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ABSTRACT 3

Résumé: Cette thèse aborde le traitement d’images et de vidéos sous l’angle variationnel, c’est-à-

dire sous forme d’une énergie dont le minimum est atteint pour la solution. La modélisation adoptée

pour formaliser le problème et obtenir ces énergies peut être déterministe ou stochastique. Il est

connu que la première approche est équivalente à la classe paramétrique de la seconde. Ce constat

nous a amenés à faire le choix de la seconde approche a priori plus générale si l’on se débarrasse de

l’hypothèse paramétrique. En contrepartie, il s’agit d’tre capable d’exprimer et d’estimer une énergie

en fonction des données alors interprétées comme des échantillons d’une variable aléatoire. Ce premier

obstacle est classiquement surmonté par l’emploi de méthodes à noyau fixe sur des lois marginales,

autrement dit, en supposant les canaux de données indépendants entre eux. Or cet obstacle en cache

deux autres : l’inhomogénéité de la répartition des échantillons dans leur espace d’appartenance et leur

faible densité dans cet espace. Ces difficultés, ainsi que l’hypothèse d’indépendance mentionnée plus

haut, sont d’autant plus pénalisantes que le modèle proposé pour les données est de grande dimension

(canaux couleur, mais aussi ajouts d’autres canaux pour prendre en compte les structures locales des

images). Au fondement d’estimateurs de mesures statistiques telle que l’entropie, l’idée du kième

plus proche voisin permet de résoudre les difficultés évoquées en s’adaptant à la densité locale des

données, en considérant les canaux conjointement, et ce quel que soit leur nombre. Dans ce contexte,

nous proposons une approche statistique générale inspirée de la théorie de l’information, dédiée aux

approches variationnelles car estimant efficacement des énergies en haute dimension, permettant le

calcul de leur dérivée et pouvant estimer localement des probabilités. Ce cadre est appliqué aux trois

problèmes de traitement d’images ou de vidéos que sont l’estimation de flot optique, le suivi d’objets

vidéos et la segmentation. Ce point de vue, en permettant de limiter sinon de s’affranchir du problème

de la dimension des données, autorise la définition de nouvelles mesures et lois de probabilités plus

adaptées aux images naturelles. Certains travaux en suivi d’objets et en segmentation ont conduit à

des implémentations industrielles.

Abstract: This thesis addresses variational formulation of image and video processing problems.

This formulation expresses the solution through a minimization of an energy. These energies can be ex-

pressed as deterministic or stochastic. The first approach corresponding to the parametric class of the

second one. The second class is then more general if we get rid of the parametric assumption. In return,

the energy must be expressed as a function of the data considered as random variables. These functions

are classically estimated with fixed-sized kernels on marginal distributions of the data, assuming the

different channels are independent. These methods have two limitations, the inegal repartition and

sparsity of the data in the space. These difficulties, as well as the independence assumption are en-

hanced when the data of the image are high dimensional (color channels, or other channels describing

local patterns of natural images). At the foundation of statistics, the k-th nearest neighbor can solve

these difficulties by locally adapting to the repartition of the data and treating the channels jointly. We

propose a general statistical framework based on statistics and information theory. This new framework

is dedicated to variational problems as it efficiently estimates, high dimensional energies, gradients of

these energies and local probabilities. This framework is applied to three problems of image and video

processing: optical flow, object tracking and segmentation. This framework circumvents the problem

of dimensionality and allows us to introduce new measures and probabilities more adapted to natural

images. Some results obtained have been applied in an industrial context.
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Vincent, Vincenzo, Wali, Yasmine, and all the forgotten . . .

I would like to address additional special thanks to my “real life friends” Changy, Lao,

Mago, Thomas, Vincent, Jérôme, V, Rudy, Steven.
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CHAPTER 1

INTRODUCTION

1.1 Context

The general context of this thesis is extraction of information in image and video process-

ing. Multiplications of video cameras in the last years for communication, entertainment

(cell phones, web cameras), security (video surveillance) have provided huge amount of data

and have raised the need for new challenging applications in the processing of these videos.

Applications include, scene understanding, scene compositing, tracking of a target, these op-

erations are part of the field named computer vision. While in some industrial applications

it is still reasonable, though very expensive, to manually perform algorithms frame by frame

as performed in cinema post-production. In some other industrial applications, for instance

processing on large database of historical videos (INA) or of entertainment videos (Youtube),

automatic algorithms or semi-automatic algorithms, i.e supervised by an operator, to process

operations in these videos, are of great interest.

Algorithms of computer vision can be classified in three categories. Low level vision al-

gorithms, mid level vision algorithms, and high level vision algorithms. Low-level vision

algorithms process basic operations on image pixels, e.g: some pixels are moving in the image

plane. Mid-level vision include higher level processing like pixel grouping, e.g: some pixels

of similar color are moving following a same coherent affine motion. High-level vision is the

final stage which gives a semantic meaning to the scene, e.g: a vehicle is moving.

In this thesis we focus on low to mid level vision algorithms which means we have poor

semantic understanding, poor knowledge or priors about the information to be extracted. The

little high-level information required (e.g. definition of the object of interest, initial tracking

state or segmentation) is defined by an operator.

Low and mid level vision algorithms in video processing treated in this manuscript include

optical flow, tracking, and segmentation. Examples in cinema postproduction are shown on

Fig. 1.1, first example is scene compositing between two different scenes, second example is

a tracking of an head in order to apply color effects on the skin of the actor. More generally,

we aim at algorithms which can be formulated as a variational problem: an energy can be

defined and minimizing this energy will give a solution to the problem.

13



14 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of applications: scene compositing (segmentation), color effects (track-

ing)

1.2 State of the art

In this thesis the focus is on a large class of variational problems including tracking, motion

estimation through optical flow and segmentation. Large class as these methods use different

mechanisms in their resolution. Among these methods, some methods can be formulated on

the deterministic viewpoint, some other methods can be formulated in the statistical view-

point. These viewpoints if deterministic usually allow fast derivative-based convergence and

if statistic allow flexibility with respect to the model as it accounts for randomness inherently

present in the data. These two viewpoints are often tightly related and often end up with the

same equations.

For each viewpoint, methods can be classified in two groups. On one hand some methods

assume a model for the image and match the model by computing a small set of parameters

(e.g. parametric PDFs on the statistical viewpoint). On the other hand some methods gener-

ate their own model from the image (e.g. nonparametric PDFs on the statistical viewpoint).

The nonparametric model performs in general better than the parametric model as it adapts

to the image statistics, albeit often increasing complexity.

On the statistical viewpoint, nonparametric techniques include Parzen windowing which

estimates the probability density function (PDF) efficiently on low dimensional spaces. How-

ever, higher dimensional spaces in image processing have to be considered, whether by ne-

cessity (neighborhood patches [BCM05], structure tensor [RBD03]) or by nature (high di-

mensional measures e.g. mutual information, or high dimensional acquisition e.g. diffusion

tensors [AFPA06]). Examples of high dimensional spaces are showed on Fig. 1.2.

Classically, when dealing with nonparametric statistics on vector value data, simplifica-

tions are necessary, whether independence between data is assumed, which results in sum-

ming terms, weighted by parameters which must be tuned or estimated, whether statistics

assume to follow a specific model such as Gaussian or Laplacian where a mean vector and

correlation matrix is estimated.

Alternative methods shortcuts PDF estimation with graph constructions techniques able

to estimate directly statistical measure as a function of total length of k-nearest neighbors

(kNN) graphs or minimum spanning tree (MST) graphs [CH04, GLMI05]. These estimates

have proved to be very efficient in high dimensions as they shortcut the PDF estimation pro-

cess and adapts to the underlying manifold of the data. However the lack of knowledge on its

differentiation or its connection with PDF estimates make it unpractical for variational prob-

lems. Dealing efficiently with high-dimensional dependent data using statistical flexibility in

a derivative-based variational problem is a challenge and is the goal of this thesis.
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(a) Medical (image courtesy of Prof.

Paul Thompson, Lab of Neuro Imag-

ing, UCLA)

(b) Satellite (image courtesy of European

Space Agency)

(c) Artificial features: lattice, wavelet

Figure 1.2: High-dimensional feature space

1.3 Contributions of this Thesis

The main contribution of this thesis is a new statistical framework inspired from information

theory to estimate measures on high dimensional data for variational problems.

Statistical measures are often used in variational problems for similarity matching be-

tween two images or regions (tracking, optical flow) or for computing self similarity matching

to detect repetitive patterns (regularization, segmentation). In most cases, similarities are

estimated over luminance value statistics which do not model properly natural image statis-

tics. Instead, high dimensional spaces are proposed to integrate pixel positions or small image

patches in order to better model image the statistics. However, high dimensionality is a curse

for statisticians, as spaces are sparse. Statistical estimates designed for high dimensional

data are more complex and do not generally satisfy properties required for integration in

variational problems (e.g. differentiation, computational efficiency).

This thesis proposes a new unified framework based on simple k-nearest neighbors (kNN)

search for variational problems in order to estimate efficiently, energies, gradients of these

energies, and local probabilities on high dimensional data. This framework relies on a uni-

fication between new estimates, and some estimates well-accepted by the image processing

community, into a single kNN framework designed for variational problems. Complexity is

isolated in the kNN search and can be treated efficiently (for instance using GPU imple-

mentation). This framework allows to explore both lower and higher dimensional spaces in

PhD Thesis Sylvain Boltz



16 CHAPTER 1. INTRODUCTION

variational problems of computer vision.

We revisited the three initial variational problems using the kNN framework, tracking,

optical flow and segmentation as well as contributions which takes advantage of high dimen-

sions. In particular, these new dimensions allow to introduce smooth constraints for image

matching, smooth regularization for optical flow and define local probabilities or shape pri-

ors for segmentation. In general, the kNN framework allows to define information-theoretic

energies on multivariate data in variational problems.

