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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A Practical Visual Servo Control for an Unmanned Aerial
Vehicle

N. GUENARD†, T. HAMEL‡, and R. MAHONY�

Abstract— An image-based visual servo control is presented
for an Unmanned aerial vehicle (UAV) capable of stationary
or quasi-stationary flight with the camera mounted on board
the vehicle. The target considered consists of a finite set of
stationary and disjoint points lying in a plane. Control of the
position and orientation dynamics are decoupled using a visual
error based on spherical centroid data, along with estimations
of the linear velocity and the gravitational inertial direction
extracted from image features and an embedded IMU. The
visual error used compensates for poor conditioning of the image
Jacobian matrix by introducing a non-homogeneous gain term
adapted to the visual sensitivity of the error measurements. A
nonlinear controller, that ensures exponential convergence of the
system considered, is derived for the full dynamics of the system
using control Lyapunov function design techniques. Experimental
results on a quad-rotor UAV, developed in the French Atomic
Energy Commission (CEA), demonstrate the robustness and
performance of the proposed control strategy.

Keywords: Image based visual servo (IBVS), Aerial Robotic
Vehicle, Under-actuated systems, Experiments.

I. INTRODUCTION

Visual servo algorithms have been extensively developed in
the robotics field over the last ten years [11], [30]. Visual servo
systems may be divided into two main classes [24]; pose-based
visual servo (PBVS) control or image-based visual servo
(IBVS) control. Position-based visual servo control (PBVS)
involves reconstruction of the target pose with respect to the
robot and results in a Cartesian motion planning problem.
This approach requires an accurate 3D model of the target, is
sensitive to camera calibration errors, and displays a tendency
for image features to leave the camera field of view during the
task evolution. Image-based visual servo control (IBVS) treats
the problem as one of controlling features in the image plan,
such that moving features to a goal configuration implicitly
results in the task being accomplished [11]. Feature errors
are mapped to actuator inputs via the inverse of an image
Jacobian matrix. There are a wide range of features that
have been considered, including points, lines, circles and
image moments. Different features lead to different closed-
loop responses and there has been important research into
optimal selection of features and partitioned control where
some degrees of freedom are controlled visually and others
by a second sensor modality [19], [5]. IBVS avoids many of
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the robustness and calibration problems associated with PBVS,
however, it has its own problems [6]. Foremost in the classical
approach is a requirement to estimate the depth of each feature
point in the visual data. Various solutions have been investi-
gated, including; estimation via partial pose estimation [24],
adaptive control [28], and estimation of the image Jacobian
using quasi Newton technics [29]. More recently, there has
been considerable interest in hybrid control methods whereby
translational and rotational control are treated separately [24],
[10], [8], [27]. Most existing IBVS approaches were developed
for serial-link robotic manipulators [18]. For this kind of
robot there are low-level joint controllers that compensate for
system dynamics and position control, such as visual servo
control, is undertaken at the level of the system kinematics
[11]. There are very few integrated IBVS control designs for
fully dynamic system models [34], [3] and even fewer that
deal with under-actuated dynamic models such as Unmanned
Aerial Vehicles [26], [14]. The key challenge in applying
classical visual servo control to a dynamic system model lies
in the highly coupled form of the image Jacobian. Much
of the existing work in visual servo control of aerial robots
(and particularly autonomous helicopters) have used pose-
based visual servo methodology [1], [31], [25] that avoids the
image Jacobian formulation. Prior work by the authors [14]
proposed a theoretical IBVS control design for a class of under
actuated-dynamics, and uses an image based visual feature
augmented with an inertial direction, obtained from a partial
attitude pose-estimation algorithm. In [15], a fully image based
visual servo control design for dynamic systems associated
with UAV systems capable of hover fight, is derived. Both
control schemes assume that the translational velocity of the
system is measured directly. In [22], an image-based visual
servo (IBVS) control for a fully dynamic system is designed
for a translational motion of a rigid body. The image features
considered are a first-order un-normalised spherical moment
for position stabilisation and optic flow for velocity. Direct
implementation of the control strategies proposed in [14], [15],
[22] have been found to have poor sensitivity and conditioning
when implemented directly on an experimental vehicle.

