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Summary. The Gaia space mission to be operated in early 2012 by the European
Space Agency (ESA), will make a huge step in our knowledge of the Sun’s neighbor-
hood, up to the Magellanic clouds. Somewhat closer, Gaia will also provide major
improvements in the science of asteroids, and more generally to our Solar System,
either directly or indirectly. Gaia is a scanning survey telescope aimed to perform
high accuracy astrometry and photometry. More specifically it will provide physical
and dynamical characterization of asteroids, a better knowledge of the solar system
composition, formation and evolution, local test of the general relativity, and link-
ing the dynamical reference frame to the kinematical ICRS. We develop here the
general aspects of asteroid observations and the scientific harvest in perspective of
what was achieved in the pre-Gaia era. In this lecture we focus on the determination
of size of asteroids, shape and rotation, taxonomy, orbits and their improvements
with historical highlight, and also the dynamical model in general.

Key words: Gaia ; astrometry ; photometry ; asteroid physical properties ; dy-
namic ; orbit determination

In memoriam of Jacques Henrard (1940–2008). We dedicate this article to this
wonderful colleague from the FUNDP (Namur), who was—as long as possible—an
assiduous participant to such winter schools of the CNRS, and did always share his
bright mind and high excitement in science and research.
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Foreword

This paper is a compulsion of several of this CNRS school courses given in Bad-
Hofgastein completed by some additional material. It is not intended to give a
complete review of the Gaia capabilities for asteroids science, or of the treatment
of orbit determination and improvement since the beginning of orbit computation.
Neither will it cover each of the different techniques used for any particular problem.
We hope however that it gives an overview of the Gaia mission concept, astrome-
try and photometry of asteroids (and small bodies) in particular from space, and
current developments in this research topic. Besides, this school being in French in
a German speaking place, some French and German bibliography have sometime
been favoured or added.

1 Introduction

Before entering into the description of the Gaia mission observations and the dis-
cussion of the expected results for asteroids science, we will briefly remind the
basic principles from the Hipparcos mission, and then give an overview of the Gaia
objectives ($2). We will present the Gaia satellite and instruments as well as its
operational mode ($3), and expected scientific results for the Solar System ($4). In
the next sections we will develop more specifically three aspects: the astrometric
CCD signal yielding the fundamental astrometric position and marginal imaging
capabilities ($5), the photometric measure yielding physical properties of asteroids
($6) and the dynamical model from the asteroids astrometry ($8). This provides a
solid overview of what can be achieved in the domain of planetology and dynamical
planetology of asteroids. The following sections are more general and not exclusively
related to Gaia. There we develop the general problem of orbit determination and
improvement for the case of asteroids orbiting around the Sun ($9), we give a short
description of both historical and modern methods. Finally we treat the case of or-
bit determinations of binaries ($10) focusing mainly on resolved binaries. But since
the problem of orbit reconstruction for extra-planetary systems appeared to be of
importance for this school it has been briefly addressed here through the problem of
astrometric binaries ($10.4). Extra-solar planets is another topic actually addressed
by Gaia, but this is out of the Solar system, and out the topic of the present lecture.

2 Gaia – The context

2.1 Before Gaia – The Hipparcos legacy

Ten years have passed now since the publication of the Hipparcos catalogue in
1997. This space mission did provide a scientific harvest in many fields of astron-
omy and even, indirectly, in Earth science [85]. The Hipparcos mission provided
a homogeneous astrometric catalogue of stars with more sources and more precise
than were the Fundamental Katalog series during the 20th century. The acronym
“HIgh Precision Parallax COllecting Satellite” –in honour of the Greek astronomer
Hipparchus—recalls that the basic output is of course the measure of the parallax of
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stars and their proper motions. In fact there were two programmes or instruments
on board the satellite: Hipparcos and Tycho. Both provide astrometry and pho-
tometry of the celestial sources that were observed over the period 1989-1993, and
two catalogues of stars were derived as well, the Hipparcos and Tycho catalogues.
The Tycho data is based on the “sky mapper” which gives the detection of sources
and triggers the main astrometric field observations for Hipparcos. It is hence less
precise than Hipparcos but has more targets (about 2,500,000 stars in its version
second version Tycho2 in the year 2000) than Hipparcos (about 120,000), and pro-
vides two-dimensional astrometry as well as photometry in two bands close to the
Johnson B and V. Additional treatment of the raw data has been undertaken [117].
Further details on the Hipparcos/Tycho mission and instrumentation can be found
in e.g. [57, 58] in the context of high accuracy global astrometry, and [43, 47, 84, Vol.
1, Sec. 2.7] for all details on the solar system objects observations and catalogues.
The Hipparcos and Tycho Solar System Annex files (solar ha, solar hp,solar t)
are available on the CDS data-base4. While Hipparcos and Tycho were designed to
observe stars, they nevertheless could also provide data for solar system objects: 48
asteroids, 5 planetary satellites and 2 major planets5. There were different limiting
factors depending on the programme instrumentation: for Hipparcos, magnitude
brighter than V ≤ 12.4 and size smaller than φ ≤ 1 arcsec, for Tycho magnitude
brighter than V ≤ 12 and size smaller than φ ≤ 4 arcsec. But the more stringent
one was that Hipparcos could only observe a very limited number of objects in its
field of view (FOV), both for stars or asteroids.

The basic principle of the mission was to derive relative positions of targets
observed simultaneously in two well separated fields of view. The measure principle
consists basically in observing the target while it crosses the field of view with a
photometer and to record the photon flux as modulated by a periodic grid. In ad-
dition to the relative astrometry given by the grid, the photometers also recorded
the total flux, providing the magnitudes in the broad Hp ≈ VJ + 0.3035 (B − V )
system for Hipparcos, and in two (red and blue) bands for Tycho. The Tycho astro-
metric and photometric data are less precise than their Hipparcos counterpart, and
concern only 6 asteroids compared to 48 asteroids observed within the Hipparcos
mission.

The Hipparcos measure of position and magnitude of these selected solar system
objects provided many scientific outcomes. We list a few showing the diversity of
the applications:

- From the observed positions of the satellites, and taking one model for their
ephemerides, one can derive the (pseudo-)position of the system barycenter,
and/or the center of mass of the planet, as well. Such positions are model
dependant since one uses the theory for the orbits of the satellites, but they
are far more precise than direct observations of the planets themselves [73].

- The particular photometry derived by one of the data reduction consortium
(FAST) comprises the classical apparent magnitude together with an addi-
tional one that is biased for non point-like sources. This allowed to indirectly
resolve the object and derive information on its size and light distribution [46].

4 URL: http://webviz.u-strasbg.fr/viz-bin/VizieR?-source=I/239/
5 Pluto was not observed which spare us the trouble of having to name this object

observed in the past, before last IAU resolution.
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- Hipparcos astrometry enabled the determination of the mass of (20) Massalia
from a close encounter with the asteroid (44) Nysa [4].

- High accuracy astrometry of asteroids enabled to improve their ephemerides [50],
and also to detect small systematic effects due to the photocentre offset[44].

- High accuracy astrometry of asteroids enables to link the dynamical inertial frame
to the catalogue [101, 5, 22].

- The stellar astrometric catalogue, mostly Tycho2, has an indirect consequence on
science for the Solar System. Such stars provide better astrometric reductions
for modern CCD observations of solar system objects, as well as re-reduction
for older plates (the problem is still the low density when compared to e.g.
UCAC2); they also provide much better predictions for stellar occultation path
[26, 102, 28].

Compared to Gaia observation and science of solar system objects, Hipparcos was
most a (nice) prototype, or a precursor. They still have many common points:

- obviously space-based telescopes are exempt from all many atmosphere-related
problems (seeing, refraction, ...) and provide better stability (mechanical ther-
mal) and a better sky coverage (not limited to one hemisphere);

- scanning law with a slowly precessing spin axis (going down to solar elongations
≈ 45◦);

- simultaneous observation of two fields of view for global astrometry;
- astrometric and photometric measurement, the colour-photometry being manda-

tory for correction to the astrometry.

The main difference between the two missions arise from the use of CCD device
for Gaia instead of a photo-multiplier channel with Hipparcos/Tycho, and to a
lesser extent the capabilities of onboard data-storage as well as data transmission
to the ground-segment. Albeit CCD observations were already in use in astronomy
and astrometry in particular during the 80’s, Hipparcos could not benefit of this
technique: CCDs were still not validated for use in space (which requires a higher
quality and robustness) and in any case the design of the satellite had to be set
long before the beginning of the mission (often satellites are launched with out-
dated material). The consequences are dramatic in terms of number of celestial
bodies observable and general astrometric and photometric accuracy: Gaia is not
an Hipparcos-II. The limiting magnitude of Tycho was V ≤ 12, but the catalogue
is far from being complete6 at that level; in comparison the limiting magnitude of
Gaia will be V ≤ 20. The border of Hipparcos is at 200 kpc, while Gaia will reach
a large part of the Milky Way up to the Magellanic clouds.

In this respect also Gaia is different from the SIM mission [98, 99] (USA) which
will provide very accurate parallax but for a very limited number of targets. The
smaller Japanese mission Jasmine has more common points but, observing in the
infra-red, the scientific goals are orthogonal and complementary. Last, the two Eu-
ropean satellites differ in their location in space, Hipparcos missed its geostationary
orbit and was on an eccentric one, Gaia will be at the L2 Sun-Earth Lagrangian
point. Gaia will also observe a large number of solar system objects (mainly aster-
oids) which data will provide new insights and scientific results as developed in the
next sections.

6 Hipparcos with its larger-band filter can reach slightly fainter magnitudes, 12.5,
but is anyway much less complete than Tycho.
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Fig. 1. The Hipparcos (left) and Gaia (right) satellites in a pictorial view. Hip-
parcos: one sees above the thruster and solar arrays one of the telescope baffle, for
one of the observing direction. Gaia: the large, circular sunscreen will be deployed
after launch and cargo to L2, it protects the instruments and permit their thermal
stability. The telescopes, detectors and associated circuitry are situated inside the
hexagonal or cylindrical housing.

2.2 What is Gaia?

The Gaia mission was designed to provide a renewed insight in the Galaxy structure,
through a homogeneous set of very accurate measurements of stellar positions,
motions and physical properties [69, ?]. However, the independence from any input
catalogue grants that a very large number of non-stellar sources will be additionally
observed. In fact, Gaia will automatically select observable sources with a criteria
mainly based on a single parameter, the magnitude threshold (V < 20).

During the preliminary study of the mission, the community of planetologists
realised that the observations of asteroids by Gaia may have a strong scientific
impact, allowing a general improvement of our view of the Solar System of the same
order as in the case for stars [?]. Of course, the reasons are similar and are built
on the unprecedented astrometric accuracy of Gaia and on its spectro-photometric
capabilities.

One will note, however, that the strongest quality of the Gaia data—beside
accuracy—will reside in homogeneity. In fact, no other single survey have produced
an equivalent wealth of data for 300,000 Solar System objects, as is expected for
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Gaia [70]. As we will illustrate in the following, a complete characterisation of the
small bodies of the Solar System will be possible.

We can also compare Gaia to other forthcoming deep surveys, such as the very
important Pan-starrs7, expected to map the whole observable sky 3 times per
month at greater depth (V∼24, for the single observation at SNR=5). In this case,
even more objects will be detected, and this will constitute a serious advantage
to feed investigations of smaller or more distant and fainter asteroids. However,
the astrometric and photometric accuracy—despite being optimised—will remain
limited by ground-based conditions, and spectro-photometry will not be of the same
level as in the case of Gaia. Other typical observational constraints for ground-based
investigations also apply to Pan-starrs, including the minimum Sun elongation
that will be reached, severely limiting its capabilities for the investigation of peculiar
asteroid categories, like Earth crossers or the Inner Earth Objects. Last the sky
coverage is limited to one hemisphere and global astrometry is hardly achieved with
such systems (on the other hand they will benefit of the Gaia catalogue of stars).

For these reasons, and despite the limitation in brightness to V∼20, we believe
that Gaia is rather unique and really has the potential to have a major impact
in Solar System science. In this lecture, we will try to focus on the kind of data
that the mission will provide, and on the corresponding data treatment that is
being conceived in order to extract the relevant information. Hopefully, the observer
will appreciate the techniques allowing to reach an exceptional accuracy, and the
theoretician will find interesting new problems that must be solved to fully exploit
the data scientific content.

3 The Gaia mission

3.1 Launch and orbit

The Gaia satellite will fit into the payload bay of a Soyuz fregat vector, that will
be launched from the European base of Kourou (French Guyana). After a ∼1-
month travel, it will reach the L2 Lagrangian equilibrium point, that is situated
1,5 million km from Earth, opposite to the Sun. The satellite will then deploy the
solar panels, fixed on a large, circular sunscreen (diameter: 10 m) that lies on a
plane perpendicular to the spin axis (Fig. 1). The visibility of the satellite and the
data link are reduced when compared to a geostationary orbit, but the environment
is quieter. The L2 point is a dynamically unstable equilibrium location, requiring
firing the satellite thrusters to apply trajectory corrections every ∼1 month. Gaia
will thus be maintained on a Lissajous orbit around L2, allowing it to avoid eclipses
of the Sun in the Earth shadow. The location thus appears as an optimal choice
for constant sunlight exposure, and for maximum thermal stability. The planned
operational lifetime of the mission will be 5 years.

3.2 The spacecraft

The beating heart of the satellite is enclosed in an approximately cylindrical struc-
ture, including all the relevant parts: the thrusters openings and their fuel tanks,

7 http://pan-starrs.ifa.hawaii.edu/public/



The Gaia Mission and the Asteroids. 7

the electronic equipment, and of course the optical train. Since we are interested in
the observations, we will just give some fundamental design principles concerning
the latter component [?].

The optical bench structure is based on an octagonal toroid built in silicon car-
bide. This is a critical component, supporting all the optics and the focal plane. The
measurement principle—being similar to that of Hipparcos—requires two different
lines of sight, materialised by two Cassegrain telescopes. The primary mirrors are
rectangular and measure 1.45×0.50 m2. Five additional mirrors are required to fold
the optical path, obtaining an equivalent focal length of 30 m. The light beams
are combined and focused on a single focal plane, composed by a matrix of 106
CCDs. The extreme rigidity of the toroidal structure (actively monitored during
the mission) ensures that the angle between the two telescopes (also called “basic
angle”) remains constant at 106.5 degrees.

The CCD array constitutes a large, 1-Gpixel camera, that can be compared
(in pixel number) to the Pan-starrs cameras. However, it remains unrivalled in
surface, since it extends over 0.93×0.46 m, by far the largest CCD array ever con-
ceived.

The resolution anisotropy due to the rectangular entrance pupil of the tele-
scopes are matched by strongly elongated pixels, about three times larger along the
direction in which the diffraction spot is more spread.

Fig. 2. The focal plane receives the light beams of both telescopes. While spinning,
Gaia scans the sky in such a way that images of sources enter the focal plane from
the left and cross it moving toward the right. The whole crossing takes about 1
minute. Each CCD is crossed in 3.3 seconds. See the text for instrument details.
The Basic Angle Monitoring (BAM) and Wave-front Sensor (WFS) CCDs are used
for monitoring tasks.

The general organisation of the focal plane is illustrated in Fig. 2. Different
groups of CCDs are identified depending upon their functions, since they correspond
in all respects to different instruments. The main Gaia instrument is the Astrometric
Field (AF), receiving unfiltered light, which is devoted to produce ultra-precise
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astrometry of the sources [?]. The other instruments are aimed at achieving spectral
characterisation. The figure shows the Red and Blue Photometers (RP and BP),
which will be receiving light dispersed by a prism, and have optimised sensitivity
in two different, contiguous portions of the visible spectrum. The resolution of
RP and BP is rather low, each portion being spread on ∼30 pixels. The Radial
Velocity Spectrograph (RVS), on the other hand, provides a spectrum in a restricted
wavelength range (847 − 874 nm) but with much higher resolution. It is aimed at
sampling some significant spectral lines that can be diagnostic of stellar composition
and can be used to derive radial velocities with a ∼ 1 km.s−1 typical uncertainty.
Due to star crowding (superposition of spectra) and SNR constraints, RVS will have
a limit magnitude at V = 17. This instrument will provide no scientific information
for asteroids. On another hand the measures for the bright asteroids will be used
to calibrate the kinematic zero point of the RVS, as a complement to the data from
IAU standard stars.

Since Gaia is continuously spinning with a rotation period of 6 hours, the sources
will drift on the focal plane, entering from the left in the scheme of Fig. 2 and
travelling toward the right. The displacement will be compensated by a continuous
drift of the photoelectrons on the CCD at the same speed; this technique (also used
on fixed ground-based telescopes) is known as “TDI mode” (from “Time Delay
Integration”). The resulting integration time (3.3 seconds) corresponds to the time
interval required by a source to cross each CCD. Of course, this principle applies
to all instruments. As a consequence, while an image of the source drifts on the AF
CCDs, it will take the form of a dispersed spectra while moving on RP, BP and
RVS.

An important part of the focal plane, the Sky Mapper (SM), requires some
additional explanation. In fact, Gaia will neither record nor transmit to the ground
reading values for all the pixels, due to constraints on the data volume. Conversely,
only a reduced number of values ( “samples”), representing the signal in the imme-
diate surroundings (“window”) of each source, will be processed and transmitted,
and only for objects brighter than V = 20. These samples represent either the
value of single pixels, or of some binning of couples of pixels, depending upon the
star brightness. For stars with V > 16 (i.e., the largest fraction of sources) only 6
samples will be available, corresponding to the signal binned along 6 pixel rows in
the direction perpendicular to the scan motion. These samples will be transmitted
for each CCD in the AF field. Larger samples are required to accommodate the
dispersion of RP, BP and RVS spectra.

As a consequence, the AF information on positions will be essentially one-
dimensional, being very precise along the scanning circle, but very approximate in
the across-scan direction. One should also note that the windows are assigned by
the on-board algorithm after SM detection. Beside a confirmation of detection that
is expected from the first AF column, no other controls are executed all along the
focal plane crossing, and the window follows the object on each CCD, assuming
that it shifts at the nominal scanning speed. While this is true for stars, we will
see that Solar System objects will suffer measurement losses due to their apparent
motion.
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3.3 Observation principles: the scanning law

The accuracy requirements of the mission can be reached only if the sky coverage
is fairly uniform. To obtain this result, the direction of the spin axis of the probe
cannot obviously stay fixed, but it must change, slowly but continuously, to change
correspondingly the orientation of the scanning circle on the sky.

Two additional rotational motions are thus added to the 4- revolutions-per-day
satellite spin (Fig. 3). The first one is a precession of the spin axis in 70 days, along

Fig. 3. The Gaia scanning law, composed by three rotations (spin, precession and
orbital revolution) as explained in the text.

a cone whose axis points towards the Sun. The change in orientation of the latter,
provided by the orbital revolution around the Sun in 1 year, is the last additional
rotation.

The overall motion, beside being derived from the scanning law optimisation,
is also compatible with the need of keeping the system in thermal stability, since
the incidence angle of the Sun light on the solar screens remains constant, and the
enclosure of the scientific instruments is always consistently shadowed.

The scanning law that results from the combination of the three rotations per-
mits 60− 100 observations of any direction on the sky. Each one occurs with differ-
ent orientations of the scan circle, allowing to reconstruct the full two dimensional
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position of fixed sources from positional measurements that are essentially one-
dimensional.

The availability of the observations in two simultaneous directions, and their
multiplicity, has an important consequence: the star measurements contain both the
information needed to map their position on the sky, and that needed to reconstruct
the orientation of the probe at any epoch. For this reason, the process of astrometric
data reduction—the so called “Global iterative solution”—is an inversion procedure
allowing to retrieve at the same time the parameters that define star positions, their
proper motion and the attitude of the probe. The applicability and performances
of this strategy have been fully proved in the previous Hipparcos mission.

4 Solar System science

While scanning the sky, sources corresponding to Solar System objects (planets,
dwarf planets, asteroids, comets, natural satellites, ...) will enter the Gaia field
of view, and will be detected and recorded. The main difference with respect to
stars will come from their motion. Their displacement on the sky have two main
consequences: they will not be re-observed at the same position; their motion will
not be negligible even during a single transit.

These two basic statements are sufficient to dictate the need of a special data
treatment for these objects. Several specific problems can thus be identified at first
order, deserving an appropriate data reduction chain; we cite here:

– image smearing during integration time;
– signal shape due to resolved size and/or shape;
– de-centering relative to CCD windows, or total loss during one transit;
– identification of new objects from detections at different epochs.

These issues are strictly related to the basic characteristics of the mission, but also
other challenges are present when the science content to be extracted is considered.
They will be discussed in the following sections.

A specific management activity for Solar System data reduction has been cre-
ated in the frame of the DPAC (Data Processing and Analysis Consortium), as a
part of the “Coordination Unit 4” devoted to process specific objects needing spe-
cial treatment (double stars, exo-planet systems, extended objects, Solar System
objects).

Following the most recent mission specifications, one can identify the categories
of objects that will be really observed by Gaia. In fact, all sources that will appear
larger than ∼ 200 milli-arcsecond (mas) will probably be discarded and have no
window assigned. This selection automatically excludes from observations the major
planets, some large satellites (such as the Galilean satellites of Jupiter, or Titan)
and also the largest asteroids (or dwarf-planets) when closer to Earth (Ceres, Pallas,
Vesta, in particular).

On the other hand, small planetary satellites very close to major planets will
be accessible thanks to the low level of contamination from light scattered by the
nearby planet. However, the vast majority of the observed objects will consist of
asteroids of every category: mostly from the Main Belt, then small ones belonging
to the Near Earth Object population, and some additional tens among Jupiter Tro-
jans, Centaurs, and Trans-neptunians. Using the most recent survey data, we can
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estimate a population of ∼ 300, 000 asteroids to be observable by Gaia, representing
just 1/4000th of all the sources that Gaia will measure.

