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ABSTRACT.In this paper, we address the problem of the usefulness of theset of discovered asso-
ciation rules. This problem is important since real-life databases yield most of the time several
thousands of rules with high confidence. We propose new algorithms based on Galois closed
sets to reduce the extraction to small covers (or bases) for exact and approximate rules, adapted
from lattice theory and data analysis domain. Once frequentclosed itemsets – which constitute
a generating set for both frequent itemsets and associationrules – have been discovered, no
additional database pass is needed to derive these bases. Experiments conducted on real-life
databases show that these algorithms are efficient and valuable in practice.

RÉSUMÉ.Nous traitons dans cet article du problème de l’utilisabilité des règles d’association
découvertes. Ce problème est primordial car, dans la plupart des cas, les jeux de données
réels conduisent à plusieurs milliers de règles d’association dont la mesure de confiance est
élevée. Nous proposons de nouveaux algorithmes, basés sur l’utilisation de la fermeture de
la connexion de Galois, permettant d’extraire des couvertures réduites (ou bases) pour les
règles d’association exactes et partielles, adaptées du domaine de la théorie des treillis et de
l’analyse de données. L’approche proposée consiste à extraire les itemsets fermés fréquents –
qui constituent un ensemble générateur pour les itemsets fréquents et les règles d’association
– et générer ensuite ces bases sans autre accès à la base de données. Les expérimentations
menées sur des bases de données réelles montrent l’efficacité et l’utilité de ces algorithmes.

KEYWORDS: data mining, Galois closure operator, frequent closed itemsets, bases for association
rules, algorithms.

MOTS-CLÉS :extraction de connaissances dans les bases de données, fermeture de la connexion
de Galois, itemsets fermés fréquents, bases pour les règlesd’association, algorithmes.
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1. Introduction and Motivation

Data mining has been extensively addressed for the last years, specially the prob-
lem of discovering association rules. The aim when discovering association rules
is to exhibit relationships between data items (or attributes) and compute the preci-
sion of each relationship in the database. Usual precision measures are support and
confidence [AGR 93] that point the proportion of database transactions (or objects)
upholding each rule out. When an association rule has support and confidence ex-
ceeding some user-defined minimum thresholds, the rule is considered as relevant and
the extracted knowledge would likely be used for supportingdecision making. A clas-
sical example of association rules fits in the context of market basket data analysis
and highlights a particular feature in customers behavior:80% of customers who buy
cereals and sugar also buy milk and 20% of customers buy both three items.

Since the problem was stated [AGR 93], various approaches have been proposed
for an increased efficiency of rule discovery [AGR 94, BAY 98,BRI 97b, LIN 98,
PAS 98, PAS 99b, PAS 99a, SAV 95, TOI 96, ZAK 97]. However, fully taking advan-
tage of exhibited knowledge means capabilities to handle such a knowledge. In fact,
by using a synthetic dataset containing 100,000 objects, each of which encompass-
ing around 10 items, our experiments yield more than 16,000 rules with confidence
outcoming 90%. The problem is much more critical when collected data is highly cor-
related or dense, like in statistical or medical databases.For instance, when applied
to a census dataset of 10,000 objects, each of which characterized by values of 73 at-
tributes, experiments result in more than 2,000,000 rules with support and confidence
outcoming 90%.

Thus the talked issue could be rephrased as follows: which relevant knowledge
can be learned from several thousands of rules highly redundant? Which aid could
be offered to users for handling countless rules and focusing on useful ones? Before
explaining how our approach answers the previous questions, let us examine proposed
solutions for meeting such needs.

1.1. Related Work: an Outline

Among approaches addressing the described issue, two main trends can be distin-
guished. The former provides users with mechanisms for filtering rules. In [BAR 97,
KLE 94], the user defines templates, and rules not matching with them are discarded.
In [NG 98, SRI 97], boolean operators are introduced for selecting rules including (or
not) given items. In [SRI 96, TOI 95], methods for pruning rules with weak measures
of improvement, that characterize the difference between supports and confidences
of a rule and its sub-rules, i.e. with smaller antecedent andsame consequent, are
proposed. A similar approach expanded with boolean operators for selecting rules
is proposed in [BAY 99b]. In [MEO 96], an SQL-like operator called MINE RULE,
allowing the specification of general extraction criteria,is defined. The use of the
user’s domain knowledge for selecting unexpected rules, using measures of distance
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between rules called deviation measures, is proposed in [HEC 96, PIA 91, SIL 96].
In [BAY 99a], the proposed approach consists in selecting rules with maximal an-
tecedent, called A-maximal rules, that are rules for which the addition of an item to
the antecedent reduces the population concerned by the rule. The quoted approaches
operate “a posteriori”, i.e. once huge amount of rules are extracted, querying facilities
make it possible to handle rule subsets selected according to the user preferences.

In contrast, the second trend addresses the problem with an “a priori” vision, by
attempting to minimize the number of exhibited rules. In [HAN 95, SRI 95], informa-
tion about taxonomies are used to define criteria of interestwhich apply for pruning
redundant rules. The use of statistical measures, such as Pearson’s correlation, chi-
squared test, conviction, interest, entropy gain, gini or lift, instead of the confidence
measure is studied in [BRI 97a, MOR 98, SIL 98].

1.2. Contribution: an Overview

The approach presented in this paper belongs to the second trend since it aims to
extract not all possible rules but a subset called small cover or basis for association
rules. When computing such a basis, redundant rules are discarded since they do not
vehicule relevant knowledge. Such a pruning operation is a key-step during rule ex-
traction, and significantly reduces the resulting set. Moreover, since rules unexpected
by the user are important [LIU 97, SIL 96], presenting a list of rules covering all the
frequent items in the dataset is also needed. The approach proposed in this paper
meets this requirement.

First, using the closure operator of the Galois connection [BIR 67], we charac-
terize frequent closed itemsets introduced in [PAS 98]. Then, we show that frequent
closed itemsets represent a generating set for both frequent itemsets and association
rules. The underlying theorem states the foundations of ourapproach since it makes
it possible to generate the bases from frequent closed itemsets by avoiding handling
of large sets of rules. We propose two new algorithms: the former achieves frequent
closed itemsets from frequent itemsets without accessing the dataset, and the latter,
called Apriori-Close, extends the Apriori algorithm [AGR 94] by discovering simul-
taneously frequent itemsets and frequent closed itemsets without additional execution
time.

