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ABSTRACT

Object classification is a challenging task in computer vision.
Many approaches have been proposed to extract meaning-
ful descriptors from images and classifying them in a super-
vised learning framework. In this paper, we revisit the clas-
sic k-nearest neighbors (k-NN) classification rule, which has
shown to be very effective when dealing with local image de-
scriptors. However, k-NN still features some major draw-
backs, mainly due to the uniform voting among the near-
est prototypes in the feature space. In this paper, we pro-
pose a generalization of the classic k-NN rule in a supervised
learning (boosting) framework. Namely, we redefine the vot-
ing rule as a strong classifier that linearly combines predic-
tions from the k closest prototypes. To induce this classifier,
we propose a novel learning algorithm, MLNN (Multiclass
Leveraged Nearest Neighbors), which gives a simple proce-
dure for performing prototype selection very efficiently. We
tested our method on 12 categories of objects, and observed
significant improvement over classic k-NN in terms of classi-
fication performances.

1. INTRODUCTION

In this paper, we address the task of multiclass object cat-
egorization. It consists in automatically classifying an un-
labeled region extracted from an image (e.g., by segmenta-
tion) according to a set of predefined objects. This task is
very challenging, and is attracting more and more research
effort from the computer vision community, as prompted by
the plethora of classification approaches proposed for PAS-
CAL 2009 competition1. A wide range of image descrip-
tors has been investigated for object categorization purposes,
which generally rely on detecting relevant local characteris-
tics of objects (e.g., local shape and appearance). The best
known examples of such descriptors are SIFT [1], which are
typically combined into Bags-of-Features [2] or Pyramid [3]
representations.

Despite lots of works, much remains to be done to chal-
lenge human level performances. In fact, images carry only
parts of the information that is used by humans to recognize

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/

objects, and parts of the information available from images
may be highly misleading: for example, real object categories
may exhibit high intra-class variability (i.e., visually different
objects may belong to the same category) and low inter-class
variability (i.e., distinct categories may contain visually simi-
lar objects).

Voting classification techniques, like k-nearest neighbors
(k-NN), have been shown to be very effective when dealing
with local image descriptors. However, they may suffer from
high sensitivity to “noisy” prototypes, thus requiring suitable
learning procedures for rejecting unreliable matches. More-
over, it is a critical challenge to reduce the computational cost
of descriptor matching without impairing classification per-
formances. In order to cope with these issues, the literature
has favored two main approaches so far: improve categoriza-
tion by means of local classifiers [4, 5, 6], or filter out ill-
defined examples [7].

In this paper, we propose a novel solution: a new provable
boosting algorithm for nearest-neighbors (NN) rules in a mul-
ticlass framework. Our algorithm, MLNN (Multiclass Lever-
aged Nearest Neighbors), induces a multiclass leveraged near-
est neighbors rule that generalizes the uniform k-NN rule, us-
ing directly the examples as weak hypotheses. Finally, the
most significant advantage of MLNN lies in its ability to find
out the most relevant prototypes for categorization, thus en-
abling to filter out the remaining examples.

In the following section we present MLNN, along with
the statement of its theoretical properties. Then, we present
and discuss experimental results of object categorization.

2. METHOD

2.1. Problem statement and notations

Instead of splitting the multiclass classification problem in as
many one-versus-all (two-class) problems — a frequent ap-
proach in boosting [8] — we directly tackle the multiclass
problem, following [9]. For a given query, we compute its
classification score for all categories (or classes, or labels).
Then, we select the label with the maximum score. We sup-
pose given a set S of m annotated descriptors arising from
images (or image regions). Each image descriptor provides a



training example (x,y), where x is the image feature vector
and y the class vector that specifies the category member-
ship of the descriptor. In particular, the sign of component
yc gives the positive/negative membership of the example to
class c (c = 1, 2, ..., C). Inspired by the multiclass boosting
analysis of [9], we constrain the class vector to be symmetric,
i.e.,

∑C
c=1 yc = 0 by setting: yc̃ = 1, yc ∕=c̃ = − 1

C−1 , where
c̃ is the true image category.

2.2. (Leveraged) Nearest Neighbors

The regular k-NN rule is based on majority vote among the
k nearest neighbors in set S , to decide the class of query x.
It can be defined as the following multiclass classifier h =
{ℎc, c = 1, 2, ..., C}:

ℎc(x) =
1

k

∑

i∼kx

[yic > 0] , (1)

where ℎc ∈ [0, 1] is the classification score for class c, i ∼k x
denotes an example (xi,yi) belonging to the k nearest neigh-
bors of x and square brackets denote the indicator function.

In this paper, we propose to generalize (1) to the following
leveraged k-NN rule hℓ = {ℎℓ

c, c = 1, 2, ..., C}:

ℎℓ
c(x) =

∑

j∼kx

®jyjc ∈ ℝ , (2)

where the k nearest neighbors are searched either in S , or in
a sparse subset P ⊆ S obtained after a prototype selection
step, achieved before any query is presented. Each example
in P is a relevant category prototype. Prototype selection is
achieved by using the leveraging coefficients ®j (2), which
are expected to represent their “confidence ” for classifying
new data.