Each asteroid will be observed (by the AF) ∼ 60− 80 times during the nominal
mission operational lifetime of five years, although the number of detections can be
much lower for Near Earth Objects, sensibly depending upon the geometry of the
observation. On average, we can estimate that no less than 1 asteroid/sec will enter
the Gaia astrometric instrument when the viewing direction is close to the ecliptic.

Most asteroids will be known when Gaia will fly, so the discovery potential of
Gaia remains low and does not constitute in itself a reason of special interest for the
mission. One exception can probably be represented by specific object categories
easily escaping most ground-based surveys, such as low elongation Inner Earth
Objects.

In fact, the geometry of the observations relatively to the positions of the Sun
and the Earth can be easily estimated since most of the Solar System objects
orbit the Sun at very low ecliptic inclinations. It is thus straightforward to use the

Fig. 4. At any given position along Earth orbit, the sky not accessible to the Gaia
scan motion is delimited by two cones centered around opposition and conjunction
with the Sun. When projected on the ecliptic, the unobservable region appears as
the two grey regions in this picture. The observable portion of the orbit of a NEA
and an MBA is enhanced.

relevant angles to identify the regions of the ecliptic plane that can be visited by
the Gaia scanning circle. The result is shown in Fig. 4 where the dashed sectors
represent the viewing directions that are compatible with the scanning law. As one
can see, Gaia will never observe neither at the opposition nor toward conjunction,
but mostly around quadrature.

More precisely, while quadrature represents the average direction, it won’t be
the most frequent one, since the intersection of the scan plane with the ecliptic
spends most of the time preferentially close to the extremes of the accessible region.
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The region at ∼45 degrees elongation from the Sun will thus be explored and
could represent the most fruitful area for discovery purposes. Another poorly known
population, not easily accessible from the ground, is the one represented by asteroid
satellites. In fact, binaries larger than ∼120 mas will be seen as separate sources
by Gaia, and today it is hard to estimate how many of them will be discovered.

However, we stress that the full physical and dynamical characterisation of
known objects is the much more ambitious and rewarding goal that is expected
from the Gaia mission. In fact, preliminary studies have shown that the precision
of Gaia observations (both for photometry and astrometry) will be able to improve
by more than 2 orders of magnitude the quality of asteroids orbits [104], to derive
a mass from mutual perturbations for ∼150 asteroids [70], to derive for most of
them a shape and the rotational properties by lightcurve inversion [20], to measure
General Relativity PPN parameters [45], to directly measure asteroid sizes [?], to
constrain non-gravitational accelerations acting on Earth crossers [105]. We will
detail in the following the most relevant of these issues.

As a result, we can already guess today that Gaia will open new perspectives for
a better understanding of the Solar System—of asteroids in particular—portraying
in a self-consistent way both dynamical and physical properties. Subsequent studies
will take profit of the situation, for example by rebuilding observational approaches
that exploit better orbit and size and shape data (see e.g. the asteroid occultation
case [103]).

5 Analysis of the astrometric signals

5.1 Introduction

The CCD signal of a minor body transiting in the field of view of Gaia is charac-
terised by some features that make it different from the ideal signal produced by
a fixed star, and for this reason it requires a special treatment with respect to the
standard processing pipeline adopted for stars.

First, it is important to understand what we mean in this lecture when we
speak of “fixed stars”. A fixed star is an ideal point-like source whose motion on
the celestial sphere can be considered nil during the time taken by the source to
make a transit across the Gaia field of view (FOV). In practical terms, the celestial
objects that most closely fit the above definition are not stars, but distant quasars.

It is obvious that the property of being a non-moving source refers to the celes-
tial sphere and not to the Gaia focal plane, since the Gaia field of view continuously
changes while the satellite makes its scan of great circles on the celestial sphere (as
a first approximation). However, as we will see in the following discussion, it may
be said that the apparent motion of a fixed star in the Gaia FOV is at least ap-
proximately cancelled out by the adopted process of signal acquisition.

In general, a point-like source produces a photon flux distribution across the
focal plane that, for a rectangular pupil like that of Gaia, is essentially the Fraun-
hofer diffraction pattern corrected for the aberrations introduced by the instrument
optics itself. It is not our intention to discuss here all the details of the optical con-
figuration of Gaia, but it is necessary to point out at least a few basic concepts.
First, the response of the instrument to the distribution of photons produced by a
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point-like source is called Point Spread Function (PSF). The PSF is necessarily the
starting point to develop any description of the astrometric performances expected
from Gaia. More in particular, the diffraction pattern produced on the focal plane
by a point-like source not moving across the field of view is known as the optical
PSF. By “diffraction pattern” we mean the bi-dimensional spatial distribution of
the incident photons on the focal plane per unit area per unit of time. This includes
the aberrations introduced by the instrument optics, the transmittance of the in-
strument, the response of the CCD detectors, and it depends also on the spectral
distribution of the source. In particular, if we call “quasi mono-chromatic optical
PSF” the optical PSF produced by a source for which the spectral distribution
of its emitted radiation is limited to a very small interval of wavelengths, then we
may define a poly-chromatic optical PSF as the average of different mono-chromatic
optical PSFs, each one weighted according to the spectral distribution of the source.

The situation is more complex if we consider the effects related to the actual area
of the focal plane (that in the case of Gaia is quite large). Distortions introduced
by the instrument aberrations depend on the position of the source in the field of
view. Sources in different positions in the field of view produce PSFs centered in
different locations in the focal plane. Then, PSFs detected in different points of the
focal plane, even if produced by the same kind of source and spectral distribution,
show different features.

Moreover, due to the fact that in the adopted Gaia instrument configuration
the signals are detected by an array of distinct CCDs, each having a well defined
quantum efficiency (QE) which is wavelength-dependent, it follows that the different
spectral components of the PSF are detected with different efficiencies. For this
reason, when we talk about the PSF, or in general the signal, of a generic source,
it is more convenient and straightforward to refer to the number of photoelectrons
produced by the CCD detectors per unit of time instead of the number of incident
photons per unit time on the detector itself. In other terms, in the rest of this
lecture we will call PSF the diffraction pattern including the effect of CCD quantum
efficiency. It is worthwhile to point out that the QE of the CCDs in the Gaia
astrometric focal plane is nominally the same for all of them, and that no additional
filters are placed in front of them.

As a matter of fact, however, the PSF of fixed stars is even not observable in
the sense explained above, due to two fundamental reasons. First of all, the spatial
resolution of the detector is finite because so is the dimension of the CCD pixels. As
a consequence, the detector does not give the number of photoelectrons generated
in any arbitrary point of the CCD per unit area and unit time, but it gives the total
(integrated) number of photoelectrons collected by each pixel during the integration
time. In other terms, the optical PSF has to be integrated within the rectangular
area of the pixel and within the duration of the integration time. The second reason
why the optical PSF is not directly observable is that, due to the complex motion of
the satellite which allows it to scan the celestial sphere, any source moves within the
field of view during the time in which it produces photoelectrons in the focal plane
(source transit in the Gaia FOV). As a consequence, the PSF moves on the focal
plane. Accordingly, the PSF is collected by all pixels and CCDs on which the PSF
itself transits. Due to the effect of the apparent motion of the source in the FOV,
the detected PSF should be smeared along the path that the image follows on the
focal plane. In order to avoid this very undesirable effect, a transfer of charges from
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pixel to pixel towards the read-out register is done at the same velocity and along
the same direction of the apparent image motion. This technique of read-out of the
CCD is known as Time Delayed Integration (TDI) mode. In TDI, the generated
photoelectrons “follow” the portions of the PSF that produced them. Ideally, if the
motion of the charges followed exactly the same trajectory as that of the image
in the focal plane and at the same continuous rate, the spatial distribution of the
recorded photoelectrons would reproduce exactly the PSF. Unfortunately, this is
not strictly true in practice, for the charge transfer is not a continuous process.
What happens in practice is that the motion of the collected photoelectrons is
produced by transferring all charges within one pixel into the adjacent one in the
along-scan direction at regular time steps. The duration of the time step, indicated
as the TDI period, is set in order to minimise the spread of the PSF due to the
source motion. Nevertheless, the TDI mode cannot guarantee a perfect cancelation
of the PSF smearing. The reason is that, even if the TDI period is kept constant and
the charge transfer is done along the instantaneous scan direction, what happens
is that the motion of the image is neither uniform nor aligned exactly in the along-
scan direction. On one hand, this is simply due to the precession motion of the spin
axis of the satellite, which is constantly changing the orientation of the along-scan
direction. But even in the case that the motion of the image on the focal plane was
perfectly uniform and exactly aligned with the along-scan direction, nevertheless
the TDI mode could not correct completely the PSF smearing. The reason is that
during each single TDI period the charges are not transferred, whereas the image
moves and the signal is smeared. In this way, photons coming from the same point
of the optical PSF may be collected by two different pixels. The final effect is that
the PSF is broader and systematically displaced in the along-scan direction.

In principle, the TDI period should be equal to the along-scan dimension of
the pixels divided by the image velocity. Non uniformity of the along-scan motion
introduces further distortion due to deceleration and acceleration of the image with
respect to the TDI mean motion.

The PSF including the finite size of the pixels and the effect of the TDI mode
is called total or effective PSF. But the real signal is affected also by other sources
of noise and distortion. First of all, the signal is produced by a stochastic process,
corresponding to the random sequence of photon arrivals and photoelectron gen-
eration. Then, the final number of charges collected in a given pixel is a random
number, typically governed by the Poisson statistics. Moreover, the signal is dis-
torted by the effect of cosmic rays on the CCD, affecting also the Charge Transfer
Efficiency (CTE) from one pixel to another. Some studies point out that some pack-
ets of charges can be entrapped and be released later without correlation with the
regular TDI mode. All these effects introduce distortions of the final signal that are
under investigation.

The treatment of the signals produced by Solar System objects (SSOs) is even
more difficult than in the “simple” case of fixed stars described above. SSOs are
differently from stars, in that they are characterized by a much faster apparent
motion. When we say that SSOs move we intend that they display a motion with
respect to the fixed stars. As a consequence, the trajectory of SSO images across
the focal plane does not follow the same pattern of fixed stars in the same field of
view and their motion is not properly corrected by the TDI mode.
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SSOs have a residual velocity with respect to the apparent motion of a fixed star,
and this residual velocity has components both on the along-scan and the across-
scan direction. This fact has the consequence that their final signals are spread.
Moreover, while we may expect that for fixed stars the time interval between the
transit on a given CCD and the adjacent one in the along-scan direction is constant,
being about equal to the number of pixels in the along-scan direction in a CCD
multiplied by the TDI period, this is no longer valid for a SSO. The transit of a
SSO image on a CCD is either delayed or anticipated with respect to that of stars,
depending on the residual velocity.

Velocity is not the only one peculiar features of SSOs to be taken into account.
Another effect is that these objects may appear in general, or very often, as extended
sources. This means that the final signal is not simply due to the PSF as for the
case of point-like stars, but each point of a SSO image produces an independent
PSF, and the final signal is the sum of all these PSFs. This means that the signal of
a SSO depends on the size, the shape and the brightness distribution of its image.

For all the above reasons the analysis of the signals of SSOs requires a special
treatment with respect to the simpler one used for fixed stars.

5.2 Signal computation

Let be x and y the coordinates of a cartesian system associated to the focal plane,
having the x-axis set along the scan direction and directed as the movement of
charges of the TDI mode. Let I(x, y) be the photoelectron distribution produced
by the optical image of a non moving source, that is the number of photoelectrons
generated per unit area and unit time around the point of coordinates (x, y). The
function I(x, y) contains information about both the PSF photoelectron distribu-
tion f(x, y) and the apparent brightness distribution of the observed object g(x, y).
From a mathematical point of view, I is the convolution of f and g:

I(x, y) =

Z Z
g(x′, y′)f(x− x′, y − y′) dx′dy′ (1)

For sake of brevity multiple integrals signs will be omitted in the following. Let now
τ be the TDI period. The signal, that is the number of photoelectrons collected by
a pixel whose centre has coordinates (α, β), during the interval of time τ , from a
source image with centre located at coordinates (xc, yc), is given by:

S(α, β) =

Z Z Z
I(x− xc, y − yc)Π

“x− α
∆x

”
Π

„
y − β
∆y

«
Π

„
t

τ

«
dx dy dt (2)

where ∆x and ∆y are the along-scan and across-scan dimensions of the pixels, t is
the time, and Π(u) is the gate function equal to 1 for −1/2 ≤ u ≤ 1/2 and zero
otherwise.

If now we assume that the image source moves with constant velocity, so that:

xc = ẋt+ x0 yc = ẏt+ y0

the signal becomes:
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S(α, β) =

Z
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Two comments are necessary at this point. For fixed stars it is assumed that
∆x = ẋτ , but for SSOs this is not the case in general. In particular, if vτ is the
mean transfer velocity of the charges, so that vτ = ∆x/τ , the relevant parameter for
SSOs is the residual along-scan velocity µ = ẋ−vτ . Second, at every time interval of
duration τ the charges in a pixel are moved to its immediate adjacent pixel. In this
process, α→ α+∆x, while at the same time xc → xc + (µ+ vτ )τ = xc +∆x+ µτ
and yc → yc + ẏτ . For fixed stars we have α − x0 = const., assuming an ideally
perfect clocking, then in this case the total number of electrons recorded during the
integration time T is simply T/τ times the number obtained over one pixel. This
is not true for SSOs, and the computation of the integral has to be done for the
entire integration time. For sake of simplicity the computation can be done under
the assumption that the optical PSF is locally constant, or in other words that we
may use the same PSF over one whole CCD.

In practical terms, the preferred option to attack the problem of signal com-
putation has been so far based on a different, numerical ray-tracing approach. Let
us then come back to consider the incoming photons from the source, before they
start to interact with the optical system to produce the recorded image. We may
imagine a coordinate system following the moving object and with origin in (xc, yc)
and axes parallel to the along and across-scan directions. In this reference system,
the photons coming from the source would produce an image in an hypothetic de-
tector, and the coordinates of a given point belonging to this (static) image would
be x′ and y′. Now, we can easily compute the corresponding coordinates (x, y) in
the moving Gaia focal plane of the the photons coming from the (x′, y′) point just
defined above. These are:

x = x′ + ẋt+ x0

y = y′ + ẏt+ y0 (4)

In the adopted method of image simulation, based on a Monte Carlo algorithm,
all the quantities x′, y′ and t are randomly generated. The time t is uniformly
generated between −T/2 and T/2 where T is the integration time, while x′, y′ are
randomly generated according to a given surface luminosity distribution g(x, y) of
the object (chosen a priori), using a ray tracing algorithm which takes also into
account an assumed light scattering law characterising the object’s surface. For the
details of the numerical algorithm of generation of the sampling positions x′ and y′

see [?]. The number N of sampling points (x′, y′) depends on the magnitude of the
object and on instrument characteristics including the CCD quantum efficiency. In
particular, we have that M = −2.5 logN +C, where M is the apparent magnitude
and C is a suitable constant. At magnitude 12, corresponding to the saturation
limit of the CCD in astrometric focal field, the number of collected photoelectrons
are about one million. The nominal magnitude limit of detection is V ≈ 20 and
corresponds to about one thousand photoelectrons [83]; see also $5.4.

Of course, the above optical image, or in other words the (x, y) distribution of
incoming photons from the observed object, is not yet the final recorded signal. We
have still to take into account the fact that each photon incident on the optical
system suffers an angular deviation δx and δy, respectively, in the along-scan and
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across-scan direction due to the diffraction of the instrument aperture. The nu-
merical model reproduces the instrument diffraction effect by generating δx and δy
randomly, but according to a parent distribution given by the PSF of the system.
In other words, the probability of a given deviation is proportional to the value of
the PSF f(δx, δy) for this particular deviation. In order to obtain the real arrival
position of a single photon on the focal plane we have then to add δx to x and δy to
y. Obviously all the quantities x′, y′, δx and δy are expressed with the same unit.

As mentioned in the previous section, the spreading of the recorded photoelec-
trons in the along-scan direction on the focal plane due to the scanning motion of
the satellite, is reduced by the Time Delayed Integration (TDI) read-out mode. For
this reason we introduce a moving coordinate system (X,Y ) synchronised with the
TDI charge transfer. Obviously Y = y because no TDI correction is performed in
the across-scan direction. In this way, the “effective” position of the photoelectron
inside the CCD image turns out to be:

X = θ(x′ + δx+ ẋt+ x0, t)
Y = y′ + δy + ẏt+ y0 (5)

where θ is a special function accounting for the step by step TDI translation, and
depending on time t explicitly, according to the phase of the TDI charge transfer.
In practical terms, however, TDI blurring is included in the adopted PSF, so that
the θ function reduces to a simple continuous translation (see [?] for details). In
this case, we may simply write down the following:

X = x′ + δx+ ẋt+ x0

Y = y′ + δy + ẏt+ y0 (6)

where ẋ and ẏ represent the residual velocity of the object with respect to the
TDI motion. For SSOs, this corresponds in practice to the apparent motion with
respect to the fixed stars.

The final step of the numerical procedure is the allocation of the photoelectrons
into the corresponding pixels. The Gaia CCD detectors have rectangular pixels with
smaller side ∆X = ∆x in the along-scan direction, and larger side ∆Y = ∆y in
the across-scan direction. Each pixel is labelled with integer indexes i and j and
corresponds to the rectangular region defined by the points (X,Y ) such that:

Xi ≤ X < Xi +∆X ; Xi = i∆X Yj ≤ Y < Yj +∆Y ; Yj = j∆Y (7)

in this way the origin of the coordinates system coincides with the the left-hand,
lowest corner of the pixel labelled as i = 0, j = 0.

In the astrometric focal plane of Gaia only a limited region of the CCD grid is
actually read-out. This window is, again, a rectangular n×m one, with a number
n of pixels in the along-scan direction and m pixels in the across-scan direction.
In this way 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. Following the sampling scheme
proposed by [52], 12× 12 pixels windows should be used for stars between 12 and
16 magnitude (in the G-band of Gaia), and 6×12 windows for stars between 16 and
20 magnitude. We indicate by Nij the number of photoelectrons in the i-th pixel
of the window in the along-scan direction and the j-th in the across-scan direction.

It is important to note that in general the recorded signal is binned, that is the
numbers of pixels in the across-scan direction are integrated (summed up), so that
the final signal consists of the n numbers:
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Ni =

m−1X
j=0

Nij 0 ≤ i ≤ n− 1 (8)

In the following, we will assume that CCD window is always binned, and what
we call “signal” is actually given by the set of discrete photoelectron counts just
defined above.

5.3 CCD processing

In general terms, we call “CCD processing” a sequence of numerical procedures
aiming at extracting from the recorded signal Ni all possible information of interest.
In particular, in the case of SSOs, four parameters are of great importance: the
position of the object, its angular size, its velocity and its apparent magnitude.
Basically, both for stars and SSOs, the adopted method of determination of all the
relevant parameters is based on a best-fit procedure.

It is assumed that a mathematical model of the signal is at disposal, or in other
terms that we are able to compute the numbers Ni for any set of values of the
unknown parameters. This computation can be done analytically or throughout
numerical codes. In addition to a signal model, one has to decide a criterion of
comparison between the computed (C) and the observed (O) signal, in order to
minimising or maximising some target function expressing the mathematical dis-
tance between C and O.

We note that, in principle, an alternative approach, based on a full reconstruc-
tion of the image, could also be adopted. A number of refined techniques of image
reconstruction have been actually developed in the literature in several situations.
On the other hand, it seems that such kind of approach can hardly be applied with
success to poorly sampled signals covering only a few pixels, like those from faint,
nearly point-like sources detected by Gaia. For this reason, we focus on the approach
based on the determination of a limited number of relevant unknown properties of
the sources by means of a signal best-fit approach.

For sake of simplicity, in order to focus on a few fundamental concepts rather
than on unnecessary technical details, let us limit now to a one-dimensional case.
Let L be the model function used to fit the recorded signal. For a fixed star this
reduces to the PSF integrated in the across-scan direction and convoluted with
the Π function describing the shape of the pixel. This leads to derive the so-called
Line Spread Function (LSF). For fixed stars, this depends only on the position c in
pixels of the star and on its apparent magnitude, or, in other words, on the total
number of collected photoelectrons. The signal is proportional to the flux and can
be reproduced by translating the centre of the LSF into the star position. If we call
L the LSF per unit of flux (that is, normalised to one collected photoelectron) the
expected number of photoelectrons in the pixel i, E(Ni), is given by:

E(Ni) = r2 + b+NL(i− c) (9)

where N is the total number of photoelectrons produced by the source, and r is
the RMS readout Poisson noise in electrons. The term b is the contribution of the
background in electrons per sample. We assume that r2 + b is known with sufficient
accuracy.
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If Ni is the number of electrons really collected in the sample i, a method
of estimation of the unknown parameters c and N , corresponding to the unknown
photocentre position and apparent magnitude of the source, can be based on a max-
imum likelihood criterion. More precisely, c and N are varied in order to maximise
the probability of collecting the observed counts Ni, assuming the signal model L.
For Poisson statistics this probability is given by the likelihood function:

f(c,N) =

m−1Y
i=0

[r2 + b+NL(i− c)]Ni

Ni!
exp

ˆ
−(r2 + b+NL(i− c))

˜
(10)

The numerical problem is then to find the values of c and N that maximise f(c,N).
Without entering in too many details, let us take into account the case of a

SSO. In this case, the signal model does not depend only on the parameters c and
N . Assuming that the object has a known shape and brightness distribution, we
have to introduce as additional parameters its size s in pixels and its velocity v.
As we have already discussed above, the meaning of v is the difference between the
velocity of the image on the focal plane and the mean TDI transfer velocity of the
electrons. In this case the likelihood function becomes:

f(c, s, v,N) =

m−1Y
i=0

[r2 + b+NL(i− c, s, v)]Ni

Ni!
exp

ˆ
−(r2 + b+NL(i− c, s, v))

˜
(11)

For fixed stars the TDI motion is set according to the image motion, so on the
average the position c is at rest. In the case of a moving source, however, this is
no longer true. For this reason it is necessary to specify what we mean by c for a
moving source. In particular, the meaning of c must be that of the position of the
image at a particular epoch, for example at the epoch of the signal read-out.