Then, using the frequent closed itemsets and the pseudo-closed itemsets defined by
Duquenne and Guigues in lattice theory [BUR 98, DUQ 86], we define theDuquenne-
Guigues basis for exact association rules(rules with a 100% confidence). Rules in
this basis are non-redundant exact rules. Besides, using the frequent closed itemsets
and results proposed by Luxenburger in lattice theory [LUX 91], we define theproper
basisand thestructural basis for approximate association rules. The proper basis is
a small set containing non-redundant approximate association rules. The structural
basis can be viewed as an abstract of all approximate rules that hold and can be useful
when the proper basis is large. We propose three algorithms intended for yielding
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these three bases. Using the set of frequent closed itemsets, generating the evoked
bases is performed without any access to the dataset.

An algorithm discovering closed and pseudo-closed itemsets has been proposed
in [GAN 91] and implemented in CONIMP [BUR 98]. However, this algorithm
does not consider the support of itemsets and, since it worksonly in main mem-
ory, it cannot be applied when the number of objects exceeds some hundreds and
the number of items some tens. From the results presented in [LUX 91], no algo-
rithm was proposed. In [PAS 98, PAS 99a], the association rule framework based
on the Galois connection is defined. Fitting in this groundwork, two efficient algo-
rithms that discover frequent closed itemsets for association rules are defined: the
Close algorithm [PAS 98, PAS 99a] for correlated data and theA-Close algorithm
[PAS 99b] for weakly correlated data. The work presented in this paper differs from
[PAS 98, PAS 99b, PAS 99a] in the following points:

1. It shows that frequent closed itemsets constitute a generating set for frequent
itemsets and association rules.

2. It extends the Apriori algorithm and algorithms for discovering maximal fre-
quent itemsets to generate frequent closed itemsets.

3. It adapts the Duquenne-Guigues basis and Luxenburger results for exact and
partial implications to the context of association rules. This adaptation is based on 1.
(generating set).

4. It presents new algorithms for generating bases for exactand approximate as-
sociation rules using frequent closed itemsets.

5. It shows that the algorithms proposed are efficient for both improving the use-
fulness of extracted association rules and decreasing the execution time of the associ-
ation rule extraction.

1.3. Paper Organization

In Section 2, we present the association rule framework based on the Galois con-
nection. Section 3 addresses the concept of basis for both exact and approximate as-
sociation rules. New algorithms for discovering frequent and frequent closed itemsets
are described in Section 4 and the following section presents algorithms computing
the bases for association rules from the frequent closed itemsets. Experimental results
achieved from various datasets are given in Section 6. Finally, as a conclusion, we
evoke further work in Section 7.

2. Association Rule Framework

In this section, we present the association rule framework based on the Galois
connection, primarily introduced in [PAS 98].
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Definition 1 (Data mining context). A data mining context1 is defined asD = (O; I;R),
whereO andI are finite sets of objects and items respectively.R � O�I is a binary
relation between objects and items. Each couple(o; i) 2 R denotes the fact that the
objecto 2 O is related to the itemi 2 I.

Depending on the target system, a data mining context can be arelation, a class,
or the result of an SQL/OQL query.

Example 1. An example data mining contextD consisting of 5 objects (identified by
their OID) and 5 items is illustrated in Table 1.

OID Items
1 A C D
2 B C E
3 A B C E
4 B E
5 A B C E

Table 1. The example data mining contextD.

Definition 2 (Galois connection).LetD = (O, I, R) be a data mining context. ForO � O andI � I, we define:f : 2O ! 2I g : 2I ! 2Of(O)=fi 2 I j 8o 2 O; (o; i) 2 Rg g(I)=fo 2 O j 8i 2 I; (o; i) 2 Rgf(O) associates withO the items common to all objectso 2 O andg(I) associates
with I the objects related to all itemsi 2 I . The couple of applications(f; g) is a
Galois connection between the power set ofO (2O) and the power set ofI (2I). The
following properties hold for allI; I1; I2 � I andO;O1; O2 � O:

(1) I1 � I2 ) g(I1) � g(I2) (1’) O1 � O2 ) f(O1) � f(O2)
(2) O � g(I)() I � f(O)

Definition 3 (Frequent itemsets).Let I � I be a set of items fromD. The support
count of the itemsetI in D is: supp(I) = jg(I)jjOjI is said to be frequent if the support ofI in D is at least minsupp. The setL of
frequent itemsets inD is:L = fI � I j supp(I) � minsuppg1. By extension, we will call dataset a data mining context.
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Definition 4 (Association rules). An association rule is an implication between two
itemsets, with the formI1!I2 whereI1; I2 � I, I1; I2 6= ? andI1 \ I2 = ?. I1 andI2 are called respectively the antecedent and the consequent of the rule. The support
supp(r) and confidence conf(r) of an association ruler : I1!I2 are defined using the
Galois connection as follows:supp(r) = jg(I1 [ I2)jjOj ; onf(r) = supp(I1 [ I2)supp(I1)
Association rules holding in the context are those that havesupport and confidence
greater than or equal to the minsupp and minconf thresholds respectively. We define
the setAR of association rules holding inD given minsupp and minconf thresholds
as follows:AR = fr : I1 ! I2 n I1 j I1 � I2 � I ^ supp(I2) � minsupp^ onf(r) � minonfg
If conf(r)=1 then r is called an exact association rule or implication rule, otherwiser
is called approximate association rule.

Example 2. Exact and approximate association rules extracted fromD for minsupp
= 2/5 andminconf= 1/2 are given in Table 2.

Exact rule Supp Approximate rule Supp Conf Approximate rule Supp Conf
ABC) E 2/5 BCE! A 2/5 2/3 B! AE 2/5 2/4
ABE) C 2/5 AC! BE 2/5 2/3 E! AB 2/5 2/4
ACE) B 2/5 BE! AC 2/5 2/4 A ! CE 2/5 2/3
AB) CE 2/5 CE! AB 2/5 2/3 C! AE 2/5 2/4
AE) BC 2/5 AC! B 2/5 2/3 E! AC 2/5 2/4
AB) C 2/5 BC! A 2/5 2/3 B! CE 3/5 3/4
AB) E 2/5 BE! A 2/5 2/4 C! BE 3/5 3/4
AE) B 2/5 AC! E 2/5 2/3 E! BC 3/5 3/4
AE) C 2/5 CE! A 2/5 2/3 A ! B 2/5 2/3
BC) E 3/5 BE! C 3/5 3/4 B! A 2/5 2/4
CE) B 3/5 A ! BCE 2/5 2/3 C! A 3/5 3/4
A) C 3/5 B! ACE 2/5 2/4 A ! E 2/5 2/3
B) E 4/5 C! ABE 2/5 2/4 E! A 2/5 2/4
E) B 4/5 E! ABC 2/5 2/4 B! C 3/5 3/4