In the following sections we describe the boosting-like
procedure we propose to compute the ®j’s. In particular, we
propose to minimize a particular upperbound of the risk func-
tional on training data, thus exploiting a very important trick
that has been at the center of major advances in classification
over the last ten years.

2.3. Multiclass surrogate risk minimization

In order to fit our classification rule (2) onto training set S , we
focus on the minimization of a multiclass exponential (surro-
gate2) risk:

"exp
(
hℓ,S) .

=
1

m

m∑

i=1

exp

Ã
− 1

C

C∑
c=1

yicℎ
ℓ
c(xi)

)
. (3)

This function is an upper bound of the empirical risk:

"0/1
(
hℓ,S) .

=
1

mC

m∑

i=1

C∑
c=1

[
yicℎ

ℓ
c(xi) < 0

]
, (4)

2We call surrogate a function that upperbounds the risk functional we
should minimize, and thus can be used as a primer for its minimization.

which is not differentiable and often computationally hard to
directly minimize [10]. Remark that both risks (3, 4) depend
on quantity yicℎ

ℓ
c(xi), the edge of classifier hℓ on example

(xi,yi) for class c. This edge is positive iff the category
membership predicted by the classifier agrees with the true
membership of the example. Plugging definition (2) into sur-
rogate risk (3) gives:

"exp
(
hℓ,S) .

=
1

m

m∑

i=1

exp

⎛
⎝−

m∑

j=1

®jrij

⎞
⎠ , (5)

which highlights an essential ingredient of our algorithm, i.e.
the multiclass k-NN edge matrix [rij ]m×m, whose entry rij is
different from zero iff example j is a neighbor of i, whereas
the positive (negative) sign of rij specifies the membership of
the two examples to the same (not the same) class. (See defi-
nition (7) in Alg. 1.) Finally, after computing the edge matrix,
which is a constant term in (5), the unknown leveraging coef-
ficients ®j can be fitted by running the algorithm described in
the following section, which iteratively minimizes the surro-
gate risk.

2.4. MLNN: Multiclass Leveraged k-NN rule

Algorithm Pseudocode of MLNN is shown in Alg. 1. Like
common boosting algorithms, MLNN operates on a set of
weights wi (i = 1, 2, ...,m) defined over training data. These
weights are repeatedly updated based on ±j , which is a lo-
cal measure of the class density around a given example j.
Namely, at each iteration t of the algorithm, a weak index
chooser oracle WIC({1, 2, ...,m}, t) determines index j ∈
{1, 2, ...,m} of the example to leverage (step I.0). Various
choices are possible for this oracle. The simplest is perhaps
to compute Eq. (10, 11) for all the training examples, then to
pick j maximizing ±j :

j Ã WIC({1, 2, ...,m}, t) : ±j = max
j∈{1,2,...,m}

±tj . (6)

Furthermore, notice that, when whichever w+
j or w−

j is zero,
±j in (11) is not finite. We propose a simple strategy to elim-
inate this drawback, inspired by [8], i.e., to add 1/m to both
the numerator and the denominator of the fraction in the log
term of (11). This smoothes out ±j , guaranteeing its finiteness
without impairing convergence of MLNN.
Complexity MLNN shares the property with boosting al-
gorithms of being resources-friendly: since computing the
leveraging coefficients scales linearly with the number of neigh-
bors, its time complexity bottleneck does not rely on boosting,
but on the complexity of nearest neighbor search. Further-
more, its space complexity is also reduced: since weak hy-
potheses are examples, example j can be a classifier only for
its reciprocal nearest neighbors — those examples for which
j itself is a neighbor —, corresponding to non-zero entries in
column j of edge matrix (7). This matrix is thus extremely



Algorithm 1: MULTICLASS LEVERAGED k-NN MLNN(S)

Input: S = {(xi,yi) , i = 1, 2, ...,m , yi ∈
{− 1

C−1
, 1}C}

Let rij
.
=

{
1
C

∑C
c=1 yicyjc if j ∼k i
0 otherwise

(9)

Let ®j Ã 0, ∀j = 1, 2, ...,m
Let wi Ã 1/m, ∀i = 1, 2, ...,m

for t = 1, 2, ..., T do
[I.0] Weak index chooser oracle:
Let j Ã WIC({1, 2, ...,m}, t);
[I.1] Let

w+
j =

∑
i: rij>0

wi, w−
j =

∑
i: rij<0

wi , (10)

±j Ã (C − 1)2

C
log

Ã
(C − 1)w+

j

w−
j

)
; (11)

[I.2] Let

wi Ã wi exp(−±jrij), ∀i : j ∼k i ; (12)

[I.3] Let ®j Ã ®j + ±j

Output: ℎℓ
c(x) =

∑
j∼kx ®jyjc, ∀c = 1, 2, ..., C

sparse for reasonable values of k. As a consequence, update
rule (12) is to be computed on a small number of examples.

