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ABSTRACT sors. Matrices, which can be associated with linear opesato
Is has been shown that a best raRkapproximation of ~are tensors of order 2.

an orderk tensor may not exist wheR > 2 andk > 3. The rank of a tensoX is defined as the smallest num-

This poses a serious problem to data analysts using CaR€" Of outer product tensors whose sum equils.e. the
decomp/Parafac and related models. It has been observéghallesR such that
numerically that, generally, this issue cannot be solved

by consecutively computing and substracting best rank-1 X=YN aebrec )
approximations. The reason for this is that subtractingsa be SRl

rank-1 approximation generally does not decrease tensor

rank. In this paper, we provide a mathematical treatment Ofjence a rank-1 tensoX is the outer product of vectors
this property for real-valued 2 2 x 2 tensors, with symmet- a,b,c and has entrieX;jx = abjc,. The decomposition of
ric tensors as a special case. Regardless of the symmetry, Wgensor into a sum of outer products of vectors and the cor-

show that for generic 2 2 x 2 tensors (which have rank 2 or esponding notion of tensor rank were first introduced and
3), subtracting a best rank-1 approximation will result in agy,died by [141 [T5].

tensor that has rank 3 and lies on the boundary between the The mufilinear rank of a 3rd order tensor is a triplet

rank-2 and rank-3 sets. Hence, for a typical tensor of ramfrl,rz,rg;), wherer; denotes the rank of the set of mote-
2, subtracting a best rank-1 approximation maseasedhe | ectors. A moded-vector is obtained by varying thith index
tensor rank. and keeping other indices fixed.

K ds t Kol K imati i Usefulness. Tensors play a wider and wider role in
Eyworas  tensor rank, low-rank approximation, {ensor,,merous application areas including blind techniques for

decomposition, multi-way, Candecomp, Parafac. Telecommunicationd [21] TLO][[8], Arithmetic Complexit
AMS subject classificalion$5A03, 15A22, 15A69, 49M27, (b b8 (1] (£, or {13 ]L:Halg/[s[is]EZ]. For instance. nde.
62H25. pendent Component Analysis was originally introduced for
symmetric tensors whose rank did not exceed dimenﬂon [4]
1. INTRODUCTION . Now, it has become possible to estimate more factors

Tensorsof orderd are defined on the outer productafin-  than the dimensior{ I3[ [16[J9]. In some applications, ten-
ear spaces?;, 1< ¢ < d. Once bases of space$ are fixed, SOr'S may be symmetric only in some r_nocﬂs 7], or may not
they can be represented tyway arrays. For simplicity, ten- P€ Symmetric nor have equal dimensioffs [3]|[22] [19]. In
sors are usually assimilated with their array representati MOSt of these applications, the decomposition of a tensor in
We assume throughout the following notation: bold italie up & SUM of rank-1 terms is relevant, since tensors entering the
percase for tensoesg. X, bold uppercase for matricesg. ~ Models to fit have a reduced rank.

Pyl
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T, bold lowercase for vectoesg.a, calligraphic for setg.g. Matrix algebra is insufficient. The manipulation of ten-
., and plain font for scalare.g. Xi, Ti; or a;, will be dis-  Sors remains difficult, because of major differences betwee
tinguished thanks to their font. e their properties when we go from second order to higher.

S1e0.%50.75. If a change of bases is performed in the space}!® past [61.e.9. (i) tensor rank often exceeds dimensions,

Let X be a 3rd order tensor defined on the tensor prc)du?everal of these differences have already been underlined i
i) tensor rank can be different in real and complex fields,

A, 5,73 by invertible matricesS, T, U, then the tensor

representatioX is transformed into (iif) maximal tensor rank is not generic, and is still unkrrow
in general, (iv) computing the rank of a tensor is very diffi-
%% s TU). X 1 cult, % a tensor may not have a best low-rank approximate
= (ST U)- D) [23) (4] (p) [LF) (2] [PE].

