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ABSTRACT
Is has been shown that a best rank-R approximation of
an order-k tensor may not exist whenR ≥ 2 and k ≥ 3.
This poses a serious problem to data analysts using Can-
decomp/Parafac and related models. It has been observed
numerically that, generally, this issue cannot be solved
by consecutively computing and substracting best rank-1
approximations. The reason for this is that subtracting a best
rank-1 approximation generally does not decrease tensor
rank. In this paper, we provide a mathematical treatment of
this property for real-valued 2×2×2 tensors, with symmet-
ric tensors as a special case. Regardless of the symmetry, we
show that for generic 2×2×2 tensors (which have rank 2 or
3), subtracting a best rank-1 approximation will result in a
tensor that has rank 3 and lies on the boundary between the
rank-2 and rank-3 sets. Hence, for a typical tensor of rank
2, subtracting a best rank-1 approximation hasincreasedthe
tensor rank.

Keywords: tensor rank, low-rank approximation, tensor
decomposition, multi-way, Candecomp, Parafac.
AMS subject classifications: 15A03, 15A22, 15A69, 49M27,
62H25.

1. INTRODUCTION

Tensorsof orderd are defined on the outer product ofd lin-
ear spaces,Sℓ, 1≤ ℓ≤ d. Once bases of spacesSℓ are fixed,
they can be represented byd-way arrays. For simplicity, ten-
sors are usually assimilated with their array representation.
We assume throughout the following notation: bold italic up-
percase for tensorse.g.X, bold uppercase for matricese.g.
T, bold lowercase for vectorse.g.a, calligraphic for setse.g.
S , and plain font for scalarse.g. Xi jk , Ti j or ai , will be dis-
tinguished thanks to their font.

LetX be a 3rd order tensor defined on the tensor product
S1⊗⊗⊗S2⊗⊗⊗S3. If a change of bases is performed in the spaces
S1,S2,S3 by invertible matricesS,T,U, then the tensor
representationX is transformed intoX̃ def

= (S,T,U) ·X (1)

whose coordinates are given bỹXi jk = ∑pqrSip TjqUkr Xpqr.
This is known as themulti-lnearity propertyenjoyed by ten-
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sors. Matrices, which can be associated with linear operators,
are tensors of order 2.

The rank of a tensorX is defined as the smallest num-
ber of outer product tensors whose sum equalsX, i.e. the
smallestR such thatX=

R

∑
r=1

ar ⊗⊗⊗br ⊗⊗⊗cr . (2)

Hence a rank-1 tensorX is the outer product of vectors
a,b,c and has entriesXi jk = aib jck. The decomposition of
a tensor into a sum of outer products of vectors and the cor-
responding notion of tensor rank were first introduced and
studied by [14] [15].

The multilinear rank of a 3rd order tensor is a triplet
(r1, r2, r3), wherer i denotes the rank of the set of mode-i
vectors. A mode-i vector is obtained by varying theith index
and keeping other indices fixed.

Usefulness. Tensors play a wider and wider role in
numerous application areas including blind techniques for
Telecommunications [21] [10] [8], Arithmetic Complexity
[20] [28] [1] [27], or Data Analysis [22]. For instance, Inde-
pendent Component Analysis was originally introduced for
symmetric tensors whose rank did not exceed dimension [4]
[2]. Now, it has become possible to estimate more factors
than the dimension [13] [16] [9]. In some applications, ten-
sors may be symmetric only in some modes [7], or may not
be symmetric nor have equal dimensions [3] [22] [19]. In
most of these applications, the decomposition of a tensor into
a sum of rank-1 terms is relevant, since tensors entering the
models to fit have a reduced rank.

Matrix algebra is insufficient. The manipulation of ten-
sors remains difficult, because of major differences between
their properties when we go from second order to higher.
Several of these differences have already been underlined in
the past [6],e.g. (i) tensor rank often exceeds dimensions,
(ii) tensor rank can be different in real and complex fields,
(iii) maximal tensor rank is not generic, and is still unknown
in general, (iv) computing the rank of a tensor is very diffi-
cult, (v) a tensor may not have a best low-rank approximate
[23] [24] [25] [12] [18] [26].