In this paper, the practical implementation of an image-
based visual servo control (IBVS) for a UAV, capable of
stationary or quasi-stationary flight, is presented. The model
considered is that of an ‘eye-in-hand’ type configuration,
where the camera is attached to the airframe of the UAV. The
approach taken is based on recent work by the authors [14]
for which the dynamics of the image features have certain
passivity-like properties. A new visual error term is considered
that improves the conditioning of the image Jacobian. The
initial analysis is undertaken for the kinematic response of the
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Fig. 1. The X4-flyer UAV

system, the normal visual servo framework, and shows that
the resulting image Jacobian is well conditioned. Following
this, a non-linear controller integrating the linear and rotational
dynamics is developed using a structured control Lyapunov
function for exponential stabilization of the full dynamics of
the UAV. The vehicle considered is equipped with an Inertial
Measurement Unit (IMU) and an explicit complementary filter
is used to provide filtered estimates of attitude [16] and
angular velocity for the vehicle. An estimate of translational
velocity is derived from a nonlinear filter that fuses IMU
and visual data [7]. Experimental results are obtained on a
quad-rotor UAV system, developed within the French Atomic
Energy Commission (CEA), capable of stationary and quasi-
stationary flight. The closed-loop visual servo control is shown
to be locally exponentially stable and experimental results
demonstrate the performances and robustness of the proposed
control.

The paper is arranged into six sections. Following the
introduction, Section II presents the fundamental equations
of motion for a quad-rotor UAV. Section III presents the
proposed choice of image features. Section IV provides a
Kinematic control design for the translational motion. Section
V extends the control to the full dynamics of the system.
Section VI presents experimental results obtained on the
experimental quad-rotor (Fig. 1). Finally Section VII provides
some concluding remarks.

II. DYNAMIC MODEL FOR A HOVERING UAV

In this section, we present equations of motion for an
UAV in quasi-stationary (or hover) flight conditions. The
model used is based on those introduced in the literature to
model the dynamics of helicopters [31], [13], [17]. Let I =
{Ex, Ey, Ez} denote a right-hand inertial or world frame such
that Ez denotes the vertical direction downwards into the earth.
Let ξ = (x, y, z) denote the position of the center of mass of
the object in the inertial frame I. Let A = {Ea

1 , Ea
2 , Ea

3}
be a (right-hand) body-fixed frame centered at the center of
mass and assume that it coincides with the camera frame. The
orientation of the airframe is given by a rotation R : A → I,
where R ∈ SO(3) is an orthogonal rotation matrix.

Let V ∈ A denote the linear velocity and Ω ∈ A denote the
angular velocity of the camera both expressed in the camera
frame. Let m denote the mass of the rigid object and let I ∈

R
3×3 be the constant inertia matrix around the center of mass

(expressed in the body-fixed frame A). The dynamics of a
rigid body are:

ξ̇ = RV (1)

mV̇ = −mΩ × V + F (2)

Ṙ = Rsk(Ω), (3)

IΩ̇ = −Ω × IΩ + Γ. (4)

were the notation sk(x) denotes the skew-symmetric matrix
associated any vector x ∈ R

3 such that for any vector y ∈ R
3,

sk(x)y = x × y.
The exogenous force and torque are denoted F and Γ

respectively. The inputs considered correspond to a typical
arrangement found on a VTOL aircraft (see Sec. VI). The
inputs are written as a single translational force, denoted F ,
along with full torque control, Γ = (Γ1,Γ2,Γ3)

T around
around axes (Ea

1 , Ea
2 , Ea

3 ). The force F combines thrust, lift,
gravity and drag components. It is convenient to separate the
gravity component1 mgEz = mgRT e3 from the combined
aerodynamic forces and assume that the aerodynamic forces
are always aligned with the z-axis in the body fixed frame,

F := −Te3 + mgRT e3, (5)

where T ∈ R is a scalar input representing the magnitude
of external force applied in direction e3. This is a reasonable
assumption for the dynamics of a UAV in quasi-stationary
flight where the exogenous force is dominated by the lift force
while aerodynamical drag (depending on the the square of the
linear velocity) and forward thrust are negligible [32], [13],
[22]. Control of the airframe is obtained by using the torque
control Γ = (Γ1,Γ2,Γ3) to align the force (or thrust vector)
F0 := TEa

3 = Te3 as required to track the goal trajectory.