) _ _ It has been observed numerically E[l?, section 7] that a
whose coordinates are given Byx = 3 pqrSp TigUkr Xpar- ~ best or "good” rankR approximation cannot be obtained by
This is known as thenulti-Inearity propertyenjoyed by ten-  consecutively computing and substractRéest rank-1 ap-

TS work s been bartially sunorted by contract ANR.QGE proximations (which always exist). The reason for this & th
0074 "Decotes A Stegé’man 4 Suggorted b;’the Dutch Osgaion for subtracting a best rank-1 approximation generally does not_
Scientific Research (NWO), VENI grant 451-04-102 and VIDamgras2- ~ decrease tensor rank. Hence, the deflation technique prac

08-001. ticed for matrices (via the Singular Value Decomposition)




cannot generally be extended to higher-order tensors. A spén accordance with the usual practice, we shall represent a
cial case where this deflation technique works is when th@ x p x 2 tensorX with two p x p matrix slices X; andXo,
tensor is diagonalizable by orthonormal multilinear tfans  as[Xj | X].

mation; see|[17, section 7]. 1 0l0 -1

~Inthis paper, we provide a mathematical treatment of thé> ExavpLE 1. LetX=| o ;|7 |- Thenforany
(in)validity of a rank-1 deflation procedure for higher-erd .1, ice of non zero vectar, the matrix( X esc), obtained by
te_rtﬁors. W? _cotn5|der>22 x 2 ten_S(I)rs ovelr:_th? Leal field, jinear combination of the above two matrix slices, is orthog
with symmetric tensors as a special case. First, however, al. Also, for any non zero vectdr, the matrix(X e, b)

discuss the problem of finding a best rank-1 approximate t P ) .
a 3rd order tensor. The proofs of our results will be avadabl %;{ggégonal. Hence has infinitely many rank-1 apprglm

in a forthcoming full-length version of this paper. Most tensors have multiple locally best rank-1 approxi-
mates, with one of them being better than the others (i.e., a
2. BEST RANK-1 APPROXIMATION unique best rank-1 approximate), as pointed out in Seéion 3
Finding the best rank-1 approximate consists of minimizingexamples will illustrate this fact.

the criterion 1 Remark. The tensor in Exampl[é 1 has rank 3. Ten Berge
Y=C|X-asbec|]? (3) etal [R9] showed thatX has no best rank-2 approximation,

. 2 ) o the infimum of|| X — ¥]|? over Y of rank at most 2 being 1.
with respect to vectora, b andc. The solution will likely A more general result was obtained by De Silva and L[im [12]
depend on the norm, and we shall restrict to the Frobeniugho showed that no2 2 x 2 tensor of rank 3 has a best rank-
norm: || X[|? = 3j [Xij|2. Obviously there is a scale in- 2 approximation. Stegemaf 23] showed that any sequence
determinacy in this problem, and we could impose two ofof rank-2 approximation&™ for which || X — ¥{" |2 con-
these three vectors to be unit norm. We shall not do that hefgsrges to the infimum of 1, features diverging components.
because the presentation would be slightly longereLele- |t js'shown in [L]] that the stationary points of thec2 x 2

note the summation over tieh index (that is the contraction symmetric best rank-1 approximation problem are obtained
operator in thefth space). For instance, the prodicBT 55 the roots of a 3rd degree polynomial.

between two matrices can be writtenAe, B; if X is a 3rd
order tensor X e; a is a matrix, andXe;ae,b is a vector. 3. BEST RANK-1 SUBTRACTION
And let us rewrite criterion[{3) as: '
1 1 From now on, we restrict our discussion to tensors in the real
W=Z||X|[>— Xeaebec+=||al[}|[b||3c||2. (4) field. De Silvaand Lim[[12, Section 7] showed that2x2
2 123 2 tensors (over the real field) can be transformed by invertibl
Proceeding as |r[|[5], gradients with respect to the three VeéﬂUltl'lﬂear matrix multlpllcatlons Into elght distinct nani-

tors can be obtained: cal forms. This partitions the spaB&*?*2 into eight distinct
20 112 orbits under the action of invertible transformations iclea
d¥a = —X;b;C+a||b|| el of the 3 modes. Tablf 1 lists the canonical forms for each
21 112 orbit as well as their rank and multilinear rank. These quan-
d¥p = _XIa§C+b||a|| el tities are invariant under the transformations defining an o

bit. This kind of classification is better known for symmetri
tensors or multivariate polynomialg [5]. Recall the foliog