We obtained competitive results in the three variational problems in terms of accuracy and

quality. Yet, this thesis had two industrial applications. The tracking algorithm presented in

Chapter 6 with GPU implementation of the kNN search is being implemented by a cinema

post-production company (Mikros Image). The simplified version of the motion segmentation

algorithm is implemented in a H264 video coder by the French national telecom operator

(Orange).

1.4 Organization

This manuscript is organized in three parts. First part presents state of the art variational

solutions of computer vision classify them and expose their general limitations. Second part

presents the theoretical contribution of this thesis: we present a general framework to deal

or introduce high dimensions in variational problems. Third part revisits the initial three

problems of computer vision.

Part I: Methods and ViewPoints

• Chapter 2 is a presentation of three classical problem of video processing: region of

interest tracking, optical flow, and segmentation as well as three examples of resolution

and some remaining challenges.

• Chapter 3 classifies these methods in a deterministic or a statistical viewpoint and

exhibits equivalences between both. The statistical viewpoint will be chosen in the

thesis.

• Chapter 4 presents on the statistical viewpoint, classical nonparametric estimation

Part II: High dimensions in variational framework: a new framework

• Chapter 5 presents the methodological contribution of this thesis: a new framework to

deal with high dimensions in variational problems. This framework unifies PDF esti-

mation methods, statistical measures and derivative approximation in a new framework

and explore new possibilities in high dimensions.

Part III: Revisiting three variational problems in this framework

• Chapter 6 proposes a statistical distance in object tracking with a high dimensional

appearance model of the object to handle possible deformations.

• Chapter 7 proposes a new optical flow unified statistical energy for both data and reg-

ularization terms.
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• Chapter 8 proposes a framework for high dimensions in active contour segmentation,

the new class of similarity measures is applied for various aspects of segmentation,

semi-supervised, semi-supervised with priors, motion segmentation, as well as a simpli-

fication for video coding applications.

With the purpose of revisiting some variational problems, let us first present three varia-

tional problems, their variational formulation and the different mechanisms involved in their

resolution.
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Part I

Methods and viewpoints
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CHAPTER 2

THREE PROBLEMS OF IMAGE

PROCESSING AND VARIATIONAL

SOLUTIONS

The focus is on three problems of image processing, object tracking, optical flow, and segmen-

tation. Each problem can be formulated as variational: an energy, also called cost functional

is minimized with respect to the unknowns of the problem in order to find a best solution. Let

us write a variational solution θ̂ to unknowns θ as the result of the minimization of an energy

function E:

θ̂ = arg min
θ
E(θ) (2.1)

These three problems have been chosen to present various variational problems in image pro-

cessing. Various as these problems use different mechanisms and tools in their resolutions.

The tracking problem aims at recovering the new location of an object defined in a previous

frame. The unknowns θ are here the new location (position, scale and eventually orienta-

tion), thus there are few unknowns (from 2, translation model, to 8, homography model). It

can be solved by various derivative-based or derivative-free algorithms. Motion estimation

through optical flow problem aims at recovering the motion field between two consecutive

images of a video. The unknowns θ are a motion field (of the same size of the image) which

leads to minimization in an higher dimensional space and leads to more complex minimiza-

tion algorithms, often derivative-based. Finally, the segmentation problem aims at grouping

pixels into regions, the unknown θ can be for instance a shape which partitions the image.

It is possibly infinite dimensional, as continuous shapes have no structure of vectorial space.

Its solutions goes through non-standard derivatives called shape derivatives. Summarizing,

each problem is different and needs different mathematical tools for resolution.

Each problem is introduced with some of state-of-the-art methods. A variational formula-

tion is given followed by an example of complete resolution of the problem: from the varia-

tional formulation to the numerical scheme used for minimization in order to present all the

mechanisms involved in the resolution. Finally some recent improvements in the literature

of these problems are given to show actual challenges in these methods.

This chapter is organized as follows: Section 2.1 presents the tracking problem, Section

21
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2.2 presents optical flow, Section 2.3 presents the segmentation problem.

2.1 Tracking

Tracking a region of interest (ROI) in a video is still a challenging task. Various high-level

applications rely on tracking, e.g., video indexation, object recognition, video surveillance,

cinema post-production. . . .

Following the survey [YJS06], tracking can be classified in three different problems.

• “Point tracking: objects detected in consecutive frames are represented by points and the

association of the points is based on the previous object state which can include object

position and motion. This approach requires an external mechanism to detect the objects

in every frame. In this thesis, as objects of interest are assumed to be defined by an oper-

ator, no detection step is required and we will skip the class of “Point tracking” methods,

an example of a state-of-the-art method in point tracking can be found in [ST94]. An-

other example [GBDB06] proposed to use the framework further defined in this thesis

in a “Point tracking problem”, however it will not be presented in this manuscript.

• “Silhouette Tracking: tracking is performed by estimating the object region in each frame.

Silhouette tracking methods use the information encoded inside the object region. This

information can be in the form of appearance density and shape models which are usually

in the form of edge maps. Given the object models, silhouettes are tracked by either shape

matching or contour evolution. Both of these methods can essentially be considered as

object segmentation applied in the temporal domain using the priors generated from the

previous frames.” Following its definition, it can be considered as object segmentation

applied in the temporal domain using the priors generated from the previous frames,

indeed these methods will be treated as a segmentation application in the related parts

of this thesis (introductory Section 2.3 and contribution Chapter 8).

• “Kernel tracking: kernel refers to the object shape and appearance. For example, the ker-

nel can be a rectangular template or an elliptical shape with an associated histogram.

Objects are tracked by computing the motion of the kernel in consecutive frames. This

motion is usually in the form of a parametric transformation such as translation, rota-

tion, and affine.” Finally kernel tracking is the method we will study in this section, an

example on Fig. 2.1 shows a first frame of a video where an object of interest is defined.

The goal is to recover the object of interest in a frame later in the video, several solutions

given by different methods are shown.

2.1.1 Introduction

The problem, referred as kernel tracking, can be defined as follows: an ROI is defined in

a reference frame of a video and the purpose is to determine in each subsequent frame the

region which best matches the ROI in terms of a given similarity measure. Geometrically

speaking, the two regions can be deduced from one another by an apparent motion that one

usually restricts to a given model. Two classical similarity measures are the Sum of Squared

Differences (SSD) or the Sum of Absolute Differences (SAD) between the reference ROI and

a candidate region in a target frame.



2.1. TRACKING 23

Figure 2.1: Example on a video from a tracking benchmark [CZT05]. An object of interest

is defined on the first frame, and we search for the new position in a frame later in the video:

purple algorithm is our method presented in chapter 6. Difficulties: the object is only partially

visible, may not have the same size, may have changed appearance . . .

Similarity measures such as SSD and SAD impose a strict geometric constraint since the

underlying residual is computed with a deterministic pixel-to-pixel correspondence between

the reference ROI and the target region. In general, this apparent motion follows a rather

simple model, so that the estimation of its parameters remains well-posed. Therefore, it is

not adapted to complex motions. Moreover, this type of similarity measures corresponds to

implicit parametric assumptions on the residual probability density function (PDF) (respec-

tively, Laplacian and Gaussian for the two examples above).

An alternative is to adopt a statistical point of view by building a PDF from the ROI

and using it as a template to be compared to a target PDF built from a candidate region

by means of a similarity measure. Such statistical methods account for randomness and

uncertainty in the observations. At the first level of complexity, the PDFs describe the ROI

radiometry [CRM00, PHVG02], either in grayscale or color. However, to improve tracking

accuracy, later developments tend to show that more information is required than just color.

Different cues were then integrated into the ROI PDF template, e.g., recurring to the use

of filters such as spatial derivative filters [Low04, BRDW03, BBPW04], Gabor or wavelet

filters [PD02b], and temporal filters [BRDW03, BP07].

2.1.2 Tracking formulation

Let Iref and Itgt be, respectively, the reference frame in which the ROI is (user-)defined and the

target frame in which the region which best matches the ROI, in terms of a given similarity

measure, is to be searched for. This search amounts to finding the geometric transformation

Φ , Fig. 2.2, such that

Φ = arg min
ϕ

D1(Iref(Ω), Itgt(ϕ(Ω))) (2.2)

where D1 is a similarity measure between two data sets and Ω is the domain of the ROI.

Domain Ω is a subset of R
2 or a subset of N

2 in the discrete framework.

For clarity, the reference data set Iref(Ω) will be denoted by R and the target data set

Itgt(ϕ(Ω)) will be denoted by Tϕ. Thus, R(i) and Tϕ(i), i ∈ Ω, represent corresponding samples

from their respective regions.
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Figure 2.2: Tracking is finding the geometric transformation of a ROI between two frames

In order to account for observation uncertainties, the geometric transformation Φ is ob-

tained at the minimum of a similarity measure expressed as a distance between two PDFs

Φ = arg min
ϕ

D2(fR, fTϕ
) (2.3)

where fR, respectively fTϕ
, is the PDF which generated the samples {R(i), i ∈ Ω}, respectively

{Tϕ(i), i ∈ Ω}. These PDF are unknown and need to be estimated from the samples R and

T . These PDF estimates from samples will be noted f̂R and f̂Tϕ
. Whenever appropriate, U

will be used as a generic notation for either R or Tϕ. Traditionally, U(i) is a triplet of color

components in a given color space. Some geometric information can be integrated to this

feature vector. Generally speaking, the samples will be regarded as elements of R
d.

The similarity measure D2 defined in the Mean-shift tracking problem [CRM00, Com03]

is based on the sample estimate of the Bhattacharyya coefficient,

E(ϕ) =

√

1− ρ(f̂Tϕ
, f̂R) (2.4)

where ρ is the sample estimate of the Bhattacharyya coefficient

ρ(f̂Tϕ
, f̂R) =

∫

R

√

f̂Tϕ
f̂R. (2.5)

PDFs are defined as a weighted histograms, the histogram construction is combined with

a Gaussian weighting of the samples according to their distance to the center of the ROI

[CRM00, PHVG02]. This Gaussian weighted histogram gives more importance to pixel at the

center of the ROIs than pixels on the borders which are less reliable. It can be also seen as a

radial layout constraint in the histogram construction.