III. CHOICE OF IMAGE FEATURES

A. Kinematics of an image point under spherical projection

Let P be a stationary point target visible to the camera
expressed in the camera frame. The image point observed by
the camera is denoted p and is obtained by rescaling onto
the image surface S of the camera. Following the approach
introduced in [14] we consider a camera with a spherical image
plane. Thus,

p =
P

|P | . (6)

Where |x| represents the Euclidian norm of any vector x ∈ R
n,

|x| =
√

xT x. The dynamics of an image point for a spherical
camera of image surface radius unity are (see [14], [4])

ṗ = −Ω × p − πp

r
V, (7)

where r = |P | and πp = (I3 − ppT ) is the projection πp :
R

3 → TpS2, the tangent space of the sphere S2 at the point
p ∈ S2.

1Here e3 = (0 0 1) denotes the third-axis unit vector in R
3.
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B. Centroid of a target surface

Consider a point target consisting of N points {Pi} with
image points {pi}. The centroid of a point target is defined to
be

q0 :=

∑N
i=1 pi

∣

∣

∣

∑N
i=1 pi

∣

∣

∣

∈ S2 (8)

The centroid measures the center of mass of the observed
points in the chosen camera geometry. The centroid depends
implicitly on the camera geometry and for a different geometry
(such as a camera with perspective projection) the direction of
the centroid will be different.

Using centroid information is an old technique in visual
servo control [2], [20], [33]. Among the advantages; in com-
puting target centroids it is not necessary to match observed
image points with desired features as would be necessary in
classical image based visual servo control [18], the calculation
of an image centroid is highly robust to pixel noise, and
centroids are easily computed in real-time. The disadvantage
of the definition (8) is that it measures only two degrees of
freedom associated with the direction of centroid with respect
to the body-fixed-frame axes of the camera. The un-normalised
spherical centroid is defined to be

q :=

N
∑

i=1

pi ∈ R
3. (9)

Intuitively, as the camera approaches the geometric center of
the target points for a spherical camera geometry, the observed
image points spread out around the focal point of the camera,
decreasing the norm of q. In the limit, the value of q can
theoretically reach zero, although for most practical systems
this will not be possible while keeping the image points in
the field of view of the camera. Conversely, as the camera
moves away from the geometric center of the target points,
the observe image points cluster together in the direction
of the image. The un-normalized centroid q converges to a
vector that has norm N and points towards the target. This
relationship between the norm of q and the distance to the
target provides a third constraint in the image based error term.
It is however highly nonlinear and leads to sensitivity and
conditioning problems that must be overcome in the control
design.

For a point target comprising a finite number of image
points, the kinematics of the image centroid are easily verified
to be

q̇ = −Ω × q − QV, (10)

where

Q =
i=n
∑

i=1

πpi

|Pi|
=

i=n
∑

i=1

πpi

ri

(11)

is a positive definite matrix as long as there are at least two
(N ≥ 2) visible target points (see [14] for details).

C. Image based errors

In this paper, we augment the image information with iner-
tial information acquired from a standard inertial measurement
unit (IMU) used in most small scale UAVs.

Formally, let b ∈ I denote the desired inertial direction for
the visual feature. The norm of b encodes the effective depth
information for the desired limit point. Define

q∗ := RT b ∈ A
to be the desired target vector expressed in the camera fixed
frame. The orientation matrix R is estimated from filtered data
acquired on a strap down IMU on the vehicle. Since q∗ ∈ A,
it inherits dynamics from the motion of the camera

q̇∗ = −Ω × q∗.

The natural image based error is the difference between the
measured centroid and the target vector expressed in the
camera frame

δ := q − q∗. (12)

The image error kinematics are

δ̇ = −Ω × δ − QV (13)

To regulate the full pose of the camera using a fully-actuated
kinematic system (such as a robotic manipulator) it would
be necessary to introduce an additional error criterion for
orientation control.