We have just assumed that the brightness distribution of the source is known
and the only parameter to be determined is its size s. This can be a critical point for
some applications to SSOs and in particular to asteroids. In general, each asteroid
has its own shape, spin axis orientation and rotation period. Moreover, when it is
observed at some given epoch it is seen under some illumination condition, quan-
tified by the value of the so-called phase angle. The phase angle is defined as the
angle between the directions to the observer and to the Sun, as measured from the
asteroid barycenter. We note that Gaia will never observe asteroids at zero phase
angle, corresponding to object opposition from the Sun, but at phase angles larger
than 10 degrees, as a rule. This means that, due to the defect of illumination, the
position of the “photocentre” of the collected signal will not be coincident with the
position of the (sky-projected) barycenter of the object. This effect will have to
be taken into account for the purposes of using Gaia astrometric measurements of
asteroids to obtain refined orbital elements.

In addition to the above problems, the surface of any asteroid is characterised
by its own reflectance properties, that may well be different for different objects,
and also may vary, in principle, from point to point of the same object, determin-
ing an apparent brightness distribution which will vary depending on the observing
circumstances. Finally, other problems may also arise in the cases of non-resolved bi-
nary systems, and of objects characterised by the presence of some kind of cometary
activity (and Gaia will certainly observe comets).
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Of course, the above mentioned effects make the CCD processing of SSOs a
quite challenging task. As opposite to other kind of sources, the signal of any
asteroid transiting in the field of view is inherently different with respect to the
signals collected for the same asteroid during different transits, corresponding to
different observing circumstances. All this makes SSOs completely different for what
concerns the CCD processing and reduction of the collected astrometric signals,
with respect to the case of fixed, point-like stars.

5.4 Accuracy estimation

In order to estimate the accuracy of the measurement of the most important param-
eters, that for asteroids include apparent magnitudes, motions, positions and sizes,
it is necessary to take into account all the disturbing factors that affect the gen-
eration of the recorded signal. The main sources of noise include photon statistics,
CCD read-out noise (RON), dark current, the noise introduced by the background,
errors in the calibration of the PSF, perturbation of the electronic devices due to
the satellite’s environment, like the radiation damage of the CCDs produced by
cosmic rays.

Some of these noise sources are still under investigation, including PSF cali-
bration and CCD radiation damage, whereas for others an estimation is already
available. For what concerns the RON, its total amount should be about 4 photo-
electrons (e−). Including also the dark noise and other electronic disturbing factors,
the total detection noise (TDN) should be of the order of 6 − 7 e− for each CCD
in the focal plane. This means that in the signal acquisition process the counted
numbers Ni are affected by an uncertainty of this order.

Background contribution to the signal deserves a separate discussion. Sky
brightness does not introduce an error in the photoelectrons read-out, but rather
an additional contribution of some number of photoelectrons to be added to the
number of photoelectrons produced by the source. According to the HST/WFPC2
Instrument Handbook, the sky brightness at high ecliptic latitudes should be around
23.3 mag.arcsec−2, while it is around 22.1 mag.arcsec−2 on the ecliptic plane, be-
cause of the zodiacal light ([83]). According to the most updated configuration of
the instrument ([96]), taking into account the size of the CCD pixels in the astro-
metric field (10×30 µm), the focal length of the telescope (35 m), the pupil aperture
(1.45× 0.50 m), and the CCD integration time (4.42 sec), we expect a background
contribution of about 2 e−/pixel on the ecliptic, and 0.6 e−/pixel at high lati-
tude. These two values should be considered as the extreme limits of background
contribution per CCD.

The major source of noise is certainly due to photon statistics. According to
the most updated mission design, the integration time T should be equal to 4.42
sec for CCDs in the astrometric field. The total number N of collected photons
depends on the source’s magnitude M , and M = −2.5 logN + C, where C is a
constant (neglecting the effect of the windowing cut-off). Visual magnitude M = 0
corresponds to an energy flux of 2.52×10−8 Wm−2. Considering a mean wavelength
of collected photons about 550 nm, this energy flux corresponds to a photon flux
around 7 × 106 photons/cm2/sec. Taking into account an integration time of 4.42
sec and an aperture of 1.45× 0.50 m2, the number of incoming photons should be
around 1.6 × 101110−M/2.5, or Ns ∼ 101110−M/2.5 including a factor 1/2 due to
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CCD quantum efficiency. So we expect about 106 photoelectrons at magnitude 12,
corresponding also to the saturation level of the CCDs, and about 103 at magnitude
20, that is the nominal detection limit.

A quick estimation of the error in the position measurement can be done in
the following way. Let us assume for simplicity the case of the signal from a nearly
point-like, non moving source. Its signal corresponds more or less to the instrument
LSF. As we have explained above, the signal can be regarded as the distribution
over a few pixel rows of the recorded photoelectrons. Then, the mean value of the
photoelectrons’ positions can be used as an estimator of the image position. As it
is well known from statistics, the standard deviation of the mean is equal to the
standard deviation of the distribution divided by the square root of the number
of samples, that is in this case, the number of the collected photoelectrons. The
standard deviation of the LSF is about 2− 3 pixels. Thus, at magnitude 12, which
gives 106 electrons as seen above, we expect that the standard deviation of the
mean is about 2−3×10−3 pixels (∼ 0.1−0.2 mas). In the same way, at magnitude
20, when we expect to collect more or less 103 electrons, the accuracy of the mean
should be about 0.05− 0.1 pixels (∼ 3− 6 mas).

We note that the above values for the effective uncertainty in the photocentre
determination of SSOs are much higher than the final, end of mission uncertainty in
the determination of the positions of single stars. The reason is that for SSOs, which
move and are seen in different observational circumstances in different transits on
the Gaia focal plane, we cannot merge together the results of different detections,
and we are forced to limit ourselves to derive separately the positions of the objects
at different transits based on signals collected at these single transits. As opposite,
the determination of the position of the stars will be performed by cross-matching
the information derived from the measurements of tens of different transits. For
this reason the final accuracy for stars at magnitude 12 is expected to be of the
order of 10−4 pixel (see [83]), corresponding to about 0.004 mas.

The accuracy in the determination of the angular size of SSOs may be estimated
by means of some numerical tests based on a simplified method of measurement.
We have seen that the position of the object is related to the mean of the spatial
distribution of the recorded photoelectrons. In the same way, the angular size of the
source is related to the standard deviation of the same photoelectron distribution.
Let us assume for simplicity that the shape of the object of whom we want to
measure the angular size is a perfect sphere with a uniform brightness distribution.
Let us assume also that the object is observed at zero phase angle. In other words,
we assume that the object appears as a flat, uniform disc in the sky. In order to avoid
complications with the truncation of the signal, we assume also that the object’s
residual velocity is zero. This means that the final signal is well centered and it is
not truncated. If the number of collected photons was infinite, then a deterministic
relationship between the standard deviation σ of the signal and the diameter D of
the disc would exist. So, by computing the expected standard deviation for each
possible value of the disc’s size, it should be possible to obtain the corresponding
value of the size from the observed signal. In the real world, however, due to the
fluctuations of the numbers Ni caused by photon statistics, to each value of the
measured size of the disc may correspond different values of D. The distribution
of these possible values is characterised by a mean and a dispersion around it.
An example is given in Fig. 5, obtained by means of a numerical Monte Carlo
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simulation. The figure shows that a given value of σ can be produced by some
interval of possible values of D. Using this kind of plot we can assess the expected
accuracy in size determination.

Fig. 5. Standard deviation σ (in pixels) of signals produced by an ideal spherical
and homogeneously emitting object seen at zero phase angle, as a function of its
apparent diameter D. The bar corresponds to the standard deviation of σ. due to
photon statistics.

In particular, the dispersions of the values of σ for a single value of the size D
depends on the magnitude of the source, and it increase as the magnitude increases
(or the flux decreases). Moreover, the relation between σ and D is not linear, but
rather it can be written as:

σ2 =
D2

16
+ σ2

0

where the first term is introduced by the angular distribution of the incoming
photons and σ2

0 is the variance introduced by the LSF. It follows that if we wish to
estimate the value of D from the measured value of σ, the error dD is given by:

dD =
16σ dσ

D
(12)

where dσ is the error, mainly due to the photon statistics, in the measurement of
the standard deviation σ of the signal. So, for a given value of dσ, the uncertainty
of the size estimation increases as the size itself decreases. In other terms the slope
dσ/dD of the function σ(D) decreases as D decreases, as it is clear from Fig. 5.
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Fig. 6. The smallest size measurable with a precision of 10 % plotted as a function
of the object apparent magnitude.

Since dσ is magnitude-dependent, it is possible to associate to any possible
magnitude value a corresponding critical value of the size D for which the resulting
relative error dD/D is equal to some given limit, like 10 %, as an example. The
result of this exercise is shown in Fig. 6. In the figure, the size limit corresponding to
a relative size determination accuracy of 10 % is plotted versus the magnitude. The
domain of this plot below the 10 % line corresponds to observational circumstances
in which the image cannot be distinguished from that of a point-like source. At
magnitude 12 it is possible to appreciate the apparent size for objects with a diam-
eter of 20 mas, but at magnitude 20 this limit raises up to 150 mas. In conclusion,
points below the 10 %-line in the figure correspond to observational circumstances
for which the object is too far or is too faint for its angular size to be measured
with an accuracy better or equal to 10 %.

5.5 Size measurement of Main Belt asteroids

In order to assess the capabilities of Gaia in measuring the sizes of Main Belt as-
teroids, we take advantage of existing simulations of observations of these objects
by GAia during its operational lifetime ([?]). These simulations provide the list of
the transits of Main Belt objects on the field of view of the instrument, specifying
the distance r from the satellite and its apparent magnitude M . Among the full
set of simulated observations, we selected only those of objects for which a value
of diameter d is available (taken from the most recent issue of the IRAS catalogue
of asteroid sizes and albedos, [108]), and for which the apparent magnitude should
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range between 12 and 20. We assumed for sake of simplicity that the objects are
spherical. The apparent size of the objects for each of the above observations will
be obviously D = d/r. Having at disposal such a set of simulated observing circum-
stances for a large sample of objects (about 2,000), it is possible to assess whether
for each single detection the object’s size can be determined with a precision better
(good observation) or worse (bad observation) than 10 % on the basis of the diagram
in Fig. 6.

Fig. 7. Efficiency of Gaia in measuring the diameters of the Main Belt asteroids.

For any object, in general some observations will be good and others will be bad,
according to the observing circumstances. Let S be the total number of observations
of one single asteroid, and let s be the total number of good observations of the
object, in the sense explained above. The resulting ratio ρ = s/S can be taken as
an evaluation of the efficiency of Gaia in measuring the size of this asteroid.

We show in Fig. 7 the result of this exercise. Each asteroid is plotted as a
small cross in the efficiency - diameter plane. The solid line is the average value
of the efficiency versus real diameter resulting from a running-box analysis. For
asteroids having a size larger than 100 km the measurement efficiency is well above
50 %, and almost all observations are good. Below 20 km no good observation is
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Fig. 8. Number of observations of Main Belt asteroids of different sizes, allowing
a size measurement with an accuracy of 10 % or better.

possible, because the objects are either too small or too faint or both (note the
group of crosses with ρ = 0 %). At the limiting size of 20−30 km, the measurement
efficiency is only a few percent.

A slightly different plot is shown in Fig. 8, where the number of good observa-
tions s is plotted against the real diameter for each asteroid. Again, the solid line
is a running-box average. The crosses are rather scattered meaning that apart from
the average scenario there are very different situations, depending on the individ-
ual orbital and physical properties of the objects. We note that in the case of very
large asteroids the observation efficiency can decrease due to the paradoxical fact
that in many cases they are too bright, and they reach the CCD saturation limit
of magnitude 12 (examples are the group of crosses in Fig. 8 at D ' 150 km and
s ≤ 10 corresponding to the asteroids 11 Parthenope, 18 Melpomene, 20 Massalia,
39 Laetitia, 89 Julia, 349 Dembowska).

5.6 Limits and Margins of Improvement

The results discussed in the previous sections have been obtained under some simpli-
fying assumptions. In particular, we assumed that the objects had spherical shapes,
and that the optical properties of the emitting surfaces were homogeneous. Or, in
other words, we made the assumption that the surface albedo of the objects was
homogeneous throughout the surface. Moreover, even if we did not mention this
explicitly, the results shown in Figs. 5 to 8 were based on simulations in which
some assumptions concerning the diffusive properties of the object surfaces were
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made. In fact, a well defined light-scattering law was assumed when running the
ray-tracing part of the signal simulator. Without entering into details, the assump-
tion was that of surfaces scattering the incident sunlight according to a composition
of a Lambertian and a Lommer Seeliger scattering law.

Now, we can ask ourselves whether the above simplifying assumptions are rea-
sonable, and if there is some way to possibly improve the model. In this respect, the
answer seems to be yes, and the way of improving the model is based on ancillary
information that is expected to become available when the full set of recorded sig-
nals from each object at all transits collected during the Gaia operational lifetime
will be available. In particular, the idea is that of taking profit of the analysis of
the disk-integrated magnitude measurements performed at each object transit. The
measurement of the apparent magnitude at each transit on the Gaia focal plane is a
less complicated task with respect to the determination of the astrometric position
and apparent size of the object, as seen in the previous section. Given the full set
of measured apparent magnitudes of an object, it will be possible to derive from
that a big deal of information concerning the rotational properties (spin rate and
direction of the spin axis) and overall shape, assumed for simplicity to be that of
a triaxial ellipsoid. The derivation of the above parameters is described in another
section of this lecture. Having at disposal the object’s pole direction and a more
realistic triaxial shape, it will be possible to compute for each transit the corre-
sponding observational circumstances in terms of apparent shape and orientation
of the illuminated part of the body visible from Gaia at the epoch of the observa-
tion. In this way, a much improved object’s model, with respect to that of a simple
homogeneous sphere, will be adopted and used to derive refined estimates of the
object’s size and also of the offset between the position of the barycenter and that
of the photocentre during the transits for which the object becomes resolvable.

As for the choice of the scattering law, the situation is intrinsically more difficult,
yet not completely hopeless. In particular, it will be possible to take profit of the
fact that at least for a few objects (433 Eros, 243 Ida, 951 Gaspra, 253 Mathilde,
and probably in the near future 1 Ceres and 4 Vesta) we have at disposal data taken
in situ by space probes. For these objects, we have very detailed information about
size, shape, spin and surface properties. The idea is then that of using this ancillary
information to possibly improve the adopted scattering laws in the reduction of
Gaia data. In particular, the most correct scattering law, at least for the objects of
the above list, should be the one producing a better agreement between the Gaia
results and the known properties of the objects.

6 The Determination of asteroid physical properties

6.1 Introduction

The determination of asteroid physical properties will be one of the fundamental
contributions of Gaia to Planetary Science. As we have seen in $5, asteroid sizes
will be directly measured for a number of objects that should be of the order of
1, 000, according to current signal simulations. This spectacular result, however,
will be only one of a longer list that includes:

– the measurement of about 150 asteroid masses;
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– as just mentioned above, the direct measurement of about 1, 000 asteroid sizes;
– based on the measured masses and volumes, the determination of the average

densities for about 100 objects belonging to practically all the known taxonomic
classes;

– the determination of the rotational properties (spin period and polar axis ori-
entation) and overall shapes for a number of the order of 10, 000 objects;

– a new taxonomic classification based on reflectance spectra (including wave-
lengths in the blue region of the spectrum) obtained for several tens of thou-
sands of objects;

– the measurement of the Yarkovsky acceleration for some tens of near-Earth
objects.

To the items of the above list, we have to add, of course, the derivation of much
improved orbits for a data-set of about 300, 000 objects, taking profit of the un-
precedented astrometric accuracy of the Gaia mission. A detailed description of the
expected performances of Gaia in the determination of orbits, masses and Yarkovsky
acceleration is given in $8.

In what follows, we will focus on the remaining items of the above list, namely
spin properties and taxonomy.

6.2 Inversion of disk-integrated photometric data

Historically, photometry has been one of the first observing techniques applied to
obtain information on some physical properties of the asteroids.

Due to the fact that these objects have non-spherical shapes and their apparent
brightness is due to solar photons scattered by the illuminated surface, there is
a periodic modulation of the brightness due to the object’s rotation. Photometric
observations over a sufficiently long interval of time to cover a full rotation cycle,
produce then what is usually called a lightcurve, namely a plot of the apparent
brightness as a function of time, which shows the periodic variation in magnitude
due to rotation. Lightcurves provide thus in a straightforward way one of the many
physical properties of an object, namely its rotation period.

The morphology of a lightcurve at a given epoch is the complex result of the
shape of the object, the orientation of its rotation axis (the “asteroid pole”), and
the light scattering properties of the surface. The difference in magnitude between
the maximum and the minimum brightness of the object during a rotational cycle
is called lightcurve amplitude.

The fact that asteroids are moving objects on the celestial sphere has the con-
sequence that the geometric configuration Sun - asteroid - observer changes for ob-
servations carried out at different epochs. The observing circumstances at a given
epoch are characterized by different values of the heliocentric and geocentric dis-
tances, of the illumination conditions, which are described by the so-called phase
angle described in $5.3, and by two quantities that describe the orientation of the
asteroid spin axis with respect to the direction to the observer and to the Sun.
These two quantities are two angles: the aspect angle, normally indicated as ξ, and
the obliquity angle. The aspect angle is the angle between the directions of the spin
axis and the direction to the observer, measured at the object’s barycenter. The
obliquity angle is the angle between the plane containing the object, the observer
and the spin axis of the object, and the plane perpendicular to the plane containing
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the observer, the object and the Sun. This angle is indicated as o in Fig. 9, which
shows in a graphical way the meaning of the above angles. Finally, another angle
φ describes the rotational phase of the object in its rotation around its axis. In
practice, the values of all the above mentioned angles reduces to the computation
of the sub-observer (normally called sub-Earth) and sub-Solar points, namely the
latitude and longitude coordinates of the two points which are the intersections of
the body’s surface with the vectors from the object’s barycenter to the observer
and to the Sun, respectively.

Z

Y

Z’

!

"

OBSERVER

X

SUN

O

Fig. 9. Graphical explanations of the aspect (ξ) and the obliquity (o) angles. The
angle α in this figure is the phase angle. Vector Z′ is the direction of the positive
spin.

Due to the variations of the observing circumstances at different epochs,
lightcurves taken at different oppositions of the same object will generally exhibit
a variation in their morphologies, and in particular of their amplitude. This is due
to the fact that the aspect angle of an object is a function of the ecliptic longitude
(or equivalently, the Right Ascension) at which it is observed at a given epoch. For
instance, if we assume that the object has the shape of a triaxial ellipsoid with
semi-axes a > b > c, spinning around the shortest axis c, the maximum lightcurve
amplitude will be reached when the object is seen in equatorial view, when ξ = 90◦.
This view is in principle always reachable and corresponds to two well defined val-
ues of the Right Ascension of the object (separated by an angle of 180◦), which
depend on the spin axis orientation. Just to make the things more clear, to observe
an object at ξ = 90◦ means observing it when it reaches one of its two equinoxes.

We only remind that the choice that we make here of a triaxial ellipsoid shape
with semi-axes a > b > c is particularly suitable to illustrate the predictable mag-
nitude variations. Triaxial ellipsoids seen at zero phase angle project in the sky an
ellipse. The apparent surface S of this ellipse is given by the following relation:

S = πa2(A1 sin2(φ) +A2)1/2 (13)



The Gaia Mission and the Asteroids. 29

where φ is the rotation angle of the object, assumed to be zero at lightcurve max-
imum (when the projected ellipse has the major semiaxis equal to a). A1 and A2

are given by:

A1 =
“ c
a

”2
"„

b

a

«2

− 1

#
sin2(ξ) (14)

and

A2 =
“ c
a

”2

sin2(ξ) +

„
b

a

«2

cos2(ξ) (15)

It is easy to verify that, at the maximum and the minimum of luminosity, the
projected areas of the ellipse are, respectively:

Smax = πa ·
q
b2 cos2(ξ) + c2 sin2(ξ) (16)

and

Smin = πb ·
q
a2 cos2(ξ) + c2 sin2(ξ) (17)

We may assume in first approximation that the received flux of scattered sun-
light coming from the asteroid will be simply proportional to the apparent projected
surface S, so that, by neglecting any realistic effect of light scattering on the surface,
we can simply write m = −2.5 log(S) + c, where c is a constant. As a consequence,
it is easy to verify that, if we call A the lightcurve amplitude, namely the difference
of magnitude between the maximum and the minimum brightness, when we are in
equatorial view (ξ = 90◦) we have that A = −2.5 log(a/b). This means that obser-
vations of a triaxial ellipsoid asteroid taken in equatorial view, something that is
always possible to obtain sooner or later, in principle, provide also an estimate of
the value of the a/b ratio.