It has been observed numerically in [17, section 7] that a
best or ”good” rank-R approximation cannot be obtained by
consecutively computing and substractingR best rank-1 ap-
proximations (which always exist). The reason for this is that
subtracting a best rank-1 approximation generally does not
decrease tensor rank. Hence, the deflation technique prac-
ticed for matrices (via the Singular Value Decomposition)



cannot generally be extended to higher-order tensors. A spe-
cial case where this deflation technique works is when the
tensor is diagonalizable by orthonormal multilinear transfor-
mation; see [17, section 7].

In this paper, we provide a mathematical treatment of the
(in)validity of a rank-1 deflation procedure for higher-order
tensors. We consider 2× 2× 2 tensors over the real field,
with symmetric tensors as a special case. First, however, we
discuss the problem of finding a best rank-1 approximate to
a 3rd order tensor. The proofs of our results will be available
in a forthcoming full-length version of this paper.

2. BEST RANK-1 APPROXIMATION

Finding the best rank-1 approximate consists of minimizing
the criterion

Ψ =
1
2
||X−a⊗⊗⊗b⊗⊗⊗c||2 (3)

with respect to vectorsa, b andc. The solution will likely
depend on the norm, and we shall restrict to the Frobenius
norm: ||X||2 = ∑i jk |Xi jk |

2. Obviously there is a scale in-
determinacy in this problem, and we could impose two of
these three vectors to be unit norm. We shall not do that here
because the presentation would be slightly longer. Let•ℓ de-
note the summation over theℓth index (that is the contraction
operator in theℓth space). For instance, the productABT

between two matrices can be written asA•2B; if X is a 3rd
order tensor,X•1a is a matrix, andX•1a•2b is a vector.
And let us rewrite criterion (3) as:

Ψ =
1
2
||X||2−X•

1
a•

2
b•

3
c+

1
2
||a||2||b||2||c||2 . (4)

Proceeding as in [5], gradients with respect to the three vec-
tors can be obtained:

dΨa = −X•
2
b•

3
c+a||b||2||c||2

dΨb = −X•
1
a•

3
c+b||a||2||c||2

dΨc = −X•
1
a•

2
b+c||a||2||b||2

Concerning the uniqueness of a best rank-1 approximate,
one may ask the following question: are there tensors for
which the solution defined bya = ||b||−2||c||−2X•2b•3c
anddΨb = dΨc = 0 is not unique up to scale? We exhibit in
this section a family of such tensors.

If we plug the expression ofa back in the equation of
stationary values ofb, we get that(X•3c)•1(X•3c)•2b =
λ b, whereλ = ||a||2||b||2||c||4, which means thatb is an
eigenvector of the matrix(X•3c)•1(X•3c). If the latter
matrix is proportional to the identity for anyc, then anyb is
an eigenvector. Analogously, substituting the expressionfor
a into dΨc = 0, we get that(X•2b)•1(X•2b)•3c = µ c,
whereµ = ||a||2||b||4||c||2. If (X•2b)•1(X•2b) is also
proportional to the identity for anyb, then it follows that
any (a,b,c) with a given bydΨa = 0 is a stationary point.
Substituting the expression ofa into the criterion (4) then
yields a criterion function in(b,c) for which any(b,c) is
a stationary point. Hence, the function is constant and any
(b,c) is a minimizer. This yields the following proposition

Proposition 1 If a tensorX is such that the matrix(X•3c)
is orthogonal for any vectorc, and (X•2b) is orthogonal
for any vectorb, thenX has infinitely many best rank-1 ap-
proximates.

In accordance with the usual practice, we shall represent a
p× p×2 tensorX with two p× p matrix slices,X1 andX2,
as[X1 |X2].

⊲ EXAMPLE 1. LetX=

[
1 0 0 −1
0 1 1 0

]
. Then for any

choice of non zero vectorc, the matrix(X•3c), obtained by
linear combination of the above two matrix slices, is orthog-
onal. Also, for any non zero vectorb, the matrix(X•2b)
is orthogonal. HenceX has infinitely many rank-1 approxi-
mates. ⊳

Most tensors have multiple locally best rank-1 approxi-
mates, with one of them being better than the others (i.e., a
unique best rank-1 approximate), as pointed out in Section 3.
Examples will illustrate this fact.

Remark. The tensor in Example 1 has rank 3. Ten Berge
et al. [29] showed thatX has no best rank-2 approximation,
the infimum of||X−Y||2 overY of rank at most 2 being 1.
A more general result was obtained by De Silva and Lim [12]
who showed that no 2×2×2 tensor of rank 3 has a best rank-
2 approximation. Stegeman [23] showed that any sequence
of rank-2 approximationsY(n) for which ||X−Y(n)||2 con-
verges to the infimum of 1, features diverging components.
It is shown in [11] that the stationary points of the 2×2×2
symmetric best rank-1 approximation problem are obtained
as the roots of a 3rd degree polynomial.