For an under-actuated dynamic system of the form Eqn’s 1-4
the attitude dynamics are used to control the orientation of the
vehicle thrust, that in turn provides the control of the system
position dynamics. It is physically impossible to separately
stabilize the attitude and position of the camera. The error
criterion chosen regulates only the position of the rigid body
and the orientation regulation is derived as a consequence of
the system dynamics.

IV. KINEMATIC CONTROL DESIGN

In this section a Lyapunov control design is given for the
kinematics of the translational motion Eq. 1 based on the
visual error Eq. 13.

Define a storage function S

S =
1

2
|δ|2 (14)

Taking the time derivative of S and substituting for Eq. 13,
yields

Ṡ = −δT QV (15)

Note that Eq. 15 is independent of the angular velocity Ω.
For N ≥ 2, the matrix Q > 0 is known to be positive

definite, and although its exact structure is not known, its
maximal eigenvalue must satisfy

λmax(Q) ≤
i=n
∑

i=1

1

ri

, (16)

where ri denotes the relative depth of the ith image point.
Thus, a simple choice

V = kδδ, kδ > 0

is sufficient to stabilize S for a kinematic control regime.
Indeed, substituting into Eq. 15 one obtains

Ṡ = −kδδ
T Qδ
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Since Q is a positive definite matrix, classical Lyapunov theory
guarantees that δ converges exponentially to zero.

Note that the lower bound on the Jacobean Matrix norm,
||Q||, becomes singular as the range between the camera and
the target increases to infinity. The eigenvalues of the matrix
Q are generally ill-conditioned

λmin(Q) << λmax(Q).

Convergence rates of the components of the error δ depend on
the eigenvalues of Q. As a consequence, the natural control
V = kδδ leads to poor asymptotic performance of the closed-
loop system.

A. Compensation of the control gain sensitivity

A number of different approaches have been proposed to
compensate the poor conditioning of the Jacobian matrix Q

and to improve performance of the closed-loop system [4].
In earlier work, only the kinematic model was studied and
the dynamics of the system was not considered in the control
design. In this paper, we propose a modification of the visual
error term to improve the conditioning of the Jacobian matrix
Q in the neighborhood of the set point q∗, preserving the
passivity-like properties and allowing control design for the
full dynamics of the system.

At the set point, the Jacobian matrix Q display two eigenval-
ues of comparable magnitude and one eigenvalue, associated
with the direction q∗, that is an order of magnitude smaller.
To deal with this ill-conditioning, two new error terms are
introduced:

δ11 = q∗0 × q, δ12 = q∗T
0 δ, q∗0 =

q∗

|q∗| (17)

Differentiating δ11 and δ12, it follows that

δ̇11 = − sk(Ω)δ1 − sk(q∗0)QV (18)

δ̇12 = − q∗T
0 QV (19)

The notation sk(x) denotes the skew-symmetric matrix associ-
ated with any vector x ∈ R

3 such that for any vector y ∈ R
3,

sk(x)y = x × y.
Lemma 4.1: Consider the system defined by Eq. 13 and let

k1, λ > 0 be two strictly positive constants. Define

δ1 = δ11 + λq∗0δ12 (20)

Assume that the image remains in the camera field of view
for all time. Then, the closed loop system Eq. 13 based on the
following control Eq. 21

V = k1(−sk(q∗0) + λq∗0q∗T
0 )(δ11 + λq∗0δ12), (21)

exponentially stabilizes the visual error δ1 and therefore δ.
Proof:

Define
S1 =

1

2
|δ11|2 + λ2|δ12|2

It is straightforward to verify that the two components of δ1

(δ11 and q∗0δ12) are orthogonal and therefore:

S1 =
1

2
|δ11 + λq∗0δ12|2 =

1

2
δ2
1

Deriving S1 and substituting the control input V by its
expression, yields

Ṡ1 = −k1δ
T
1 Hδ1

where

H = A(q∗0)QA(q∗0)T , A(q∗0) = −sk(q∗0) + λq∗0q∗T
0 (22)

Since Q is positive definite matrix and A(q∗0) is a non
singular matrix, H > 0 and therefore δ1 (respectively δ)
converges exponentially to zero.

Due to the decoupling between δ11 and δ12 and the de-
crease of the storage function S1 towards zero guarantee the
exponential convergence of the error δ to zero.

