
P2P Storage Systems: How Much Locality Can They

Tolerate?

Frédéric Giroire, Julian Monteiro, Stéphane Pérennes

To cite this version:

Frédéric Giroire, Julian Monteiro, Stéphane Pérennes. P2P Storage Systems: How Much Lo-
cality Can They Tolerate?. IEEE Conference on Local Computer Networks (LCN), Oct 2009,
Zurich, Switzerland. pp.320–323, 2009, <10.1109/LCN.2009.5355104>. <inria-00496220>

HAL Id: inria-00496220

https://hal.inria.fr/inria-00496220

Submitted on 29 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00496220

P2P Storage Systems: How Much Locality Can

They Tolerate?

Frédéric Giroire and Julian Monteiro and Stéphane Pérennes

MASCOTTE, joint project INRIA - I3S - CNRS - Univ. of Nice-Sophia, France

Email: {firstname.lastname}@sophia.inria.fr

Abstract—Large scale peer-to-peer systems are foreseen as a
way to provide highly reliable data storage at low cost. To achieve
high durability, such P2P systems encode the user data in a set
of redundant fragments and distribute them among the peers.
In this paper, we study the impact of different data placement
strategies on the system performance when using erasure codes
redundancy schemes. We compare three policies: two of them
local, in which the data are stored in logical neighbors, and
the other one global, in which the data are spread randomly in
the whole system. We focus on the study of the probability to
lose a data block and the bandwidth consumption to maintain
enough redundancy. We use simulations to show that, without
resource constraints, the average values are the same no matter
which placement policy is used. However, the variations in the
use of bandwidth are much more bursty under the local policies.
When the bandwidth is limited, these bursty variations induce
longer maintenance time and henceforth a higher risk of data
loss. Finally, we propose a new external reconstruction strategy
and a suitable degree of locality that could be introduced in order
to combine the efficiency of the global policy with the practical
advantages of a local placement.

I. INTRODUCTION AND SYSTEM DESCRIPTION

The key concept of Peer-to-Peer storage systems is to dis-

tribute redundant data among peers to achieve high reliability

and fault tolerance at low cost. The addition of redundant data

could be done by trivial Replication [1], in which identical

copies of data are sent to different nodes in the system; or

be based on Erasure Codes [2], such as Reed Solomon and

Tornado, as used by some RAID schemes [3]. Hereafter, we

summarize the main parts usually found in such a system:

Data Redundancy. When using Erasure Codes, the original

user data (e.g. files, raw data, etc.) is cut into data-blocks that

are divided into s initial fragments (or pieces). The encoding

scheme produces s + r fragments that can tolerate r failures.

In other words, the original data-block can be recovered from

any s of the s+r encoded fragments. In a P2P storage system,

these fragments are then placed on s+r different peers of the

network according to a placement policy (which is the main

subject of our study).

Control Mechanism. To ensure a durable long-term storage

despite disk failures, the system must be capable to maintain

a minimum number of fragments available in the network.

This means that the system continuously monitors the number

of fragments of each data-block. This control is done in a

distributed way by the means of a Distributed Hash Table

(DHT) [4]. If this number of fragments drops to a threshold

value r0, the block need to be reconstructed.

Reconstruction Strategy. Setting a low value for r0 decreases

the number of reconstructions (as the reconstruction starts only

after that r−r0 pieces are lost), but increases the probability to

lose a block. After the reconstruction, the regenerated missing

pieces are spread among different nodes.

Data Placement Policies. It has been shown that fragment

(or replica) placement has a strong impact on the system

performance [5]. We study here three different strategies of

data placement as explained in the following and depicted in

Figure 1:

• Global & Random Policy: The s+r fragments of a block

are sent to s+ r peers chosen uniformly at random among all

the N peers present in the system (see [6]).

• Chain Policy: In this policy the fragments of blocks are

stored on the s + r closed set of “logically” (consecutive)

neighbors peers. This policy corresponds to what is done in

most distributed systems implementing a DHT (see [7]).

• Buddy (or RAID) Policy: This is an extreme case of a local

policy, in which the system is composed of small independent

subsystems with s + r peers each. It could be seen as a

collection of local RAID like storage. In this situation, each

peer in the group stores exact the same set of pieces.