A ! BC 2/5 2/3 C! B 3/5 3/4
B! AC 2/5 2/4 C! E 3/5 3/4
C! AB 2/5 2/4 E! C 3/5 3/4
A ! BE 2/5 2/3

Table 2. Association rules extracted fromD for minsup = 2/5 and minconf = 1/2.
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3. Bases for Association Rules

In this section, we first demonstrate that the frequent closed itemsets constitute
a generating set for frequent itemsets and association rules. Then, we characterize
the Duquenne-Guigues basis for exact association rulesand theproper and struc-
tural bases for approximate association rules. These bases are adaptions of the bases
defined by Duquenne and Guigues [DUQ 86] and Luxenburger [LUX91] in Lattice
Theory and Data Analysis to the context of association rules. This adaptation is not
trivial since additional constraints related to the specificity of association rules have
to be considered. Theorem 2 states that the union of the Duquenne-Guigues basis
for exact association rules and the proper basis or the structural basis for approxi-
mate association rules constitutes a basis for all valid association rules. The proof of
this theorem is straightforward from Theorem 1 and [DUQ 86, LUX 91]. Interested
readers could refer to [BIR 67, GAN 99, WIL 92] for further details on closed sets.

3.1. Generating Set

Definition 5 (Galois closure operators).The operatorsh = fÆg in 2I andh0 = gÆf
in 2O are Galois closure operators2. Given the Galois connection(f; g), the following
properties hold for allI; I1; I2 � I andO;O1; O2 � O [BIR 67]:

Extension : (3)I � h(I) (3’) O � h0(O)
Idempotency : (4)h(h(I)) = h(I) (4’) h0(h0(O)) = h0(O)
Monotonicity : (5) I1 � I2 ) h(I1) � h(I2) (5’) O1 � O2 ) h0(O1) � h0(O2)
Definition 6 (Frequent closed itemsets).An itemsetI � I in D is a closed itemset
iff h(I) = I . A closed itemsetI is said to be frequent if the support ofI in D is at
least minsupp. The smallest (minimal) closed itemset containing an itemsetI is h(I),
the closure ofI . The set FC of frequent closed itemsets inD is defined as follows:FC = fI � I j I = h(I) ^ supp(I) � minsuppg
Example 3. A frequent closed itemset is a maximal set of items common to aset of
objects, for which support is at leastminsupp. The frequent closed itemsets in the
contextD for minsupp=2/5 are presented in Table 3. The itemsetBCE is a frequent
closed itemset since it is the maximal set of items common to the objectsf2; 3; 5g.
The itemsetBC is not a frequent closed itemset since it is not a maximal set of items
common to some objects: all objects in relation with the itemsB andC (objects 2, 3
and 5) are also in relation with the itemE.

Hereafter, we demonstrate that the set of frequent closed itemsets with their sup-
port is the smallest collection from which frequent itemsets with their support and
association rules can be generated (it is a generating set).2. Here, we use the following notation:fÆg(I) = f(g(I)) andgÆf(O) = g(f(O)).
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Frequent closed itemset Support
{?} 5/5
{C} 4/5
{AC} 3/5
{BE} 4/5
{BCE} 3/5
{ABCE} 2/5

Table 3. Frequent closed itemsets extracted fromD for minsupp = 2/5.

Lemma 1. [PAS 98, PAS 99a] The support of an itemsetI is equal to the support of
the smallest closed itemset containingI : supp(I) = supp(h(I)).
Lemma 2. [PAS 98, PAS 99a] The set of maximal frequent itemsetsM = fI 2L j � I 0 2 L where I � I 0g is identical to the set of maximal frequent closed itemsetsMC = fI 2 FC j � I 0 2 FC where I � I 0g.
Theorem 1 (Generating set).The set FC of frequent closed itemsets with their sup-
port is a generating set for all frequent itemsets and their support, and for all associ-
ation rules holding in the dataset, their support and their confidence.

Proof. Based on Lemma 2, all frequent itemsets can be derived from the maximal
frequent closed itemsets. Based on Lemma 1, the support of each frequent itemset
can be derived from the support of frequent closed itemsets.Then, the set of frequent
closed itemsetsFC is a generating set for both the set of frequent itemsetsL and the
set of association rulesAR3.

3.2. Duquenne-Guigues Basis for Exact Association Rules

Definition 7 (Frequent pseudo-closed itemsets).An itemsetI � I inD is a pseudo-
closed itemset iffh(I) 6= I and8I 0 � I such asI 0 is a pseudo-closed itemset, we haveh(I 0) � I . The set FP of frequent pseudo-closed itemsets inD is defined asFP = fI � I j supp(I) � minsupp ^ I 6= h(I) ^ 8I 0 2 FP such asI 0 � I

we haveh(I 0) � Ig
Definition 8 (Duquenne-Guigues basis for exact associationrules). Let FP be the
set of frequent pseudo-closed itemsets inD. The Duquenne-Guigues basis for exact
association rules is defined as:DG = fr : I1 ) h(I1) n I1 j I1 2 FP ^ I1 6= ?g3. Furthermore,FC is the smallest generating set forL andAR. Hence, even if frequent
itemsets can be derived from the maximal frequent itemsets,passes over the dataset are still
needed to compute the frequent itemset supports.



Small Covers for Association Rules 9

The Duquenne-Guigues basis is minimal with respect to the number of rules since
there can be no complete set with fewer rules than there are frequent pseudo-closed
itemsets [DEM 92, GAN 99].

Example 4. A frequent pseudo-closed itemsetI is a frequent non-closed itemset that
includes the closures of all frequent pseudo-closed itemsets included inI . The setFP of frequent pseudo-closed itemsets and the Duquenne-Guigues basis for exact
association rules extracted fromD for minsupp=2=5 andminconf=1=2 are presented
in Table 4. The itemsetAB is not a frequent pseudo-closed itemset since the closures
of A andB (respectivelyAC andBE) are not included inAB. ABCE is not a
frequent pseudo-closed itemset since it is closed.

Frequent pseudo-closed itemset Support
{A} 3/5
{B} 4/5
{E} 4/5

Exact rule Support
A) C 3/5
B) E 4/5
E) B 4/5

Table 4. Frequent pseudo-closed itemsets and Duquenne-Guigues basis extracted
fromD for minsupp =2=5.