2.1.3 Resolution: an example

Target localization is then performed by maximizing the Bhattacharyya coefficient (2.4)

between the reference distribution fR and the target distribution fTϕ
. This maximiza-

tion was efficiently performed through a gradient-ascent manner algorithm called mean-
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shift [CRM00]. The mean-shift procedure is an algorithm that converges to the closest mode

in the PDF [FH75].

It can be summarized as follows, let a nonparametric estimate of a PDF of this form

f̂K(x) =
1

Nhd

N∑

i=1

k

(∥
∥
∥
∥

x− xi

h

∥
∥
∥
∥

2
)

. (2.6)

where xi are the data, d is the dimension of data, k is a kernel profile (e.g. Gaussian), and

N is the number of pixels in the region R. The normalized gradient of this PDF leads to a

mean-shift expression.

∇̂fK(x)

f̂G(x)
=

2

h2.C
Mh,G(x) (2.7)

where G is another kernel with profile k′ depending on kernel K, C is a constant, Mh,G is the

sample mean shift vector

Mh,G(x) =

∑N
i=1 xig

(∥
∥x−xi

h

∥
∥

2
)

∑N
i=1 g

(∥
∥x−xi

h

∥
∥

2
) − x. (2.8)

The mean-shift expression on x is then a shift between a point x and a weighted mean in

a local window. Shifting x sequentially with the mean-shift expression, it converges to the

closest mode of the distribution.

This idea is applied in tracking. In order to maximize the Bhattacharyya coefficient (lin-

earized at each step), the location of the target is shifted according to the sample mean shift

thus converges toward the closest mode of the PDF. In tracking, this closest mode corresponds

to the spatial match between the reference and target distribution.

2.1.4 Challenges

The way to define PDFs (2.5) as weighted histogram has the advantage not to add any di-

mension to the feature space. However, it lacks generality. Geometry can instead be added

directly to the radiometric vector (or any other feature vector), e.g., in the form of the Carte-

sian coordinates of the pixels of the ROI [EDD03]. Independence between color and geometry

cannot be assumed in order to avoid to manipulate high-dimensional PDFs. Indeed, geometry

alone, seen as a random variable, follows a uniform distribution whether in the ROI or in the

target region and, therefore, brings no information. While considering color and geometry

jointly, simplification can still be achieved by approximating the PDFs with parametric laws.

In general, the main difficulties in the kernel tracking problem are to define a template

as accurate as possible in order to characterize the object of interest, but flexible enough in

order to accounts for deformation of this object. Other challenges are to define a meaningful

distance between two templates and minimize it toward the new location of the ROI under

various video difficulties (occlusions). This minimization can be performed with several and

robust algorithms, for instance complex derivative-free optimization algorithms, as the num-

ber of parameters of the transformations ϕ is in general limited (2 parameters for translation,

1 for scaling in most cases).

This is not the case in an other motion estimation problem, where the number of un-

knowns is much higher, optical flow.
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2.2 Optical flow

Optical flow is the apparent motion of image pixels or regions from one frame to the next

frame in a video sequence. The apparent motion representation is a vector field describing

the new location of pixels from the first frame in the second frame of the video. An illustration

on Fig. 2.3 shows two frames of a video sequence and a color representation of its estimated

flow field: each color represents a vector direction. Optical flow is useful in many applications

of image processing. In compression, rather than coding images twice, one can code the image

and the optical flow field needed to deduce the second image. In computer vision, optical flow

can be used for scene understanding, object tracking or segmentation of moving objects.

Figure 2.3: Two frames and color code for representing the flow field direction from an optical

flow benchmark [BRS+07], estimated optical flow with our method presented in chapter 7.

Challenging problem: non smooth field, diverging fields . . .

Optical flow estimation is a challenging problem for two reasons: on one hand, the visible

pixels in the first frame may not be visible in the second frame, this is the occlusion problem.

Indeed, some pixels in the second frame may have been hidden in the first frame by another

object or because it moved outside of image boundaries. Some other pixels may still be visible

in the second frame but may have changed of appearance (luminance value). On the other

hand motion vector can only be recovered in the direction of the image gradients, it is am-

biguous in other directions. This is the aperture problem: for example in homogeneous zones,

many motions vectors lead to pixels with similar appearance value. For these reasons, optical

flow estimation still remains a challenging problem.

Let us now present the optical flow estimation problem on a mathematical point of view.

2.2.1 Introduction

In the estimation of a dense flow field (one motion vector per pixel), there are as many un-

knowns as the number of pixels. Moreover, the solution of this estimation is not unique

because of the aperture issue, so the problem has to be constrained. It is ill-posed in the

sense of Hadamard, and needs to be regularized. On one hand, some methods keep a dense

vector flow field as unknown but impose smooth conditions on the flow field. These methods

are called global optical flow computation [HS81, WS01]. On the other hand, local methods

constrain the motion vector flow field to follow a parametric motion assumption (e.g. trans-

lation, affine, homography) on the whole image or on some parts of the image (blocks, re-

gions) [LK81, OB95, WK93]. Finally a method [BWS05] proposed to combine the advantages

of the two approaches : a dense flow field like in global methods is combined with the robust-

ness to noise of local methods. Another recent method propose to combine the latter approach

with a better model for statistics of the flow field [RB05].
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2.2.2 Optical flow formulation

Motion between two frames of a video In and In+1 can be computed by minimizing a func-

tion of the residual over the image domain D. At a pixel level, making the assumption of

brightness constancy, the residual is classically equal to the following residual

In(m)− In+1(m + v(m)) (2.9)

where In(m) is the feature of the image from the nth frame of a video sequence at pixel location

m, basically the luminance value, and v(m) = [v1(m), v2(m)] is the apparent motion between

In and In+1 at pixel location m (called optical flow). Ideally, this residual is equal to zero

up to some noise. The optical flow constraint ǫOFC is then obtained by a first order Taylor

expansion, assuming small displacements relatively to the image derivatives:

(Ix(m)v1(m) + Iy(m)v2(m) + It(m)). (2.10)

Optical flow can be retrieved by minimizing the following quadratic constraint

ǫOFC(m, v(m)) = (Ix(m)v1(m) + Iy(m)v2(m) + It(m))2 = w(m)TJ0(∇3I)w(m)) (2.11)

where Ix Iy and It represents the spatial and temporal partial derivatives of the image, where

w is the spatio-temporal optical flow w(m) = [v1(m) v2(m) 1] and where J0 = ∇I∇IT is a

matrix of first order derivatives: J11 = I2
x, J12 = IxIy . . .

In grayscale, this condition provides a single equation for two unknowns (the components

of v(m)) and, both in grayscale and color, it is likely that several pixels in In+1 have the same

value than In(m). As a consequence, motion estimation problem cannot be solved without

additional constraints, the solution needs to be regularized. A possible way to constrain the

solution is to suppose that motion is coherent with a chosen model inside a small neighbor-

hood [LK81, OB95, WK93]. For instance, one can assume coherence in a Gaussian window

by smoothing the square of optical flow constraint with a Gaussian kernel Kσ.

ǫLK(m, v(m)) = Kσ ∗ ǫOFC(m, v(m)) = w(m)TJσ(I)w(m)) (2.12)

where Jσ = Kσ ∗ ∇I∇IT

In order to define a global functional, the optical flow constraint ǫ then sums over D to a

cost functional EData:

EData(v) =

∫

D

Ψ(ǫ(m, v(m)))dm (2.13)

where ǫ is a residual function and can be either ǫOFC (2.11) or ǫLK (2.12), where Ψ(x2) is a

non quadratic penaliser.

A more common way to regularize the optical flow field is to impose smooth conditions on

the vector field. The regularization term then adds in the cost functional a penalty on the

gradient of the vector field.

ESmooth(v) =

∫

D

Ψ(|∇v1(m)|2 + |∇v2(m)|2) dm (2.14)

where Ψ(x2) is again a non quadratic penaliser. In addition, function Ψ has to be chosen

carefully to smooth the flow field with edge preservation. This point will be detailed in the

next chapter. Finally, motion field v is estimated by minimizing the following energy:

E(v) = EData(v) + αESmooth(v)

=

∫

D

Ψ(ǫ(m, v(m)))dm +

∫

D

Ψ(|∇v1(m)|2 + |∇v2(m)|2) dm (2.15)
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2.2.3 Resolution: an example

Euler Lagrange equations

As images and motion fields are presented as continuous functions. Calculus of variations is

used to find the minimum of this functional. The Euler Lagrange equation of energy (2.15)

reads

(Ψ′
D)(J12(m)v1(m) + J12(m)v2(m) + J13(m))− α div((Ψ′

S)∇v1(m)) = 0 (2.16)

(Ψ′
D)(J12(m)v1(m) + J22(m)v2(m) + J23(m))− α div((Ψ′

S)∇v2(m)) = 0 (2.17)

where (Ψ′
D) = Ψ′(wT (m)J(∇3I)(m)w(m)), J depends on the residual term used in the data

term, it is J0 with ǫOFC (2.11), or Jσ with ǫLK (2.12), and Ψ′
S = Ψ′(|∇v1(m)|2 + |∇v2(m)|2)

Minimization

Optical flows are in general solved as solutions of linear systems as it converges faster and

with more accuracy to a minimum than classical gradient descend. Therefore, a matrix A and

a vector B are defined:

A.

[

v1

v2

]

= B. (2.18)

These two matrices are defined from the Euler Lagrange equations (2.16) and (2.17). There-

fore, the derivative equations (2.16) and (2.17) needs to be linearized. Robust functions Ψ

(2.13) and (2.14) (and their derivatives) are in general nonlinear and are estimated using

fixed point iterations [BBPW04].