The use of the Global strategy allows to distribute more

uniformly the load among peers, leading to a faster recon-

struction and a smoother operation of the system [6]. However,

the use of local strategies brings practical advantages [8]. For

instance, the DHT update mechanisms of the leafset can be

used to simplify the management of the system (e.g. to know

the states of the blocks stored locally). Also, the management

traffic and the amount of meta-information to be stored by the

nodes are kept low.

Our goal is to investigate the amount of resource (bandwidth

and storage space) required to maintain redundancy and to

ensure a given level of reliability. In this paper1, we study

the impacts of placement policies for two different scenarios.

In Section III-A, we study a provisioning scenario, where

peers do not have bandwidth constraints. It allows to estimate

the bandwidth use for different sets of parameters. Then, in

Section III-B, we study a scenario where peers have resource

constraints, that corresponds to the operation of practical sys-

tems. Finally, in Section IV we propose some improvements

of the placement and reconstruction architectures.

1An extended version of this work can be found in the INRIA Research
Report RR-7006, http://hal.inria.fr/inria-00408078

Fig. 1. Placement of two blocks b1 and b2 in the system. Global: s + r

fragments are placed at random among all peers; Chain: fragments are placed
on s + r neighboring peers; Buddy: many small subsystems of size s + r, in
this case all peers inside each small group contain the same data.

Related Work

The majority of existing or proposed systems, e.g., Inter-

memory, CFS, Farsite, PAST, TotalRecall, Glacier, use a local

placement policy. Chun et al. in [6] also discuss the impacts

of placement strategies, but they do not address the case of

Erasure Codes. In [5] the authors study the impact of data

placement on the Mean Time to Data Loss (MTTDL) metric.

But they do not discuss other very important metrics: the

probability to lose a block and the bandwidth usage.

II. SIMULATIONS

To evaluate such a system, we developed a custom cycle-

based simulator that implements all the characteristics de-

scribed in Section I. The simulator models a detailed view

of the system, as it monitors the state and the localisation of

each fragment individually.

Modeling Failures. It is assumed that the nodes stay con-

nected almost all the time into the system. So, we model

the case of peer failures, mainly caused by a disk crash or

by a peer that definitively leaves the system. In both cases,

it is assumed that all the data on the peer’s disk are lost.

Following most works on P2P storage systems [5], peers fails

independently according to a memoryless Poisson process. To

avoid the problem of transient failures and deal with churn,

a peer is just considered lost if it has left the system for a

period longer than a given timeout [9] (set to θ = 12 hours in

our simulations).

Monitored metrics. The simulator keeps detailed traces of

different performance metrics. To be sure that we are studying

a system in a steady state, the first part of the simulation traces

is thrown away. We focus our analysis on three main metrics:

Bandwidth: Average bandwidth consumption per peer, i.e.,

estimated from the number of pieces transmitted and received

per hour due to the reconstruction process;

FDLPY: Fraction of Data Loss Per Year, which gives the

probability to lose a data-block per year;

MTTDL: Mean Time To Data Loss, i.e., the period of time

between two occurrences of data loss in the system.

Simulation parameters. We did a large number of simula-

tions for different sets of the parameters. Otherwise explicit

indicated, the main ones are N = 1005 the number of peers,

F = 1.5·106 the total number of fragments. The fragment size

is 400KB, thus, with s = 9 and r = 6, the system block size

is 6MB. The reconstruction threshold r0 = 2. The amount of

Fig. 2. Illustrative example of the cumulative number of dead blocks for a
period of three years.

stored data and the number of peers are kept constant during

the simulation, this means that dead blocks are re-injected in

the system. Crashed disks reappear empty. The time-step of

the simulator is τ = 1 hour and the simulated time is 10 years.

Peer bandwidth. Each peer has a maximum upload and

download bandwidth, resp. BWup and BWdown. We assume

asymmetric capacities, e.g., ADSL lines (in our experiments

BWdown = 5BWup). So the limiting resource is the upload

bandwidth and it is the one presented in our results. When the

peer’s bandwidth is limited, not all blocks can be reconstructed

at the same time. To model a peer’s bandwidth, we imple-

mented a non blocking FIFO queue with one server: when

there is a peer failure, the blocks to be reconstructed are put

in the queues of the peers in charge of the reconstruction.