The lightcurve amplitude progressively decreases as the aspect angle decreases
from its maximum possible value of 90◦. The minimum possible value of the aspect
angle for a given object depends on the orientation of its spin axis. For an object
whose spin axis lays on the ecliptic plane, a pole-on view becomes possible (ξ = 0),
and in that geometric configuration the lightcurve amplitude in principle becomes
zero and the object’s magnitude does not change during the rotation. In that sit-
uation, the projected area will be S = πab, which corresponds to the maximum
possible value among all the possible projections of the triaxial ellipsoid, and then
it corresponds also to the maximum possible brightness of the object. In general,
however, the spin axis will be oriented in such a way as not to allow to reach a
pole-on view.

Due to the fact that the lightcurve changes as a function of the aspect angle,
having at disposal several lightcurves of an object obtained at different oppositions,
it becomes in principle possible to derive the direction of its spin axis (“asteroid
pole”). Different techniques have been developed for this purpose[65, 54]. Predic-
tions concerning asteroid shapes and spin axis directions based on ground-based
photometry have been found to be fairly accurate, according to the results of in
situ investigations carried out by space probes [54].

One major advantage of observing from an orbiting platform like Gaia, with
respect to traditional ground-based observations, is that from space it is easier to
observe the objects even when they are far from opposition, since from space there
are not the strong observing constraint related to the diurnal and seasonal cycles
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Fig. 10. The domain of possible values of magnitude (expressed as a difference
with respect to the magnitude measured at a reference epoch) as a function of time
(expressed in Julian Days) for a triaxial ellipsoid object having the same orbit of the
asteroid (39) Laetitia. The axial ratios of the object are b/a = 0.7 and c/a = 0.5.
The coordinates of the asteroid pole are given in the figure (λ being the ecliptic
longitude and β the ecliptic latitude of the pole). The time interval covers 5 years,
equal to the expected operational lifetime of Gaia.

of the Earth. In particular, from space the asteroids can be seen at small solar
elongation angles, which are hardly achievable from the ground.

Each Main Belt asteroid will be typically observed tens of times during the five
years of the planned operational lifetime of Gaia. The simulations indicate that each
object will be detected over a wide variety of ecliptic longitudes. Correspondingly,
Gaia will make a good sampling of the interval of possible aspect angles of each
object. The same variety of aspect angles, needed to derive the orientation of the
spin axis, may be sampled from the ground only over much longer times. As a
consequence, Gaia will be very efficient in providing disk-integrated photometry
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Fig. 11. The same as Fig. 10, but this time the ecliptic latitude of the asteroid’s
pole is β = 30◦. Together with Fig. 12, these three figures give some idea of the
role played by the latitude of the pole in determining the photometric behaviour of
a triaxial ellipsoid object.

data sufficient to derive the poles of the asteroids in a relatively short time, as well
as the sidereal periods and the overall shapes.

However, it must be noted that there is a fundamental difference with respect to
the situation usually encountered in traditional ground-based asteroid photometry.
In fact, Gaia will detect each object only during very short transits when it crosses
the field of view at epochs determined by the rotational and precessional motion of
the satellite, and by the orbital motion of the asteroid.

This means that Gaia photometry will not consist of full lightcurves, but only
of a number of sparse, single photometric measurements lasting a few seconds. This
would seem in principle a crucial limitation, but it is more than compensated by the
high number of photometric measurements that will be recorded for each object (on
the average, between 60 and 80 for main belt asteroids), and by the good accuracy
of Gaia photometry.
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Fig. 12. The same as Fig. 10, but this time the ecliptic latitude of the asteroid’s
pole is β = 0◦.

In particular, the photometric accuracy will depend on the brightness of the
target and it is expected to be better than 0.01 mag for single detections of objects
down to approximately V = 20.0.

As we have seen above, the magnitudes of the objects detected at different
epochs will depend on several parameters: the most important ones being the side-
real period, the shape and the orientation of the spin axis, and the illumination
circumstances, described by the phase angle. Additional variations may come in
principle also from possible albedo variegation of the surfaces, but this is not ex-
pected to be very relevant for the majority of the objects. The possible existence
of a non-negligible fraction of binary systems must also be taken into account, but
for the moment we will not deal with this problem.

Gaia will obviously measure apparent magnitudes, that will be immediately
converted to magnitudes at unit distance from both the Sun and the satellite (re-
duced magnitudes). When reducing photometric data, the epochs of observations
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Fig. 13. The same as Fig. 10, but this time for an object having the same pole
(λ = 30◦, β = 60◦), but a more elongated shape: b/a = 0.7, c/a = 0.3.

will also be corrected for light-time, being known the distance of the object at each
detection.

Assuming now for sake of simplicity to deal with an object having a triaxial
ellipsoid shape, orbiting around the Sun along a typical Main Belt asteroid orbit, it
is possible to compute how the reduced magnitude is expected to vary as a function
of time, depending on the coordinates of the pole. In particular, when making this
exercise, it is convenient to work in terms of differences of reduced magnitude with
respect to a reference observation (for instance, the first one in a series of different
observations collected at different epochs). In this way, any potential error related
to the constant appearing in the definition of magnitude (m = −2.5 log(Φ) + c,
where m is the magnitude, Φ is the received (normalised) flux and c is a constant
depending on the chosen units) is automatically removed.

If, for sake of simplicity, we make also the assumption that the object is always
observed at zero phase angle, it is easy to produce the plots shown in Fig. 10
- 14, which have been computed assuming that the object has the same orbit of
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Fig. 14. The same as Fig. 13, but this time for an object having the same pole, but
axial ratios: b/a = c/a = 0.7. The fact that b = c has the effect of making constant
the lightcurve maximum at all aspects.

asteroid (39) Laetitia, a typical main belt asteroid. Note that a choice for the object
orbit must be done, because the aspect angle at any epoch depends both on the
coordinates of the rotation pole and on those of the object itself, which is a function
of its orbit.

The plots shown in Fig. 10 - 14 represent the domains in the time - ∆m plane,
∆m being the difference between the magnitude at time t and the magnitude at
reference time t = t0, occupied by the object during an interval of five years. In
particular, the figures show how the domain of permitted ∆m changes as a function
of the object’s shape (axial ratios) for a fixed pole of rotation, or, viceversa, as it
changes by assuming a fixed shape, but varying the coordinates of the rotation pole.
It must be noted that the above plots are used only to give a qualitative idea of
the role played by shape and pole orientation in determining the possible range of
photometric variation of an object, but they are not at all detailed representations
of the real world.
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In particular, the plots correspond to a very ideal situation in which the object
has a perfect triaxial ellipsoid shape, and it is always seen at perfect Sun opposition.
Thus, the effect on the apparent magnitude that arises from the fact of observing
the object at different phase angles in different illumination conditions is not taken
into account. Equally important, no realistic effect of light scattering is taken into
account, and the magnitude is assumed to be purely due to the extent of visible
illuminated area seen from the observer.

Of course, the real objects will only be sparsely observed by Gaia during the
mission operational lifetime. As a consequence, what is more interesting is not the
whole possible photometric domain where a given object can be seen during 5 years,
but rather the way how the actual Gaia observations will sample the whole domain
of photometric variation. To do this, one can take profit of detailed simulations
of the mission, including observing circumstances of known asteroid detections,
developed by a team including one of the authors of the present paper (PT).

Figure 15 shows the results of such an exercise. In particular, it shows how
Gaia would sample the photometric variation of an ideal triaxial ellipsoid object
having the same orbit of the asteroid (311) Claudia, a spin period P = 19.15
hours, axial ratios b/a = 0.86, c/a = 0.71, and pole ecliptic coordinates λP = 49◦,
βP = 51◦. As it can be seen, the sampling of the photometric variation seems fairly
good. Even better, it is interesting to do the same computation, but showing the
results in an ecliptic longitude - magnitude plot, as done in Fig. 16. (Note that
expressing the coordinates in the equatorial reference frame, Right Ascension and
Declination, would be totally equivalent). We recall that different ecliptic longitudes
of the object correspond to different aspect angles. Fig. 16 shows therefore that an
object having a typical main-belt orbit, like (311) Claudia, will be observed in a
fairly wide variety of aspect angles. This is encouraging when trying to develop
methods to use these sparse photometric data to achieve an actual data inversion,
leading to the determination of objects’ rotation properties and overall shapes.

Plots like the one shown in Fig. 16 are useful, because in principle a well sampled
longitude - magnitude plot may provide per se a lot of information. In particular,
we have seen that the maximum lightcurve amplitude is achieved in equatorial
view, and directly provides an estimate of the b/a axial ratio, if we assume a triax-
ial ellipsoid shape. Moreover, the minimum lightcurve amplitude is reached at an
ecliptic longitude corresponding to that of the asteroid pole. A minimum lightcurve
amplitude close to zero means that the object may be seen nearly pole-on. Finally,
a nearly flat maximum of the observed magnitude corresponds to an axial ratio b/c
close to unity.

Of course, what is not known a priori when examining a longitude - magnitude
plot like the one shown in Fig. 16 is the rotation period of the object. It is this
parameter that determines the measured magnitude of the object at each single
epoch of observation, which may be considered as a single snapshot of a continuous
magnitude modulation superposed to the effects of the varying geometric observing
circumstances.

In other words, the set of sparse photometric measurements that will be ob-
tained by Gaia, as well as, it is important to note this, those from the ground
based telescopes of the next generation of sky surveys like Pan-starrs, can be
considered as single points of a complex, time-extended hyper-lightcurve. The goal
of the analysis of these data will be then that of being able to derive from them



36 Daniel Hestroffer, Aldo dell’Oro, Alberto Cellino, Paolo Tanga

Fig. 15. Simulated observing circumstances of Gaia observations of a triaxial ellip-
soid object having the same orbit of the main belt asteroid (311) Claudia, rotation
period P = 19.15 hours, axial ratios b/a = 0.86, c/a = 0.71, and pole ecliptic coor-
dinates (49◦, 51◦). The predicted magnitudes as a function of time are plotted. The
envelop represents the whole domain of photometric variation for such an object
during the predicted operational lifetime of Gaia (5 years).

the main physical properties of the objects that are responsible of these observed
hyper-lightcurves.

In particular, these is a list of parameters that should be determined by the
photometric inversion:

– the asteroid’s rotation period;
– the coordinates of the asteroid’s pole, namely the intersection of the spin axis

of the object with the celestial sphere. These two coordinates may be indiffer-
ently expressed in the equatorial or in the ecliptic system. Following the IAU
convention [97] the ecliptic system should be preferred;
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Fig. 16. The same as Fig. 15, but here the predicted magnitude is plotted against
the ecliptic longitude of the object at the epochs of Gaia observations.

– some parameters describing the shape of the asteroid. In the case of a triaxial
ellipsoid shape with semiaxes a ≥ b ≥ c, this reduces to two simple parameters,
namely the axial ratios b/a and c/a;

– a parameter specifying the variation of the asteroid’s brightness as a function of
the phase angle. In practice, since Gaia will observe asteroids in a range of phase
angles far from Sun opposition, and because the phase function is generally
linear in the range 20-30 deg., the simplest approximation is to consider a linear
magnitude–phase relation, described by one single slope parameter;

– a value specifying the rotational phase of the asteroid at a reference epoch,
usually taken to be the epoch of the first recorded observation;

The above list corresponds therefore to a set of seven unknown parameters to
be determined by the inversion, assuming that the objects have triaxial ellipsoid
shapes. Of course, this particular shape choice is not the unique possibility that
might be considered. Some explanation is then necessary, and is given in the next
section.



38 Daniel Hestroffer, Aldo dell’Oro, Alberto Cellino, Paolo Tanga

6.3 Notes on the choice of a triaxial ellipsoid shape

Asteroids are small rocky bodies whose shapes are normally determined by solid-
state forces rather than by self-gravitation. Asteroid images taken from short dis-
tances by space probes have generally revealed, mainly for the smallest visited
objects, fairly irregular, “potato-like” shapes. Even objects of greater sizes, like
(253) Mathilde, have revealed shapes strongly affected by the presence of giant
concavities due to large impact craters. Moreover, in recent times there has been
the development of methods of lightcurve and even sparse-data inversion, that have
produced complex reconstructed shapes, that have been in several cases confirmed,
directly or indirectly, by other pieces of independent evidence [54].

Based on the above evidence, the choice of approximating objects by means
of triaxial ellipsoid shapes looks a priori very questionable. On the other hand,
there are several reasons why this choice has been done for at least a preliminary
inversion of the future Gaia data. Most of these reasons are strictly related to
the need of reducing as much as possible the number of free parameters to be
determined by the photometry inversion algorithm that will be described in the next
section. Summarising, a list of reasons justifying the choice of a triaxial ellipsoid
approximation is the following:

In spite of being simple and depending upon only two parameters (the b/a and
c/a axial ratios) triaxial ellipsoid shape are fairly flexible, and allow represent
a fairly wide variety of shapes, from elongated “cigar-like” shapes, to flat disks,
up to regular spheres.

There are reasons to believe that, at least among the biggest asteroids, triaxial
ellipsoid shapes might be a good approximation. The reason is that this is the
equilibrium shape expected for re-accumulated objects having a large angular
momentum. These objects, commonly called “rubble piles”, are expected to
exist, and correspond to the so-called LASPA (Large Amplitude Short Period
Asteroids) objects, identified in the 80s ([32, 33]).

Triaxial ellipsoid shapes have been successfully used by several authors in the
past to compute asteroid rotation poles that have been confirmed also by other
techniques [65].

The shapes of impact fragments collected in laboratory experiments have been
approximated in the past by triaxial ellipsoids [16]. The reason is that, when
dealing with a variety of irregular fragments produced by energetic impact
experiments, circumscribed triaxial ellipsoids turned out to be simple and suf-
ficiently accurate to be used for building a reasonable statistics of the shapes
of these fragments.

One fundamental advantage of triaxial ellipsoid shapes is that they admit analyti-
cal solutions of the problem of computation of visible and illuminated areas as
seen from an observer in any geometric configuration. This property is decisive
for the choice of this kind of shape to be implemented in the kind of inversion
algorithm that will be described in the following section.

As we will see, the choice of triaxial ellipsoid shapes is justified a posteriori by
the fact that it can be proven to be able to produce successful inversion not
only of simulated objects having a wide variety of shapes and light scattering
properties, but also of real objects previously observed during space missions
in the past.
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As a final remark, we note that using a model in which a triaxial ellipsoid shape
is assumed to fit the objects, simply means that the corresponding inversion of
available data will look for the triaxial ellipsoid shape that best fits the observations.
One should be aware that this triaxial ellipsoid can well not be adequate to represent
the fine details of the real shape, but this is not equivalent to state that the resulting
inversion must be necessarily bad, in particular for the period determination. The
goodness of the solutions must be checked a posteriori by extensive simulations and
by applications of the inversion algorithm to real data. We also note that it might
be over-ambitious to try to use sparse photometric data to get, in additions to spin
periods and poles, also very detailed reconstruction of the shapes. We remind, for
instance, that even the most advanced methods of shape reconstruction based on
lightcurve data cannot deal with shape concavities in a straightforward way [54].
For this reason, even an apparently modest triaxial ellipsoid approximation can well
prove to be useful to derive global shape estimations, and this may be convenient
if this can be made with only a modest investment of CPU power, as we will see
below.

6.4 Photometry inversion by means of a genetic algorithm

Before describing the details of the adopted algorithm for the inversion of sparse
photometric data, it should be useful to point out that this is a problem that
hardly can be attacked by means of a pure “brute force” approach based on the
power of modern computers. The reason is that, although the number of unknown
parameters is only seven (the rotation period, two pole coordinates, two axial ratios,
one magnitude-phase linear slope, and one initial rotation phase), the number of
possible combination of these parameters, corresponding to single possible solutions,
is large, mostly due to the required accuracy in the spin period determination.

In fact, if one considers for instance the case of an object having a rotation
period of 6 hours, the need to have the final photometric observations “in phase”
within a not-so-small error of 0.8 in rotational phase, means that the spin period
must be computed with an accuracy not worse that 10−5 hours. A brute force
approach based on computing the best solution by building of grid of possible cases
in the space of the seven unknown parameters would then lead to the need of
performing a huge number of iterations, of the order of 1019, as it is easy to verify
taking into account the range of variability of the seven parameters (the period
between 0 and tens of hours, the pole longitude between 0 and 360 degrees, the
pole latitude between −90 and +90 degrees, the axial ratios between 0 and 1, the
initial rotational phase between 0 and 0.5 (an ambiguity of 0.5 is permitted for
this parameter), linear slope of the magnitude-phase relation between 0 and some
tenths of magnitude per degree).

The above estimate means that the photometric inversion of each object would
require an exceedingly big investment in CPU power. On the other hand, other
approaches exist that may avoid the use of brute computing power, and may permit
to save a lot of computing time.

Among these approaches, a one based on the development of a so-called genetic
algorithm has been chosen for the processing of Gaia photometric data. Genetic
algorithms are adaptive algorithms developed to solve some classes of problems
that are particularly suited to being attacked using this kind of approach. Some
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general ideas which are at the basis of the genetic algorithm approach are borrowed
from natural sciences, and in particular from the processes of natural evolution of
living species and survival of the fittest.

In particular, we can consider any possible solution of the problem of inversion
of sparse photometric data as an individual “organism” characterised by its own
“genome”. The genome consists of a single value for each of the seven unknown
parameters to be determined by the inversion. Any possible solution, therefore, is
uniquely characterised by its own set of parameters (spin period, pole coordinates,
axial ratios, slope of the magnitude-phase relation, and initial rotational phase),
which can be seen as the “genes”, or the “DNA” of the given solution.

Of course, different solutions can be more or less good. The range goes from
completely bad solutions of the problem, up to excellent solutions, which may be
accepted as the result of photometry inversion. The goodness of any given solution
is assessed on the basis of its corresponding residuals with respect to a set of real
(or simulated) observations. Better solutions give a better fit of the observational
data, corresponding to smaller residuals (O − C) between the observed data and
those computed according to the given set of parameters. In the application to the
Gaia problem, the parameter that has been used so far to quantify the goodness of
a given solution is the following:

ε =

sP
i (Oi − Ci)2
Nobs

(18)

where Nobs is the number of available observations, and Oi and Ci are the observed
and calculated values of the ith observation, respectively.

The idea of the genetic approach is then to find a good solution of the inversion
problem by taking an initial set of tentative solutions, randomly generated, and then
let them “evolve” by mixing their genomes during a series of successive generations,
until the correct solution of the problem emerges spontaneously. In other words,
starting from an initial set of “parent” solutions randomly generated, and which
are generally very bad, as one would expect a priori from a set of completely
random attempts, an iterative process of production of new generations of solutions
is started. The generation process consists in a random coupling of the parameters of
two parent solutions, randomly selected, and/or in some random variation (“genetic
mutation”) of the “genome” of one single solution.

At each generation, a check is performed of the residuals generated by each
newly born “baby” solution. If it is better than some of those solutions saved until
that step, it enters the “top list”, whereas the previously worst solution of the
parent population is removed from the population.

In this way, after a number of the order of one million of “generations”, a very
good solution is usually found, which produces small residuals and basically solves
the inversion problem. Due to the intrinsically random nature of this “genetic” ap-
proach, the right solution is not forcedly found always, but if the genetic algorithm
is repeatedly applied to the same set of observed data (typically 20 times), then
the right solution (giving the minimum residuals in different attempts) is usually
found several times.

Based on the above description, it may be now clear why the assumption of a
triaxial ellipsoid shape turns out to be very convenient using this approach. The
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Fig. 17. Conditions of applicability of the photometry inversion method for triaxial
ellipsoid shapes and simple geometric light scattering. The horizontal axis gives
the number of available observations, while the vertical axis gives the photometric
uncertainty of the observations (supposed for simplicity to be the same for each
observation). The different symbols in the plot indicate whether the photometry
inversion methods successfully finds the right solution, if it does not find a unique,
right solution, or if it fails.

basic advantage is that each of the millions of computations of the brightness corre-
sponding to the observing circumstances of each recorded observation can be made
by using analytical formulae, instead of numerical computations of more complex
shapes based on an approximation of the shape by means of plane facets, followed
by the computation of the contribution of each facet to the total brightness. Such
an approach, in principle feasible and more flexible, would lead in practice to a
huge investment in CPU power and in much longer computing times. The apparent
illuminated surface of a triaxial ellipsoid seen by any observer in any geometric con-
figuration Observer - Asteroid - Sun can be instead computed by using analytical
formulae, as shown by [90].
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The performances of the adopted genetic algorithm for the inversion of sparse
photometric data has been tested by means of a large number of numerical simu-
lations, and by application to real data. In particular, simulations have been per-
formed considering a large variety of situations for what concerns:

– the orbits of the simulated objects, to check whether orbital properties may have
important consequences on the number of Gaia detections and on the variety
of observing circumstances. In particular, the simulations have also dealt with
near-Earth objects, taking into account that many objects of this type will be
observed by Gaia, although the majority of detections will refer to main-belt
asteroids;

– the rotation periods of the simulated objects;
– the spin axis direction;
– the object shapes. Both triaxial shapes characterized by a large variety of ax-

ial ratios, and more complex shapes, often taken from available observations
(optical and radar) of real objects, have been simulated;

– different numbers of available observations, and different photometric uncertain-
ties, in order to test the conditions of applicability of the inversion algorithm
when the available data are scarce and/or the error bars of the data are large;

– different light scattering laws, ranging from pure geometric scattering to Lommel-
Seeliger and Hapke scattering models.

For what concerns the last item in the above list, Fig. 17 shows the results of sim-
ulations of regular triaxial ellipsoid shapes in the simplified case of geometric light
scattering (no limb darkening). Simulations produced cases with varying numbers
of available observations, and different photometric uncertainties for each obser-
vation. As it can be seen, the results are strongly encouraging in these simplified
cases, because they indicate that the inversion method should be applicable even in
situations much worse than those expected to hold for Gaia data (numbers of ob-
servations of the order of 70, typical photometric uncertainties of the order of 0.01
mag). Even taking into account that the real objects will have surfaces scattering
sunlight in a more complicated way, and non-ellipsoidal shapes, it seems neverthe-
less that the inversion method does a good job and it is not too much constrained
by the number of data and their accuracy.