Linear system solution and stability

An iterative scheme, Successive Over Relaxation (SOR) (2.19), is then applied to solve the

linear system (2.18). SOR has convergence proofs for diagonally dominant matrices.

The scheme at row i and iteration l reads

vl+1
i = (1− w)vl

i + w
B(i)−∑j<i

j=1A(i, j)vl+1
i (j)−∑j=n

j=i+1A(i, j)vl
i(j)

A(i, i)
(2.19)

where w is the relaxation parameter 0 < w < 2, w = 1 is the Gauss-Seidel scheme.

The system ends up with:

vl+1
1i =(1− w)vl

1i + w

∑

j∈N−(i)

(Ψ′
S)l

i∼jv
l+1
1j +

∑

j∈N+(i)

(Ψ′
S)l

i∼jv
l
1j −

(Ψ′
D)l

i

α
(J12iv

l
2i + J13i)

∑

j∈N−
i ∪N+

i

(Ψ′
S)l

i∼j +
(Ψ′

D)l
i

α
J11i

(2.20)

vl+1
2i =(1− w)vl

2i + w

∑

j∈N−(i)

(Ψ′
S)l

i∼jv
l+1
2j

∑

j∈N+(i)

(Ψ′
S)l

i∼jv
l
2j −

(Ψ′
D)l

i

α
(J12iv

l
2i + J23i)

∑

j∈N−
i ∪N+

i

(Ψ′
S)l

i∼j +
(Ψ′

D)l
i

α
J22i

(2.21)

where N−
i denotes the neighbors j of i with j < i and N+

i the neighbors j of i with j > i,

Jabi are the component (a, b) of the structure tensor J(∇3I) = ∇3I∇3I
T at some pixel i, ǫ is
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ǫOFC, (Ψ′
D)l

i and (Ψ′
S)l

i∼j are discrete diffusity terms and are estimated through fixed point

iterations, more details can be found in [BBPW04].

Multi resolution

The classical optical flow formulation contains a first order Taylor expansion to linearize ǫ.

Thus, the flow must be small relatively to the image derivatives. A multi resolution scheme

is then chosen: the flow is computed on down-sampled versions of the image, respecting the

Shannon theorem. Instead of choosing the optical flow at lower resolution to initialize the

next resolution k + 1, we warp the image with the flow at resolution k and we initialize the

flow at 0: vk+1 = vk + dvk, where vk is the optical flow obtained form the lower resolution and

used to warp the image, then we are looking for a new flow dvk. A theoretical justification

can be found in [BBPW04]. The scheme at multiresolution level k, iteration l, and row i reads

vk,l+1
1i =(1− w)vk,l

1i + w

∑

j∈N−(i)

(Ψ′
S)l

i∼jv
k,l+1
1j +

∑

j∈N+(i)

(Ψ′
S)l

i∼jv
k,l
1j −

(Ψ′
D)l

i

α
(J12iv

k,l
2i + J13i)

∑

j∈N−
i ∪N+

i

(Ψ′
S)l

i∼j +
(Ψ′

D)l
i

α
J11i

(2.22)

vk,l+1
2i =(1− w)vk,l

2i + w

∑

j∈N−(i)

(Ψ′
S)l

i∼jv
k,l+1
2j

∑

j∈N+(i)

(Ψ′
S)l

i∼jv
k,l
2j −

(Ψ′
D)l

i

α
(J12iv

k,l
2i + J23i)

∑

j∈N−
i ∪N+

i

(Ψ′
S)l

i∼j +
(Ψ′

D)l
i

α
J22i

(2.23)

This scheme converges after several iterations to a realistic and smooth flow field.

2.2.4 Challenges

On the data term, two kinds of methods have recently enhanced the quality of optical flow

estimation.

The first one is based on the idea to constrain motion to be constant within a small neigh-

borhood. Bruhn et al [BWS05] minimize the quadratic form wT (m).Jσ(∇3I(m)).w(m) where

w(m) = [v(m) 1], Jσ′(∇f) = Kσ′ ∗ (∇3I∇3I
T ) is the structure tensor [BWS05]. This solution is

an integration of local methods [LK81] in global functionals [HS81]

The second one [BBPW04] is to combine other constraints than just brightness consis-

tency. The authors have added gradient consistency. The image features I are now multi

dimensional (I,∇I) and the different components in the data energy (2.13) are added using

different weightings.

Other works [RB05] modified the regularization term. They studied the statistics of opti-

cal flow fields and they deduced a prior that captures the rich statistics of optical flow patches

(3× 3 or 5× 5).

Numerical schemes involved here are complex due to the number of unknowns, they use

efficient numerical solvers with proofs of convergences under some conditions on the ma-

trix (diagonal dominance). These methods are numerically complex and need in general an

accurate knowledge of derivatives of the energies in variational problems. Last variational

problem presented is segmentation.
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2.3 Segmentation

2.3.1 Introduction

Segmentation problem is partitioning the image into semantic objects. The segmentation

problem is reduced in this thesis to the extraction from the background of one or several

objects of interests in an image or in a video sequence. By extraction, we mean that not only

the localization or bounding box of the object has to be recovered but the mask of the object

(a matrix of same size as the image containing 1 if a specific pixel belongs to the object or 0

if the pixel does not belong to the object). The most common application of segmentation is

scene compositing: the object is extracted for its original background and pasted on a new

background. The object or region of interest has no general definition and is application

dependent. In cinema, the object of interest can be an actor filmed in a studio, extracted and

pasted into an outside scene. In medical imaging, object of interest can be a tumor and one

must watch its evolution in size and in color.

Segmentation without priors on the object to find, is still a very challenging task. A more

realistic solution is to let an operator introduces priors about the object to segment. These

priors may be the location of the object, its color properties, its shape. An example is show

on Fig. 2.4, a user gives a box where he believes the object of interest is and the algorithm

extract the object based on this information.

Figure 2.4: Example on an image from a segmentation benchmark [MFTM01]. There is a

prior about the location of the object defined by a dashed box (middle image). The result of

the segmentation algorithm presented in chapter 8 is then able to extract the object of interest

from the image. Difficulties: color histogram of object and background overlaps, object is non

uniform in luminance. . .

2.3.2 Segmentation formulation

Segmentation methods can be classified in two categories. The first category detects high-

gradients or gradient discontinuities in the image. These methods are called contour-based

segmentation. One can for instance threshold the norm of the gradient or use more complex

filters (Sobel, Prewitt, Canny-Deriche filter). The second category is region-based segmen-

tation and computes region characteristics inside partitions. Methods can be for instance

thresholding, mean-shift analysis, region growing, watersheds or clustering (for instance k-

means).

The framework, used for contour-based and region-based segmentation, is active contours:

it initializes a deformable contour and computes an evolution force V to deform the contour

to a solution in order to minimize an energy. This is illustrated on Fig. 2.5.
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Figure 2.5: Active contour evolution: a deformable contour is initialized and evolves in order

to minimize an energy

Contour-based active contours

A contour-based energy minimizes a function over the contour Γ.

Eboundary(Γ) =

∫

Γ

k(s) ds (2.24)

where k(s) is a function called descriptor which has to be minimized over the contour.

Kass et al. [KWT87] proposed the first snake model composed of three terms. The two

first terms are rigidity terms which constrain the solutions of the contour. These terms are

regularization terms. The last term is the data term, it maximizes the gradient value over

the contour.

ESnake = α

∫ 1

0

|Γ′(s)|2 ds+ β

∫ 1

0

|Γ′′(s)|2 ds− λ
∫ 1

0

|∇I(Γ(s))| ds (2.25)

where α, β and λ are some weights which must be manually tuned.

Caselles et al. [CKS97] reformulated the problem as finding the curve of minimal geodesic

length in a Riemannian space whose metric is induced by image gradients. This reformula-

tion cancels the second rigidity term and added a decreasing function g of the gradient.

EGeodesic =

∫ 1

0

|Γ′(s)|2 ds+ α

∫ 1

0

g(|∇I(Γ(s))|)2 ds (2.26)

Region-based active contours

Rather than minimizing a function of the gradient of the contour boundary, region-based

active contours focus on the inner region Ω of contour Γ.

Eregion(Γ) =

∫

Ω

k(m,Ω) dm (2.27)

where k(m,Ω) is a region descriptor.
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In practice, this term is also combined with a boundary-based constraint, in particular, as

a means to obtain smooth contours

E(Γ) = Eregion + Eboundary. (2.28)

Among the first region-based energies, Mumford and Shah [MS89] have defined a func-

tional with two unknowns, a piecewise smooth representation u of an image I, for instance

an ideal noiseless version of the image. They defined the following functional:

EMS(u,Γ) =

∫

Ω

(I(m)− u(m))2 dm +

∫

Ω\Γ

|∇u(m)|2 dm + ν|Γ| (2.29)

Assuming the representation of the image u is piecewise constant and equal to the mean

µ over the region Ω Chan et Vese [CV01] have proposed the following energy

ECV (u,Γ) =

∫

Ω

(I(m)− µ(Ω))2 dm +

∫

Ω

(I(m)− µ(Ω))2 dm + ν|Γ| (2.30)

The regularization term on ∇u vanishes to zero as u is constant in Ω\Γ. The shape Γ that

minimizes the Mumford Shah energy is the null shape. In order to avoid this problem, a

region competition algorithm can be defined, minimizing an integral on the region Ω plus an

integral on the background Ω..