Remark 1 (Size of the simulated system) In practice, peers

have huge disks of tens of Gigabytes, each one containing tens

of thousands of blocks. As we want to be able to simulate a

storage system for several years in a reasonable time, we chose

a disk size and bandwidth limits around 100 times smaller than

the one expected in practice.

Remark 2 (Measuring block losses) As it is difficult to sim-

ulate in a reasonable time events of very low probability,

for example, a probability of lose data of 10−20, we chose

non realistic values for some parameters (in particular, the

reconstruction threshold r0 = 2 and the disk MTBF = 90
days are set very low). In this way, we experience data loss

in our simulations.

III. SIMULATION RESULTS

A. Without Resource Constraints

First, we study the provisioning scenario (unlimited band-

width), which is important to measure the required bandwidth

to maintain the system. Briefly, the results shown here are: (1)

the three placement strategies have the same value of average

bandwidth demand; (2) however local policies exhibit strong

variations in resource usage across peers; (3) they have the

same probability to lose a data-block, (4) but the MTTDLs of

the Buddy and the Chain policies are longer.

TABLE I
SUMMARY OF RESULTS (WITHOUT BANDWIDTH CONSTRAINTS).

Policy Bandwidth (kbit/s) FDLPY (blocks) MTTDL (years)

Global 1.99 (± 1.34) 4.1 · 10−4 (± 0.6 · 10−4) 0.02 (± 0.02)
Chain 1.99 (± 12.83) 4.1 · 10−4 (± 8.6 · 10−4) 4.0 (± 3.0)
Buddy 1.99 (± 15.92) 4.4 · 10−4 (± 25.4 · 10−4) 25.8 (± 21.7)

1) Bandwidth Usage:: The left column of Table I shows

the average value of upload bandwidth usage across peers

during time, (i.e., at each time step we measure the average

number of fragments transmitted by each peer), along with

the experimental standard deviation (in parenthesis). First, as

expected, the average bandwidth use across peers is roughly

the same for all policies. The reason is that the different

placement policies do not change the number of pieces that

have to be reconstructed, but they change the repartition of

these pieces among peers.

However, the variations are not the same. The Chain policy

and Buddy policy variations are significantly higher. Analysing

the bandwidth usage per user at a typical instant of time we

see that the load is around 2 kbit/s for all the users and

all strategies. However, we see that the distributions of the

bandwidth are not the same at all. In the case of Global policy,

the reconstruction load is evenly distributed among all the

peers. On the opposite scenario, Buddy policy, when a failure

happens, only the immediate neighbors possess the remaining

pieces of the blocks, which induces a high bandwidth demand

on the group of s+r peers. The situation for the Chain policy

is similar to the Buddy, but less correlated, as a peer failure

induces reconstructions on blocks in a distance of 2(s+r)−1.

2) Probability to Lose a Block: The probability to lose a

block in the three different policies are shown in the middle

column of the Table I, normalized as the Fraction of Data

Loss Per Year (FDLPY). When there is no bandwidth limit,

the expected number of dead blocks is the same for the three

policies. As a matter of fact, the probability for a block to

die does not depend on where its fragments are placed. It

can be easily calculated using a Markov Chain Model, see for

example [10]. But, we note that the deviations during time

of the number of dead blocks is higher for local policies. To

explain that, we look at the MTTDL.

3) Mean Time To Data Loss (MTTDL): The measure of

the time between two occurrences of data loss shows that the

three policies have very distinct behaviors, as depicted in the

right column of Table I. However, as we have seen before,

the three policies have in average the same number of dead

blocks per year. In other words, the average quantity of data

loss per year is the same, but the distribution across time of

these losses is very different.

The Figure 2 illustrates an example of the cumulative

number of dead blocks for a period of 3 years for the three

placement policies under the same fault scenario. We see that

the loss occurs regularly for the Global policy. Conversely,

they occur very rarely for the Buddy placement, but, when

they occur, they affect a large batch of data. Basically, all the

blocks of a small buddy subsystem of size s + r peers lose

6 7 9

1
0

1
2

1
4

1
5

1
7

1
8

U
n
lim

.

Global

Chain with External Recons.