Concerning the uniqueness of a best rank-1 approximatt[:‘(,eSUIt stated by De Silva and Li [12];

one may ask the following question: are there tensors fofemma 2 Let X be a2 x 2 x 2 tensor with matrix sliceX;
which the solution defined byt = [|b||?[|c|| 2Xe;bezc  andXy.

andd¥y, = dWe = 0 is not unique up to scale? We exhibitin (jy |t x, X1 or X;X,* has real eigenvalues and is diago-
this section a family of such tensors. nalizable. therX ia in orbit Go.

If we plug the expression ad back in the equation of (i 1 =) . . .
. _ (i) I XXt or X4 X5+ has two identical real eigenvalues
jtl?)tl?/\r/]r?é)r/e\l)\alie|s|acr|ﬁ2’|\|ll\$|g|(|act|t|2a5v)rfizi1czr:é;ﬁi 'i’ﬁ;lszl:;] with only one associated eigenvector, thEfis in orbit

d¥e = —Xeasbtcllal|b*

. . Da.
eigenvector of the matriXXesc)e;(Xesc). If the latter .. 1 . . .
matrix is proportional to the identity for any then anyb is (1) '(23X2X1 has complex eigenvalues, théfis in orbit

an eigenvector. Analogously, substituting the expresfion
ainto dW¥e = O,Zwe %et tr;a(onb) e1(Xezb)esc=[ic, \yg shall use this lemma to verify the orbit of 2-dimensional
where = |[a[|?|[b||*||c||%. If (Xe2b)ei(Xe;b) is also  3rd order tensors.

proportional to the identity for any, then it follows that . ExampLE 2. Consider the tensor
any (a,b,c) with a given bydW¥, = 0 is a stationary point.

Substituting the expression af into the criterion (@) then 1 0l0 -2
yields a criterion function in(b,c) for which any(b,c) is X= 0 111 o |-
a stationary point. Hence, the function is constant and any
(b, c) is a minimizer. This yields the following proposition SinceXZXIl has complex eigenvalueX is in orbit Gs. It

Proposition 1 If a tensorX is such that the matrixXe3c)  can be verified thaX has a unique best rank-1 approxima-
is orthogonal for any vectoe, and (Xe,b) is orthogonal tion
for any vectom, then X has infinitely many best rank-1 ap- v [ 0 0|0 -2 ]

(%)

(6)

proximates. 0 0|0 O



When Y is subtracted fronX we end up in orbiD3, since
1 0|0 O
O 1|1 0"

can be transformed to the canonical form of orby by
swapping rows within each slice. <

Z=X-Y= [ @)

Canonical Tensor Multilinear

form rank rank
po: | O 2[9 2 0 (0,00
o[ 19199 1 @y
o, [10190] 2 2y
D) : :(1) 219 é: 2 (122
Dy :(1) 2|2 g: 2 (212
Gy :é 210 2: 2 (222
Ds: :‘1) 1k 8: 3 (222
Gs: [_‘01 2‘2 H 3 (222

Table 1:Canonical forms of X 2 x 2 tensors for the eight orbits
under the action of invertible multilinear matrix multipéitions over

the real field. The letter® and G stand for “degenerate” (zero
volume set in the 8-dimensional space ok 2 x 2 tensors) and

“typical” (positive volume set), respectively.

For tensorsX in the orbits of Tablg |1, we would like to
know in which orbitX — Y is contained, wher&' is a best
rank-1 approximation oX. We have the following result for
the degenerate orbits of ranks 1 and 2.

Proposition 3 Let X be a2 x 2 x 2 tensor, and letY be a
best ranki approximation ofX.

(i) If Xisin orbit Dy, thenX — Y'is in orbit Dy.

(i) If Xisin orbit Dy, D}, or Dj, thenX — Y'is in orbit D;.

For X in orbit G, or D3, the tensotX — Y is not restricted to
a single orbit.