Convergence Using known arguments of the boosting the-
ory [10], we proved the convergence of MLNN to the min-
imum of the surrogate risk, along with a convergence rate,
which is based on the following weak index assumption (WIA):

WIA: let pj
.
= w+

j /(w
+
j + w−

j ). There exist some ° > 0
and ´ > 0 such that the following two inequality holds
for index j returned by WIC({1, 2, ...,m}, t):

∣pj − 1/C∣ ≥ ° , (7)
(w+

j + w−
j )/∣∣w∣∣1 ≥ ´ . (8)

We summarize this fundamental convergence property in the
following theorem:

Theorem 1 If the WIA holds for ¿ ≤ T steps, then MLNN
converges with ¿ to hℓ realizing the global minimum of the
surrogate risk (3), and "0/1(hℓ,S) ≤ exp(− C

C−1´°
2¿).

Inequality (7) is the usual weak learning assumption, used to
analyze classical boosting algorithms [11, 8], when consider-
ing examples as weak classifiers. A weak coverage assump-
tion (8) is needed as well, because insufficient coverage of the
reciprocal neighbors could easily wipe out the surrogate risk
reduction due to a large ° in (7). For a deeper insight into the
properties of our k-NN boosting method, see [12].

Fig. 1. Twelve categories from the Caltech-101 database.
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Fig. 2. Histograms of prototype leveraging coefficients ®j per
category. The overall number of prototypes in each category
is reported as well.

3. EXPERIMENTS

In this section we present experimental results of MLNN vs
plain k-NN on a database of real objects. We carried out ex-
periments in order to investigate the improvements brought by
boosting on nearest neighbor voting. Namely, we used 12 cat-
egories from the well-known Caltech-101 database for object
classification: accordion, airplanes, car side, cellphone, cup,
ewer, ferry, grand piano, laptop, motorbikes, watch, Wind-
sor chair (Fig. 1). This database contains a large variety of
objects, and also exhibits high intra-class variability, i.e., vi-
sually different objects may be in the same category.

3.1. Training

We used 40 training images per category, and extracted dense
SIFT descriptors [1] from image regions corresponding to ob-
jects. For this purpose, we used the ground-truth object masks
provided with the database. We computed dense descriptors
of 16×16 patches over a grid with spacing of 8 pixels, as pro-
posed in [3]. We used the descriptors of all training objects for
learning prototypes, i.e., a subset of relevant object descrip-
tors with their leveraging coefficients. Namely, we retained
only examples with positive ®j as prototypes for classifying
test images. In Fig. 2 we show how values of prototype lever-
aging coefficients are distributed in each category. The best
represented categories are those maximizing the integral of
such histograms, i.e., those containing most of the prototypes
with the largest coefficient values. We used all non-training
images (2,039 overall) to test classification performances of
MLNN.



3.2. Classification

In order to obtain a global classification score for a given test
image X , each of the query descriptors x ∈ X was first
classified independently by our leveraged k-NN rule (2). Be-
cause prototype classes are highly imbalanced, as displayed
in Fig. 2, we smoothed out aggregate scores with a standard
technique [13]. Hence, we predict label ĉ for a query image
Q as follows:

ĉ(X)
.
= argmax

c

1

mP
c

∑

x∈X

ℎℓ
c(x) , (13)

where mP
c is the cardinal of retained prototypes of class c. In

order to speed up the execution time we used a CUDA GPU
implementation of Nearest Neighbor search [14].

Classification results are summarized in Fig. 3, where the
mean Average Precision (mAP %) over all test images is shown
for different prototype sets. We computed mAP as the aver-
age of diagonal entries in the confusion table, whereas the
size of prototype set is reported as µ, that is the ratio of the
number of retained prototypes and the overall size of training
data. Fig. 3 also reports results of vanilla k-NN (with ran-
dom sampling of the prototypes from the training data). We
observe that the improvement over regular k-NN is dramatic,
even when decreasing the prototype number. E.g., only 14%
of prototypes allow for 20% improvement over classic k-NN.
(See the marked points in the figure.) Besides this precision
improvement, MLNN also enables to drastically reduce the
computational complexity with respect to plain k-NN (gain
up to a factor 4 when discarding half prototypes).

Finally, the confusion table reported in Fig. 4 highlights
the difficulty of discriminating between couples of visually
similar object categories, like “cup” and “ewer”. Moreover,
most of mistakes may be due to an insufficient representa-
tion of an object category in the prototype set. Namely, cate-
gories with few prototype descriptors, like “motorbikes”, are
more likely to be confused with over-represented categories
(e.g., “accordion”). Normalizing the number of prototypes
per class, e.g., by adapting the resolution of dense descriptors
to the actual object size, is expected to improve classification
rate in such categories [3].
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