Chain

Buddy

Max. Available Upload Bandwidth (kbit/s)

F
ra

c
ti
o
n
 o

f
d
e
a
d
 b

lo
c
k
s
 p

e
r

y
e
a
r

(%
)

0
5

1
0

1
5

2
0

2
5

3
0

 0
.0

5

 0
.0

5

 0
.0

5

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 0
.0

4

 4
.3

9

 2
.8

8

 1
.4

8

 1
.1

8

 0
.8

0

 0
.5

9

 0
.5

1

 0
.3

9

 0
.3

5

 0
.0

4

 1
0

.6
0

 6
.7

8

 3
.4

9

 2
.7

1

 1
.7

6

 1
.2

7

 1
.1

0

 0
.8

7

 0
.7

8

 0
.0

4

 2
5

.9
8

 1
9

.4
1

 1
2

.4
7

 1
0

.2
4

 7
.0

8

 5
.2

3

 4
.6

2

 3
.6

1

 3
.2

0

 0
.0

4

Fig. 3. Fraction of block losses per year (see Remark 2) for different
bandwidth limits. Note that, for this set of parameters, the results obtained
with the chain policy using external reconstruction shows an improvement of
about 50% to the original chain policy.

all their blocks at the same time. The behavior of the Chain

policy is somewhere in the middle of both.

B. Results under Resource Constraints

In this section, we study the behavior of the system with

bandwidth limitation per peer (each peer having a maximum

upload and download bandwidth). In this context we show

that, using similar available resources, the amount of data loss

is no more the same for the three data placement policies.

The Global policy behaves considerably better in comparison

to the Chain and Buddy policy. Furthermore, the local policies

now experience more loss events (smaller MTTDL).

1) Reconstruction Time versus Bandwidth: Experiments

shows that limiting the available bandwidth the average recon-

struction time is a lot longer for the Chain policy and even

more for the Buddy policy when compared to the Global one.

As an example, for a maintenance bandwidth of 6 kbit/s, the

reconstruction time is around 49 hours for the Chain policy and

82 hours for the Buddy, but only 2 hours for the Global policy

(Figure is not shown for space reasons). This bandwidth limit

corresponds to three times the average bandwidth usage of the

system (as computed without resource constraints). Hence, we

see that the irregularity of the reconstruction load among peers

has a very strong impact on the reconstruction time, even if

each policy has the same average bandwidth demand. Thus,

under resource constraints, the big local events constituted by

peer failures induce longer reconstruction time and henceforth

an increase of data loss when using the local policies, as shown

in the following.

2) FDLPY versus Bandwidth: A critical performance

measure of a P2P storage architecture is the probability to lose

a block for a given amount of bandwidth. Figure 3 compares

the trade-offs of the three policies for different values of

BWup. We see that the Global policy behaves a lot better

for any bandwidth limit than the Chain policy, which itself

is more efficient than the Buddy policy. For example, for a

bandwidth limit of 18 kbit/s (which represents 9 times the

average bandwidth need of the system), the Global experiences

0.04% of data loss per year, to compare with 0.78% and 3.2%

for the Chain and the Buddy, respectively.

3) MTTDL versus Bandwidth: Opposed to what was

showed without bandwidth constraints, the Global policy be-

haves better than the others with low bandwidth limitations.

For instance, without resource constraints, the time between

data loss were 0.02, 4.0, and 25.8 years respectively for

the Global, Chain and Buddy. Conversely, with an available

bandwidth of 6 kbit/s, these values are 166, 53, and 75 (in

hours), many orders of magnitude less. These results show

that the impact of the bandwidth limits per peer needs to be

taken into account when analysing such systems.

IV. PROPOSITION FOR P2P STORAGE SYSTEM

ARCHITECTURES

In this section, we propose a new reconstruction architecture

for the Chain policy, namely external reconstruction, and

show that it can lower the duration of the sending phase of

reconstructions, and thus improve the probability to lose data.

The idea is to use peers outside the Chain group to carry out

the reconstruction process. In this way, the bandwidth usage is

more uniformly spread among peers. More precisely, only the

upload bandwidth of the retrieval phase of the reconstruction

is needed locally, while the bandwidth for the sending phase

is provided by all the peers of the system. Hence, the External

Reconstruction has two main advantages: a local control for

discovering failed peers and updating the data-blocks’ states;

a more uniform distribution of resources among peers, which

lowers the reconstruction time. However, a small cost is paid:

the external peer in charge of the reconstruction does not

contain any previous piece of the reconstructing block.