3.3. Proper Basis for Approximate Association Rules

Definition 9 (Proper basis for approximate association rules). Let FC be the set
of frequent closed itemsets inD. The proper basis for approximate association rules
is:PB = fr : I1 ! I2nI1 j I1; I2 2 FC ^ I1 6= ? ^ I1 � I2 ^ onf(r) � minonfg
Association rules inPB are proper approximate association rules.

Example 5. The proper basis for approximate association rules extracted fromD for
minsupp=2/5 andminconf=1/2 is presented in Table 5.

Approximate rule Support Confidence
BCE! A 2/5 2/3
AC! BE 2/5 2/3
BE! AC 2/5 2/4
BE! C 3/5 3/4
C! ABE 2/5 2/4
C! BE 3/5 3/4
C! A 3/5 3/4

Table 5. Proper basis extracted fromD for minsupp = 2/5 and minconf = 1/2.
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3.4. Structural Basis for Approximate Association Rules

Definition 10 (Undirected graphGFC). Let FC be the set of frequent closed item-
sets inD. We defineGFC = (V;E) as the undirected graph associated withFC
where the set of verticesV and the set of edgesE are defined as follows:V = fI � I j I 2 FCgE = f(I1; I2) 2 V � V j I1 � I2 ^ supp(I2)=supp(I1) � minonfg
With each edge inGFC between two verticesI1 andI2 with I1 � I2 is associated the
confidence =supp(I2) / supp(I1) of the proper approximate association ruleI1 !I2 n I1 represented by the edge.

Definition 11 (Maximal confidence spanning forestFFC). LetFFC = (V;E0) be
the maximal confidence spanning forest associated withFC. FFC is obtained from
the undirected graphGFC = (V;E) by suppressing transitive edges and cycles. Cy-
cles are removed by deleting some edges that enter the last vertex I (maximal vertex
with respect to the inclusion) of the cycle. Among all edges entering inI , those with
confidence less than the maximal confidence value associatedwith an edge with the
form (I 0; I) 2 E are deleted. If more than one edge have the maximal confidence
value, the first one in lexicographic order is kept.

2/3

A B C E

3/43/4

A C

B EC

B C E

3/4

2/3

2/4 2/4

4/54/5

Ø

2/5

3/5 3/5GFC
A B C E

3/43/4

A C

B EC

B C E

2/3

4/54/5

ØFFC
Figure 1. Undirected graphGFC and maximal confidence spanning forestFFC (a
tree in this example) derived fromD for minsupp = 2/5 and minconf = 1/2.

Definition 12 (Structural basis for approximate association rules). LetSB be the
set of association rules represented by edges inFFC except rules from the vertexf?g.
The structural basis for approximate association rules is:SB = fr : I1 ! I2 n I1 j I1; I2 2 V ^ I1 � I2 ^ I1 6= ? ^ (I1; I2) 2 E0g
In this basis, each frequent closed itemset is the consequent of at most one approximate
association rule.

Example 6. The structural basis for approximate association rules extracted fromD
for minsupp=2/5 andminconf=1/2 is presented in Table 6.
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Approximate rule Support Confidence
AC! BE 2/5 2/3
BE! C 3/5 3/4
C! A 3/5 3/4

Table 6. Structural basis extracted fromD for minsupp = 2/5 and minconf = 1/2.

3.5. Basis for all Valid Association Rules

Theorem 2 (Basis for valid association rules).The union of the Duquenne-Guigues
basis for exact association rules and the proper basis or thestructural basis for ap-
proximate association rules is a basis for all valid association rules, their support and
their confidence.

Proof. The proof of this theorem is straightforward from Theorem 1 and results pre-
sented in [DUQ 86, LUX 91]. All frequent closed itemsets and their support can be
derived from the union of the Duquenne-Guigues basis and theproper or the struc-
tural basis since for each frequent closed itemsetI2 there exists at least one associ-
ation rule of the formr : I1 ! I2 n I1 with supp(I2) = supp(r) andsupp(I1) =supp(r)=onf(r). Moreover, all valid association rules can be derived with their sup-
port from the setFC of frequent closed itemsets (Theorem 1). Then, obviously, all
valid association rules, their support and their confidencecan be derived from this
union.

4. Discovering Frequent and Frequent Closed Itemsets

In Section 4.1, we propose a new algorithm to achieve frequent closed itemsets
from frequent itemsets without accessing the dataset. Thisalgorithm discovers fre-
quent closed itemsets while for instance an algorithm for discovering maximal fre-
quent itemsets [BAY 98, LIN 98, ZAK 97] is used. In Section 4.2, we present an
extension of the Apriori algorithm [AGR 94] called Apriori-Close for discovering fre-
quent and frequent closed itemsets without additional computation time. Like in the
Apriori algorithm, we assume in the following that items aresorted in lexicographic
order and thatk is the size of the largest frequent itemsets. Based on Lemma 2, k is
also the size of the largest frequent closed itemsets.

4.1. Computing Frequent Closed Itemsets from Frequent Itemsets

Many efficient algorithms for mining frequent itemsets and their support have
been proposed. Well-known proposals are presented in [AGR 94, BRI 97b, SAV 95,
TOI 96]. Efficient algorithms for discovering the maximal frequent itemsets and then
achieve all frequent itemsets have also been proposed [BAY 98, LIN 98, ZAK 97].
All these algorithms give as result the setL = Si=ki=1 Li whereLi contains all frequent
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frequent closed itemsets and their support can be computed from the frequent itemsets
and their support without any dataset access.

The pseudo-code to determine frequent closed itemsets among frequent itemsets
is given in Algorithm 1. Notations are given in Table 7. The input of the algorithm
are setsLi, 1� i � k, containing all frequent itemsets in the dataset. It recursively
generates the setsFCi, 0� i�k, of frequent closedi-itemsets fromFCk toFC0.Li Set of frequenti-itemsets and their support.FCi Set of frequent closedi-itemsets and their support.islosed Variable indicating if the considered itemset is closed or not.

Table 7. Notations.

Proposition 1. The support of a closed itemset is greater than the supports of all its
supersets.

Proof. Let l be a closedi-itemset ands a superset ofl. We havel � s) g(l) � g(s)
(Property(1) of the Galois connection). Ifg(l) = g(s) thenh(l) = h(s)) l = h(s))s � l (absurd). It follows thatg(l) � g(s)) supp(l) > supp(s).
Algorithm 1 Deriving frequent closed itemsets from frequent itemsets.