> EXAMPLE 3. For the canonical tensoX of orbit G, in
TabIe[L it can be seen th& — Y is in D;. On the other

hand, consider
0 1|1 O
X:[l o‘o 2]-

For this tensorX,X ;! has two distinct real eigenvalues.
Hence, by Lemmd| 2, the tensor is®p. It can be shown
that X has a unique best rank-1 approximati¥rsuch that
X — Y equals the canonical tensor of orbi in Table|}. <

> EXAMPLE 4. Next, consider tensors in orlid:

BRI I

(8)

10
00

0 1
2 0

10
00

0 2
10

Subtracting the best rank-1 approximatibifrom these ten-
sors amounts to replacing the element 2 by zero. Hence,
X — Yisin orbitD,, DS, andD3, respectively. <

On the other hand, it can be verified numerically or ana-
lytically that for X equal to the canonical tensor of orbig
in TabIeD.,X— Y is also in orbitD3;. Moreover, numerical
experiments show that for a gene&cin orbit D3, we have
X — Yin orbit D3 as well. This suggests the following

Conjecture 4 If X is in D3 and Y'is the best rank-1 approx-
imate of X, then almost all tensorX — Y are in Ds.

Tensors given in Examplé¢k 1 Br 2 were both in ofkit and
we have seen thaX — Y is in orbit D3 in Example|R. For
Example[ll, this can be proven for any of the infinite best
rank-1 approximated” of X. Numerically and analytically,
we have not found an¥X in orbit Gz for which X — Y'is not
in orbit D3.

We have no deterministic result for tensors in orl@ts
andGs, but we still have the following result, verified almost
everywhere (hence the word “generic”):

Proposition 5 Let X be a generi@ x 2 x 2tensor, andY be
a best rankt approximation ofX. Then almost all tensors
X — Y are in orbit Ds.

Hence, for typical tensors in orlit,, subtracting a best rank-
1 approximatancreaseshe rank to 3. For typical tensors
in orbit Gz, subtracting a best rank-1 approximate does not
affect the rank.

However, some non typical tensors of rank 2 may have a
different behavior, as now shown.

Proposition 6 Let X be a2 x 2 x 2 rank-2 tensor with diag-
onal slices, and lefr” be a best rank: approximation ofX.
ThenX — Yis in orbit Dy.

a e O
> EXAMPLE 5. Let X = [ 0 ‘ 0 h ] Then
0 0

1 1 d
x=(3)+(8)-(8)+(2)-(2)-(7)
Then it can be seen thaf = (I,1, T) - I, wherel denotes the
identity matrix andI the diagonal tensor tensor with ones on

its diagonal:
1 0 0 a d
I:[o o‘ 1}’a“dT:[e h]

This shows thatX is is orbit Gy, and PropositiorﬂG implies
that this is an exception to Propositiﬁn 5. <

PropositionDS states that such exceptions form a set of
null measure.

a
e

oo

4. SYMMETRIC TENSORS

A tensor is symmetric if its entries are invariant under arbi
trary permutations of its indices. There is a bijection besw
the space of symmetricx | x | tensors and the space of ho-
mogeneous polynomials of degree 3limariables. A sym-
metricl x | x | tensorX can be associated with the polyno-

mial
p(sl,.--,s)zzmk SSjS«- 9
J]



Thesymmetric ranlof an order-3 symmetric tensdf is the  Lemma 8 Let X be a symmetri@ x 2 x 2 tensor with matrix

minimal numbeR such thatﬂh]: slicesX; and Xo.
. (i) If XoX;* or X;1X,? has distinct real eigenvalues, then
X=Y aearea. (10) X isin orbit G,.
r; (i) If XoX ! or X;X,* has two identical real eigenvalues,

) ) o then X is in orbit Ds.
The orbits of symmetric & 2 x 2 tensors are givenin Talﬂa 2-(iii) If X2XIl has complex eigenvalues, thais in orbit
Gs.