Remark 4.2: The best choice of the gain λ is characterized
by setting

H ∼= I

where the symbol ∼= means “equality up to a multiplicative
constant”. Although, this relationship cannot be exactly as-
signed, it can be approximately satisfied over a large neighbor-
hood around the desired set point and overcomes the inherent
sensitivity and conditioning of the control law proposed in
earlier work [14]. 4

V. CONTROL DESIGN FOR THE FULL DYNAMICS

In this section the kinematic control developed in Section IV
is adapted to apply to the full under-actuated system dynamics
using the back-stepping control Lyapunov function design
approach.

The dynamics of the error term δ1 (Eq. 20) may be written

δ̇1 = −sk(Ω)δ1 −
k1

m
Hδ1 −

k1

m
Hδ2, (23)

where δ2 defines the difference between the desired (or virtual)
kinematic controller (Eq. 21) and the true velocity

δ2 :=
m

k1
A(q∗0)−T V − δ1, (24)

and will form an error term to stabilize the translational
dynamics. With the above definitions one has

Ṡ1 = −k1

m
δT
1 Hδ1 −

k1

m
δT
1 Hδ2 (25)

It is easily verified that

(A(q∗0)−1)T = A(q∗0)−T = sk(q∗0) +
1

λ
q∗0q∗T

0 .

Deriving A(q∗0)−T one obtains

d

dt
(A(q∗0)−T ) = −sk(Ω × q∗0) − 1

λ
sk(Ω)q∗0q∗T

0 +

+
1

λ
q∗0q∗T

0 sk(Ω) (26)

Using the following relation:

sk(Ω × q∗0) = sk(Ω)sk(q∗0) − sk(q∗0)sk(Ω),
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the derivative of A(q∗0)−T may be rewritten as follows:

d

dt
(A(q∗0)−T ) = −sk(Ω)sk(q∗0) + sk(q∗0)sk(Ω)

− 1

λ
sk(Ω)q∗0q∗T

0 +
1

λ
q∗0q∗T

0 sk(Ω)

= −sk(Ω)A(q)−T + A(q)−T sk(Ω) (27)

Deriving δ2 and recalling Eqn’s 2, 23 and 27, one obtains

δ̇2 = −sk(Ω)δ2 +
k1

m
Hδ1 +

k1

m
Hδ2 +

1

k1
A(q∗0)−T F (28)

Let S2 be a second storage function associated with the
translational dynamics

S2 =
1

2
|δ1|2 +

1

2
|δ2|2. (29)

Taking the time derivative of S2 it follows that

Ṡ2 = −k1

m
δT
1 Hδ1 +

k1

m
δT
2 Hδ2 +

1

k1
δT
2 A(q∗0)−T F. (30)

The positive definite matrix H = A(q∗0)QA(q∗0)T is not
exactly known, however, for a suitable choice of λ it will
be well conditioned with known bounds on eigenvalues in a
large neighborhood of the desired set point. Thus, choosing

F := −k2
1k2

m
A(q∗0)T δ2, (31)

where k2 > λmax(H) = max{λmax(Q), λ2λmin(Q)}, is
sufficient to stabilize the translational dynamics. Since the
rigid body system considered is under-actuated, the force
input F cannot be directly assigned. The proposed control
algorithm continues the backstepping procedure by using the
above definition as a virtual input. A virtual differentiation Ṫ

of thrust is introduced in the following development to ensure
decoupling between translational and rotational dynamics as
shown in the sequel (see Eq. 37).

Set

F v := −k2
1k2

m
δ2. (32)

A new error term δ3 is defined to measure the scaled difference
between the virtual and the true force inputs

δ3 :=
m

k2
1k2

A(q∗0)−T F + δ2. (33)

The derivative of δ2 (Eq. 28) becomes

δ̇2 = − sk(Ω)δ2 +
k1

m
Hδ1 −

k1

m
(k2I3 − H)δ2 +

k1

m
k2δ3,

(34)

and the derivative of the second storage function is now

Ṡ2 = −k1

m
δT
1 Hδ1 −

k1

m
δT
2 (k2I3 − H)δ2 +

k1

m
k2δ

T
2 δ3. (35)