Statistical formulation in active contours were introduced by a Bayesian formula-

tion [ZY96]. The Bayes rule writes the probability of an unknown θ given an observation

I:

p(θ|I) =
p(I|θ)
p(I)

p(θ) (2.31)

p(θ|I) ∝ p(I|θ)p(θ) (2.32)

where the observation I is the image, and where θ is a partition of this image into two regions

θ = {Ω,Ω}.
This Bayesian formulation considers the object and the background as separated random

variables:

p(I|θ) = p(I|{Ω,Ω}) =
∏

m∈Ω

p(I(m)|Ω)
∏

m∈Ω

p(I(m)|Ω) (2.33)

as each pixel is considered as an independent realization of a random variable inside each

region. p(θ) is a simple prior on image partition as a penalty on contour length:

p(θ) = p({Ω,Ω}) = e−ν|Γ| (2.34)

Maximizing the log probability of a partition given an image p({Ω,Ω}|I) is equivalent to

maximize the log probability of an image knowing its partition plus the log probability of this

partition. The energy finally writes

EB(Γ) = −
∫

Ω

log(fΩ(I(m))) dm−
∫

Ω

log(fΩ(I(m))) dm + ν|Γ| (2.35)

where fΩ(I(m)) = p(I(m)|Ω) is the probability that one pixel I(m) belongs to a region Ω

equal to the probability of this pixel in the distribution f estimated over Ω. Choosing for fΩ

a Gaussian estimate, the formulation of this energy is equivalent to (2.30). Links between

deterministic and statistical methods will be treated in details in next chapter.
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Geodesic active regions model [PD02b] extended Bayesian formulations with a contour-

based term

EGAR(Γ) = −
∫

Ω

log(fΩ(I(m))) dm−
∫

Ω

log(fΩ(I(m))) dm + ν

∫ 1

0

|Γ′(s)|g(.) ds (2.36)

Finally, more recent approaches relaxed the underlying Gaussian assumption on the PDF

and estimates it with a nonparametric model. Nonparametric estimation as the energy are

based on information theory measures, mutual information [KFY+05] or entropy [HSD+06],

estimated through Parzen windowing techniques

ENP (Γ) = −
∫

Ω

log(fΩ(I(m))) dm−
∫

Ω

log(fΩ(I(m))) dm + ν|Γ| (2.37)

with

fΩ(u) =
1

|Ω|

∫

Ω

Kh(u− I(m)) dm. (2.38)

where Kh is a Gaussian kernel of standard deviation h.

2.3.3 Resolution: an example

In this section we will focus on the general derivation of a Bayesian segmentation problem

with nonparametric distributions as formulated in (2.37).

Shape derivative

Ignoring the region competition term, which derivative is similar, the energy (2.37) can be

simply written as

E(Γ) = − 1

|Ω|

∫

Ω

log fΩ(I(m)) dm (2.39)

where the distribution function fΩ is estimated non parametrically over Ω

fΩ(u) =
1

|Ω|

∫

Ω

Kh(u− I(m)) dm (2.40)

The definition of the shape derivative of (2.39) is based on a domain transformation T whose

amplitude continuously depends on a parameter τ such that T (Ω, τ = 0) is equal to Ω and

T (Ω, τ) is equal to Ω(τ) [DZ01, HR04, JBBA03, ABFJB03]. Functions of Ω, or Γ, can then be

rewritten as functions of τ . In this context, the shape derivative of

E(Γ) =

∫

Ω

G(Γ,m) dm (2.41)

is equal to

dE(Γ, F ) =
dE

dτ
(τ = 0) =

∫

Ω

∂G

∂τ
(τ = 0,m) dm−

∫

Γ

G(Γ, s) N(s) · F (s) ds (2.42)

where F is a vector field defined on Γ and linked to T , s is the arclength parameter of Γ,

G(Γ, s) is a short notation for G(Γ,Γ(s)), and N is the inward unit normal of Γ.

Detailed in appendix E, the shape derivative of (2.39) is equal to

dE(Γ, F ) =
1

|Ω|

∫

Γ

(

E(Γ)− 1 + log fΩ(I(s))

+
1

|Ω|

∫

Ω

Kσ(I(s)− I(m))

fΩ(I(m))
dm

)

N(s) · F (s) ds . (2.43)
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The shape derivative (2.43) has the following form

dE(Γ, F ) =

∫

Γ

((α(s)) N(s)) · F (s) ds = 〈α N,F 〉 (2.44)

where 〈, 〉 is the L2-inner product on Γ. Therefore, α N is, by definition, the gradient of (2.39)

at Γ associated with this inner product.

Based on the notion of gradient defined in (2.42), energy (2.39) can be minimized using a

steepest descent procedure in the space of contours. The following contour evolution process

is known as the active contour technique [CKS97, HR04]: an initial contour1 is iteratively

deformed in the opposite direction of the gradient until a convergence condition is met. The

evolution equation of the active contour is written as follows






Γ(τ = 0) = Γ0

∂Γ

∂τ
= (αc − α) N

(2.45)

where τ is the evolution parameter and αc has the same expression as α but is evaluated on

Ω. The convergence condition is αc − α = 0.

Implementation: explicit versus implicit representations

The explicit representation is the original formulation in active contours [KWT87], the active

contour is parametrized by a polygon or a spline driven by control points. The evolution

consists in applying a force (2.45) to the control points and rebuilding the spline.

Implicit representations were popularized by level sets [OS88]. Rather than considering

explicitly the curve as a spline, the active contour is a zero level of a function of higher dimen-

sion. A common choice for this function of higher dimension is the signed distance function

to the active contour.

These two representations of active contours have different benefits and drawbacks. The

explicit representation (splines) are computationally efficient as the evolution force is only

computed and applied on a few points of the curve, however topological changes like curves

auto intersection must be controlled by an additional algorithm [PBBU05]. The implicit rep-

resentation of active contours naturally adapts to topological changes, however, the evolution

force has now to be computed on all the points of the image or in a narrow band around the

evolving contour.

2.3.4 Challenges

Recent works [RBD03] proposed to add additional cues, such as the structure tensor, in the

probability model for the region. Additional shape priors [RP02, CKS03] were also intro-

duced, for instance as a distance to some reference shape. Other cues can be extracted from

motion [CS05, BHD+07]. For instance we defined an energy as a joint entropy between a

spatial term Es and a temporal term Et. The spatial term is basically an entropy on image

luminance, and the temporal term is on a residual en from the motion v(Γ) estimated of the

inner region defined by contour Γ.

E(Γ) = − 1

|Ω|

∫

Ω

log ft(en(v(Γ),m)) dm− 1

|Ω|

∫

Ω

log fs(In(m)) dm

= Et(Γ) + Es(Γ) (2.46)

1For example, a user-defined contour.
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This energy will be presented in Chapter 8.

2.4 Conclusion

In this chapter, three different variational problems have been presented with three different

resolutions. For example, tracking has a low number of unknowns, allowing a lot of flexibility

in the possibilities of resolution. In particular, statistical methods are largely used in state

of the art. On the other hand, optical flow has a high number of unknowns and its resolu-

tion often goes through derivative knowledge of the energy (Euler Lagrange equations if the

problem is formulated in the continuous domain). Deterministic energies with knowledge of

derivatives and convergence guaranties are then largely preferred in the literature to sta-

tistical energies. This comparison deterministic-statistical will be discussed in the following

chapter.

Another important point often encountered in these three variational problems is dimen-

sionality. Recent methods in the literature often integrate other features than just RGB color.

In order to keep generality, the notation u(m) for features will be preferred to I(m) for image

luminance.
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CHAPTER 3

DETERMINISTIC OR STATISTICAL

VIEWPOINTS

The previous detailed approaches can be classified in two different viewpoints: deterministic

and statistical. The energy can be formulated directly as a function of the data U (determin-

istic viewpoint)

θ̂ = arg min
θ
E(U, θ) (3.1)

or the energy is formulated as a function of a PDF built on the data fU (statistical viewpoint)

θ̂ = arg min
θ
E(U, fU , θ). (3.2)

For each viewpoint, methods can be classified in two groups. On one hand some methods

assume a model for the image and match the model by computing a small set of parameters

(e.g. parametric PDFs on the statistical viewpoint). On the other hand some methods gener-

ate their own model from the image (e.g. nonparametric PDFs on the statistical viewpoint).

The latter methods are more accurate in the general case as they do not assume a particular

model.

These two viewpoint exhibit strong connections, in the rest of this thesis the statistical

viewpoint will be preferred, as nonparametric statistics are largely studied.

This chapter is organized as follows: Section 3.1 presents parametric methods where

model is assumed and is adapted to the image only through the setting of a small set of

parameters. Section 3.2 presents nonparametric methods which learn their model from im-

age.

3.1 Penalizing functions and parametric statistics

3.1.1 Deterministic viewpoint: penalizing functions

An energy in a variational problem is defined as a (positive) penalizing function on a quantity

which is desired to be close to zero at the solution of the variational problem (and equal to

zero in the ideal case).

37
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An example of penalizing functions is in optical flow (2.15) where the optical flow con-

straint is desired to be zero (brightness consistency assumption). Another example with the

square function in segmentation is the Chan et Vese functional:

ECV (Γ) =

∫

Ω

(u(m)− µ(Ω))2 dm +

∫

Ω

(u(m)− µ(Ω))2 dx+ ν|Γ| (3.3)

This energy aims at finding a partition of the image into two piecewise constant regions.

Thus, it is expressed as a penalizing square function of the difference between a pixel feature

and the mean feature over its region. An ideal case is an image composed of two connected

piecewise constant regions. If Γ is the boundary between these two regions, the first two

terms would be equal to zero (the third is a constraint to promote smooth boundaries).

In the three image processing problems considered in the latter chapter, the classical pe-

nalizing function is the square penalizer ϕ(x) = x2 [HS81, CV01], essentially because it is

strictly convex and differentiable.

In some cases, function ϕ(x) = x2 is abandoned for two main reasons: first, used in a data

term ϕ is not robust to outliers, this reason is quite intuitive: the square function computed

on a single outlier will dramatically increase the global score of the energy. Second, used in

a regularization term, for instance a penalizing function on optical flow variations, ϕ(|∇v|)
will not respect image discontinuities and will blur contours. This reason is not straight

forward to understand and we show an example of Fig. 3.1. We show a discrete 1-D example

of a function θ = v with an edge. The classical regularization term is
∑
ϕ(|∇v|), if the ϕ

function is chosen to be the square function, the score on this discontinuity of 4 would be

16, if the discontinuity is smoothed, the score would be 4. The square function will favor

smooth contours. Replacing the square function by the absolute function, the discontinuity

score would be 4 on both examples. The absolute function will not favor smooth contours or

sharped contours. In the resulting diffusion equations, this behavior will be seen as isotropic

diffusion (non edge preserving) versus anisotropic diffusion (edge preserving).