canonical form polynomial sym. rank ,
Next, we present an example of a symmetrig 2 x 2
) ) tensor in orbitGs, that has a unique best symmetric rank-1
Do 0 0|0 O 0 0 approximationY, such thatX — Y'is in orbitDs.
[0 0]0 0 > EXAMPLE 7. Let
.11 0|0 O
Diilo ofo o s 1 X_H Hié] (14)
.[1 0|0 0]
Ge: 10 0]0 1 S+ 2 We have
[0 1]1 0] -1_| 0 1
Ds:1 1 o]0 0 3sis 3 X2 X1 { -1 1}’ (19)
[ -1 o]0 1 which has complex eigenvalues. Hence, by Lenfir(éi$
Gs: { 0 1 ‘ 10 } ~S 3915+ 3 the tensor is in orbiG;.

Next, we compute the best symmetric rank-1 approxima-

Table 2:Canonical forms of symmetric:22 x 2 tensors and asso- tion Y to X, which has the form
ciated polynomials, for the three orbits under the actiomedrtible

multilinear transformations over the real field. The letterandG y— xf x%xz (16)
stand for “degenerate” (zero volume set in the 4-dimensispace - xfxz X1X§

of symmetric 2x< 2 x 2 tensors) and “typical” (positive volume set),

respectively. After some manipulations, it can be shown that the minimum

, _ , __of || X— Y]|?is obtained fon3 = x3 = 3/4, that is
The symmetric rank of symmetric tensors of dimension

X%y X1X5
g |

2 can be obtained from the Sylvester Theorem, at any order. 173 3/3 3
This Theorem is formulated below in the case of third order Y= 2 { 3 3|3 3 } - (17)
tensors.
Theorem 7 (Sylvester)A symmetric2 x 2 x 2 tensor with By subtraction, we obtain
associated polynomial . Y:} [ 3 1‘ 11 } (8
P(s1.%2) = S + 3SR +3nusB+ s, (11) a4l 1 11 =3p
has a symmetric rank-R decompositigif) if and only if 1 [ 0 1
there exists a vectas = (go,...,gr)" such that and  ZoZ,t=1 3 | (19)
oo o R which has a double eigenvaluel. Hence, by Lemmg i)
the tensoiZ is in orbitDs. <
oo WRi1 In our next example, the symmetric<2 x 2 tensor is in
g=0, (12)  orbit G, and has a unigue best symmetric rank-1 approxi-
mation Y, such thatX — Y'is in orbitDs.
VR ... W > EXAMPLE 8. Let
d if the pol ial = RS} AR x| 3 41 (20)
and if the polynomial (p1,2) = grST + Or-1 S+t =11 111 3

g1515% 1 + goR has R distinct real roots.

> EXAMPLE 6. Using Sylvester's Theorem, one can obtainWe have

the following decomposition for the representative of brbi XZXI1 = { _01 i } , (21)
D3 given in Tablep:
which has real and distinct eigenvalues. Hence, by Le@ma 8
655 = (514 9)°+ (—s1+ %)% - 255. (13) (i) the tensor is in orbiG,.
In other words, the associated tensor can be wrifkes Next, we compute the best symmetric rank-1 approxima-
, . . 5
23 + b3 2¢93, wherea — [1, 1T, b — -1, 1]' and }gogbz;tigé)g.fgrcan be shown that the minimum X — Y|
c=[0, 1. <
We have the following analogue of Lem||ﬂa 2 to verify the

31 1|11 1
orbit of symmetric tensors of dimension 2. Y=3 { 1 1‘ 1 1 } : (22)



By subtraction, we obtain

which has a double eigenvaluel. Hence, by Lemmf i)
the tensoiZ is in orbitD3. <
Finally, we have the following analogue of Proposit[tl)n 5.

Proposition 9 Let X be a generic symmetriz x 2 x 2 ten-
sor, andY be a best rank:approximation ofX. Then almost
all tensorsX — Y are in orbit Ds.

Hence, for typical symmetric 2 2 x 2 tensors with symmet-
ric rank 2, subtracting a best rank-1 approximatreases
the symmetric rank to 3. For typical symmetric tensors with
symmetric rank 3, subtracting a best rank-1 approximat?lg]
does not affect the symmetric rank.
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