1) FCk  Lk;
2) for (i k�1; i 6= 0; i - -) do begin
3) FCi  fg;
4) forall itemsetsl 2 Li do begin
5) islosed true;
6) forall itemsetsl0 2 Li+1 do begin
7) if (l � l0) and (l.support =l0.support)then islosed false;
8) end
9) if (islosed = true) thenFCi  FCi [ flg;

10) end
11) end
12) FC0  f?g;
13) forall itemsetsl 2 L1 do begin
14) if (l.support =jOj) thenFC0  fg;
15) end

First, the setFCk is initialized with the set of largest frequent itemsetsLk (step
1). Then, the algorithm iteratively determines whichi-itemsets inLi are closed fromLk�1 toL1 (steps 2 to 11). At the beginning of theith iteration the setFCi of frequent
closedi-itemsets is empty (step 3). In steps 4 to 10, for each frequent itemsetl in Li,
we verify thatl has the same support as a frequent (i+1)-itemsetl0 in Li+1 in which
it is included. If so, we havel0 � h(l) and thenl 6= h(l): l is not closed (step 7).
Otherwise,l is a frequent closed itemset and is inserted inFCi (step 9). During the
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last phase, the algorithm determines if the empty itemset isclosed by first initializingFC0 with the empty itemset (step 12) and then considering all frequent1-itemsets inL1 (steps 13 to 15). If a1-itemsetl has a support equal to the number of objects in the
context, meaning thatl is common to all objects, then the itemset? cannot be closed
(we havesupp(f?g) = jOj = supp(l)) and is removed fromFC0 (step 14). Thus, at
the end of the algorithm, each setFCi contains all frequent closedi-itemsets.

Correctness Since all maximal frequent itemsets are maximal frequent closed item-
sets (Lemma 2), the computation of the setFCk containing the largest frequent closed
itemsets is correct. The correctness of the computation of setsFCi for i<k relies on
Proposition 1. This proposition enables to determine if a frequenti-itemsetl is closed
by comparing its support and the supports of the frequent (i+1)-itemsets in whichl is
included. If one of them has the same support asl, thenl cannot be closed.

4.2. Apriori-Close Algorithm

In this section, we present an extension of the Apriori algorithm [AGR 94] comput-
ing simultaneously frequent and frequent closed itemsets.The pseudo-code is given
in Algorithm 2 and notations in Table 8. The algorithm iteratively generates the setsLi of frequenti-itemsets fromL1 toLk. Besides, during theith iteration, all frequent
closed (i�1)-itemsets inFCi�1 are determined. The setFCk is determined during
the last step of the algorithm.Li Set of frequenti-itemsets, their support and markerislosed indicating if

closed or not.FCi Set of frequent closedi-itemsets and their support.

Table 8. Notations.

First, the variablek is initialized to 0 (step 1). Then, the setL1 of frequent 1-
itemsets is initialized with the list of items in the context(step 2) and one pass is
performed to compute their support (step 3). The setFC0 is initialized with the empty
itemset (step 4) and the supports of itemsets inL1 are considered (steps 5 to 8). All
infrequent 1-itemsets are removed fromL1 (step 6) and if a frequent 1-itemset has a
support equal to the number of objects in the context then theempty itemset is removed
from FC0 (step 7). During each of the following iterations (steps 9 to28), frequent
itemsets of sizei+1, k > i � 1, and frequent closed itemsets of sizei are computed
as follows. For all frequenti-itemsets inLi, the markerislosed is initialized totrue
(step 10). A setLi+1 of possible frequent (i+1)-itemsets is created by applying the
Apriori-Gen function to the setLi (step 11). For each of these possible frequent (i+1)-
itemsets, we check that all its subsets of sizei exist inLi (steps 12 to 16). One pass is
performed to compute the supports of the remaining itemsetsin Li+1 (step 17). Then,
for each (i+1)-itemsetsl 2 Li+1 (steps 18 to 25), ifl is infrequent then it is discarded
from L1+1 (step 19). Otherwise for alli-subsetsl0 of l, we verify that supports of
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Algorithm 2 Discovering frequent and frequent closed itemsets with Apriori-Close.

1) k  0;
2) itemsets inL1  {1-itemsets};
3) L1  Support-Count(L1);
4) FC0  f?g;
5) forall itemsetsl 2 L1 do begin
6) if (l.support<minsupp) thenL1  L1 n flg;
7) else if(l.support= jOj) thenFC0  fg;
8) end
9) for (i 1; Li 6= fg; i++) do begin

10) forall itemsetsl0 2 Li do l0.isclosed true;
11) Li+1  Apriori-Gen(Li);
12) forall itemsetsl 2 Li+1 do begin
13) forall i-subsetsl0 of l do begin
14) if (l0 62 Li) thenLi+1  Li+1 n flg;
15) end
16) end
17) Li+1  Support-Count(Li+1);
18) forall itemsetsl 2 Li+1 do begin
19) if (l.support<minsupp) thenLi+1  Li+1 n flg;
20) else do begin
21) forall i-subsetsl0 2 Li of l do begin
22) if (l.support =l0.support)then l0.isclosed false;
23) end
24) end
25) end
26) FCi  fl 2 Li j l:isclosed =trueg;
27) k  i;
28) end
29) FCk  Lk;l0 and l are equal; if so, thenl0 cannot be a closed itemset and its markerislosed

is set to false (steps 20 to 24). Then, all frequenti-itemsets inLi for which markerislosed is true are inserted in the setFCi of frequent closedi-itemsets (step 26) and
the variablek is set to the value ofi (step 27). Finally, the setFCk is initialized with
the frequentk-itemsets inLk (step 29).

Apriori-Gen function The Apriori-Gen function [AGR 94] applies to a setLi of
frequenti-itemsets. It returns a setLi+1 of potential frequent (i+1)-itemsets. A new
itemset inLi+1 is created by joining two itemsets inLi sharing common firsti-1
items.

Support-Count function The Support-Count function takes a setLi of i-itemsets as
argument. It efficiently computes the supports of all itemsets l 2 Li. Only one dataset
pass is required: for each objecto read, the supports of all itemsetsl 2 Li that are
included in the set of items associated witho, i.e. l � f(fog), are incremented. The
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subsets off(fog) are quickly found using the Subset function described in Section
5.2.

Correctness Since the support of a frequent closed itemsetl is different from the
support of all its supersets (Proposition 1), the computation of setsFCi for i < k is
correct. Hence, a frequenti-itemsetl0 2 Li is determined closed or not by comparing
its support with the supports of all frequent (i+1)-itemsetsl 2 Li+1 for which l0 � l.
Lemma 2 ensures the correctness of the computation of the setFCk containing the
largest frequent closed itemsets.