Deriving δ3 and recalling Eq. 28, yields

δ̇3 = −sk(Ω)δ3 +
k1

m
Hδ1 −

k1

m
(k2I3 − H)δ2 +

k1

m
k2δ3

+
m

k2
1k2

A(q∗0)−T
(

Ḟ + sk(Ω)F
)

(36)

Recalling Eq. 5, the full vectorial term
(

Ḟ + sk(Ω)F
)

is
explicitly given by

(

Ḟ + sk(Ω)F
)

=





0 T 0
−T 0 0
0 0 1









Ω1

Ω2

Ṫ



 (37)

The goal of the paper is to control the full system dynamics
Eqn’s 1-4. In practice, the IMU on board a flying vehicle
provides high bandwidth low noise measurements of angular
velocity Ω of the vehicle. This allows us to apply a high gain
control loop around the angular dynamics (Eq. 4) and use
the angular velocity Ω as an input to the remainder of the
system dynamics Eqn’s 1-3. Control of Eqn’s 1-3 relies on
much lower bandwidth visual feedback and occurs at a much
lower bandwidth than the angular velocity control. In fact, only
the first two components of the angular velocity Ω1 and Ω2

are required in the visual servo control loop, along with the
set point for the dynamic extension of the thrust Ṫ .

Proposition 5.1: Consider the system dynamics Eqn’s 1-3
with inputs (Ω1,Ω2, Ṫ ). Let δ1 be defined by Eq. 20 and
δ2, δ3 be defined by Eq. 24 and Eq. 33 respectively. Choose
(Ω1,Ω2, Ṫ ) according to Eq. 37 such that

m

k2
1k2

(

Ḟ + sk(Ω)F
)

:= − (k1k2 + k3)

m
A(q∗0)T δ3 (38)

for k1, k3 > 0 and k2 > λmax(H). Then δ1 is locally
exponentially stable to zero and the attitude direction RT e3

is locally exponentially stable to e3.
Proof: Let L be a Lyapunov candidate function defined

by

L =
1

2
|δ1|2 +

1

2
|δ2|2 +

1

2
|δ3|2 = S2 +

1

2
|δ3|2 (39)

Taking the derivative of L, and recalling 35 and 36, one obtains

L̇ = − k1

m
δT
1 Hδ1 −

k1

m
δT
2 (k2I3 − H)δ2 +

k2

m
δT
2 δ3

k1

m
δT
3 Hδ1 −

k1

m
δT
3 (k2I3 − H)δ2 +

k1

m
k2δ

T
3 δ3

+
m

k2
1k2

δT
3 A(q∗0)−T

(

Ḟ + sk(Ω)F
)

Introducing the expression Eq. 38 in the Lyapunov function
derivative, one obtains

L̇ = − k1

m
δT
1 Hδ1 −

k1

m
δT
2 (k2I3 − H)δ2+

k1

m
δT
3 Hδ1 −

k1

m
δT
3 (k2I3 − H)δ2 −

k3

m
δT
3 δ3

Completing the square three times to dominate the cross terms,
it may be verified that the choice of control gains given in the
theorem ensures that the right-hand side is negative definite
in all the error signals δi, i = 1, . . . , 3. Classical Lyapunov
theory ensures exponential convergence of δi → 0.

If the position and linear velocity are regulated then the total
external force must be zero, F = 0. Recalling Eq. 5 one has

RT e3 = e3, T = mg. (40)
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Note that the error term δ3 does not determine the full
attitude of the system considered. Only pitch and roll com-
ponents of the attitude are regulated by the error δ3 while the
yaw rotation around the thrust direction is independent of the
error criteria. In practice, it is desirable to stabilise the yaw of
the vehicle to avoid unwanted second order dynamic effects
and provide a stabile platform for sensor systems. Different
solutions may be used to stabilize the freedom of yaw rotation
in the attitude dynamics. An additional visual error is proposed
in Hamel et al. [14], however, this leads to significant addi-
tional complexity in the mathematical development. To avoid
complexity, a simple damping term

Γ3 = −k4Ω3, k4 > 0,

can be used to stop unwanted rotation without specifying a
specific yaw set point. The solution adopted in the experimen-
tal Section VI is a hybrid control where the position, pitch and
roll of the vehicle are controlled autonomously, while the yaw
is manually servo-controlled using the operator joystick.