Figure 18 shows what the fit of simulated data can be in cases in which a sig-
nificant photometric uncertainty of 0.03 mag is added to the computed magnitudes
of a simulated triaxial ellipsoid body. As expected, there are not negligible (O−C)
residuals, but they are fully corresponding to what should be predicted a priori.
The resulting inversion, in fact, turns out to be practically perfect in this case. This
means a computed period solution within 0.00001 mag from the correct one, and
pole coordinates within less than 2 degrees from the correct pole solution.

If simulations of triaxial ellipsoids without light scattering effect may seem too
poor to assess the effectiveness of the photometry inversion algorithm, Fig. 19 is
representative of what is encountered when much more realistic simulated cases are
taken into account. The plot shows the simulated photometric data of an object
having the same shape of (433) Eros as it has been derived from in situ obser-
vations by the NEAR-Shoemaker probe, and simulating a surface scattering the
light according to a Hapke light scattering law with the usual parameters used to
represent the photometric behaviour of real asteroids. In the same plot, the magni-
tudes computed—based on the result of the photometric inversion algorithm—are
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Fig. 18. Results of the inversion of a simulated triaxial ellipsoid asteroid with a
fairly large superimposed photometric error of 0.03 mag. Filled symbols: simulated
observations. Open symbols: corresponding computed brightness at each epoch of
observation.

also showed for a comparison. As expected, there are large values of the (O − C)
residuals, like one should expect from a body as irregular as Eros (see Fig. 20)
when approximated by a simple triaxial ellipsoid. In spite of the obvious oversim-
plification of the shape model used in the inversion algorithm, however, the solution
turns out to be excellent, with the spin period being exact within a few thousandths
of an hour, and the pole solution differing from the simulated one by less than 3
degrees; justifying our previous statement in Sect. $6.3. Even the very elongated,
cigar-like shape of Eros is not badly reproduced by the shape solution, with b/a
and c/a axial ratios both of the order of 0.4. This is not an isolated success of the
inversion method. Equally good results have been obtained also for other compli-
cated simulated shapes and scattering laws, including that of the asteroid (6489)
Golevka, an Apollo asteroid observed by radar technique for which a detailed and
highly non-convex shape model is available.
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Fig. 19. The same as Fig. 18, but this time the simulated object had the shape of
the irregular asteroid (433) Eros as resulting from the images taken by the NEAR-
Shoemaker probe. In addition, the simulated surface was assumed to scatter sunlight
according to a realistic Hapke scattering law.

The most important test so far performed of the effectiveness of the adopted
photometry inversion algorithm has been the application to Hipparcos observa-
tions. We remind that the Hipparcos satellite is the immediate precursor of Gaia
(see $2.1). What is important in the context of this discussion, is that Hipparcos ob-
tained sparse photometric data for a limited number (48) of the brightest asteroids.
Among these objects, many were observed only a few times, and/or the obtained
data had large error bars. If we refer to the results shown in Fig. 17, only 26 objects
satisfy the number of observations + error bar conditions that made inversion pos-
sible for simple simulated triaxial ellipsoid shapes without limb darkening. Among
these 26 objects, moreover, some were just at the limit of acceptability.

A systematic analysis of these data has demonstrated that a successful inversion
of Hipparcos data, in terms of successful determination of the orbital period and
pole, has been obtained for 14 objects. In addition, inversion of the two big objects
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Fig. 20. A NEAR-Shoemaker image of asteroid (433) Eros. (Courtesy of NASA)

(1) Ceres and (4) Vesta were obtained, but with a resulting spin period equal to
twice the correct value. These two results can well be explained by the fact that
Ceres and Vesta are peculiar asteroids, whose photometric variation is due to albedo
spots on the surface, and not to shape effects. Also the results of Hipparcos data
inversion seem thus to indicate that the photometry inversion algorithm based on
the genetic approach discussed in this section seems quite effective and reliable.

According to the results of these tests, it is reasonable to expect that the inver-
sion of Gaia disk-integrated photometric data will lead to the determination of the
spin properties and overall shapes for a number of the order of 10, 000 asteroids.
Moreover, the triaxial shapes and pole coordinates obtained from photometry in-
version will be used also to refine the determination of asteroid sizes as explained
in $5.

7 The expected Gaia-based asteroid taxonomy

We have considered so far the photometric signal acquired in the broad Gaia pho-
tometric G band, and more specifically its temporal variation. As seen in $3.2 there
are, after the crossing of the main astrometric field, two additional CCDs columns
(RP and BP). These will provide low-resolution spectroscopy similar to multi-band
colour-photometry measurements. One could again analyse variations due to the
spin of the asteroids. We focus here on the information that can be obtained on the
surface of the body, and the taxonomy of asteroids that can be derived.
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The relevant spectro-photometric capability of Gaia will be used to obtain spec-
tral reflectance data for a very large number of asteroids. As seen before, there
should be a number of the order of 300, 000 main belt asteroids that will exhibit
apparent magnitudes brighter than 20 in V light when detected by Gaia. When
passing through the BP and RP detectors of Gaia, the colours of these objects will
be recorded. In particular, the whole range of wavelengths covered by the BP and
RP detectors is from about 330 nm up to 1000 nm. This will make it possible to
obtain spectro-photometric data covering about 20 bands in the above mentioned
wavelength interval, producing a very valuable data-set of spectral reflectance data
for asteroids. Of course, many objects will be faint, and, especially at short wave-
lengths, at some transits across the Gaia field of view the recorded fluxes will be
below the detection limit. Moreover, in some cases the objects may move suffi-
ciently fast as to be lost from the observing window before reaching the RP and
BP detectors. Although detailed studies have not yet been produced at the moment,
however, it seems that, taking profit of the fact that each object will be detected
several times during the operational lifetime of Gaia (a number of detections of the
order of 65 being typical for main belt asteroids), and some detections will be better
than others since the objects will be brighter being at smaller geocentric distances,
it is reasonable to expect that for a quite large fraction of the total number of de-
tected bodies a complete coverage of the spectro-photometric behaviour from blue
to red wavelengths will be obtained. These data will be very important because
they will be used to derive a new taxonomic classification of a very big asteroid
sample, much larger than any similar data-set currently available.

In particular, Gaia low-resolution spectral data will be obtained for objects over
a wide range of sizes, and this will be important to analyze possible size-dependent
effects on asteroid colours, related to the interplay of collisional and dynamical ages
and effects of surface space weathering. For instance, it is known that the surfaces
of young S-type asteroids that belong to the near-Earth population have spectral
properties that are more similar to those of ordinary chondrite meteorites than
those of larger, main belt objects orbiting belonging to the same taxonomic class.

From the point of view of taxonomy, Gaia will have a couple of excellent prop-
erties: first, this very large spectro-photometric data-base will be obtained using a
unique, homogeneous photometric system, and not merging together data coming
from different instruments. Second, and equally important, the spectral coverage
will include the blue region of the reflectance spectrum. This is a very useful prop-
erty, because the regions of the spectrum corresponding to the classical Johnson
U and B colours, which were included in classical UBV spectro-photometric data-
bases obtained many years ago by means of photoelectric photometers, are currently
largely missed by the most recent spectroscopic surveys, like SMASS and SMASS2
[14].

One should consider, in fact, that the blue region of the reflectance spectrum
is very important to distinguish between several groups of primitive, low-albedo
bodies. Among the many thousands of asteroids that are expected to be classified
based on the Gaia spectro-photometric data-base, a large fraction will consist of
primitive, dark objects belonging to the so-called C super-class, which dominates
the asteroid inventory in the outer regions of the asteroid belt. As opposite to
spectroscopic surveys like SMASS and SMASS2, that were limited in practice to an
interval of wavelengths between 0.5 and 0.95 µm, Gaia is expected to do a better job
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in discriminating among different subclasses of the big C complex, and to determine
the relative abundance of these different subclasses.

A typical example of an important class of asteroids that has been lost in
recent taxonomies is the F class. This objects have low albedos, are generally more
abundant in the outer belt, but they exhibit a local overabundance in the inner belt,
possibly associated with a dynamical family (Polana [21]). Interestingly, F objects
have been found to exhibit unusual polarimetric properties [6] and may also have
some relations with comets, since comet Wilson-Harrington was classified as an F
asteroid, before its cometary nature was discovered, and also the near-Earth object
(3200) Phaeton, which is known to be associated with the Geminid meteor shower,
was also classified as an F -type [6].

The Gaia taxonomy will be an important tool for studying the overall compo-
sitional gradient of the material which accreted into the planetary bodies in our
Solar System [18]. Moreover, the availability of spectral reflectance data and tax-
onomic classification will also be important for future studies of the identification
of asteroid dynamical families. The reason is that classical family searches have
been based so far on the distribution of the objects in the space of proper elements.
Since many families tend to overlap in this space, spectroscopic data may add a
new dimension to the problem, and should be very useful to discriminate among
members of different families overlapping in the space of proper orbital elements
[19].

We note that new taxonomic classifications of the minor bodies of the Solar
System based on spectral reflectance data will be obtained in the next years also
by the next generation of dedicated ground-based surveys like Pan-starrs and/or
the lsst. The Gaia-based taxonomy, however, in spite of the existence of such
“competitors”, will “come for free”, being an automatic sub-product of the BP and
RP detections. Taking into account the above-mentioned coverage of the B region of
the spectrum, and the general link with other, unique results that will be produced
by Gaia asteroid observations, it is certain that Gaia taxonomy will be a very useful
addition to the extremely important scientific value of the Gaia mission for asteroid
science. For instance, it will be possible to link immediately the obtained average
density determinations for about 100 objects with the taxonomic classification of
the same objects, a very important result to interpret taxonomy in terms of overall
composition of the objects. In this respect, also the determination of Gaia albedos
of the same objects will be extremely important to sketch an overall interpretation
paradigm of such a wealth of physical information.

8 Dynamical model improvement with Gaia

We have seen before in $4, that the Gaia mission will provide the orbits of a
large number of asteroids with high accuracy. Not only will the observations be
precise on the CCD (no refraction, no personal equation, well calibrated measure
through one single instrument independently of the northern/southern hemisphere,
etc.) but mostly all positions are referred to a very homogeneous reference frame
(materialised by QSOs and primary reference stars), avoiding many systematic
errors. Such refined orbits (for at least over the period of the Gaia observations)
will enable to detect and/or measure small and subtle effect, either dynamical,
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relativistic, or non gravitational. We will see some aspects for the determination of
asteroids mass, test of general relativity and linking of reference frames. Because we
have to wait to acquire the real Gaia data all results given below are hence obtained
from simulations of the observations, and they mostly concern the precision of
parameters estimation. Combining on one side the image simulation on the focal
plane and a centroiding precision ($5.4) to the Gaia scanning law and asteroids
ephemerides on the other side, one gets the useful data to derive the quantities
presented below.

8.1 Asteroid mass

As we will see later ($ 10), monitoring the orbits of binary and multiple systems will
provide their total mass, and in some circumstances, the mass of each component.
The other way to derive the mass of an asteroid is to measure the mutual gravita-
tional perturbation during a close encounter [118, 51, 76, and references therein].
This can be done from the perturbations of asteroids on Mars, or asteroids-asteroids
perturbations. Indeed this generally involves a large massive asteroid influencing
several mass-less target asteroids, although target asteroids can in some encoun-
ters act as perturber too. Given the high precision with which Gaia can derive the
orbit of an asteroid (see Fig. 21), one can detect small effects affecting the orbit,
in particular small perturbations during close encounters. It is clear that the effect
can be detected only if the astrometric observations are obtained before and after
the encounter itself. The more general and straightforward problem would be to
integrate the equations of motions (and variational equations) of the dynamical
system at once. This means a N -body integration with N of the order of 300,000
plus the eight planets, relativistic effects, the effect of the oblate Sun and a ring
of asteroids, etc. The step size would need to be automatic and would be governed
by the encounters. However such high CPU consuming algorithm is not necessary
in our more hierarchical problem, where many asteroid orbits can be considered as
perturbed two-body solutions. In fact the gravitational effect of a given asteroid
i on a planet or an asteroid j is in most cases negligible and should not be com-
puted, not only to decrease the CPU time but also to avoid unnecessary numerical
noise. It is hence better to perform the integration by taking into account only
relevant perturbations, and thus derive a list of potential perturbers. These per-
turbing asteroids are to be added to the classical perturbing major planets that are
systematically taken into account in the perturbing function [75]. Note also that a
perturbing asteroid can still be a target for another one, but the size of the N-body
system is decreased by several orders of magnitude. So, the first step is to provide
the list of targets for each large asteroid and inversely the list of perturbers to in-
clude for a given asteroid. In the second step, one computes the partial derivatives
for the additional unknown masses. Note that when the error on the mass is large,
the problem is likely to be non-linear. In the other case one starts with a linear
least-squares treatment of the problem. It has been shown in [74] that Gaia will
derive the mass of about 150 asteroids with a relative precision better than 50% (see
Fig. 21). Since the number of targets is often large, systematic effects are reduced,
so that Gaia will increase the precision of the mass determination, but mostly its
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accuracy8. Some of the targets can be poorly observed with the Gaia scanning law,

Fig. 21. Left: Orbit improvement; relative precision obtained on the semi-major
axis from the 5 years of Gaia observations. Right: Precision of asteroid mass deter-
mination with Gaia from gravitational perturbation during close encounters.

or the encounter can take place close to the beginning or the end of the 5 years
mission. In the latter case, having only half of the data is totally useless; so it could
be interesting to complement the space-base data with additional ground-based as-
trometry. These should however be of good precision and over a limited time span to
reduce the effects of systematic errors. Again, conservative simulations have shown
that additional masses can be derived from such data combination [78].

The mass of Ceres and Vesta will surely be known with higher accuracy from
the future Dawn mission, and they will help to validate the method. Some of the
targets are also binary asteroids which will provide additional calibrations. Interest-
ingly other asteroids in the list of Gaia mass determination have currently no mass
determination, or act as large perturber on Mars [74]. Since the present limitation
on the ephemerides of inner planets arise from the poor knowledge on the asteroids
mass, Gaia will bring some improvement. Combining the measures of mass and size-
shape-volume provides another fundamental physical parameter, the bulk density.
With the aid of ground-based high-angular resolution observations this quantity
will be obtained with high precision for about 60 targets, covering many taxonomic

8 Note the semantic. Broadly, the precision corresponds to the dispersion or vari-
ance of a quantity around the mean or expectancy, while the accuracy will give
the error between the true and mean. A parameter estimation or determination
can be of very high precision, in particular when obtained from a large the num-
ber of observations, but in severe error if there are uncorrected bias in either the
observations of the model. An illustration can be given by a badly build ruler
where the graduation starts at 1 not 0, the precision of the measure is about
0.5 mm which is fair, but all measures are systematically wrong by 1 cm, hence
inaccurate.
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classes, and enabling to test possible links between density and taxonomy. We know
for instance that rubble-pile asteroids or highly fractured ones can have substantial
porosity making this link non trivial [12].

Global solution

Let us stress that—in contrast to previous works on mass determinations—these
estimations are obtained while treating the problem globally: all targets for a per-
turber are treated simultaneously and cross-perturbers terms are also taken into
account. The system of observational equations takes the form of a sparse diagonal-
column bloc-matrix:

P ·

0BBB@
A1 0 · · · · · · G1 M1
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...
. . .
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1CCCA (19)

where:

– N is the total number of asteroids (≈ 300 000);
– P projection matrix to transform heliocentric (barycentric) position vector x

to observed quantities λ (or RA, Dec);
– Ai is the Jacobian matrix (ni× 6) of the partial derivatives with respect to the

initial conditions for asteroid i,
h
∂x
∂qo

i
i
;

– qi is the vector of corrections to the 6 initial conditions for asteroid i;
– Gi is the Jacobian matrix for asteroid i (ni × npar) of the partial derivatives

with respect to global parameters common to all asteroids
h
∂x
∂g

i
i
;

– dg is the vector of the npar global parameters;
– Mi is the Jacobian matrix for asteroid i (ni × p) of the partial derivatives with

respect to the mass corrections relevant to asteroid i. It is again a sparse matrix;
– dmj is the mass correction for massive asteroid j perturbing asteroid i. As said

before the list of perturber has been previously selected from a simulation of
close encounters [76, 77].

This system is inverted for all parameters together and combining various target
asteroids simultaneously.

Other small effects – Estimated and/or considered parameters

The photocentre offset corresponds to the difference—projected on the sky—
between the centre of gravity of the body (the one to be considered in the equations
of motion) and the point derived from some centroiding giving for instance the mode
of the light distribution on the focal plane [62, 43]. For a sphere observed at full
phase there is no difference as long as the light distribution is radially symmetric.
Of course, if the phase is important the difference will be large; it scales with the
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apparent size of the body and its surface properties light scattering and albedo var-
iegation. Such effect is generally taken into account for planets and large planetary
satellites [72] since it amounts to several mas. Considering only the phase i and the
size of the object which assumed to be spherical (of apparent diameter φ) and with
no albedo markings on its surface, one can write:

δλp = C(i) sin(i/2)φ/2 (20)

where the displacement δλp is given in the direction of the Sun. The function C(i)
depends on the scattering properties of the surface; for a perfect and hypothetical
Lambertian sphere one has C(i) ∼ 3

4
+ 3

32
i2+o(i3), which generally yields an estima-

tion of the maximum offset. This offset is also noticeable in the Hipparcos data for
the largest asteroids [44]. With the high precision measure from Gaia, it will be of
importance for a larger number of objects. There are three different cases depend-
ing on the size of the target, and our knowledge of its size, shape, and brightness
distribution. If the body is small, the effect can be negligible; if the object is bright
and large, the effect can be modelled with enough accuracy or some parameters can
even be estimated from the inversion of the system of Eq. 19 itself [44]. Dynam-
ical (state-vector initial conditions) and physical parameters (size, shape, ...) can
be derived simultaneously for a combination of both astrometric and photometric
data [53], however as long as they remain largely de-coupled one can also proceed
iteratively with separate estimations of shape and light scattering properties from
the photometry and size estimations from the astrometry. However, there remains
the third and intermediate case where the effect (generally systematic, see below)
is neither negligible nor can it be fully modelled or estimated for instance from
incomplete knowledge of the shape and light scattering at the surface of the body
[55]. In this case there will be additional random noise in the modelled photocentre
offset which, in turn, will decrease the accuracy of other parameters estimation,
this can be handled through consider covariance matrix [106]. The LLS problem to
solve can be written as Ax.x+Ac.c = b, where only x is the unknown vector to be
estimated; the consider vector c of input parameters is assumed to be known but
with some a priori uncertainty, e.g. σ2(c) = σ2.I. Clearly, both the LLS solution
for x and its variance/covariance matrix will depend on the choice of c and asso-
ciated a priori variance/covariance matrix. Such procedure also allows to yield the
sensitivity of the estimated parameter x with respect to the consider parameter c.

One should note that the photocentre offset is a systematic effect, always di-
rected toward the direction of the Sun, hence typically in the ecliptic plane for an
asteroid. Being systematic, such effect should not be compared to the precision of
a single observation in the error budget, but to the precision foreseen for global
parameters, which—compared to the observation precision—scales as N−1/2, and
more specifically to their correlations. As analysed in [101, 43] for the Hipparcos
data, the photocentre offset effect mimics a global rotation along the ecliptic pole.
The situation is very similar to another systematic effect due to thermal inertia of
the body, the Yarkovsky effect.

In addition to the perturbations already mentioned, one can consider non-
gravitational forces acting on the dynamic of the body (out-gazing comet, asteroid,
meteoroid, particle, ...) such as Pointing-Robertson or solar pressure. Here we con-
sider the Yarkovsky drag which is a thermal effect. An asteroid is not a perfectly
reflecting body and is re-emitting part of the solar energy in the thermal infrared.
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Due to thermal inertia (and the asteroid rotation) this re-emission has some lag in
time; to illustrate this consider for instance the hottest time in the day: it is not at
solar noon but a couple of hours later in the day. Thus the photons are re-emitted
in a direction different from the (radial) reception direction. Taking the balance of
energy one sees that the force created can be decomposed by one part in the radial
direction and by another part in the tangent direction, and hence create some ad-
ditional non-gravitational force or acceleration (see Fig. 22). This effect that was
previously considered for small particles such as meteoroids has been detected on
larger bodies, first on the lageos satellite [94] and later for asteroids [95, 121]. For
a fast rotating body or a non-spinning one there is no diurnal effect. The Yarkovsky
effect scales with the object size, its thermal inertia (or equivalently thermal conduc-
tivity), and last its distance to the Sun. The general trend effect is most noticeable
in the NEOs population [23]. From its astrometric measurements alone, Gaia will
not be able to derive all physical parameters involved in the Yarkovsky effect, but
for some NEOs can derive one scaling parameter. This means that if the diameter
and spin state are well known, the thermal inertia can be derived for a half dozen of
bodies [74]. Again when not completely negligible such systematic effect can affect
other parameters estimations, such as those involved in the local test of general
relativity.
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Fig. 22. The diurnal (left) and seasonal (right) Yarkovsky effects. Depending on the
prograde (resp. retrograde) spin axis direction the force will secularly decrease (resp.
increase) the semi-major axis of the asteroid (diurnal). In case of zero obliquity
(purely seasonal) one always has da/dt ≤ 0. (Credits GSFC NASA).
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8.2 Local tests of general relativity & Reference frame link

There are three historical and fundamental tests that assessed with some success9

the theory of General Relativity of Einstein (1916): precession of the perihelion
of Mercury, light deflection by the Sun, and gravitational red-shift. A fourth can
be added to that list that arrived later: the radar-echo delay, also called Shapiro
effect. Last, let us note the importance of the work of Schwarzschild who derived—
under given hypotheses—an exact solution to the equations enabling to predict
quantitatively these effects.