Example 7. Figure 2 illustrates the execution of the Apriori-Close algorithm with the
contextD for a minimum support of 2/5.
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Itemset Supp

{A} 3/5
{B} 4/5
{C} 4/5
{D} 1/5
{E} 4/5

Pruning
infrequent�! L1

Itemset Supp
{A} 3/5
{B} 4/5
{C} 4/5
{E} 4/5

Determining
closed�! FC0

Itemset Supp
{?} 5/5
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Itemset Supp
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{BC} 3/5
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Pruning
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Figure 2. Discovering frequent and frequent closed itemsets with Apriori-Close.
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5. Generating Bases for Association Rules

In Section 5.1, we present an algorithm to generate the Duquenne-Guigues basis
for exact association rules. In Sections 5.2 and 5.3 are described algorithms achieving
the proper basis and the structural basis for approximate association rules respectively.

5.1. Generating Duquenne-Guigues Basis for Exact Association Rules

The pseudo-code generating the Duquenne-Guigues basis forexact association
rules is given in Algorithm 3. Notations are given in Table 9.The algorithm takes as
input the setsLi, 1� i�k, containing the frequent itemsets and their support, and the
setsFCi; 0� i� k, containing the frequent closed itemsets and their support. It first
computes the frequent pseudo-closed itemsets iteratively(steps 2 to 17) and then uses
them to generate the Duquenne-Guigues basis for exact association rulesDG (steps
18 to 22).Li Set of frequenti-itemsets and their support.FCi Set of frequent closedi-itemsets and their support.FPi Set of frequent pseudo-closedi-itemsets, their closure and their support.DG Duquenne-Guigues basis for exact association rules.

Table 9. Notations.

First, the setDG is initialized to the empty set (step 1). If the empty itemsetis
not a closed itemset (it is then necessarily a pseudo-closeditemset), it is inserted inFP0 (step 2). OtherwiseFP0 is empty (step 3). Then, the algorithm recursively
determines whichi-itemsets inLi are pseudo-closed fromL1 toLk (steps 4 to 16). At
each iteration, the setFPi is initialized with the list of frequenti-itemsets that are not
closed (step 5) and each frequenti-itemsetsl in FPi is considered as follows (steps 6
to 15). The variablepseudois set totrue (step 7). We verify for each frequent pseudo-
closed itemsetp previously discovered (i.e. inFPj with j < i) if p is contained inl
(steps 8 to 13). In that case and if the closure ofp is not included inl, thenl is not
pseudo-closed and is removed fromFPi (steps 9 to 12). Otherwise, the closure ofl
(i.e. the smallest frequent closed itemset containingl) is determined (step 14). Once
all frequent pseudo-closed itemsetsp and their closure are computed, all rules with the
form r : p ) (p.closuren p) are generated (steps 17 to 21). The algorithm results in
the setDG containing all rules in the Duquenne-Guigues basis for exact association
rules.

Correctness Since the itemset? has no subset, if it is not a closed itemset then it is
by definition a pseudo-closed itemset and the computation ofthe setFP0 is correct.
The correctness of the computation of frequent pseudo-closed i-itemsets inFPi for1 � i � k relies on Definition 7. All frequenti-itemsetsl in Li that are not closed, i.e.
not in FCi, are considered. Thosel containing the closures of all frequent pseudo-
closed itemsets that are subsets ofl are inserted inFPi. According to Definition 7,
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Algorithm 3 Generating Duquenne-Guigues basis for exact association rules.

1) DG fg;
2) if (FC0 = fg) thenFP0  f?g;
3) elseFP0  fg;
4) for (i 1; i � k; i++) do begin
5) FPi  Li n FCi;
6) forall itemsetsl 2 FPi do begin
7) pseudo true;
8) forall itemsetsp 2 FPj with j < i do begin
9) if (p � l) and (p.closure6� l) then do begin

10) pseudo false;
11) FPi  FPi n flg;
12) end
13) end
14) if (pseudo = true) then l.closure Min�(f 2 FCj>i j l � g);
15) end
16) end
17) forall setsFPi whereFPi 6= fg do begin
18) forall pseudo-closed itemsetsp 2 FPi do begin
19) DG DG [ fr : p) (p.closurenp),p.support};
20) end
21) end

thesei-itemsets are all frequent pseudo-closedi-itemsets and the setsFPi are cor-
rect. The association rules generated in the last phase of the algorithm are all rules
with a frequent pseudo-closed itemset in the antecedent. Then, the resulting setDG
corresponds to the rules in the Duquenne-Guigues basis for exact association rules
characterized in Definition 8.

Example 8. Figure 3 shows the generation of the Duquenne-Guigues basisfor exact
association rules from the contextD for a minimum support of 2/5.

5.2. Generating Proper Basis for Approximate Association Rules

The pseudo-code generating the proper basis for approximate association rules is
presented in Algorithm 4. Notations are given in Table 10. The algorithm takes as
input the setsFCi, 1 � i � k, containing the frequent closed non-empty itemsets
and their support. The output of the algorithm is the proper basis for approximate
association rulesPB.

The setPB is first initialized to the empty set (step 1). Then, the algorithm iter-
atively considers all frequent closed itemsetsl 2 FCi for 2 � i � k. It determines
which frequent closed itemsetsl0 2 FCj<i are subsets ofl and generates association
rules with the forml0 ! ln l0 that have sufficient confidence (steps 2 to 12) as follows.
During theith iteration, each itemsetl in FCi is considered (steps 3 to 11). For each
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Figure 3. Generating Duquenne-Guigues basis for exact association rules.FCi Set of frequent closedi-itemsets and their support.Sj Set ofj-itemsets that are subsets of the considered itemset.PB Proper basis for approximate association rules.

Table 10.Notations.

setFCj , 1� j < i, a setSj containing all frequent closedj-itemsets inFCj that are
subsets ofl is created (step 5). Then, for each of these subsetsl0 2 Sj (steps 6 to 9), we
compute the confidence of the proper approximate association ruler : l0 ! l n l0 (step
7). If the confidence ofr is sufficient thenr is inserted inPB (steps 8 to 9). At the
end of the algorithm, the setPB contains all rules of the proper basis for approximate
association rules.

Subset function The subset function takes a setX of itemsets and an itemsety as
arguments. It determines all itemsetsx 2 X that are subsets ofy. In algorithm imple-
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Algorithm 4 Generating proper basis for approximate association rules.