Figure 3.1: Sharped or smoothed contours: a discrete 1-D example. Score of the function
∑
ϕ(|∇v|) on discontinuity with the square function on sharped contour: 16 and on smooth

contours: 4. The square function promotes smooth contours. Score of the absolute function on

sharped contours: 4 and on smooth contours 4. The absolute function does not promote smooth

or sharped contours.

Other robust functions are shown Fig. 3.2, they ideally follow these properties: they must

minimize effects of outliers, be differentiable and preserve discontinuities [BA96].
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Figure 3.2: Some robust functions used in the literature

3.1.2 Statistical viewpoint: parametric distributions

Historically, Maximum likelihood links ϕ-functions and parametric distributions.

Let {u(m; θ) | m ∈ D} be some values on the domain D of an image observed under some

unknown θ. Let us assume they are independent observations of a random variable XU

following some parametric distribution fU (u) = a exp(−|(u − µ)/b|α), where µ is the mean of

the distribution, where a is a normalization constant such as fU integrates to 1, b is a scaling

factor, and α is the shape of the distribution. Choosing α = 1 is the Laplacian distribution,

α = 2 is the Gaussian distribution, . . . . The joint probability density function of these n

independent random variables is

f(u1, . . . , un; θ) =
∏

m∈D

fU (u(m; θ)) (3.4)

= an
∏

m∈D

exp

(

−|(u(m; θ)− µ)/b|α
)

, (3.5)

The likelihood of a given observation U given θ writes:

L(θ) = K exp

(

−
∑

m∈D

∣
∣(u(m; θ)− µ)/b

∣
∣
α
)
)

, (3.6)

with some constant K > 0.

Maximizing the likelihood is then equivalent to maximizing the log likelihood as the log

is a monotonous increasing function.

LL(θ) = −
∑

m∈D

∣
∣
∣(u(m; θ)− µ)/b

∣
∣
∣

α

+ logK, (3.7)

Maximizing the log likelihood based on a parametric distribution exp(−ϕ) is then equiv-

alent to minimizing a penalizing function ϕ (Gaussian distribution and square function for

α = 2, Laplacian distribution and absolute value for α = 1).

Let us develop an example on the segmentation problem. As showed in Section (2.3),

Bayesian segmentation problem writes

EB(Γ) = −
∫

Ω

log(fΩ(u(m))) dm−
∫

Ω

log(fΩ(u(m))) dm + ν|Γ| (3.8)
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Let us now assume that f follows a monovariate Gaussian parametric distribution

EB(Γ) =

∫

Ω

1

2
log(2πσ2(Ω))+

(u(m)− µ(Ω)√
2σ(Ω)

)2

dm+

∫

Ω

1

2
log(2πσ2(Ω))+

(u(m)− µ(Ω)√
2σ(Ω)

)2

dm+ν|Γ|
(3.9)

Choosing a constant standard deviation σ =
√

0.5 this energy is equivalent to Chan et Vese

(3.3) up to some constant. Actually, many deterministic methods using penalizing functions

(e.g. absolute value) are equivalent to statistical methods with parametric statistics (e.g.

Laplacian distribution). This equivalence also applies for nonlocal filters and nonparametric

statistics.

3.2 Non local filters and statistical measures

We have presented methods where a model is chosen and fitted on a image through few

parameter setting (parameters of the robust penalizing function or of the statistical distribu-

tion). Alternative methods let the image generate its own model. These methods can again

be classified into deterministic and statistical view points.

3.2.1 Deterministic viewpoint: nonlocal filters

Neighboring filters have been introduced in [Yar85]. The idea is the following: let us consider

a noisy observation, in order to find the original value of a pixel ui, one can search all the close

values in the image (disregarding their geographic location) and average over these values.

Thus, the image generates its own model from non local self-similarities.

Later improvements constraint the search of these close values in a spatial neighborhood

[SB97]. The resulting debluring filter is then a mean over values, close in value u(m) − u(n)

and in position m− n.

SNF (u(m)) =
1

C(m)

∫

D

u(n)e−
|m−n|

σ2 e−
|u(m)−u(n)|

h2 dn (3.10)

where σ is a spatial filtering parameter, h is a feature filtering parameter, and D is the image

domain.

The nonlocal means algorithm follows the same idea, although self-similarities are not

computed between pixel values but between neighboring blocks [BCM05]

NL(u(m)) =
1

Z(m)

∫

D

u(n)e−
|m−n|

σ2 e−
|u(N(m))−u(N(n))|

h2 dn (3.11)

where N (m) is a spatial neighborhood around m, where Z(m) is a normalizing constant.

3.2.2 Statistical viewpoint: non-parametric distributions

On the statistical viewpoint, the model does not follow a parametric distribution but again

adapts to the data. A nonparametric distribution (e.g. histogram) is generated from the image

and this distribution is used as model. Examples of nonparametric estimation of densities are

numerous in image processing and some of them were presented along Chapter 2. In tracking

the Mean-shift algorithm [CRM00] builds a nonparametric distribution over a joint location-

color model of the object. In segmentation, nonparametric active contours [KFY+05, HSD+06]
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build color distributions of pixels inside and outside the active contour. In image denoising,

the UINTA model [AW06] computes a distribution over image patches and averaged to per-

form denoising. The same model was also applied to segmentation [ATW06]. The UINTA

model writes

u(m) = arg min
u(m)

H(u(m)|u(N (m))) (3.12)

where H is a conditional entropy estimated non parametrically in the space of neighborhoods

N (m).

Connections between deterministic and statistical viewpoints can again be made for in-

stance in image denoising. The nonlocal denoising algorithm detailed in [BCM05] which

learns image model through similarities of patches connects to the UINTA denoising algo-

rithm which learns a distribution of image patches [AW06].

The statistical viewpoint will be chosen in this thesis, as it is somehow more general and

extensively studied for image-generated models.

The critical problem is the construction of the image-generated model. An image offers a

limited number of samples to efficiently estimate a model. Moreover, these image-generated

models are often defined locally, decreasing the number of available samples, increasing spar-

sity, leading to poor model representation and performance drop. Let us present the model

construction in the statistical viewpoint: nonparametric estimation.
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CHAPTER 4

CLASSICAL NONPARAMETRIC

ESTIMATION

The ”nonparametric” label is not directly related to the number of parameters to estimate a

probability density function (PDF). In fact, in most of the ”nonparametric” PDF estimates,

there are parameters and as we will see in this section, some of them are critical. Actually,

the label ”nonparametric” means that the density estimate can asymptotically approximate

any continuous density. Consequently, the estimated PDF cannot be described in terms of a

small number of parameters, as opposed to, say, a Gaussian distribution defined by its mean

and variance.

4.1 PDF estimation

Let a sample U = {u1, . . . , un} be independent random observations of a random variable XU

taking values in a range of values ΩU , The size of the sample is noted |U | . As the actual PDF

fU of the random variable XU is unknown it is estimated empirically f̂U from the sample U .

4.1.1 Histogram estimation of densities

The most common way to estimate densities nonparametrically in many domains including

image processing is through histogram construction. The support of the distribution (esti-

mated for instance between the min and the max of the points in the sample) is divided into

cells Ch of size h also called bin width and of volume Vh. This construction is natural in image

processing as the samples (usually considered as the luminance values at each pixels) are

already sampled on a discrete grid. A natural choice to divide the space of possible values

into cells is then the discrete grid of possible luminance values: usually [1..255].

An histogram estimate of the density is constant within a cell and is given by the ratio

between the number of samples falling into the cell divided to the total number of samples,

relatively to the cell volume Vh.

f̂U (u) =
k(Ch(u))

|U |.Vh
(4.1)
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where k(Ch(u)) is the number of samples falling into the same cell Ch(u) than u. Histogram

construction has only one parameter, the bin width h. Albeit this estimator is non smooth at

cell boundaries, it is labeled nonparametric as it converges to the actual continuous density

f when the number of samples tends to infinity and the bin width h must tend to zero.

4.1.2 Kernel estimation of densities

In order to obtain smoother estimates of densities, a general class of density estimate called

kernel density estimate was introduced by Rosenblatt [Ros56] and Parzen [Par62].

f̂U (u) =
1

|U |
∑

ui∈U

Kh

(

u− ui

)

(4.2)

where Kh is a kernel function of size h. This kernel function must follow conditions like be

centered at 0, must integrate to 1, must have first moments vanishing followed by a non van-

ishing moment (called the order of the kernel). Upon the kernels satisfying these conditions,

one can think of Epanechnikov, Gaussian N (0, 1) or Uniform kernel U(0, 1). When using an

Uniform kernel, the density estimate, firstly introduced in the literature [FH51], is intuitive:

it approximates the density at sample point u with the relative number of samples k(u)/|U |
falling into the open ball of volume Vh centered on u (also called window or Parzen window).

f̂U (u) =
k(u)

|U |.Vh
. (4.3)

where |U | is the number of sample points in U . The main difference with histogram con-

struction (4.1) is that the kernels are placed over the samples, whereas in the histogram

construction, the kernels have fixed position over the centers of the cells.

h is the size of the window, also called bandwidth. Using a uniform kernel, h is basically

the radius of the window, whereas using infinite support kernels such as Gaussians, h is the

standard deviation of the kernel. The choice for this bandwidth h is critical. On one hand, it

must be large enough for small sized samples in order that windows contain enough samples

to accurately estimate the density. On the other hand, the bandwidth must be small enough

to capture details of the PDF. Additionally, the bandwidth must depend on the sample size

|U |. Indeed, as the density must approximate any continuous densities, the bandwidth must

tend to zero as the sample size tends to infinity.