It was known since Le Verrier in the middle of 19th Century that the (Newtonian-
Euclidian) planetary theories from celestial mechanics couldn’t match with the pre-
cession of the perihelion of Mercury’s orbit around the Sun of 43”/cy. No satisfactory
explanation could be given until the theory of General Relativity that nicely pre-
dicts this very effect. Alternative theories to the GR do exist; a particular class of
metric theories can be linearized and grouped in a parameterized formalism when
gravity is weak and massive bodies move slowly v � c, the parameterized post-
Newtonian formalism [125]. This expansion, in its ’first’ order10 corresponds to the
classical Newtonian gravity, on in its ’second order’, to post-Newtonian corrections
[71]. Among the parameters of this formalism, γ reflects the light deflection and
β the relativistic precession of the perihelion, they are both equal to one in gen-
eral relativity. Test of general relativity, at least when dealing with phenomena in
the Solar System, usually consist to measure the deviation to the canonical value
predicted by GR for these PPN parameters [123, 124].

Excluding the part due to planetary perturbations that can be modelled pre-
cisely, the precession of the perihelion of the orbit of a solar system body is governed
by the relativistic effect and an additional effect due to the oblateness of the Sun,
given by its quadrupole moment J2. Within the PPN formalism, the secular term
for the argument of the perihelion ω is given by:

∆ω = ∆ω|PPN +∆ω|J2

=

»
6πm�

a5/2 (1− e2)
Γ +

6πR2
�

4

5 cos2 i− 1

a7/2 (1− e2)2
J2

–
(t− t0)

=
3m�

a (1− e2)

»
Γ +

R2
�

4 am�

(5 cos2 i− 1)

(1− e2)
J2

–
n (t− t0) (21)

where m� = GM�/c
2 ≈ 1.48 km, Γ = 2+2γ−β

3
, a is in AU, t in year, n in

rad/year, and last, ∆ω is in radians. Neglecting the contribution due to the Sun,
the relativistic effect from the general relativity is ∆$ = ∆ω = 6πm� [a (1 −
e2)]−1 λp [rad/cycle], which for Mercury yields a precession rate of 43”/cy. How-
ever it clearly appears from the equation above that the effect of the Sun and the
relativistic effect are linearly coupled, and one cannot derive both unknown pa-
rameters from one single value of the precession of one planet. On the other hand,

9 The two experiments for the light deflection during the Solar eclipse of 1919 were
not free of some errors, but nevertheless gave a result close enough to the pre-
diction to convince Eddington and Dyson, and further the scientific community.
The precession for Mercury’s perihelion matches the observations but the part
due to the oblateness of the Sun is not well known.

10 All small parameters are expanded simultaneously.
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having different bodies spanning a larger range of eccentricities and semi-major
axis, improves the separation of the unknowns; moreover there is an additional ef-
fect on the precession of the ascending node ∆Ω = ∆Ω|J2 that arrises from the
Sun only, while there is no particular relativistic effect on that argument.

The asteroids act as test particles in the gravity field of the Sun, having hence
orbits that are well defined by Gaia enables—in theory—to derive both parameters
separately. Performing simulations of the motions and Gaia observations of syn-
thetic populations of NEAs [48] again yields a variance analysis. Since the actual
known population of NEAs is not complete to apparent magnitude 20, we should
not restrict ourselves to the known population only, but estimate also the NEAs yet
to be discovered before Gaia. Heuristic samples have been produced following the
(un-correlated) distribution in orbital elements and absolute magnitudes derived
by [10]. For each possible set of Gaia observations we have determined the variance
matrix for the unknown parameters including Γ and J2 either simultaneously or
separately.

Similarly one can add as global parameter a possible variation of the gravi-
tational constant G, a problem similar to Gyldén-Mestschersky problem [68], also
present in the analysis of Lunar-Laser Ranging data and planetary ephemerides
[126, 88]. One should note that depending on the definition of the osculating el-
ements, the results for the variation can differ [56, 41]. In addition one can also
perform a link of reference frames. All computed positions are given with respect
to a frame defined by the equations of motions and associated parameters (time
scale, masses, etc.): the dynamical reference frame. This frame is materialised by
the positions of solar system objects. All observed positions, in contrast, are given
wrt a frame defined as kinematically non-rotating. This frame is materialised by the
distant QSOs (extra-galactic, quasi-stellar objects) and next by reference stars for
which the motion is well modelled. Both reference frames are non-rotating, either
dynamically or kinematically; nevertheless a global rotation might subsist. In any
case the reference plane and origin of longitudes in this plane are conventional and
completely independent in each frame; in the case of the ICRF (the reference frame
in used defined by the QSO from VLBI astrometry) it is close to the FK5 J2000
mean equator and equinox but the x axis does not point exactly in the direction of
the vernal point. Again, all accurate observations of solar system objects can act as
reference point to derive the rotation vector W = W0 + Ẇ (t − t0), i.e. both the
rotation for the link to the dynamical reference frame W0 at some given reference
epoch t0, and a possible test of rotation rate Ẇ. One sees from Table I that the
rotation rate will be derived with a precision similar to the one of the Gaia optical
ICRF reference frame itself.

9 Orbit determination and improvement

9.1 Introduction - A historical perspective

Determination or more exactly the representation of orbits is an old problem start-
ing, after Babylonian tables, with the epicycles, and later with the work of Kepler
who derived the correct form of orbits with the conics [100]. Another ancient as-
pect connected to this topic is the determination of the orbits of comets which
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Table I. Standard deviation (1σ) for various global parameters derived simultane-
ously by Gaia. The rotation and rotation rate vector components are given in the
ecliptic J2000.

β J2 Ġ/G Wo Ẇ Ref.
– – yr−1 µas µas.yr−1

Gaia 5× 10−4 2× 10−8 2× 10−12 2-2-5 1-1-2 [48]
LLR 2× 10−4 – 9× 10−13 – 100 [126]
EMP 1× 10−4 3× 10−8 1× 10−13 – – [88]
INPOP – 2× 10−8 – – – [34]

1µas/yr ∼ 5 × 10−12rad/yr

shows some interest, or more recently the orbits and motion of meteoroids and me-
teor streams11. As noted by Gauss in his fundamental “Theoria Motvs12” preface
[37, 36, 38], the problem for the comets (and now, for the asteroids too) is different
from that for the planets for which many observations can or have already been
gathered. In fact this amount of data collected principally by Tycho Brahe led Ke-
pler to find his eponym laws; now, in the case of the small bodies, the problem
to solve is different: we know the orbit has to be an ellipse or an hyperpola and
we want to derive its parameters with only few data in hand. As shown by the
historical examples of Olbers, and Halley for his famous comet13, and also Piazzi,
Gauss, von Zachs for Ceres, the practical significance to the determination of an
orbit is to be able to compute the ephemeris and hence to be able to track the
object in the telescope (consider nowadays typical ≈ 10′ large/small fields of view)
at its next apparition. If not, the body can be lost, necessitating some painful effort
to catch it again; one illustrative example is given by the long-lost asteroid 719
Albert, discovered in 1911, it was re-discovered as 2000 JW8 in year 2000, about 9
decades later. With modern archives data-mining techniques [111] it becomes also
interesting to be able to go back into the past and see whether additional data
already exists.

Before the discovery of asteroids and the particular work of Gauss, the history
of orbit determination was closely related to comets. Indeed comets were intriguing
and furtive objects yet bright and showing large motion in the sky; but even their
parallax remained for long unknown. Many attempts to derive their orbits were
unsuccessful, mainly because the exact nature of the curve was not known14, and

11 Interestingly, it appears that comets were associated to meteors—in the etymo-
logical sense—by ancient philosophers [2].

12 Theoria Motvs Corporvm Cœlestivm in Sectionibvs Conicis Solem Ambientivm.
Autore Carlo Friderico Gauss.

13 Nowadays comets are named after their discoverer, it was not the case at the
time of Halley.

14 Tycho Brahe having observed the comet of 1577 noted it could not be on a
circular orbit, hence differing from the planets.
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Fig. 23. G. Piazzi (1746–1826) on the left showing—not Gauss but—his newly
discovered minor planet Ceres Fernandinea; and C. F. Gauß (1777–1855) on the
right in a portrait (extract) painted well after the Ceres story (he was 24 at that
time).

often assumed to be a straight line. Newton proposing in his “Principia” (1686,
book III, prop. XLI) a geometric method based on a description by a parabola
with the Sun at the focus, paved the way to future successes. While we shall note
some contributions from Euler, Lambert and Lagrange in the field, the comet of
Halley—or comet of 1759—is the first case for which an orbit and precise predic-
tion was computed. Halley, following the work of Newton, identified in 1705 from
the computation of the parabolic orbital elements, the apparent periodicity and
successive returns of this celestial body (meaning the orbit is an elongated ellipse
rather than a parabola). Next, from the calculation of the planetary perturbations
on the comet provided by Clairaut (1762), it was possible to give accurate enough
predictions for the 1759 apparition with all its spectacular outcome and a begining
of a new era in the cometary science. The oldest apparition attested in observation
goes back to 240 BC, in China, possibly 467 BC [27, and reference therein]. We will
end this short historical review by mentioning the later work of Olbers, and by far
mostly used technique for deriving the orbits of comets. Contemporary to Olbers,
Gauss recognised the advances obtained by Newton for the orbit determination of
comets: “The great Newton himself, the first geometer of his age [...] he came out
of this contest also the victor”, but added however that having one of the unknown
removed (either eccentricity, or semi-major axis for the parabola) advantageously
reduced the complexity of the problem (there are more equations than unknowns
and no transcendental equations). The problem of the determination of an aster-
oid’s orbit generally resides in the determination of the elliptic elements having
several topocentric observations of the target spread over a limited interval of time
(say a few weeks). In many situations in the solar system—and in contrast to a
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full N-body problem—the Keplerian two-body problem studied by Newton gives
a satisfactory approach; which can be, if needed, iteratively developed to higher
degree of accuracy later-on by considering the small perturbations. The two-body
problem is of importance also because it has a complete solution in closed form. In
the following we shall focus mainly on orbits of asteroids, possibly as test particles
in our Solar System, and sometimes massive bodies that show mutual perturba-
tions or gravitational perturbations on Mars and/or other inner planets. We will at
some point consider a perturbed two-body problem (the mass and attraction of the
Sun is preponderant, the attraction of the planets act as small perturbation) with
small additional gravitational forces. We will not develop the case of comets, for
which well known non-gravitational acceleration can be important, neither will we
discuss here the problem of the orbit determination of meteoroids or meteors, see
[27, chap. 12]. We will not discuss the case of range and range-rate data although
it is of major importance in modern data for NEAs and space vehicles. We will
focus mainly on the problem of orbit determination for an asteroid given classical
telescopic RA and/or Dec data.

The most impressive work performed on the determination of the orbit of as-
teroid was performed by a great mathematician and astronomer: Carl Friedrich
Gauss15. It took some time to Gauss to publish16 his work in the “Theoria Motvs”
(1809), where he explains and exposes his method with great details but certainly
with additional refinements that were not used in the original work applied to the
Ceres case. Indeed the illustrative example of the orbit determination is given not
for asteroid (1) Ceres but for (3) Juno [38, Book II, Sect. I]; Ceres is also treated
with the additional observations obtained in 1805. One can note a few technical
details that maybe are of no more use today: little use of rectangular coordinates,
use of manipulations to carry out calculations with the aid of logarithms, use of
a fictitious place of the Earth in the plane of the ecliptic to decrease the effect of
unknown parallax, and reduction of time of observations to the meridian of Paris...
After the discovery of the asteroid (or minor planet17) Ceres by the astronomer Pi-
azzi at Palermo observatory in January 1801 (see Fig. 23), a large excitation arose
to be able to predict its next apparition. Ceres18 was observed starting from its
discovery until the beginning of February down to a solar elongation of 70 degrees,
corresponding to a relatively short arc of 3 degrees over 40 days. Being suspected
to be a star, then a comet, it appeared clear at the discovery time that its or-
bit was more likely planetary. With his pioneering work and correspondence with
astronomers, Gauss was able to predict Ceres’ next apparition in December 1801
with a small 0.1 deg error as observed by Von Zach, and next Olbers one year after

15 Karl Friedrich Gauß for the German spelling, this can be helpful for bibliographic
research.

16 It also took some time to have the text translated, 1857, 1859, and 1864 for the
English, Russian, and French version respectively. The collected works of Gauss
were published starting from 1862.

17 The discovery of Piazzi is in some sense remarkable, he did find—depending on
the nomenclature in use—the first planetoid, the first minor planet, the first
asteroid, the first dwarf planet, and possibly [66] the first trans-Neptunian that
was injected into the inner solar system!

18 Originally called Ceres Fernandinea by Piazzi, referring to the King Ferdinand
III of Sicily.
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its discovery. This was better than any other predictions, and assessed the success
of Gauss’ method and collaborator observers19. The case of Ceres at discovery is
given from his correspondence in the collected works, Band VI [35], with the data
from 02/01, 22/01, and 11/02 1801. These dates are not too much separated in
time and one moreover has t2 ≈ 1/2 (t2 + t3). The presentation of the method of
orbit determination is generally separated in two parts, as was done by Gauss; in a
first time one develops relation in the orbit and in space from positions or position
and velocity, and in a second time one derives the method starting from 3 or more
geocentric observations.

9.2 Orbit determination

Since the pioneering book of Gauss, several textbooks summarise the problem of
the determination of an orbit, (elliptic or parabolic), and the evolution with time
up to the modern ones allowing the use of fast computing machine [80, 81, 113,
87, 27, 30, 93]. Considering the two-body problem in the rest of this section, there
are two classical problems encountered in celestial mechanics and astrodynamics
computation of the position and velocity at a given time of a body given the orbital
elements, or, inversely, obtain the orbital elements given the initial position-velocity
conditions or state-vector [93]. The latter form is of particular interest since it says
that the (heliocentric or barycentric) orbit is completely defined from the knowledge
of such (heliocentric) state-vector. Another possibility to fully characterise the orbit
is to have two (heliocentric) radius vectors, at any two different epochs (excluding
however data separated by half periods, or colinear vectors). These are the basis
of the methods for the determination of orbits developed by Gauss and Laplace.
They are in fact very similar as pointed out by H. Poincaré in his preface of the
Leçons20 from Tisserand ([114]). The problem of Laplace and Gauss are indeed very
similar but technically different and have encountered various success depending on
the practical aspects to solve. Both Gauss and Laplace approximations will pro-
vide reliable results, possibly with different convergence speed. One can also note
here that some practical refinement have been proposed by various authors (in par-
ticular [92] for the method of Gauss, or [64] for the method of Olbers). Actually,
Gauss method is most widely used (it was already the case before modern com-
puters [89]), although Laplace can be applied with modern CCD observations that
allow to estimate the apparent motion of the body e.g. [15] it remains dependent
on the precision with which one is able to derive the second derivatives of the right
ascension and declination [27]. A comparison of the practical aspects with modern
computations can be found in [17] (who also introduce a less famous method devel-
oped by the Italian astronomer Mossotti). The conclusion of their simulation runs
is that Gauss method gives in general (more than twice times) better results (when
compared to the reference orbital parameters a, e, i) than the one of Laplace.

All methods for deriving the orbit of an elliptic motion necessitate to solve non
linear problems, involving transcendental functions, hence with no close form or
general algebraic solution. Approximations are thus needed which generally also
imply that observations are not too far apart but neither too close to encounter

19 All these names are now associated to asteroids: 999 Zachia, 1000 Piazzia, 1001
Gaussia, and 1002 Olbersia.

20 Note that only the methods of Olbers and Gauss are developed in these Leçons.
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degeneracy of the problem. Gauss method supplant the one of Lagrange, in fact
Gauss showed that it is more convenient to reduce the problem to two unknowns
x, y involved in two equations X = Y = 0 as simple as possible. He also gave a
method to compute the ratio of sector to triangle (Sect. 9.3), one of the fundamen-
tal quantities used. These classical methods require 3 (or more) observations, hence
sufficient equations to derive the 6 unknowns of the problem. One other method of
interest has been developed—in the case where only two topocentric observations
are available—by Väisälä (in addition to the determination of a circular orbit, e.g.
[112, 27]). If the orbital plane is close to the ecliptic the—classical—method fails,
Gauss also considered this case and give the extension to find the orbit from four
observations. Before starting the orbit computation itself one can also want to cor-
rect the observations (apparent directions given in, say, the true frame of the date,
though today such frame will have to be replaced by the CIP and its non rotat-
ing origin) for various classical effects of (stellar) aberration, precession/nutation,
parallax. These being in any case small, can often be ignored on the first step.

We give in the following a sketch of Gauss’ method of orbit determination. Let
us before reproduce a remark extracted from the preface of the French translator
(E. Dubois [36]) of Gauss’ work: “Or il est bien probable que la zone située entre
Mars et Jupiter n’est pas encore suffisemment explorée et que le chiffre de 79 auqel
on est arrivé, sera encore augmenté. Qui sait ce que réserve l’avenir !!... Bientôt
alors les astronomes officiels n’y pourront plus suffire, si des calculateurs dévoués à
l’astronomie et à ses progrès ne leurs viennent aussi en aide de ce coté21”. Well, the
future actually gave an increase by several orders of magnitudes of objects in that
zone (and a few more in the Trojan and Trans-neptunian region) which number is
still increasing exponentially; we shall ask again what will the future hold for us
with ongoing surveys like Pans-starrs, lsst and others?

9.3 Gauss method – a sketch

The general scheme of Gauss method is to reduce the problem to a system of two
equations X = Y = 0 involving two variables x, y; one sets these two variables
for two of the observations, derives the orbital parameters, and tests whether the
equations are satisfied for the third observation. Generally they won’t, so the next
step is to derive the (small) corrections λ, µ to apply to x, y from the knowledge of
the first order derivatives of ∂(X,Y )/∂x, ∂(X,Y )/∂y and repeat the process until
convergence to a solution that will satisfy all three observations together is reached.
Actually Gauss does not give one, but five methods with additional extensions [38,
Book II, Sect. I, 124–129], and comparison to the observed geocentric position itself
is not always necessary. The first, and more natural, process given by Gauss is to
take for the two variables x, y the geocentric distances (or the logarithm of these
distances projected on the equator) for the first and last observations. From there
on derives the heliocentric position vectors of the target, the orientation of the
orbital plane in the inertial reference frame, and—from the timing and longitudes

21 It is likely that the zone between Mars and Jupiter is not yet sufficiently explored
and that the number of 79 that has been reached, will still be increased. Who
knows what the future will hold for us!!... Soon official astronomers will not
suffice, if some computers devoted to astronomy and its progress do not come to
their rescue also on that side.
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in this plane—all other elliptical elements. Computing the values for the third -
middle - observation will yield two equations, that, for the computed orbit to be
a solution, should satisfy X = Y = 0. Another variable that could be tested is
the time difference for the third - middle - observations, but this is not as precise.
The most common process is to take as unknown the heliocentric and geocentric
distances of the asteroid at the second observation.

The f and g series and sector to triangle ratio

A Keplerian orbit is fully characterised from the knowledge of the 6 elliptic orbital
elements, or also from the initial conditions of the equations of motion ro, ṙo at
some reference epoch to. Gauss also showed that it can equivalently be derived
from the knowledge of two heliocentric radius vectors r1, r2 at time t1 and t2.

The so-called f and g series are of fundamental use in such problems of pre-
liminary orbit determination and approximation. Following [25, 30, 93] we shall
introduce them broadly here. Starting with the equation of motion:

d2r

dt2
+ µ

r

r3
= 0 (22)

and introducing a transformation of time τ = µ1/2 t = k t, one can write:

d2r

dτ2
+

r

r3
= 0 (23)
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„
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«
o
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Expressing r in Taylor expansion from the starting position ro, and expressing
also the derivatives dnr/dτn from Eq. (23) one gets the f, g series:
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note that g is given, without particular reason..., to order O(τ4). On another hand,
by introducing the eccentric anomalies, one can also derive a closed form for f and
g:

f = 1− a

r0

„
1− cos(E − E0)

«
g = τ − a3/2

µ1/2

„
(E − E0)− sin(E − E0)

«
(26)

where E is the eccentric anomaly. Introducing the true anomalies v in the orbital
plane, one can write one of Gauss’ fundamental relations giving the ratio of sector
to triangle:

y =

p
a (1− e2) τ

|ro × r| (27)
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another formulation, not reproduced here, will give a similar—yet more complex—
relation with the eccentric anomalies. This ratio can be obtained from continuous
fraction of Hansen:

y = 1 +
10

9

h

1 +
11
9 h

1+
11
9 h

1+···

(28)

involving the quantity h = h(r, ro, τ).
Starting from the knowledge of the two radius vectors r1, r2 at time t1 and

t2, Gauss provides—from the ratio of sector to triangle relation—a formulation to
compute f, g from the Eqs. (26) above. We can now write:

ṙ2 = (r1 − f r2)/g (29)

and consider that the orbit is fully characterised from the knowledge of the state
vector (r2, ṙ2) at time t2.