1) PB  fg
2) for (i 2; i � k; i++) do begin
3) forall itemsetsl 2 FCi do begin
4) for (j  i�1; j > 0; j- -) do begin
5) Sj  Subsets(FCj ; l);
6) forall itemsetsl0 2 Sj do begin
7) onf(r) l.support /l0.support;
8) if (onf(r) � minonf )
9) thenPB  PB [ fr : l0 ! l n l0; l.support,onf(r)g;

10) end
11) end
12) end
13) end

mentation, frequent and frequent closed itemsets are stored in a prefix-treestructure
[PAS 98, PAS 99a] in order to improve efficiency of the subset search.

Correctness The correctness of the algorithm relies on the fact that we inspect all
proper approximate association rules holding in the dataset. For each frequent closed
itemset, the algorithm computes, among its subsets, all other frequent closed itemsets.
Then, the generation of all rules between two frequent closed itemsets having suffi-
cient confidence is ensured. These rules are all proper approximate association rules
holding in the dataset, and the resulting setPB is the proper basis for approximate
association rules defined in Theorem 3.

Example 9. Figure 4 shows the generation of the proper basis for approximate associ-
ation rules in the contextD for a minimum support of 2/5 and a minimum confidence
of 1/2.

5.3. Generating Structural Basis for Approximate Association Rules

The pseudo-code generating the structural basis for approximate association rules
is given in Algorithm 5. Notations are given in Table 11. The algorithm takes as input
the setsFCi, 1 � i � k, of frequent closed non-empty itemsets and their support. It
generates the structural basis for approximate association rulesSB represented by the
maximal confidence spanning forestFFC associated withFC = Si=ki=1 FCi (without
the empty itemset).

The setSB is first initialized to the empty set (step 1). Then, the algorithm iter-
atively considers all frequent closed itemsetsl 2 FCi for 2 � i � k. It determines
which frequent closed itemsetsl0 2 FCj<i are covered byl, i.e. are direct predeces-
sors ofl, and then generates the maximal confidence association rules with the forml ! l0 n l that hold (steps 2 to 25). During theith iteration, each itemsetl in FCi
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Figure 4. Generating proper basis for approximate association rules.FCi Set of frequent closedi-itemsets and their support.Sj Set ofj-itemsets that are subsets of the itemset considered.CR Set of candidate approximate association rules.SB Structural basis for approximate association rules.

Table 11.Notations.

is considered (steps 3 to 24) as follows. The setCR of candidate association rules
with l in the consequent is initialized to the empty set (step 4). For 1 � j < i, setsSj containing all frequent closedj-itemsets inFCj that are subsets ofl are created
(steps 5 to 7). Then, all these subsets ofl are considered in decreasing order of their
sizes (steps 8 to 18). For each of these subsetsl0 2 Sj , the confidence of the proper
approximate association ruler : l0 ! l n l0 is computed (step 10). If the confidence ofr is sufficient,r is inserted inCR (step 12) and all subsetsl00 of l0 are removed fromSn<j (steps 13 to 15). This because rules with the forml00 ! lnl00 with l00 2 Sn<j are
transitive proper approximate rules. Finally, the candidate proper approximate rules
with l in the consequent that are inCR are pruned (steps 19 to 23): the maximum con-
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fidence valuemaxconfof rules inCR is determined (step 20) and the first rule with
such a confidence is inserted inSB (steps 21 and 22). At the end of the algorithm, the
setSB thus contains all rules in the structural basis for approximate association rules.

Algorithm 5 Generating structural basis for approximate association rules.

1) SB  fg;
2) for (i 2; i � k; i++) do begin
3) forall itemsetsl 2 FCi do begin
4) CR fg;
5) for (j  i�1; j > 0; j- -) do begin
6) Sj  Subsets(FCj ; l);
7) end
8) for (j  i�1; j > 0; j- -) do begin
9) forall itemsetsl0 2 Sj do begin

10) onf(r) l.support /l0.support;
11) if (onf(r) � minonf ) then do begin
12) CR CR [ fr : l0 ! l n l0; l.support,onf(r)g;
13) for (n j�1; n > 0; n- -) do begin
14) Sn  Snn Subsets(Sn; l0);
15) end
16) end
17) end
18) end
19) if (CR 6= fg) then do begin
20) maxonf  Maxr2CR(onf(r));
21) find first fr 2 CR j onf(r) = maxonfg;
22) SB  SB [ frg;
23) end
24) end
25) end

Correctness The algorithm considers all association rulesl0! l n l0 with confidence� minconf between two frequent closed itemsetsl and l0 wherel coversl0. These
rules are all proper non-transitive approximate association rules that hold and can be
represented by the edges of the graphGFC (Definition 8) without transitive edges.
Moreover, among all rules with the formX! l nX (generated froml), we keep only
the first one with confidence equal to the maximal confidence ofrulesX! lnX . Only
preserving this rule is equivalent to the cycle removing in the graphGFC in the same
manner as explained in Definition 9. Then, the resulting setSB can be represented as
the maximal confidence spanning forestFFC without edges from the empty itemset.SB contains all rules in the structural basis for approximate association rules defined
in Theorem 4.

Example 10. Figure 5 depicts the generation of the structural basis for approximate
association rules in the contextD for a minimum support of 2/5 and a minimum con-
fidence of 1/2.
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Figure 5. Generating structural basis for approximate association rules.

6. Experimental Results

Experiments were performed on a Pentium II PC with a 350 Mhz clock rate, 128
MBytes of RAM, running the Linux operating system. Algorithms were implemented
in C++. Characteristics of the datasets used are given in Table 12. These datasets are
the T10I4D100K4 synthetic dataset that mimics market basket data, the C20D10K and
the C73D10K census datasets from the PUMS sample file5 , and the MUSHROOMS6

dataset describing mushroom characteristics. In all experiments, we attempted to
choose significant minimum support and confidence thresholdvalues: we observed
threshold values used in other papers for experiments on similar data types and in-
spected rules extracted in the bases.

Name Number of objects Average size of objects Number of items
T10I4D100K 100,000 10 1,000
MUSHROOMS 8,416 23 127

C20D10K 10,000 20 386
C73D10K 10,000 73 2,177

Table 12.Datasets.

6.1. Relative Performance of Apriori and Apriori-Close

We conducted experiments to compare response times obtained with Apriori and
Apriori-Close on the four datasets. Results for the T10I4D100K and MUSHROOMS4. http://www.almaden.ibm.com/cs/quest/syndata.html5. ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip6. ftp://ftp.ics.uci.edu/˜cmerz/mldb.tar.Z
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datasets are presented in Table 13. We can observe that execution times are identical
for the two algorithms: adding the frequent closed itemset derivation to the frequent
itemset discovery does not induce additional computation time. Similar results were
obtained for C20D10K and C73D10K datasets.