Several methods exist to estimate an optimal h in the sense of some criteria for example

the square difference between the estimated distribution and the actual distribution (MISE),

these optimal estimates will be presented later in Section 4.1.4.

4.1.3 The multivariate case

In the multivariate case, the samples are not scalars but vectors. The kernel density estimate

f̂U uses multivariate d-dimensional kernels KH of bandwidth H (covariance matrix d × d, in

the Gaussian case).

f̂U (u) =
1

|U |
∑

ui∈U

KH

(

u− ui

)

(4.4)

If the multivariate kernel is separable, it can be written as a product of univariate kernels

f̂U (u) =
1

|U |
∑

ui∈U

d∏

j=1

Khj

(

u(j)− ui(j)
)

(4.5)
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For instance, in the Gaussian kernel case :

f̂U (u) =
1

n(2π)d/2|Σ|1/2

∑

ui∈U

exp
[

−1

2
(u− ui)

tΣ−1(u− ui)
]

(4.6)

Σ is a d× d covariance matrix.

4.1.4 Bandwidth selection

As mentioned before, the critical parameter is the bandwidth h or bin-size of the histogram.

Both in practice and in theory, the bin width must tend to zero when the number of samples

tends to infinity. Larger bandwidth will capture overall structure while smaller bandwidth

will get finer structure. Many techniques can make the selection of this parameter auto-

matic, one can assume the PDF to be Gaussian, and finds the optimal h in the sense of some

error criteria like Integrated Mean Squarre Error (MISE) or Asymptotic Mean Square error

(AMISE).

These automatic bandwidth selection are called plug-in rules:

• an histogram bandwidth selection rule is

ĥ = 3.5σ̂U |U |−1/3 (4.7)

• a Parzen bandwidth selection rule is the rule-of-thumb [Sil86]

ĥ = 1.06σ̂U |U |−1/5. (4.8)

As variance increases when the distribution is not unimodal a better estimate of the

bandwidth is defined with the interquartile range p̂

ĥ = 0.9min

(
p̂

1.34
, σ̂U

)

|U |−1/5 (4.9)

where σ̂U is the empirical standard deviation of the samples U and p̂ is the interquartile

range (difference between the third quartile and the first quartile). The 1.34 constant is

the interquartile range of a univariate normal kernel, standard deviation 1, it acts as a

normalization weighting.

• The multivariate rule of thumb depends on the dimension and reads

ĥ = σ̂U |U |−
1

d+4 . (4.10)

One can note that plug-in rules (4.8) and (4.9) are contradictory, as the constants in front

do not match. Actually, there are a lot of plug-in rules in the literature which give various

results depending on the hypothesis on the actual distribution, on the kernel choice for the

density estimate, on the error criterion, . . . Loosely speaking, most of plug-in rules for unidi-

mensional kernel estimates (4.8) and (4.9), have in common the decrease of the bandwidth

with respect to the number of samples at a exponential rate of −1/5, the constant in front

varies between 0.5 and 3

Another method for automatic bandwidth selection is the double kernel estimates, which

estimates the density with two different kernels (for instance Gaussian and Epanechnikov)

and tries to find the bandwidth which minimizes the distance between these two estimates.

Other methods use cross validation.
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Cross validation techniques or double kernel methods estimate the bandwidth h through

an external minimization procedure. These methods will not be considered in numerical

studies as they are more computationally intensive and not suitable for our image processing

applications as the density estimates are often used in an iterative loop.

Let us now make an illustration of the importance of the bandwidth on Fig.4.1, in the

univariate case, and Fig. 4.2, in the bivariate case. One can already observe that bandwidth

selection problem seems to get worse in high dimensions.

Figure 4.1: Kernel density estimation performance on a 1-D Gaussian mixtures for different

bandwidth. Actual distribution is in black, kernel density estimate is in blue and kernels are

in red. h is the plugin estimate using rule of thumb, from left to right, top to bottom: actual

PDF, PDF estimated with 0.2h, PDF estimated with h, PDF estimated with 5h.

The PDFs being estimated, some statistical measures can be evaluated on these PDFs,

and particularly entropy-based measures.

4.2 Entropy-based measures

4.2.1 Definition and estimation of entropy

Entropy is a concept larger than information theory and statistics. In information theory, it

has been introduced by Shannon as a code length in bits necessary to encode a variable. In

general, entropy measures the uncertainty in the values of random observations. Let XU be

a random variable taking values in a range of values ΩU with probability density function

fU . Shannon entropy H is defined as follows: let us consider a discrete random variable, for

instance we consider this discrete random variable as a quantization of a continuous random
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Figure 4.2: Multivariate kernel density estimation performance on a 2-D Gaussian mixtures

for different bandwidth. h is the plugin estimate using rule of thumb, from left to right, top to

bottom: actual PDF, PDF estimated with 0.2h, PDF estimated with h, PDF estimated with 5h

variable quantized with a step equal to ∆. In the discrete case, pU is the probability mass

function. Shannon entropy writes

H∆(XU ) = −
∑

i∈ΩU

pU (i) log pU (i) (4.11)

where pU (i) is the probability mass function of a value. It is expressed as the number of

occurrence k(i) of i in U : pU (i) = k(i)/|U |.
Shannon entropy has been extended to continuous random variables with the definition

of differential entropy. The differential entropy of the random variable XU is defined by

H(XU ) = −
∫

ΩU

fU (u) log fU (u)du (4.12)

measured in nats, if log2 is used instead of log, the unit is the bit.

According to [CT91], the link between the differential entropy and discrete entropy is

H∆(XU ) = −
∑

i∈ΩU

pU (i) log pU (i)

= −
∑

i∈ΩU

fU (i).∆log fU (i).∆

Since
∑
fU (i)∆ approximates

∫
fU (i) as ∆→ 0, they deduced

H∆(XU ) + log ∆→ H(Xu),as ∆→ 0 (4.13)

log ∆ is equal to the number of bits required to code the resulting discrete variable, e.g. if

the quantization step is ∆ = 1/256, −log2∆ = 8bits is the number of bits necessary to code 256

symbols.
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Estimation of entropy on a finite sample U of a random variable XU : u1,u2,...,un can be

performed with different estimates

• Integral estimate:

The integral estimate of entropy consists in reducing the support of ΩU to non zero

values and perform numerical integration.

• Resubstitution estimate:

Another estimate proposes to write entropy H as the expected value of the log density

function and to empirically estimate this expectation.

H(XU ) = −EU [log fU ] (4.14)

= − 1

|U |
∑

ui∈U

log fU (ui) (4.15)

Ahmad-Lin [AL76] used this estimate of entropy where f is estimated by kernel density

estimate.

• Other estimates of entropy:

Another estimate is the splitting data estimate: the sample is splitted into two sub-

samples, one is used to construct a kernel density estimate and the second is used for

empirical estimation of H as in the resubstitution estimates. This kind of estimate has

also been studied in image processing applications [VW97].

4.2.2 Estimation of entropy-based measures

Entropy estimation being presented one can use the estimator presented above for mea-

sures derived from entropy. For instance using cross entropy: Kullback-Leibler divergence

DKL(XT ,XR) or using joint entropy: Mutual information DMI(XT ,XR).

Let us consider two random variables XR, resp. XT , following a distribution fR, resp.

fT . Let us consider that both variables XR and XT have the same support Ω. The Kullback-

Leibler divergence is the information gain.

DKL(XT ,XR) =

∫

Ω

fT (u) log
fT (u)

fR(u)
du

= −H(XT ) +H×(XT ,XR) (4.16)

where H×(XT ,XR) is the cross entropy between two random variables XT and XR.

The mutual information is defined as

DMI(XT ,XR) =

∫

Ω

fT,R(u) log
fT,R(u)

fR(u)fT (u)
du

= H(XT ) +H(XR)−H(XT ,XR) (4.17)

where H(XT ,XR) is the joint entropy between two random variables XT and XR.

4.3 Conclusion

In this chapter, we have presented classical nonparametric estimation. The critical param-

eter in kernel density estimation is the bandwidth or standard deviation of the kernels. In
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particular, this deviation is hard to select as it should be large enough to take into account

sparsity of the data but small enough to capture peaks of distribution. Things get worse in

more than one dimension as sparsity of the data increases. This problem is informally called

the curse of dimensionality. As the dimension of the data space increases, the space sam-

pling gets sparser. Therefore, fewer samples fall into the Parzen windows centered on each

sample, making the PDF estimation less reliable. Dilating the Parzen window does not solve

this problem since it leads to over-smoothing the PDF. In a way, the limitations of the Parzen

method come from the fixed window size: the method cannot adapt to the local sample den-

sity. This problem will lead to poor estimation of PDFs and to poor estimation of statistical

measures estimated from these PDFs.
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Part II

High-dimensions in variational

problems: a new framework

51





CHAPTER 5

HIGH-DIMENSIONS AND

NONPARAMETRIC STATISTICAL

FRAMEWORK

While high dimensionality is a curse for statisticians, recent methods in the three varia-

tional problems defined in Chapter 2 often pointed higher dimensional data as a major way

of improvements. These higher dimensional data can be for instance color channels, but also

other information such as geometric layout or image gradients. As a reminder, a (statistical)

variational formulation of a problem in image processing writes

θ̂ = arg min
θ
E(U, fU , θ) (5.1)

The data values extracted from the images U are vector valued and its associated PDF fU

is high dimensional.

Due to nonparametric estimation problems in high dimensions mentioned in last chap-

ter, high-dimensionality is often circumvented by assuming data are parametric distributed,

or treated non parametrically by assuming independence between features, or by choosing a

large Parzen window size to overcome sparsity of the data thus oversmoothing the PDFs. Re-

duction dimension techniques, i.e. projecting high dimensional spaces on lower dimensional

spaces, is not satisfactory either. In fact, these techniques even if decreasing the number of

dimensions, do not reduce dimensions to 1 (depending of the algorithm of reduction and of the

data).