A rough estimate of the gain in terms of reconstruction time

can be given. In the internal reconstruction, local peers have to

support s+r−r0 uploads of pieces. However, when using the

external reconstruction, they only have to support s uploads

of pieces. As the local peers basically are the bottleneck of

the reconstruction, the gains in terms of bandwidth and hence

of reconstruction time are roughly 1 − s/(s − 1 + r − r0).
Note that the gains in terms of data loss will be significantly

higher. Figure 3 also compares the internal and external

policies. It gives the trade-off between the average number

of dead blocks per year and the available bandwidth. For the

same bandwidth, the fraction of data loss decreases by a factor

between 0.5 and 0.6 for this set of parameters.

Exponential relation between the probability to die and the

reconstruction time. During a reconstruction, a block dies if

it loses r0 +1 fragments before it finishes. The probability for

a peer to be alive after a time T is e−λT , where λ is the peer

failure rate. Hence a good approximation of the probability to

die during a reconstruction lasting a time T is given by

Pr[die|Rtime = T] =

(

s + r0

r0 + 1

)

(1 − e−λT)r0+1(e−λT)s−1.

Hence we have an exponential relationship between the

number of block losses and the neighborhood size. The

neighborhood size should mainly be chosen in function of

two parameters: the disk size and the peer bandwidth. Note

that a size of D
(r−r0)BWup

allows to reconstruct the blocks in

one time step and is sufficient to get the benefits of Global

(with D the number of fragments per disk, BWup expressed

in blocks/time step and 1/(r − r0) the fraction of blocks of

the lost disk that go beyond the threshold).

Concluding, to implement a local policy, the neighborhood

should at least be a little bit larger than s+ r, as the marginal

utility of increasing the neighborhood size is tremendous for

very small sizes. In addition, the neighborhood size should

be chosen in function of the disk size: Larger the number of

fragments per disk, the larger the neighborhood should be.

V. CONCLUSION

In this paper, we showed that placement policies strongly

impact the performance of P2P storage systems. We studied

three different policies, a Global and two local, and showed

that, under resource constraints the Global policy behaves

better in terms of probability to lose data and MTTDL than the

local policies. We showed that, by using a new reconstruction

strategy, namely external reconstruction, and by increasing the

size of the neighborhood, local policies can have performances

almost equivalent to the ones of the Global, while keeping their

practical advantages.

ACKNOWLEDGMENT

This work was partially funded by the European project IST/FET

AEOLUS and the ANR projects SPREADS and DIMAGREEN.

REFERENCES

[1] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in Proc. of ACM SOSP, 2001.

[2] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication: A
quantitative comparison,” in Proc. of IPTPS, vol. 2, 2002, pp. 328–338.

[3] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays
of inexpensive disks (raid),” in Proc. of ACM SIGMOD, 1988.

[4] D. Liben-Nowell, H. Balakrishnan, and D. Karger, “Analysis of the
evolution of peer-to-peer systems,” in Proc. of PODC, 2002.

[5] Q. Lian, W. Chen, and Z. Zhang, “On the impact of replica placement
to the reliability of distributed brick storage systems,” in Proc. of

ICDCS’05, vol. 0, 2005, pp. 187–196.
[6] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F.

Kaashoek, J. Kubiatowicz, and R. Morris, “Efficient replica maintenance
for distributed storage systems,” in Proc. of NSDI, 2006, pp. 45–58.

[7] J. R. Douceur and R. P. Wattenhofer, “Large-scale simulation of replica
placement algorithms for a serverless distributed file system,” in Proc.

of MASCOTS, 2001, pp. 311–319.
[8] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris,

“Designing a DHT for low latency and high throughput,” in Proc. NSDI,
San Francisco, California, 2004, pp. 85–98.

[9] R. Rodrigues and B. Liskov, “High availability in dhts: Erasure coding
vs. replication,” in Peer-to-Peer Systems IV. LNCS, 2005, pp. 226–239.

[10] O. Dalle, F. Giroire, J. Monteiro, and S. Pérennes, “Analysis of failure
correlation impact on peer-to-peer storage systems,” in Proc. of the 9th

Intl. Conf. on Peer-to-Peer Computing (P2P’09), 2009, to Appear.