3. BEST RANK-1 SUBTRACTION

From now on, we restrict our discussion to tensors in the real
field. De Silva and Lim [12, Section 7] showed that 2×2×2
tensors (over the real field) can be transformed by invertible
multilinear matrix multiplications into eight distinct canoni-
cal forms. This partitions the spaceR

2×2×2 into eight distinct
orbits under the action of invertible transformations in each
of the 3 modes. Table 1 lists the canonical forms for each
orbit as well as their rank and multilinear rank. These quan-
tities are invariant under the transformations defining an or-
bit. This kind of classification is better known for symmetric
tensors or multivariate polynomials [5]. Recall the following
result stated by De Silva and Lim [12]:

Lemma 2 LetX be a2×2×2 tensor with matrix slicesX1
andX2.
(i) If X2X

−1
1 or X1X

−1
2 has real eigenvalues and is diago-

nalizable, thenX is in orbit G2.
(ii) If X2X

−1
1 or X1X

−1
2 has two identical real eigenvalues

with only one associated eigenvector, thenX is in orbit
D3.

(iii ) If X2X
−1
1 has complex eigenvalues, thenX is in orbit

G3.

We shall use this lemma to verify the orbit of 2-dimensional
3rd order tensors.
⊲ EXAMPLE 2. Consider the tensorX=

[
1 0 0 −2
0 1 1 0

]
. (5)

SinceX2X
−1
1 has complex eigenvalues,X is in orbit G3. It

can be verified thatX has a unique best rank-1 approxima-
tion Y=

[
0 0 0 −2
0 0 0 0

]
. (6)



WhenY is subtracted fromX we end up in orbitD3, sinceZ=X−Y=

[
1 0 0 0
0 1 1 0

]
, (7)

can be transformed to the canonical form of orbitD3 by
swapping rows within each slice. ⊳

Canonical Tensor Multilinear
form rank rank

D0 :

[
0 0 0 0
0 0 0 0

]
0 (0,0,0)

D1 :

[
1 0 0 0
0 0 0 0

]
1 (1,1,1)

D2 :

[
1 0 0 0
0 1 0 0

]
2 (2,2,1)

D′
2 :

[
1 0 0 1
0 0 0 0

]
2 (1,2,2)

D′′
2 :

[
1 0 0 0
0 0 1 0

]
2 (2,1,2)

G2 :

[
1 0 0 0
0 0 0 1

]
2 (2,2,2)

D3 :

[
0 1 1 0
1 0 0 0

]
3 (2,2,2)

G3 :

[
−1 0 0 1
0 1 1 0

]
3 (2,2,2)

Table 1:Canonical forms of 2×2×2 tensors for the eight orbits
under the action of invertible multilinear matrix multiplications over
the real field. The lettersD and G stand for “degenerate” (zero
volume set in the 8-dimensional space of 2× 2× 2 tensors) and
“typical” (positive volume set), respectively.

For tensorsX in the orbits of Table 1, we would like to
know in which orbitX−Y is contained, whereY is a best
rank-1 approximation ofX. We have the following result for
the degenerate orbits of ranks 1 and 2.

Proposition 3 LetX be a2× 2× 2 tensor, and letY be a
best rank-1 approximation ofX.
(i) If X is in orbit D1, thenX−Y is in orbit D0.
(ii) If X is in orbit D2, D′

2, or D′′
2, thenX−Y is in orbit D1.

ForX in orbit G2 or D3, the tensorX−Y is not restricted to
a single orbit.
⊲ EXAMPLE 3. For the canonical tensorX of orbit G2 in
Table 1, it can be seen thatX−Y is in D1. On the other
hand, consider X=

[
0 1 1 0
1 0 0 2

]
. (8)

For this tensor,X2X
−1
1 has two distinct real eigenvalues.

Hence, by Lemma 2, the tensor is inG2. It can be shown
thatX has a unique best rank-1 approximationY such thatX−Y equals the canonical tensor of orbitD3 in Table 1. ⊳

⊲ EXAMPLE 4. Next, consider tensors in orbitD3:
[

0 1 2 0
1 0 0 0

]
,

[
1 0 0 1
0 0 2 0

]
,

[
1 0 0 2
0 0 1 0

]
.