9.4 Orbit determination from 3 positions

Since we are looking for a Keplerian orbit, all three position vectors ri at time ti
are coplanar, so that one can write:

r2 =
[r2, r3]

[r1, r3]
r1 +

[r1, r2]

[r1, r3]
r3 (30)

where the coefficients of this liner relation are exactly the ratio of the era of the
triangles formed by the respective vectors. Taking in to account now Kepler’s law
of era, Gauss showed that one can get iteratively an approximation of the triangles
era [r1, r3] from the elliptic sectors era (r1, r3) with high precision. Expressing the
areas from the vectors cross products, and making use of the f, g series ($9.3), one
will get an approximation for their formulation:

c1 ≡
[r2, r3]

[r1, r3]
=

g3
f1g3 − f3g1

c3 ≡
[r1, r2]

[r1, r3]
=

−g1
f1g3 − f3g1

(31)

Putting:

τ1 = k (t3 − t2)
τ2 = k (t3 − t1)
τ3 = k (t2 − t1) (32)

and expressing the f, g coefficient with the modified time, one has:
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«
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which equation still involves three unknowns. Examination of these relations show
that taking for the time of the second observation t2 = 1/2(t1 + t3) will derive this
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approximation with higher precision. Writing the simple triangle vectorial relation
Sun, Earth and asteroid position at ti:

ri = Ri + ρi (34)

where ri,ρi are the heliocentric and geocentric positions of the asteroid, and Ri is
the heliocentric position of the Earth, one obtains the system of three equations:

ρ2 − c1ρ1 − c3ρ3 = c1R1 + c3R3 −R2 (35)

and after some manipulation, one finally obtains a relation involving only r2,ρ2 of
the form:

ρ2 = A+B/r32 (36)

and similar for others ρi, ri.
This provides one equation involving the two unknowns ρ2, r2. Simple geometry

of Eq. (34) at t2 yields an additional one:

r22 = R2
2 + 2 R2 · ρ2 + ρ2

2 (37)

This system of two equations and two unknowns can be solved numerically. Gauss
however, either reduced the system to a single equation of the eighth degree, or to
a transcendental equation. Having solved for r2 and ρ2 yields the other ρi, and next
all ri. From the three position vectors at the three dates, or equivalently r2 and ṙ2

at t2, the orbit is fully determined (see $9.3).
Starting from a first good approximation, it is an iterative method which im-

proves the results at each step. In the next iterations the values for the triangles
ratio c1, c3 given above to o(τ3) will be improved. There are several ways to do so,
Gauss developed his use of the sector to triangle ratio $9.3, and no new equations
are to be used. Making use of Kepler’s law of era, the ratio of triangles can be
expressed as a function of the ratio of sectors:

c1 ≡
[r2, r3]

[r1, r3]
=

(r2, r3)

(r1, r3)

y2
y1

=
τ1
τ2

y2
y1

(38)

where now the modified time should include corrections for light-time travel, etc. As
noted by Gauss himself, three iterations are generally sufficient. This basic method
is very performing when the angular observations are close together (but neither
too much, to the point they would correspond to a single observation), the case for
which Gauss designed his algorithm(s). Gauss also give conditions for the method
to work [38, Book II, Sect. I, 130]. If the observations are spread over a large interval
of time, the method is less well suited and might not converge. One can instead
use the ’double r-iteration’ technique [30] or very similarly the ’statistical ranging’
technique (Sect. $9.5). In that case one simply takes randomly—with some initial
guess on the nature of the object, NEA, MBA, etc.—two values for the geocentric
distance at two of the observations. This defines all two radius vectors and one
possible orbit. The ’double r-iteration’ will iteratively correct the initial guess for
the distances to converge to a solution, the statistical ranging will more simply
proceed to straight trial/error Monte Carlo sampling of possible values.
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The method of Laplace - briefly

In the method of Laplace one writes the first and second derivatives of the position
vector r considering that the observations can provide the corresponding derivatives
for the observed apparent direction. Let us write the heliocentric position vector of
Eq. (34):

ri = Ri + ρiui ; |ui| = 1 (39)

Putting this expression in the equations of motion (22), one has a system of four
unknowns (r, ρ, dρ/dt, d2ρ/dt2), the quantities for the Earth being given by the
ephemerides22. One again will write the additional Eq. (37) from the triangle. The
system can be reduced to an equation of an eighth-degree resultant (as with Gauss’
method) involving only r2 for the observation at time t2. This is solved numerically
by successive approximation. The characteristics of the solution have been studied
by Charlier [87, chap. 3-21] who gave a geometrical interpretation for the various
roots from a strophoid curve. The first and second derivative of u̇ are often derived
from an expansion instead of being measured, this is also given by Laplace. The
approximation of the geocentric distance will not be obtained as accurately than
with Gauss method.

9.5 Other methods

Before developing the linear case that is well adapted to refinement of asteroids’
orbit with large number of observations, of good quality and over large space and
time span, we will briefly present non linear techniques than can be of interest for
different purposes, in particular when convergence of the linearization method is
not obtained, or when the problem remains highly non linear and/or non gaussian.
Some of semi-linear or statistical inversion methods are presented in [11]; we also
note with particular emphasis a filtering method already discussed some time ago
[29]. Some of the methods making use of descent gradient or filters will still need
some linearization parts and/or some relatively good initial guess of the solution.
They do not exactly correspond to the case of what we have defined here as orbit
determination, because they can fail if the initial conditions taken are too far from
the true—and completely unknown—one. Another quite different approach is to
tackle the problem of parameter estimation from the other side by some trial/error
process: take one set of parameters randomly (either elliptic or equinoctial elements,
or state vector, ...) and test if it is a solution (that is, including some possible er-
ror). One illustration can be given, in the one-dimensional case, by the dichotomy
method for finding the real root of some monotone function f(x) = 0. Here one
will sample the R space randomly, with however some additional improvement from
the fact that xi ≤ x ≤ xi+1, where f(xi).f(xi+1) ≤ 0. Some other methods rely
on Monte Carlo technique, MCMC or Bayesian statistical inversion [61], or also
genetic algorithms. In this case the full space-phase of the unknowns is sampled
with some adapted strategy or algorithm to find the solution(s) in terms of χ2 val-
ues. These techniques are fully generic and well adapted to modern computation

22 To be found in the “Connaissance des Temps” for the Leçon of F. Tisserand,
the “Astronomical Almanach” for Roy, or at URL http://ssd.jpl.nasa.gov and
http://www.imcce.fr, here.
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facilities including possibilities of parallel computations. The genetic algorithm has
been introduced before in $6.4 for deriving unknown parameters from the measured
photometric data, they are also used recently in orbit determination of extra-solar
planets from measured radial velocities [82, 24]. Statistical ranging [119] is another
algorithm of statistical inversion that provides the full set of orbits from Monte
Carlo technique. This method is particularly well adapted to the case where obser-
vations are scarce and cover short arcs. It is very similar in nature to the method
described before for the orbit determination when two positions at two dates are
known. Given two observed geocentric directions ui at two dates t1 and t2 (gener-
ally close in time) one will now span the range of plausible geocentric distances ρi
for both observations to construct two heliocentric positions (ri = ρiui + Ri, ti).
Once the candidate orbit is computed from these two positions, it is tested whether
it fits all available observations. This process is repeated in a Monte Carlo run until
sufficient successful trials have been obtained for sampling the actual distribution
of the orbital elements. The algorithm is combined to Bayesian approach involv-
ing a priori knowledge of the unknown quantities, this yields the full probability
density of the solution. Obviously, when the number of observations becomes large,
spanning a large range in time for several orbits, and the problem can be linearized
locally; any trial/error methods will become not only much less efficient, but useless
compared to classical linear least-squares.

9.6 Orbit improvement

The previous section was dealing with the orbit determination, i.e. find the orbital
elements of the newly discovered asteroid, with little information and few measures,
while nothing is known on its actual characteristics (distance to Sun or Earth,
eccentricity, etc.). The previous method was based on the assumptions that the
observations were not too much separated in time and/or space. When more data
are acquired and over a larger time-span compared to the orbital period, one shall
get a better idea of these elements. Having at our disposal some initial guess of the
orbit, we will now look for orbit improvement (or differential correction of orbit);
this is the aim of the second part of Gauss’ book, where he also puts the basis of
the least squares method that we are going to present briefly. There are several
methods for orbit improvement, the most commonly used being the linear least
squares (LLS) from differential correction that will converge rapidly to the least
squares solution. If the system is highly non-linear one might use a general least-
squares method (e.g. Levenberg-Marquat). In both cases, the solution is the one that
will minimise the L2 norm of the residuals23, and the confidence regionConfidence
region around this solution will be an n−axial ellipsoid obtained from a local linear
approximation. Last, in more general cases where the problem to invert is non-
linear and the input data are not of the same distribution, one can obtain maximum
likelihood estimators (MLE) other than the least-squares solution.

We will hereafter develop the LLS method for orbit improvement of asteroids,
and briefly discuss another approach from statistical inversion. We also implicitly
assume the object is an asteroid, and do not consider here the cases of satellites of

23 One can also, in case of poor robustness of the least-squares solution, consider
other norms such as the L1 one.



The Gaia Mission and the Asteroids. 65

the Earth, planetary satellites, or comets, for which different adapted methodologies
have been developed.

9.7 Linear system – LLS

Starting from the equations of motion, and writing the Taylor expansion to first
order for the barycentric (resp. heliocentric) position vector denoted by x(t) (resp.
r):

x(qo + dqo, p1 · · · pm, t) = x(qo, pk, t) + dx

= x(qo, pk, t) +
∂x(t)

∂qo
dqo + o(dq2o) (40)

where the position/velocity state vector qo = [x(to), ẋ(to)] gives the initial con-
ditions at to of the system, the one obtained from the orbit determination in
$9.2, and where pk are other dynamical parameters such as the perturbing plan-
ets and asteroids masses, etc. The computed geocentric directions24 of the object
u(ti) = (αi, δi, ti) are derived from the barycentric (resp. heliocentric) position of
Eq. (40) u(t) = 〈x(t − τ) − xE(t)〉, where τ accounts for the light-time travel and
xE is the position of the Earth .

9.8 Partial derivatives

After correcting these directions for aberration, light deflection, precession/nut-
ation, etc., one can compare them to the observed directions and derive the dif-
ferences O − C vector (∆αi cos δi,∆δi, ti). Further, by neglecting all terms of the
order of o(dq2o) for the small corrections |dqo| � 1, one writes the linear system to
solve:

O − C ≡ b = P .

»
∂x(t)

∂qo

–
. dqo (41)

where the expression of P defining the projection from 3D to the nD observational
space is left to the reader (see e.g. [13]). The 3x6 Jacobian matrix

J =

»
∂x(t)

∂qo

–
(42)

has now to be computed. One can distinguish three different ways to compute such
quantity in general, depending whether a) nothing is known about the function and
only tabulated values are available, b) one can approximate the partial derivative
computation to obtain analytical closed-form formulations, and c) we know the
function to integrate and compute the variational equations. The first case also
corresponds to the case where the variational equations might be to complex to
derive and/or integrate.

24 We restrict the discussion to classical telescopic observations, but these could be
other quantities as e.g. range and range rate with radar, laser ranging, or any
other technique, and from other positions in space than the geocentre as well.



66 Daniel Hestroffer, Aldo dell’Oro, Alberto Cellino, Paolo Tanga

a. Finite difference. The variant or finite difference method is practical for
numerical computation, either by using the cartesian form or the elliptical
elements for the initial conditions. It is obtain from the limit definition of a
derivative:

∂f(q)

∂h
= lim
h→0

f(q + h)

h

by:
∂f(qo, t)

∂hi
=
f(qo + hi, t)− f(qo − hi, t)

2hi
+ o(h3

i ) (43)

where the small variation hi is applied to each element of the initial conditions
qo separately. With this formulation correct to the third order of the small pa-
rameter, one has to perform in general 3 numerical integration or ephemerides
computation for q, qo + hi, and qo − hi. One can reduce this number to two
numerical integration with an approximation correct to only O(hi). The value
of the quantity hi has to be defined by the experience of the user; too small it
increases numerical errors, too large it reduces the precision of the approxima-
tion. A practical value can be find by successive tests until the results of the
partial derivative computation remains robust. It will in general be sufficient
to use the same step for all objects and all observation dates.

b. Two-body, analytical. The analytical formulation with elliptic elements is
given in [87, chap7] [13, chap. 9] and [27, chap. 11], it is also given with cartesian
elements in [27] and [30]. They are obtained from the derivation of the two-body
problem. We reproduce here without details the matrix for the more general
use as given by [13], it is given as a function of corrections to the elements
dq = (dlo + dr, dp, dq, e.dr, da/a, de), and the position and velocity (x, ẋ) at
time t:

dx(t) =

»
ẋ

n
; P× x ; Q× x ;

1

e

„
− ẋ

n
+ R× x

«
; x− 3

2
t ẋ ; H x +K ẋ

–
(44)

The quantities H,K are given by:

H =
r − a(1 + e2)

a e(1− e2)

K =
r ṙ(r + a(1− e2))

a3n2 e(1− e2)
(45)

and the vectors P,Q,R are given by the rotation, transformation from the
conventional equatorial frame to the frame associated to the orbital plane and
orbit periastron:

[P; Q; R] = Rz(−Ω).Rx(−I).Rz(−ω) (46)

so that the variation of the angles (dΩ, dI, dω) are represented by new variables
(dp, dq, dr) given in Fig. 24 representing an infinitesimal rotation along the
directions of the periastron, the direction directly perpendicular in the orbital
plane, and the direction of the orbital pole, respectively.
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Fig. 24. Elements for the infinitesimal rotation associated to the asteroid orbit.

c. Variational equations. The variational equations are well adapted to the per-
turbed two-body problem and are computed during the numerical integration
of the equations of motion themselves. The reader may have noticed that we
did not yet explicitly mentioned the system to solve25: the equations of motion.
In the case of a test particle orbiting a massive central body of mass M�, and
perturbed by N planetary bodies (planets, dwarf planets, asteroids, etc.) of
masses Mi, we can write the equation of motion for the heliocentric position:

r̈ = −GM�
r

r3
+

NX
i=1

GMi

„
ri − r

|ri − r|3 −
ri
r3i

«
(47)

Because of its properties one can write the differentiation:

d

dt2

„
∂r

∂qo

«
=

∂r̈

∂qo
.

The 3x6 Jacobian matrix J can hence be obtained by integrating the system

J̈ =
d

dt2
J =

»
∂r̈

∂r

–
J (48)

and where now [∂r̈/∂r] is given in closed-form and depends on the dynamical
system to consider. For our perturbed two-body problem one gets the second
order derivatives [8]:

∂r̈

∂r
= −GM�∇

“ r

r3

”
−

NX
i=1

GMi∇
„

ri − r

|ri − r|3

«
(49)

with the operator ∇ on vector s:

25 It was only implicitely used in method (b), but in its simple algebraic form for
the 2 body approximation.
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∇
“ s

s3

”
= − 3

s5

0@ s21 − s2/3 s1 s2 s1 s3
s2 s1 s22 − s2/3 s2 s3
s3 s1 s3 s2 s23 − s2/3

1A =
1

s3

„
I− 3

s2
s · s′

«
(50)

and where both I the identity matrix, and the outer product s · s′ are 3x3
matrices. One can extend such formulation to other perturbative forces and
accelerations, and also to the more general N-body problem [8]. The initial
conditions associated to the system in Eq. (48) are given by J11 = J22 = J33 =
J̇14 = J̇25 = J̇36 and Jij = 0 elsewhere. The additional equations (49) having
been written, one has to solve simultaneously from numerical integration (e.g.
some typical methods for ODEs integration: Bülirsch & Stoer, Adams Moulton,
Radau, RK-k, ..., cf. [31]) the system of Eqs. (47) and (48), which will provide
simultaneously the ephemerides and the partial derivatives.

Note that the effect of perturbing forces or perturbing bodies are not directly con-
sidered in cases (a) and (b), but through the computation of the position of the
target only. This is particularly true for the analytical formulation of Brouwer &
Clemence [13] given here, which formulation is somewhat hybrid since the position
and velocities can also—and should—be computed not analytically, but from a
numerical integration of the perturbed problem). In the case of the perturbed two-
body problem, i.e. all forces of the perturbing planets are small and the asteroid
does not influence the positions of the planets (no cross-terms), the formulations
(b) and (c) remains fully tractable. In the case of a fully N-body problem, more
cross terms and equations that have to be integrated appear in formulation (c).

9.9 Observational equations

The partial derivatives J being computed one can derive the solution and associated
errors by classical linear algebra and matrices computations. The observational
equations:

O − C ≡ b = P .J .dqo = A . dqo (51)

give the observed and measured quantities as a function of the foreseen corrections
dqo. The unweighted26 least square solution to this linear system is given by:

dqo = (A′A)−1 A′ .b (52)

and the variance-covariance matrix σ2(dqo) for the errors and correlation is the
inverse of the normal matrix (A′A)−1.σ2(b). In the simplest case of one asteroid
orbit to improve, this involves a 6x6 matrix inversion. In the more general case were
more unknowns (initial conditions to the Cauchy problem and addition dynamical,
physical, and instrumental parameters) have to be derived different techniques can
be adapted such as Cholesky or QR algorithms for dense matrix; in the case of sparse
matrices and iterative processes the conjugate gradient, which consist in minimising
the quadratic form f(x) = ( 1

2
x′A′A x− b′A x) will be preferred [91, 39]. Here we

26 One can weight the equations to better take into account different observations
noise by multiplying A and (O−C) by the diagonal weight matrix

√
p = [1/σi]D

where σi is the standard deviation of the observed quantity at time ti as esti-
mated by the observer.
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will focus on another method, based on the singular value decomposition (SVD),
that is not optimal in terms of computation speed, but that is robust, and is well
adapted to the case of degenerate and/or rank deficient problems. The SVD also
deals with non square matrix, which is the case here when the number of obser-
vations exceeds the number of unknowns. Having a m × n matrix A, m ≥ n, of
observational equations one can write the SVD decomposition [91]:

A = U .W .V′ (53)

where U, m × n, is orthogonal to the left U′U = 1, V, n × n, is orthogonal
V′V = VV′ = 1, W = [wi]D, n×n, is diagonal, and the wi are called the singular
values27 of matrix A. The solution of our LLS problem is given from:

dqo = V . [1/wi]D .U
′ .b (54)

which does not necessitate to explicitly compute the normal matrix, neither to in-
vert any matrix. Obviously if one of the singular value is zero the above expression
is not defined, or in other words the determinant of the normal matrix (A′A) is
null too and there is no unique solution. Similarly if one singular value is small
(0 < wi/wmax � 1) the matrix is ill-conditioned. This is encountered, for instance,
in case of degeneracy of the problem or of high correlation between two (or more)
unknown parameters, showing that given the available data they cannot be deter-
mined separately but only one (or more) linear combination can be derived. In such
case the matrix can be considered to be rank deficient, and the solution retained—
among all possible one—will be the one of minimal norm. The dimension of the
kernel corresponds to the number of zero singular values, and a vector basis of this
sub-space is given by the vectors of V corresponding to these zero singular values.
In practice the SVD has one advantage, since in that case one simply sets to zero
all small singular values, without any other modification to the computation soft-
ware. The solution so obtained is the one of minimal norm, but the solution to the
general problem is not unique and is given by dq = dqo +

P
k=1,K αkvk, where

K is the dimension of the (quasi)kernel and A .vk ≈ 0. To ensure the validity of
the assumption that a singular value is zero one can test whether A .vk ≈ 0, and
also that the residuals v = b−A .dqo do not statistically differ, for instance from
its L2 norm, from the one obtained from the full inversion. Let us also mention
the possible introduction of so called ’consider covariance matrix’ which contains
additional variance/covariance information on the model. This is useful when some
parameters c were set in the observational or dynamical linearized model, which
parameters cannot be estimated from the data at hand but that however are known
with some uncertainty σ2(c). The uncertainty of these assumed model parameters
can increase the formal error of the unknowns [106].

Finally, independently of the method used to compute the partial derivatives of
Eq. (42), and next to solve the linearized system of Eq. (51), one has a correction to
apply to the initial conditions qo that improves the asteroid’s orbit and fits—to the
least-squares sense—all available data. However the linearization of the equations
is valid as long as the corrections are small. Additional iterations will be performed
until the corrections to be applied are statistically non significant.

27 The singular values of A are related to the eigenvalues of the positive symmetric
normal matrix A′A, λi = w2

i .
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The least-squares estimator (LSE) is only under certain given conditions (often
satisfied) equal to the maximum likelihood estimator (MLE). We do not discuss here
methods of generalised least squares (GLS) that apply to non linear systems, these
are iterative too, they also need to have a starting point close to the true solution,
and last they generally provide a biased solution. In a linear model Ax = b + ε,
where ε is the error, the Gauss-Markov theorem states that if the errors are centred
E(ε) = 0, and also un-correlated and of same variance εε′ = σ2I (homoscedasticity);
then among all estimators without bias, the LSE is the most precise, i.e. of minimum
variance.