VI. EXPERIMENTAL RESULTS

In this section, the control algorithm presented in Proposi-
tion 5.1 is implemented on a quad-rotor, made by the CEA,
(Fig. 1).

A quad-rotor is a vertical take off and landing vehicle ideally
suited for stationary and quasi stationary flight. The vehicle
consists of four individual fans fixed to a rigid cross frame.
An idealized dynamic model of the quad-rotor [17], [1] is
given by the rigid body equations (Eqn’s 1-4) along with the
external force and torque inputs (cf. Fig. 2)

T = Trr + Trl + Tfr + Tfl, (41)
Γ1 = d(Tfr + Tfl − Trr − Trl), (42)
Γ2 = d(Trl + Tfl − Trr − Tfr), (43)
Γ3 = Q(Tfr) + Q(Trl) + Q(Tfl) + Q(Trr)

= κ (Tfr + Trl − Tfl − Trr) . (44)

The individual thrust of each motor is denoted T(.), while κ is
the proportional constant giving the induced couple due to air
resistance for each rotor and d denotes the distance of each
rotor from the centre of mass of the quad-rotor.

The control set point for T is obtained by integration of the
third component of Eq. 38, while the control torques Γ1 and
Γ2 are obtained via a high gain stabilisation of the first two
components of Eq. 4 to the control set points given by the first
two components of Eq. 38. The final torque component Γ3 is
independently determined via high gain feedback control to a
set point Ω3 derived from the joystick.

The parameters used for the dynamic model have been iden-
tified as follows: m = 0.55 kg, I = diag(0.009, 0.009, 0.018)
kg.m2, d = 0.23m, κ = 0.018m and g = 9.8m.s−2.

A. Prototype description

The CEA’s quad-rotor is equipped with a set of four
electronic boards (Fig. 3b) designed by the CEA. Vibration
absorbent material was placed between the electronic boards
and the airframe to minimise sensor noise in the MEMS sensor

Fig. 2. The force and torque inputs for an X4-flyer.

components. Each electronic board includes a micro-controller
and has a particular function. The first board integrates the
motor controllers which regulate the rotation speed of the
four propellers. The second board integrates an Inertial Mea-
surement Unit (IMU), developed by the CEA, consisting of 3
low cost MEMS accelerometers, 3 angular rate sensors and 2
magnetometers. The explicit complementary filter [16] is used
to estimate the attitude vector (pitch and roll) and gyros bias
from IMU data. On the third board, a Digital Signal Processing
(DSP), running at 150 MIPS, is embedded and performs
the control algorithm and filtering computations. The final
board provides a serial wireless communication between the
operator’s joystick and the vehicle. An embedded camera (Fig.
3a) with a field of view of 120◦ is mounted pointing down,
and transmits video to a ground station (PC) via a wireless
analogical link at 2.4GHz. Finally, a Lithium-Polymer battery
provides nearly 10 minutes of flight time. The images sent by

(a) (b)

Fig. 3. The embedded camera (a) and the set of electronic boards (b).
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(a) (b)

Fig. 4. Initialization of the algorithm (a) ant the target view from the camera
(b).

the embedded camera are received by the ground station at a
frequency of 15Hz. In parallel, the quad-rotor sends the inertial
data to the ground station at 9Hz. The data is processed by the
ground station PC and incorporated into the control algorithm.
The visual servo control algorithm is computed in the ground
station PC and provides desired orientation velocities and a
desired thrust rate. These control set points are transmitted
to the drone where the high gain control of motor torque
is embedded on the DSP running at 166Hz. This high gain
control ensures stability of the vehicle despite the presence of
significant latency incurred in the reception and processing of
inertial data and visual features and the transmission of control
demand.

B. Experiments

The target considered consists of the four black marks on
the vertices of a stationary planar square (Fig. 4b). A standard
computer vision segmentation algorithm extracts the marks
from the background and computes the central moment of each
mark. The central moments are transformed into unit-norm
spherical image plane representation using the camera cali-
bration matrix provided by the manufacturer. The four image
points obtained in this manner are summed to compute the un-
normalised spherical centroid q (Eq. 9). The characteristics of
experimental camera insures that the observed target remains
visible if the quad-rotor remains in cone of angle ≈ 45◦ around
the observed target and has at most ≈ 5◦ inclination. This
generates a workspace of diameter approximately 1.5m around
the center of the target at an altitude of 1.4m.