Subtracting the best rank-1 approximationY from these ten-
sors amounts to replacing the element 2 by zero. Hence,X−Y is in orbitD2, D′

2, andD′′
2, respectively. ⊳

On the other hand, it can be verified numerically or ana-
lytically that forX equal to the canonical tensor of orbitD3
in Table 1,X−Y is also in orbitD3. Moreover, numerical
experiments show that for a genericX in orbit D3, we haveX−Y in orbit D3 as well. This suggests the following

Conjecture 4 If X is in D3 andY is the best rank-1 approx-
imate ofX, then almost all tensorsX−Y are in D3.

Tensors given in Examples 1 or 2 were both in orbitG3, and
we have seen thatX−Y is in orbit D3 in Example 2. For
Example 1, this can be proven for any of the infinite best
rank-1 approximatesY of X. Numerically and analytically,
we have not found anyX in orbit G3 for whichX−Y is not
in orbit D3.

We have no deterministic result for tensors in orbitsG2
andG3, but we still have the following result, verified almost
everywhere (hence the word “generic”):

Proposition 5 LetX be a generic2×2×2 tensor, andY be
a best rank-1 approximation ofX. Then almost all tensorsX−Y are in orbit D3.

Hence, for typical tensors in orbitG2, subtracting a best rank-
1 approximateincreasesthe rank to 3. For typical tensors
in orbit G3, subtracting a best rank-1 approximate does not
affect the rank.

However, some non typical tensors of rank 2 may have a
different behavior, as now shown.

Proposition 6 LetX be a2×2×2 rank-2 tensor with diag-
onal slices, and letY be a best rank-1 approximation ofX.
ThenX−Y is in orbit D1.

⊲ EXAMPLE 5. LetX=

[
a 0 e 0
0 d 0 h

]
. ThenX=

(
1
0

)
⊗⊗⊗

(
1
0

)
⊗⊗⊗

(
a
e

)
+

(
0
1

)
⊗⊗⊗

(
0
1

)
⊗⊗⊗

(
d
h

)

Then it can be seen thatX= (I,I,T) ·I, whereI denotes the
identity matrix andI the diagonal tensor tensor with ones on
its diagonal:I=

[
1 0 0 0
0 0 0 1

]
, andT =

[
a d
e h

]

This shows thatX is is orbitG2, and Proposition 6 implies
that this is an exception to Proposition 5. ⊳

Proposition 5 states that such exceptions form a set of
null measure.

4. SYMMETRIC TENSORS

A tensor is symmetric if its entries are invariant under arbi-
trary permutations of its indices. There is a bijection between
the space of symmetricI × I × I tensors and the space of ho-
mogeneous polynomials of degree 3 inI variables. A sym-
metric I × I × I tensorX can be associated with the polyno-
mial

p(s1, . . . ,sI ) = ∑
i jk

xi jk sisjsk . (9)



Thesymmetric rankof an order-3 symmetric tensorX is the
minimal numberRsuch that [6]:X=

R

∑
r=1

ar ⊗⊗⊗ar ⊗⊗⊗ar . (10)

The orbits of symmetric 2×2×2 tensors are given in Table 2.

canonical form polynomial sym. rank

D0 :

[
0 0 0 0
0 0 0 0

]
0 0

D1 :

[
1 0 0 0
0 0 0 0

]
s3
1 1

G2 :

[
1 0 0 0
0 0 0 1

]
s3
1 +s3

2 2

D3 :

[
0 1 1 0
1 0 0 0

]
3s2

1s2 3

G3 :

[
−1 0 0 1
0 1 1 0

]
−s3

1 +3s1s2
2 +s3

2 3

Table 2:Canonical forms of symmetric 2×2×2 tensors and asso-
ciated polynomials, for the three orbits under the action ofinvertible
multilinear transformations over the real field. The letters D andG
stand for “degenerate” (zero volume set in the 4-dimensional space
of symmetric 2×2×2 tensors) and “typical” (positive volume set),
respectively.

The symmetric rank of symmetric tensors of dimension
2 can be obtained from the Sylvester Theorem, at any order.
This Theorem is formulated below in the case of third order
tensors.

