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Abstract— This paper reviews the main features of a high-order non-
dissipative discontinuous Galerkin (DG) method recently investigated
in [1]-[3] for solving Maxwell’s equations on non-conforming simplex
meshes. The proposed method combines a centered approximation for
the numerical fluxes at inter element boundaries, with either a second-
order or a fourth-order leap-frog time integration scheme. Moreover,
the interpolation degree is defined at the element level and the mesh
is refined locally in a non-conforming way resulting in arbitrary-level
hanging nodes.

I. INTRODUCTION

In the recent years, several works have demonstrated the
benefits of using DG methods for the simulation of time-
domain electromagnetic wave propagation problems involv-
ing complex geometries and heterogeneous media. Being
higher order versions of traditional finite volume method [1]-
[5], Discontinuous Galerkin Time-Domain (DGTD) meth-
ods are flexible discretization methods that can handle com-
plicated geometries, media and meshes, and achieve high-
order accuracy by simply choosing suitable local basis func-
tions. Whereas several conforming DGTD methods for
the numerical resolution of the system of Maxwell equa-
tions have been developed so far [4], the design of non-
conforming DGTD methods is still in its infancy. In prac-
tice, the non-conformity can result from a local refinement
of the mesh (i.e. h-refinement), of the interpolation order
(i.e. p-enrichment) or of both of them (i.e. hp-refinement).

II. DISCONTINUOUS GALERKIN METHOD

We consider the three-dimensional Maxwell equations on
a bounded domainΩ of R3. The electric permittivity tensor
¯̄ε(x) and the magnetic permeability tensor¯̄µ(x) are varying
in space and both symmetric positive definite. The electric
field ~E and the magnetic field~H verify: ¯̄ε∂t

~E = curl ~H

and ¯̄µ∂t
~H = −curl ~E. We consider a partitionΩh of Ω into

a set of tetrahedraτi. To eachτi ∈ Ωh we assign an in-
tegerpi ≥ 0 (the local interpolation order) and we collect
the pi in the vectorp = {pi : τi ∈ Ωh}. On the domain
boundary∂Ω, we use either a metallic boundary condition
or a first-order Silver-M̈uller absorbing boundary condition.
In the following, for a given partitionΩh and vectorp, we
seek approximate solutions to Maxwell’s system in the finite
dimensional subspaceVp(Ωh) := {v ∈ L2(Ω)3 : v|τi

∈
Ppi

(τi) , ∀τi ∈ Ωh}, wherePpi
(τi) denotes the space of

nodal polynomials of total degree at mostpi inside the el-
ementτi. The DGTD method at the heart of this study is
based on a totally centered numerical fluxes at the interface
between elements of the mesh. We suppose that all electric
(resp. magnetic) unknowns are gathered in a column vec-
tor E (resp. H) of size d (the total number of degrees of
freedom), then the semi-discretized DGTD method can be
rewritten as (see [1]-[2]-[3] for more details):{

Mε∂tE = KH− AH− BH,
Mµ∂tH = −KE + AE− BE,

(1)

where we have the following definitions and properties:

• Mε, Mµ andK ared × d block diagonal matrices with
diagonal blocks equal to the local mass and stiffness
matrices respectively. ThereforeMε andMµ are sym-
metric positive definite matrices, andK is a symmetric
matrix.

• A is also ad × d block sparse matrix, whose non-zero
blocks are equal to the internal interface matrix (cor-
responds to fluxes at internal interfaces of the mesh).
ThenA is a symmetric matrix.

• B is a d × d block diagonal matrix, whose non-zero
blocks are equal to the metallic interface matrix (corre-
sponds to fluxes at metallic boundary interfaces of the
mesh). ThenB is a skew-symmetric matrix.

The DGTD-Ppi
method using centered fluxes combined

with N th order leap-frog(LFN ) time scheme [6] and arbi-
trary local accuracy and basis functions can be written, in
function of the matrixS = K− A− B, in the general form:

Mε En+1 − En

∆t
= SNHn+ 1

2 ,

Mµ Hn+ 3
2 −Hn+ 1

2

∆t
= − tSNEn+1,

(2)

where the matrixSN verifies:

SN =


S if N = 2,

S(I− ∆t2

24
M−µ tSM−εS) if N = 4.

(3)

III. STABILITY AND CONVERGENCE ANALYSIS

We define the following discrete version of the electro-
magnetic energy.

En =
1
2
( tEnMεEn + tHn− 1

2 MµHn+ 1
2 ). (4)

Then we have the following Lemmas [2]:

Lemma 1 Using the DGTD-Ppi method (2)-(3), the total
discrete electromagnetic energyEn (4) is a positive definite
quadratic form of all unknowns if:

∆t ≤ 2
dN

, with dN = ‖M
−µ
2 tSNM

−ε
2 ‖,

where ‖.‖ denote the canonical norm of a matrix
(∀X, ‖AX‖ ≤ ‖A‖‖X‖), and the matrixM

−σ
2 (σ stands

for ε or µ) is the inverse square root ofMσ. Also, for a given
mesh, the stability limit of the LF4 scheme is roughly2.85
times larger than that of the LF2 scheme.