Minsupp Apriori Apriori-Close
2.0% 1.99s 1.97s
1.0% 3.47s 3.46s
0.5% 9.62s 9.70s
0.25% 15.02s 14.92s

Minsupp Apriori Apriori-Close
90% 0.28s 0.28s
70% 0.73s 0.73s
50% 2.40s 2.70s
30% 18.22s 17.93s

T10I4D100K MUSHROOMS

Table 13.Execution times of Apriori and Apriori-Close.

6.2. Number of Rules and Execution Times of the Rule Generation

Table 14 shows the total number of exact association rules and their number in
the Duquenne-Guigues basis for exact rules. Table 15 shows the total number of
approximate association rules, their number in the proper basis and in the structural
basis for approximate rules, and the number of non-transitive rules in the proper basis
for approximate rules (5th column). For example in the contextD, rulesC ! A andAC ! BE are extracted, as well as the ruleC ! ABE which is clearly transitive.
Since by construction, its confidence – retrieved by multiplying the confidences of
the two former – is less than theirs, this rule is the less interesting among the three.
Reducing the extraction to non-transitive rules in the proper basis for approximate
rules can also be interesting. Such rules are generated by a variant of Algorithm 5
with the last pruning strategy (steps 20 and 21) removed: allcandidate rules inCR
are inserted inSB.

Table 16 shows for the four datasets the average relative size of bases compared
with the sets of all rules obtained. In the case of weakly correlated data (T10I4D100K),
no exact rule is generated and the proper basis for approximate rules contains all ap-
proximate rules that hold. The reason is that, in such data, all frequent itemsets are
frequent closed itemsets. In the case of correlated data (MUSHROOMS, C20D10K
and C73D10K), the number of extracted rules in bases is much smaller than the total
number of rules that hold.

Figure 6 shows for each dataset the execution times of the computation of all
rules (using the algorithm described in [AGR 94]) and bases.Execution times of
the derivation of the Duquenne-Guigues basis for exact rules and the proper basis for
non-transitive approximate rules are not presented since they are identical to those of
the derivation of the Duquenne-Guigues basis for exact rules and the structural basis
for approximate rules (Duquenne-Guigues and structural bases).
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Dataset Minsupp Exact rules Duquenne-Guigues basis
T10I4D100K 0.5% 0 0
MUSHROOMS 30% 7,476 69

C20D10K 50% 2,277 11
C73D10K 90% 52,035 15

Table 14.Number of exact association rules extracted.

Dataset Minconf Approximate Proper Non-transitive Structural
(Minsupp) rules basis basis basis

90% 16,260 16,260 3,511 916
T10I4D100K 70% 20,419 20,419 4,004 1,058

(0.5%) 50% 21,686 21,686 4,191 1,140
30% 22,952 22,952 4,519 1,367
90% 12,911 806 563 313

MUSHROOMS 70% 37,671 2,454 968 384
(30%) 50% 56,703 3,870 1,169 410

30% 71,412 5,727 1,260 424
90% 36,012 4,008 1,379 443

C20D10K 70% 89,601 10,005 1,948 455
(50%) 50% 116,791 13,179 1,948 455

30% 116,791 13,179 1,948 455
95% 1,606,726 23,084 4,052 939

C73D10K 90% 2,053,896 32,644 4,089 941
(90%) 85% 2,053,936 32,646 4,089 941

80% 2,053,936 32,646 4,089 941

Table 15.Number of approximate association rules extracted.

Dataset Duquenne-Guigues Proper Non-transitive Structural
basis basis basis basis

T10I4D100K - 100.00% 20.05% 5.49%
MUSHROOMS 0.92% 6.90% 2.69% 1.19%

C20D10K 0.48% 11.21% 2.33% 0.63%
C73D10K 0.03% 1.55% 0.21% 0.05%

Table 16.Average relative size of bases.

7. Conclusion

In this paper, we present new algorithms for efficiently generating bases for asso-
ciation rules. A basis is a set of non-redundant rules from which all association rules
can be derived, thus it captures all useful information. Moreover, its size is signifi-
cantly reduced compared with the set of all possible rules because redundant, and thus
useless, rules are discarded. Our approach has a twofold advantage: on one hand, the
user is provided with a smaller set of resulting rules, easier to handle, and vehicul-
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Figure 6. Execution times of the association rule derivation.

ing information of improved quality. On the other hand, execution times are reduced
compared with the discovering of all association rules. Such results are proved (in
the groundwork of lattice theory and data analysis) and illustrated by experiments,
achieved from real-life datasets.

Integrating reduction methods Templates, as defined in [BAR 97, KLE 94], can
directly be used for extracting from the bases all association rules matching some user
specified patterns. Information in taxonomies associated with the dataset can also be
integrated in the process as proposed in [HAN 95, SRI 95] for extracting bases for
generalized (multi-level) association rules. Integrating item constraints and statistical
measures, such as described in [BAY 99b, NG 98, SRI 97] and [BRI 97a, PIA 91]
respectively, in the generation of bases requires further work.

Functional and approximate dependenciesAlgorithms presented in this paper can
be adapted to generate bases for functional and approximatedependencies. In [HUH 98,
LOP 00, MAN 94], such bases and algorithms for generating them were proposed.
However, the Duquenne-Guigues basis is smaller than the basis for functional depen-
dencies constituted of minimal non-trivial functional dependencies. Hence, the num-
ber of rules in the Duquenne-Guigues basis is minimal [DEM 92, GAN 99]. Further-
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more, the proper and structural bases for approximate rulesare also smaller than the
basis for approximate dependencies defined in [HUH 98]. Adapting our algorithms to
the discovery of functional and approximate dependencies is an ongoing research.

Minimal non-redundant association rules The bases for association rules defined
in this paper significantly reduce the number of extracted rules and give a high quality
non-redundant summary of valid association rules. However, they are not constituted
of the non-redundant rules with minimal antecedent and maximal consequent, called
minimal non-redundant association rules. Such rules are the most informatives, since
they provide a minimal set that maximizes the information conveyed, and can be char-
acterized using frequent closed itemsets and their generators. This is demonstrated
in [BAS 00, PAS 00] and algorithms for generating them using frequent closed item-
sets and their generators, such as extracted by the Close or the A-Close algorithm, or
using the frequent itemsets, for extending an existing implementation, are proposed.
Results of experiments conducted on real-life datasets areexhibited and show that this
generation is both efficient and useful.
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