Theorem 7 (Sylvester)A symmetric2× 2× 2 tensor with
associated polynomial

p(s1,s2) = γ3 s3
1 +3γ2s2

1s2 +3γ1s1s2
2 + γ0s3

2 , (11)

has a symmetric rank-R decomposition(10) if and only if
there exists a vectorg = (g0, . . . ,gR)T such that




γ0 . . . γR

γ1 . . . γR+1

...
...

γ3−R . . . γ3




g = 0 , (12)

and if the polynomial q(s1,s2) = gRsR
1 +gR−1sR−1

1 s2 + · · ·+

g1s1sR−1
2 +g0sR

2 has R distinct real roots.

⊲ EXAMPLE 6. Using Sylvester’s Theorem, one can obtain
the following decomposition for the representative of orbit
D3 given in Table 2:

6s2
1s2 = (s1 +s2)

3 +(−s1 +s2)
3−2s3

2 . (13)

In other words, the associated tensor can be writtenX =
a⊗⊗⊗3 + b⊗⊗⊗3 − 2c⊗⊗⊗3, wherea = [1, 1]T , b = [−1, 1]T and
c = [0, 1]T . ⊳

We have the following analogue of Lemma 2 to verify the
orbit of symmetric tensors of dimension 2.

Lemma 8 LetX be a symmetric2×2×2 tensor with matrix
slicesX1 andX2.
(i) If X2X

−1
1 or X1X

−1
2 has distinct real eigenvalues, thenX is in orbit G2.

(ii) If X2X
−1
1 or X1X

−1
2 has two identical real eigenvalues,

thenX is in orbit D3.
(iii ) If X2X

−1
1 has complex eigenvalues, thenX is in orbit

G3.

Next, we present an example of a symmetric 2× 2× 2
tensor in orbitG3, that has a unique best symmetric rank-1
approximationY, such thatX−Y is in orbitD3.
⊲ EXAMPLE 7. LetX=

[
0 1 1 1
1 1 1 0

]
. (14)

We have

X2X
−1
1 =

[
0 1
−1 1

]
, (15)

which has complex eigenvalues. Hence, by Lemma 8(iii )
the tensor is in orbitG3.

Next, we compute the best symmetric rank-1 approxima-
tionY toX, which has the formY=

[
x3

1 x2
1x2 x2

1x2 x1x2
2

x2
1x2 x1x2

2 x1x2
2 x3

2

]
. (16)

After some manipulations, it can be shown that the minimum
of ||X−Y||2 is obtained forx3

1 = x3
2 = 3/4, that isY=

1
4

[
3 3 3 3
3 3 3 3

]
. (17)

By subtraction, we obtainZ=X−Y=
1
4

[
−3 1 1 1
1 1 1 −3

]
, (18)

and Z2Z
−1
1 =

[
0 1
−1 −2

]
, (19)

which has a double eigenvalue−1. Hence, by Lemma 8(ii)
the tensorZ is in orbitD3. ⊳

In our next example, the symmetric 2×2×2 tensor is in
orbit G2, and has a unique best symmetric rank-1 approxi-
mationY, such thatX−Y is in orbitD3.
⊲ EXAMPLE 8. LetX=

[
3 1 1 1
1 1 1 3

]
. (20)

We have

X2X
−1
1 =

[
0 1
−1 4

]
, (21)

which has real and distinct eigenvalues. Hence, by Lemma 8
(i) the tensor is in orbitG2.

Next, we compute the best symmetric rank-1 approxima-
tionY toX. It can be shown that the minimum of||X−Y||2

is obtained for Y=
3
2

[
1 1 1 1
1 1 1 1

]
. (22)



By subtraction, we obtainZ=X−Y=
1
2

[
3 −1 −1 −1
−1 −1 −1 3

]
, (23)

and Z2Z
−1
1 =

[
0 1
−1 −2

]
, (24)

which has a double eigenvalue−1. Hence, by Lemma 8(ii)
the tensorZ is in orbitD3. ⊳

Finally, we have the following analogue of Proposition 5.

Proposition 9 LetX be a generic symmetric2×2×2 ten-
sor, andY be a best rank-1approximation ofX. Then almost
all tensorsX−Y are in orbit D3.

Hence, for typical symmetric 2×2×2 tensors with symmet-
ric rank 2, subtracting a best rank-1 approximateincreases
the symmetric rank to 3. For typical symmetric tensors with
symmetric rank 3, subtracting a best rank-1 approximate
does not affect the symmetric rank.
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