9.10 Confidence region

In the previous sections we have derived a solution, an orbit, that fits the data.
If one chooses to weight the equation with some particular rule, or equivalently
to suppress some data, or to apply another norm than the L2, the results will be
different. If the sensitivity of the solution is high with respect to these changes,
the robustness of the solution is poor and should be taken with caution. Moreover
the observational data are not free of stochastic (and possibly systematic) errors
as recognised by Legendre (1806), their noise can be considered to follow a centred
Gaussian distribution ε ∈ N (0, σ) (as did C. F. Gauss in his pioneering work).
So, as for any physical measure, one has to ask how accurate and precise (see
note 8) is the solution obtained? It is known for instance that in the case of the
orbit of planet Neptune [113] or comet Lexell (Le Verrier again!) [115], that the
orbital elements are in rather strong error when compared to those that can be
derived with large number of observations, but they nevertheless reproduce the
available data well, and possibly were they the most probable solution. One will
hence associate to any solution a confidence region. Other discussion and aspects
to the orbit determination and improvement methods connected to observations of
various type of asteroids can be found in [11] and [106] for satellites. In the case of
a linear system, the observation noise being assumed to be Gaussian, the resulting
LSE will follow a Gaussian distribution. The variance-covariance matrix (A′A)−1

defines the n-dimensional probability density function (p.d.f.) of the solution. Let
us remind that the multivariate Gaussian distribution is entirely defined by the
variance and co-variance of the parameter. This is associated to an ellipsoid, or
to a quadratic form. One can hence decompose this matrix in the space of the
proper elements (A′A)−1 = P′.D.P where the matrix P gives the orientation of
the principal axis of the ellipsoid in the frame of the physical parameters, and
where the diagonal matrix gives the standard deviation 1σ of the parameters in the
eigenspace. Also all probabilities or confidence region can be obtained from the 1σ
value; for instance P (|x − µ| ≤ 1σ) = 0.68268 ; P (|x − E(x)| ≤ 3σ) = 0.99730. In
the non-linear case GLS, or if the observational noise is non-Gaussian, the LSE will
provide one solution but little or no indication on its distribution or error. One can
derive an error bar locally from a linear approximation, but if the error is large this
estimation of the error or standard deviation can fail, giving raise to the question
“What is the error on your error?”. The χ2 for a multivariate distribution can be
complex, and can be sampled around this solution by Monte Carlo run or by use
of the technique given in [3, 59, 122]. Depending hence on the problem to solve,
one will have very different topology for the probability distribution that—only in



The Gaia Mission and the Asteroids. 71

the case of the multivariate Gaussian of the linear case—will be summarised in a
simple way from the variance-covariance matrix (see Fig. 25).
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Fig. 25. Examples of 2D-projections from a multivariate orbital element distribu-
tions for the different cases of linear (top-left), semi-linear (top-right) and non-linear
(bottom) problems of orbit determination/improvement.

10 Binary stars and asteroids

We discuss in the following section the case of astrometric observation of binary
and multiple systems (stars, asteroids, etc.). The star ζ UMA, Mizar, was the first
one found accidentally to appear as a double star through a refractor by Italian as-
tronomer G. Riccioli28 in 1650, well before E. Halley noticed to the attention of the
Royal Society that stars do have proper motions (1718). Later, the German-born
English astronomer Sir W. Herschel—the one that discovered Uranus and some of
its moons with his stupendous telescopes, the one also that coined the denomina-
tion ’asteroid’—while cataloguing double stars, discovered their motion around one
another, defining them as binary stars (1802,1803) [1]. Since the time of Herschel,
such observations and measures of binary stars’ relative positions, in opposition to
optical double that happen only by chance to be close on the sky from projective

28 Riccioli might have been preceded by B. Castelli in 1617, reporting to Galilei
about Mizar “una delle belle cose che siano in cielo”.
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effect, are of high value. Of course they confirm that gravitation is universal and not
only present for bodies orbiting around the Sun, for the orbits of satellites around
their planets, but also for objects outside of our Solar System. Another very im-
portant impact is that it is possible to derive—with good accuracy—a fundamental
parameter of the system otherwise inaccessible: the mass. The story for the aster-
oids in the solar system is not much different starting with some supposition of their
existence with no clear evidence [65], to the accidental discovery of the satellite of
the asteroid Ida by the space probe Galileo, and next to detection from ground
based observations [67, and references therein]. Satellites of asteroids are found in
the Near-Earth asteroid population as well as in the main-belt, the Trojans, Cen-
taurs and the trans-Neptunian region. The typical mass ratio, orbital period and
separation of these systems are generally different between the various populations,
indicating different mechanism of formation (e.g. but not exclusively neither defi-
nitely, YORP spin-up for the NEOs, catastrophic collision in the main-belt, chaos
assisted capture for the TNOs, ...).

In the zoology of denominations of stellar multiple and binary systems depend-
ing on their nature and techniques of observations, we will consider two particular
cases: resolved and astrometric binaries.

- Resolved binaries, also previously called visual binaries, are systems for which
each component is clearly detected or separated in the telescope, either in the
visible domain or in other wavelength29;

- Astrometric binaries are, similarly to most of the presently detected extra-solar
planets, systems for which only one component is visible (the brightest) but the
reflex motion of the photocentre shows a wobble with respect to the barycenter.

There are several techniques of orbit determination, graphical, semi-graphical, ana-
lytical, that were adapted to different cases and to different observations techniques.
We will develop hereafter the one of Thiele [109], an analytical one that provides the
true orbit from three observations. Before that, let us briefly mention the graphical
method of Zwiers [87], that derives the true orbit after having drawn the observed
and apparent one. In this method one will measure one important parameter char-
acterising the orbit: the areal velocity constant; in order to do so, one shall cut
in some paperboard the elliptical sectors and simply weight them on a balance to
derive C′ = ρ2 θ̇; this sounds straightforward indeed, but surely not much in use
today! In the following we will focus on the orbit determination of a pair once it
has been discovered, and/or only few sparse and scarce data is available. In a first
approach all orbits can be considered to be Keplerian (2-body problem). We will de-
rive, from statistical inversion, not only one single solution but the (usually broad)
bundle of orbits that fit to the data, and subsequently their density distribution.

10.1 Resolved binary – Thiele-Innes

In the case of a resolved binary, one has at his disposal the relative position of
the two components, at the different epochs of observations. This position is often
given in polar coordinates (North up and position angle counted positive from
North to East) or more recently in cartesian coordinates. Assume now we have

29 The reason why the terminology visual was abandoned because of a possible
confusion with the ’visible domain’
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Fig. 26. Two famous binary stars observers from older and modern time. Sir W.
Herschel (1738–1822) on the left , and R. G. Aitken (1864–1951) on the right.

such cartesian coordinates for n observations (ti, xi, yi); i ∈ [1..n] at time ti. The
objective or problem is to find a solution orbit, i.e. derive the orbital parameters
of the orbit that fits the data. In case of under-constrained problem there is no
unique solution. In the case of over-constrained problem, there is no exact solution,
and we will look for a solution that fits the data in a way statistically acceptable.
Based on the ’statistical ranging’ technique of [120], a method of statistical orbit
determination of binary systems has been constructed [49]. This later technique
differs from the more recent one used in [40] since it makes use of the well known
Thiele-Innes algorithm [109]. The Thiele, Innes, van den Bos algorithm [1, 42, and
references therein] provides, when it exists, the Keplerian solution starting from
three observational positions, and one assumed orbital period (or conversely the
constant of areal velocity). Following [1], and putting:

X = cosE − e

Y =
p

1− e2 sinE (55)

one can write the relative position of the secondary:

x = AX + F Y
y = BX +GY
z = C X +H Y (56)

where the last equation corresponds to the radial (non-observed) quantity which—
in contrast to stars—will be of particular use for solar system objects. This last
linear system is also convenient to compute the relative position in space at any
given epoch and makes use of the Thiele-Innes constants (A,B, F,G,C,H) instead
of the usual elliptic elements:

A = a (cosω cosΩ − sinω sinΩ cos i)
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B = a (cosω sinΩ + sinω cosΩ cos i)
C = a sinΩ sin i
F = a (− sinω cosΩ − cosω sinΩ cos i)
G = a (− sinω sinΩ − cosω cosΩ cos i)
H = a cosΩ sin i (57)

Here the angles are referred to the tangent plane and one origin axis in this plane
(see [1] for more details). By considering two observations p and q, the double area
of the triangle is given by:

∆p,q = xpyq − xqyp = (AG−BF ) (XpYq −XqYp)

it can be related to the eccentric anomalies, yielding the fundamental equation of
Thiele:

tq − tp − C−1∆p,q = n−1 [(Eq − Ep)− sin(Eq − Ep)] (58)

Starting with three observations at time (t1, t2, t3), and a given orbital period,
one can then solve a system of three equations

t2 − t1 − C−1∆1,2 = n−1 [u− sinu]
t3 − t2 − C−1∆2,3 = n−1 [v − sin v]
t3 − t1 − C−1∆1,3 = n−1 [u+ v − sin(u+ v)] (59)

involving the unknown areal constant C and the two differences in eccentric anoma-
lies u = (E2 − E1) and v = (E3 − E2), from which one eventually gets:

e cosE2 =
∆23 cos(E2 − E1) +∆12 cos(E3 − E2)−∆13

∆12 +∆23 −∆13

e sinE2 =
∆23 sin(E2 − E1)−∆12 sin(E3 − E2)

∆12 +∆23 −∆13
(60)

and the values for e and E2, next E1 and E3, and corresponding mean anomalies
from Kepler equation, time of periastron passage, then the values of X and Y from
Eqs. (55), and finally the Thiele-Innes constants and elliptical elements. Note that
the solution from this algorithm is almost obtained in closed form. The Keplerian
equation is used and remains transcendental, but the numerical solution is easily
obtained (at least for reasonable eccentricities of our—supposed—elliptic orbits).
The system (59) of three unknowns is non linear but can be solved with Brown’s
method with good convergence whatever the starting point in [0, 2π] and C =
−1 whatever the system under consideration, Main Belt Binary, Trans-Neptunian
Binary, brown dwarf, etc.

Once the orbital elements are known one can compute subsequent positions for
future as well as for past epochs. As said before, Eqs. (56) will readily provide such
positions, but Thiele-Innes constants are related to one particular tangent plane.
This plane is invariant for distant stars30, but not for a solar system object where,
after several months or years, the observer can observe the same system from an
opposite direction. One can take into account this parallax in the Thiele-Innes

30 Parallax in this case will introduce, as for the precession, small corrections to
add linearly to the nominal solution.
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constants from a transformation from one plane-of-sky to another one from a linear
relation: 0@A′ F ′

B′ G′

C′ H ′

1A = P ·A

0@A F
B G
C H

1A (61)

where

A =

0@− sinαE − cosαE sin δE cosαE cos δE
cosαE − sinαE sin δE sinαE cos δE

0 cos δE sin δE

1A (62)

is a transformation matrix from the POS (αE , δE) to some conventional reference
frame (ecliptic, equatorial, ...) independent of the system. Matrix P is simply an
inverse rotation to some other direction (α′E , δ

′
E). Last, the apparent orbit (x′, y′)

in this new POS is given by:

x′ = A′X + F ′ Y
y′ = B′X +G′ Y
z′ = C′X +H ′ Y (63)

where (X, Y ) are obtained from Eq. (55), and the radial coordinate z′ is optional.
We can note here that Eqs. (58) involving the classical Thiele-Innes constants
(A,B, F,G) do not depend on the sign of the inclination i, so that there are two
symmetric true orbits that project to the same apparent one. The coefficient in the
new POS, in contrast, depend on the inclination and will not project to the same
apparent trajectory, as will be discussed in a following section $10.3.

10.2 Monte Carlo

The previous algorithm provides one single solution starting from three positions
or observations. This is not sufficient or satisfactory for at least two reasons:

- The observations are not free from errors, and one also needs to provide the
confidence regionConfidence region around this nominal solution, including the
fact that the solution might not be unique. Since the problem to solve is highly
non linear, the error on the orbital parameters should not be Gaussian even
from an observational noise that follows a normal distribution. A Monte Carlo
(i.e. random) run will provide such information [61, 107].

- There are in general more than three observations and one wants to derive the
most likely solution (e.g. in the sense of least squares) and also the bundle of
orbits that fits the observations with associated probability. Bootstraping or
Jack-knife without replacement will provide the bundle of orbits.

This goal can be achieved from statistical inversion with a trial/error Monte Carlo
technique. At each step of the Monte Carlo computation one chooses a set of three
of the observations for the (semi-) analytical computation of the orbit, and addi-
tionally one chooses an orbital period generally following a uniform distribution
with no particular prior. The computed orbit is then tested for fitting all other
available observations. Such statistical inversion will provide the bundle of orbits
and their distribution as well as prediction of the position to other epochs and error
propagation estimates. All retained solutions are mathematically satisfactory in the
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sense that they fit the available relative positions data. One can then add additional
filter by taking into account either an a priori distribution of the orbital element,
or prior knowledge on the mass if some other satellite has been better observed,
and more efficiently a limit on the total mass (or density) obtained, which in some
cases can be physically unrealistic; making it readily adapted to a Bayesian analysis
approach.

Note that one can introduce the observational error directly from a normal
distribution, but also as uniform distribution with subsequent normalisation filter
to be applied to the final set of solutions. Note also that the spurious symmetric
solution can generally be removed if the parallax is large enough as in the case of an
MBB. Using the Monte Carlo approach also enables one to analyse the propagation
of errors to past or future epochs. In the latter case it is possible to derive the
best epoch to observe a Trans-Neptunian binary (TNB) and remove the spurious
solution (see Fig. 27). Indeed, there generally remains 4 intersections of the two
symmetric orbits (i.e. intersection of the apparent trajectory at the same date) which
observations would not enable to separate the spurious from the true one. This is
of particular importance for at least two reasons: prediction of mutual phenomena,
and test of formation models. Knowing the true inclination of the orbit enables
one to predict the mutual phenomena (eclipses/occultation between the primary
and secondary) that are of high value to better constrain many of the system’s
components physical parameters [110, 9]. Let us add that, similarly to equinoxes,
such phenomenon occurs twice during a revolution of the binary system around
the Sun, approx. every 150 years, hence extremely rare! The second reason why
the inclination is an important parameter to know unambiguously is that different
models of formation of binary systems exits [79, 127, and references therein] which
do not give the same prediction. In particular the angular momentum can show
an asymmetric distribution which can be tested from a measure of the relative
frequency of prograde/retrogade orbits [60].

10.3 A summary

We can now resume the complete algorithm in the following sequence:

1. choose randomly 3 observations among the n available. These should neverthe-
less belong to a same group or run of observations, not to two very different
tangent planes;

2. add stochastic error from the observational noise model (ε ∈ N (0, σ)) with Box-
Müller method [91, chap. 7], or prefer a more general uniform distribution that
will ease further normalization or introduction of any other noise distribution;

3. choose one orbital period from stochastic distribution (e.g. P ∈ U [Pmin, Pmax]);
4. compute the orbit and Thiele-Innes coefficients from the algorithm described

in the previous paragraph. In fact there are two fully symmetric orbits;
5. compute the positions for both symmetric orbits for all other n−3 observations,

including parallax and other precession effects;
6. test if the resulting O − C for all these positions is acceptable with respect to

the observational noise
− if no: return to step #1;
− if yes: accept the solution with all parameters, and return to step #1.
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Fig. 27. Two apparent orbits bundle for the TNB Borasisi (ex. 1999 RZ253) cor-
responding to the two symmetric solutions that fit equally well the data obtained
4 years before. The predicted positions at three different dates are also indicated.
It is clear that at the epoch JD = 2 454 302.0 the orbits (not only the apparent
trajectories) intersect, making it again impossible to distinguish the spurious from
the true solution.

Because a subset of the observations sample is chosen, one can make use of the
jack-knife technique for automatically detecting outlier points. Moreover, since only
the orbital period is chosen arbitrarily, this Monte Carlo run is most efficient leaving
a one-dimensional space to explore instead of the initial, more general and “brute
force”, 7-dimension problem to solve. Another possibility is to use the statistical
ranging approach [120, 40]; in this case one has to chose two arbitrary relative
distances for two different observations epoch. This increases the dimension of the
problem, though still to practicable application. Having only one parameter of the
space-phase to be explored (the orbital period) when all other orbital parameters are
easily derived, the algorithm practical and fast in terms of CPU. At the beginning
of the process one might have no indication of he orbital period and should span
a large interval, e.g. [0, 100] days, depending on the system to be analysed (MBB,
TNB, binary star, ...), or on another hand, one might reduce the interval to scan if
the position angle of the secondary has almost span an entire cycle. As a matter of
illustration, a bundle of ≈ 7 500 orbits, with 4% efficiency in the trial/error throw
(period range P ∈ [10; 70] days), has been obtained for the data analysis of the
trans-Neptunian (136108) Haumea’s second satellite Namaka, with no particular
optimisation, in 40 s real time on a personal laptop.
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10.4 Astrometric binary

Let us briefly mention in this last paragraph a subset of problem closely related
to resolved or visual binaries: the astrometric binaries. The first detection of such
systems was made by Bessel [7] from his analysis of the abnormal proper motions
of Sirius and Procyon. Luminosity, as he said, is not a straight propriety of stellar
mass31. Astrometric binaries are binary system for which both components are not
observed separately (either the secondary is to faint to be detected in the instru-
ment, or similarly it is too close to the bright primary), but instead one observes
the photocentre of the system. This photocenter differs periodically from the centre
of mass with an amplitude that depends on the mass ratio for the position of the
barycenter, the brightness distribution and ratio for the position of the photocen-
tre, and the inclination of the orbit [116, 1]. What is observed is not the Keplerian
orbit a but the photometric orbit α which are related by:

f = α/a+ β ; β = (1 + 100.4∆V )−1 (64)

where f is the fractional mass, β the fractional light. The photometric orbit is
thus scaled from the Keplerian one by (f − β). In the case of a stellar system one
will consider particular mass-luminosity relation [42], a key parameter that links
mass and luminosity. In the case of solar system objects; considering that both
components are spherical with same albedo and there is no strong phase effect, the
relative position of the barycenter and photocentre is given as a function of mass
ratio 0 < q ≤ 1:

α =

„
1

1 + q−2/3
− 1

1 + q−1

«
a (65)

It can be seen from the equations above, that there is no astrometric signal in the
two extreme cases q = 0 and q = 1, the peak being at q ∼ 0.15. One can put
this additional parameter in the Monte Carlo run for resolved binaries, having now
two dimensions (P, q) to explore which remains tractable. In the case of asteroids,
and if one solution orbit exists, one will end-up with a possible separation that
will have to be compared to prior knowledge. If the separation is relatively large
it can plausibly be a binary system, if the ’separation’ is small, it will likely be a
non-symmetric single object.

In contrast to the situation in the main-belt (and assumed as such by us) where
multiple systems involve mostly small moonlet, or in the Near-Earth region where
separations are small making them difficult to distinguish from a single body, the
trans-Neptunian and Centaur binaries can have much larger separation and mass
ratio, well in the detection range for modern astrometric observations. The other
parameter of importance in this study is the orbital period which can be large [86].
Given the ratio of known (resolved) binaries in TNO population, one could follow
the statement of Bessel for stars [63] and wondering how many targets should be
suspicious of being binaries in our outer Solar System?

11 Conclusion

Starting with the Hipparcos catalogue birthday, we have reviewed in this lecture the
different aspects of the Gaia mission, its payload, its instruments and observations,

31 Let us add that it seems to be the same for the matter in the Universe...
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and the results to be expected from the direct observations of asteroids. From the
highly accurate astrometry and photometry gathered over the five years mission
duration, Gaia will provide a breakthrough in our knowledge of these bodies and
subsequently on the formation of the Solar System and its dynamical evolution.
Gaia will provide a wealth of data and results from the direct observations (pho-
tometric in many bands from the low-resolution spectra, astrometric and imaging;
the high resolution spectroscopy is very marginal) of asteroids and small bodies
of the Solar System. We will have a clearer view of their dynamical and physical
characteristics, for an incredibly and yet unprecedented number of objets of dif-
ferent kinds. One of the high impact is obtained from the large number of targets
observed, from which one will get simultaneously sharp information and large sta-
tistical analysis, all programs that could not be achieved by a single team from
ground-based observations, or a space probe rendez-vous, and surely not over such
short time span of observations.

Moreover Gaia will also provide a new area in asteroids and small bodies science
from astrometric catalogue of stars. The current—and severe—limitation to the use
of the Hipparcos or Tycho2 astrometric catalogues in the reduction of photographic
or CCD plates is their poor numbers of star or low density: there are tiny chances
to have one Hipparcos star in a typical 12’x12’ field of view, but this is useless
because at least three are needed. The situation will be considerably improved
with Gaia, so that next generation post-Gaia era astrometry will have a gain of one
order of magnitude in the classical astrometric reductions. Surveys that go to deeper
magnitudes (Pan-starrs, lsst, ...) will dramatically benefit of the Gaia astrometric
catalogue. Similarly the computations of both asteroids and stars ephemeris will be
increased, yielding much more accurate stellar occultation predictions for different
kinds of bodies, MBAs to TNOs, with our without atmospheres, and again a huge
step in our understanding in the physical characteristic of small and faint bodies
that were even not observable with Gaia.
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Acronyms

AF Astrometric Field
BP/RP Blue/Red Photometry
CCD Charge-Coupled Device
CTE Charge Transfer Efficiency
PSF Point Spread Function
RVS Radial Velocity Spectrometer
SM Sky Mapper
TDI Time Delayed Integration

GLS General Least Squares
GR General Relativity
LLS Linear Least Squares
mas milli-arcsecond
MCMC Monte Carlo Markov Chain
MLE Maximum Likelihood Estimator
O-C Observed-minus-Calculated
ODE Ordinary Differential Equation
p.d.f. probability distribution function
PPN Parameterized Post-Newtonian
SNR Signal-to-noise ratio
SVD Singular Value Decomposition
TI Thermal inertia

FK5 Fundamental Katalog, 5th version
ICRF International Celestial Reference Frame
IAU/UAI International Astronomical Union – Union Astronomique Internationale
LSST Large-Aperture Synoptic Survey Telescope
MBA Main Belt Object
MBB Main Belt Binary
NEO Near-Earth Object
QSO Quasi Stellar Object
SSO Solar System Object
SSSB Small Solar System Bodies
TNB Trans-Neptunian Binary
TNO Trans-Neptunian Object
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104. P. Tanga, M. Delbò, D. Hestroffer, A. Cellino, and F. Mignard. Gaia ob-
servations of Solar System objects: Impact on dynamics and ground-based
observations. Advances in Space Research, 40:209–214, 2007.

105. P. Tanga, D. Hestroffer, M. Delbò, J. Frouard, S. Mouret, and W. Thuil-
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