The desired image feature b∗ is chosen such that the camera
set point is located 1.4m above the target

b∗ '





0
0

3.9



 (45)

Figure 4a shows the unmanned aerial vehicle mounted at the
set point during the process of acquiring the set point image
for the image error.

1) Initialization: To implement the control algorithm it
is necessary to estimate the parameter λ that is integral in
improving the conditioning of the Jacobian matrix Q around
the desired position. The set point for the experiment was set at
(x, y, z) ' (0, 0, 1.4)m (Fig. 4a) leading to a Jacobian matrix

Q∗ '





2.35 0 0
0 2.36 0
0 0 0.056



 . (46)

The condition number of Q∗ is ρ(Q∗) = λmax(Q∗

λmin(Q∗) ' 42.14.
The asymptotic convergence rates of the proposed algorithm
are given by the eigenvalues of H = A(q∗0)Q∗A(q∗0)T . For the
experimental configuration considered one has (see Eq. 22)

A(q∗0) =





0 1 0
−1 0 0
0 0 λ



 . (47)

Choosing λ = 6.44 one obtains

A(q∗0)Q∗A(q∗0)T = 2.35





1 0 0
0 1 0
0 0 1



 . (48)

Since H = A(q∗0)QA(q∗0)T ≈ A(q∗0)Q∗A(q∗0)T in the vicinity
of the set point it is expected that the overall system perfor-
mance will be acceptable.

Fig. 5. Schematic block diagram of estimation and control loops.

2) Results: During the experiments, the yaw velocity (Ω3)
was controlled via the joystick. Yaw velocity does not affect
the proposed control scheme (Eq. 37) and the convergence
of the closed-loop system is independent of the operator
input. The drone is flown under manual control into the
neighbourhood of the target to ensure the target marks are
visible before the control algorithm is engaged. An estimate
of the initial position is (x0, y0, z0) ' (0.7,−0.8, 2)m.

The exponential convergence of the visual error δ1 is clearly
visible in Figure 6. The separate convergence of the error terms
δ11 and δ12 are shown in Figures 7 and 8. Figure 9 shows the
evolution of the centroid vector, q, and Figure 10 shows the
convergence of thrust direction Re3 to e3. Figure 11 shows
the evolution of target points in the image space. Figure 12
shows the position evolution of the quad-rotor in the Cartesian
space as obtained from the full pose estimation algorithm that
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was run separately in parallel to the control algorithm2. The
closed-loop performance of the system maintains an error of
approximately 10cm around the desired position (Fig. 12). The
authors believe that the most significant source of error is due
to aerodynamic disturbances that can be considered as a load
disturbance to the system. Any rotor craft creates vortices
at the tips of the rotor plane when in hover. These vortices
grow in size and strength, and then become unstable and get
sucked through the rotor, causing a momentary loss of lift,
before a new vortex begins to grow. Interestingly, this effect
is worst in stationary hover conditions as translation through
the air causes the proto-vortices to be washed through the
rotor before they have built up energy. Other sources of error
in the closed-loop system may come from system modelling
and transmissions delays. Despite the errors, experiments show
that they regulation error remains bounded and smaller than
10cm around the desired position. The authors feel that the
practical stability is very good with regards to experimental
system considered.
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time(s)

Fig. 6. Error term δ1.

VII. CONCLUSION

In this paper we presented a visual servo control for
stabilization of a quad-rotor UAV. This work is an extension
of the recent theoretical work on visual servo control of under-
actuated systems [14] that overcomes ill-conditioning of the
Jacobian matrix. Based on the previous work [4], a new visual
error is proposed that improves the conditioning of the closed-
loop Jacobian matrix in the neighborhood of the desired set
point. A nonlinear controller is derived, using backstepping
techniques, and implemented on an experimental flying robot
developed by the CEA. The experimental result show good
performance and robustness of the proposed control strategy.
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