Lemma 2 The convergence order in space and time of the
DGTD-Ppi

method (2)-(3) is:

O(Thmin(s,p)) +O(∆tN ),

where∆t ∈ [0, T ], h is the mesh size and the solution be-
longs toHs(Ω) with s > 1/2 a regularity parameter.



IV. NUMERICAL EXPERIMENTS

In the following, for a given non-conforming mesh, we
assign to coarse (i.e.non refined) elements a high polynomial
degreep1 and to the refined region a low polynomial degree
p2. The resulting scheme is referred to as DGTD-P(p1,p2). If
p1 = p2 = p, the scheme is simply called DGTD-Pp.

A. eigenmode in a PEC cavity

The first test case that we consider is the propagation of
an eigenmode in a unitary PEC cavity withε = µ = 1.

The 2D case: We compare the LF2 and LF4 time
schemes using the DGTD-Pp method. Numerical simula-
tions make use of a non-conforming triangular mesh which
consists of782 triangles and442 nodes (36 of them are hang-
ing nodes) as shown on Fig. 1 right. We plot on Fig. 1 left
the time evolution of the overallL2 error of the DGTD-Pp

method using the LF2 and LF4 schemes. Tab. I gives theL2

error, the CPU time in minutes to reach105 periods, and the
convergence order “O”. It can be observed from Fig. 1 and
Tab. I that the LF4 is more accurate and requires less CPU
time than the LF2 scheme. Moreover, the convergence order
is bounded byN which confirms the result of Lemma 2.
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Fig. 1. Error of the DGTD-Pp method (left) on the non-conforming trian-
gular mesh (right).

TABLE I. COMPARISON BETWEENLF2 AND LF4 DGTD-Pp METHOD

LF2 scheme LF4 scheme
p L2 error CPU O L2 error CPU O
2 1.8E-03 11 2.28 5.5E-04 8 2.32
3 3.1E-04 39 2.33 2.4E-05 28 2.97
4 1.9E-04 98 2.10 1.5E-05 70 3.99

The 3D case: Here we compare the DGTD-P(p1,p2) with
several DGTD-Pp methods using the LF2 time scheme. Nu-
merical simulations make use of an unstructured mesh which
consists of4406 tetrahedra and962 nodes. Tab. II gives the
L2 error, the # DOF and the CPU time in minutes to reach30
periods. Note that, the low polynomial degreep2 is used in
only 5% of the tetrahedra of the mesh. We can deduce from
Tab. II that to achieve a given accuracy, the DGTD-P(p1,p2)

requires less CPU time than the DGTD-Pp. Moreover, for
a given CPU time, the DGTD-P(p1,p2) method is roughly8
times more efficient than the DGTD-Pp method.

B. Scattering of a plane wave by a dielectric cylinder

In this problem, a plane wave impinges on a dielectric
cylinder, experiencing reflection and refraction at the mate-
rial interface. The material is non-magnetic, and the material
exterior to the cylinder is assumed to be vacuum. The cylin-
der has a radiusr0 = 0.6 and bounds a material of relative
permittivity εr = 2.25. The computational domain is chosen

TABLE II. # DOF, L2 ERRORS ANDCPU TIME IN MINUTES

p 0 1 2 3
L2 error 7.2E-01 2.0E-01 1.4E-02 8.0E-04

CPU 4 40 213 859
# DOF 4406 17624 44060 88120

(p1, p2) (2,0) (2,1) (3,1) (3,2)
L2 error 3.6E-02 1.3E-02 1.0E-03 8.8E-04

CPU 35 106 260 499
# DOF 42908 43676 87096 86030

as a cylinder of radius1.5 centered at(0, 0). At the artifi-
cial boundary, we apply a first-order Silver-Müller absorb-
ing boundary condition. Here, we compare the DGTD-Pp

method using a conforming mesh with the DGTD-P(p1,p2)

using a non-conforming mesh. To this end, we construct
a conforming mesh consisting of11920 triangles and6001
nodes. Then, a non-conforming mesh is obtained by lo-
cally refining (two refinement levels) the cylindrical zone
0.55 ≤ r ≤ 0.65 of a coarse conforming mesh. The re-
sulting non-conforming mesh consists of5950 triangles and
3151 nodes (300 of them are hanging nodes). Tab. III shows
the relativeL2 error, the # DOF and the CPU time in minutes
to reacht = 5. As expected, the gain in CPU time between
the DGTD-P(p1,p2) and the conforming DGTD-Pp methods
is considerable. For instance, to achieve an error level of5%,
the DGTD-P(2,0) scheme requires3 times less DOF and21
times less CPU time than the DGTD-P2 scheme.

TABLE III. # DOF, L2 ERRORS ANDCPU TIME IN MINUTES

DGTD-Pp : Conforming triangular mesh
p 0 1 2 3

L2 error 13.6% 7.15% 5.20% 5.22%
CPU 20 178 542 1817

# DOF 11920 35760 71520 119200

DGTD-P(p1,p2) : Non-conforming triangular mesh
(p1, p2) (1,0) (2,0) (2,1) (3,2)
L2 error 11.6% 5.36% 5.39% 5.37%

CPU 9 25 33 179
# DOF 11450 19700 26100 46700
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