we study also the effect of the amplitudea and the frequency
step on the system.

We remark that obtained curves are similar to curves ofFFT , it is an another
method to find frequencies for mechanical systems.

4.1 Two Finite Elements

The beam is modeled by two finite elements, the spring is fixed in the middle, the
Bernoulli beam is clamped in its both extremities, we just have a free node of two
degrees of freedom, the first is the displacement, the secondis the derivative of the
displacement. The eigen frequency of the linearized systemin this case is around
339Hz, the sweep-up begin from 100Hz to 1000Hz, the frequency stepd f = 5Hz
and the amplitude of excitationa = 50m/s2.

In each iteration, the integration time ist f = 0.1s, the initial conditions are al-
ways fixed at 0 :q(x,0) = q̇(x,0) = 0, kr = 106N/m.
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In figure (7), the peak in the bilateral case corresponds to the eigen frequency of
the system, its abscissa is 430Hz. In the unilateral case, the peak corresponds to the
eigen frequency too, its abscissa is 384Hz. Other peaks appear; they are due to the
unilateral contact. These results conform well with the FFTin figure (5).

4.2 Ten finite elements

The beam is modeled by ten finite elements, the spring always in the middle, the
other parameters are the same defined in section 4.1.
In figure (8), the peak in the bilateral case corresponds to the first eigen frequency
of the system, the second eigen frequency does not appear because the imposed
displacement is not enough to excite it (d(t) = − a

(2π f )2 sin(2π f t) very small when

f become so high). Peaks in the unilateral case show the system frequencies corre-
sponding to the eigen frequency of the linear system and other frequencies due to the
contact. These results conform with the FFT in figure (6) in the interval[100,1000]
Hz.
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Fig. 4 Displacement of the second node withbilateral and unilateral spring contact under peri-
odic excitation of 500 Hz (Two finite element model)
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Fig. 5 FFT of the displacement of the second node withbilateral and unilateral spring contact
under periodic excitation of 500 Hz (Two finite element model)
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Fig. 6 Displacement and their FFT of the sixth node withbilateral and unilateral spring contact
under periodic excitation of 500 Hz (Ten finite element model)
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Fig. 7 Maximum of absolute value of the displacement for bothbilateral and unilateral spring ,
two finite element model,kr = 106N/m, a = 50m/s2, t f = 0.1s (Sweep-up test)
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Fig. 8 Maximum of absolute value of the displacement of all nodes(log scale) for bothbilateral
and unilateral spring, ten finite element modelkr = 106, t f = 0.1s, a = 50m/s2 (sweep-up test)

5 Conclusion

We have presented some preliminary numerical results to compare the vibrations of
a beam equipped with a bilateral or a unilateral spring. Asymptotic expansions using
some results of S. Junca ([7]) are in project and compared with numerical results in
order to asses the quality of both approaches. In particularaccurate computations of
non linear normal modes (see[3]) will be considered.
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