Throughout the three variational presented in Chapter 2, a nonparametric energy able to

deal with low to higher dimensional space without making assumptions on the underlying

PDF is of great interest. Such an energy should satisfy various properties in order to be used

in practice in variational problems. In object tracking, a high dimensional nonparametric en-

ergy without knowledge on the underlying PDF and non-differentiable is acceptable as these

steps can be avoided with gradient-free optimization algorithms (diamond search [ZM00],

particle filter [PHVG02]).

However, in some variational formulations such as segmentation, an explicit knowledge

of the PDF is necessary to compute the gradient (the active contour evolves by computing
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a probability on sample points on the contour). Moreover, in some other variational formu-

lations such as optical flow, the number of unknowns encourages to use a gradient-based

resolution and thus to use a differentiable statistical estimate.

Summarizing, a statistical framework proposed for variational problems must

1. be efficient to estimate nonparametric energies E(U, fU , θ) in high dimensions with few

and sparse data, in order to estimate energies in variational problems

2. have a PDF interpretation fU , in particular for applications in segmentation

3. be almost everywhere differentiable and its gradient∇θE(U, fU , θ) can be approximated,

in particular for applications in optical flow.

Last but not least is computational efficiency as it is to be used inside numerical schemes

(with possible high number of iterations).

5.1 Methodological contributions of this thesis

The methodological contributions rely on new general framework, called k-th nearest neigh-

bor (kNN) framework, to solve variational problems defined with information theory on high

dimensional data.

This thesis propose a new class of entropy-based measure estimates and their connections

with locally density functions estimates as well as approximations of their gradients. We

exhibit links between some well-known estimates (kNN estimate of PDF, kNN Mean-shift)

and new ones (kNN estimate of entropy) in the scope of applications in variational problems.

These estimates were proposed in very different contexts and applications and a unification

was, to the best of our knownledge, never proposed in the literature.

1. The kNN estimate of entropy was introduced in the statistical community by [KL87,

GLMI05, LPS05] and, is to the best of our knowledge, our contribution in the image

processing community [BWD+06, BDB07]. Other closely related kNN estimates of en-

tropy were also introduced [CH04].

2. The kNN Mean-shift was introduced in the literature by [FH75] and in the image pro-

cessing community by [GSM03, Com03]. However, it was used as a clustering algorithm

and not as a general tool to differentiate entropy-based energies.

3. The kNN estimate of PDF was introduced in the statistical community by [LQ65] and

in the image processing community by [Com03, MP04, TPJ05]. This PDF estimate will

establish the link between the different kNN estimates.

This thesis links all these estimates as a general kNN framework to solve variational

problems.

These estimates are adapted from low to high dimensions and for variational problems as

it can estimate energies as well as their gradient. An example of performance of this estimate

w.r.t the number of samples and dimension of the data is shown on Fig. 5.1, a more complete

study is in Appendix A. This good behavior in high dimensions will allow us to generalize

variational problems to high dimensional spaces, in particular image spaces better adapted

to capture natural image statistics.
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Figure 5.1: kNN framework performance example: comparison of Kullback-Leibler diver-

gence estimation between Gaussians using Parzen and kNN. Theoretical value: dashed black

line; Parzen-based estimation: green line; kNN-based estimation: light blue line. (in lexico-

graphical order) Fixed sample size (1000) and varying dimension; Fixed dimension (5) and

varying sample size.

Last but not least, as these estimates are implemented on graphic cards (GPU), it is com-

putationally efficient. This point is important for variational problems as the resolution often

goes through iterative schemes which required a lot of energy and gradient computations.

Finally, this thesis proposes the following methodological contributions for variational

problems

• the definition of variational problems based on information theory,

• the generalization to high dimensional data in order to capture natural image statistics,

• an efficient statistical and variational framework to deal with these measures between

high dimensional data

Section 5.2 presents the generalization to high dimensional feature space and its utility in

image processing, classical nonparametric estimation , presented in Chapter 4, suffers from

high dimensions from its fixed size bandwidth. Let us now present in Section 5.3 some locally

adaptive PDF estimates and how they connect to a new class of efficient statistical measures

estimates in Section 5.4, as well as approximations of their gradients in Section 5.5.

5.2 New possibilities with high dimensions

High dimensionality in nonparametric estimation starts from dimensions 3 or 4 as classical

nonparametric estimate performances drop [TS92]. High dimensionality with this meaning

thus starts with RGB color channels, however higher dimensions are also considered.

High dimensions in image processing are present by nature or by necessity, by nature as

the images acquired from the acquisition process are often vector-valued and can be high di-

mensional: satellite imaging, medical imaging, for instance diffusion tensor imaging or high

angular resolution diffusion imaging. By nature also because the similarity measure can in-

troduce high dimensions such as mutual information or geometric constraints. By necessity

as it is sometimes required to add cue information in the data such as spatial filters structure
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tensor [RBD03], gabor filters [PD02b], wavelets coefficients, patches of images neighborhoods,

or temporal filters such as motion[BRDW03, BP07]. Indeed adding dimensions was pointed

as a challenge and a major way of improvements in the literature of the three mentioned vari-

ational problems: tracking [EDD03, BP07], optical flow [BBPW04, BWS05, RB05] and seg-

mentation [RBD03, BRDW03] but also in other problems such as denoising [BCM05, AW06].

In general, high dimensions are required to better characterize a sample point (pixel) on

an image. A pixel can be characterized as a luminance value, a position on the image, a

texture (considering a patch surrounding the point).

As an example let us consider an image, a pixel located at position (x, y) in the image has

the feature value u(x, y), for example luminance or RGB color values. An illustration on the

500 nearest neighbors of a sample point on image “Lena” on Fig. 5.2(a) for various spaces is

presented. One canonical choice of space is the coordinates of the images x and y, thus the

nearest neighbors in this space would be the spatial neighbors Fig. 5.2(b). Another choice will

consider similar pixels with very different feature values u, disregarding its spatial location

Fig. 5.2(c). A compromise is to consider the higher dimensional space of joint feature and

spatial neighbors (x, y, u(x, y)) Fig. 5.2(d) with some weighting between both.

(a) a sample point on Lena (b) (x, y)-neighborhood (c) (u(x, y))-neighborhood

(d) (x, y, u(x, y))-neighborhood (e) (x, y, u(x, y),∇u(x, y))-

neighborhood

(f)

(u(x, y), u(x+1, y), u(x, y+1), ..., x, y)

9x9 patch-neighborhood

Figure 5.2: Various neighborhoods types on Lena

One can validate this idea of high-dimensional space with its asymptotic behavior. Let us

consider the weighting α between spatial information and feature value (αx, αy, u(x, y)). As

α tends to infinity the nearest neighbors of (αx, αy, u(x, y)) are the spatial neighbors of (x, y)
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Fig. 5.2(b). As α tends to 0, the spatial features have no influence and the space is the feature

space Fig. 5.2(c). A reasonable choice is α = 1, a compromise between these two classical

spaces Fig. 5.2(d). One other possibility to better describe the sample is to add a gradient

information (x, y, u(x, y),∇u(x, y)) Fig. 5.2(e). Pixels in the neighborhood will have a gradient

in the same directions than the sample point pixel (towards the bottom right of the picture).

This high dimensional space also captures local patterns and structure and it models

spatial-features interactions. This idea also follows the same behavior as nonlocal filters,

presented in Section 3.2, where self-similarities are searched in feature |u(n) − u(m)| and

spatial |n−m| spaces

SNF (m) =
1

C(m)

∫

D

u(n)e−
|n−m|

σ2 e−
|u(n)−u(m)|

h2 dn (5.2)

An extension would be naturally to extend this idea to neighboring patches neighboring

patches with spatial constraints Fig. 5.2(f) as performed in image denoising [BCM05]. These

kinds of spaces have not been studied in this thesis and are described in the perspectives

Chapter 10 of this thesis.

The utility of high dimensions in image processing being motivated, let us now develop on

nonparametric estimation dedicated to high dimensions.

5.3 Probability density function estimates

Regarding the Parzen estimate, the fixed bandwidth has the default to oversmooth peaks

and undersmooth tails of distributions. This problem gets worse in high-dimensions as large

bandwidth must be chosen to properly estimate PDF tails (present in majority in high dimen-

sions), and small bandwidth must be chosen to properly estimate PDF peaks (rare but very

informative). Nor of these solutions are satisfactory as large bandwidth will oversmooth PDF

peaks while small bandwidth will undersmooth PDF tails. In order to overcome this problem,

we present two classes of locally adaptive PDF estimates: balloon estimate and sample point

estimate.

Let us remind the classical multivariate Parzen PDF estimate

f̂U (u) =
1

|U |
∑

ui∈U

KH(u− ui) (5.3)

where K is a kernel function of bandwidth H. As a reminder of last Chapter 4, K can be a

multivariate Gaussian and H is its d× d covariance matrix.

Illustrations on fig 5.3 shows the fixed bandwidth Parzen estimate and two locally adap-

tive estimates. The balloon estimate will be detailed in Section 5.3.1 and the sample point

estimate will be detailed in Section 5.3.2.

5.3.1 Balloon estimate

The balloon estimate can be written in a similar form by replacing the fixed size kernel band-

width H by a varying kernel bandwidth H(u) (illustrated on Fig. 5.3(b), estimation point u is

a dashed line).

f̂U (u) =
1

|U |
∑

ui∈U

KH(u)(u− ui) (5.4)
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where K is a kernel which must follow the same properties as the kernel in classical density

estimate. Looking at point u, this estimator still places a fixed-size kernel H(u) on each

sample point ui, but size of the kernels placed on each sample points changes with u.

One can choose for K a uniform kernel U(0, 1) on the unit sphere. The kernel size variabil-

ity is driven by H(u) = ρk(U, u).Id, where ρk(U, u) be the distance from u to its k-th nearest

neighbor (kNN) among the data set U , and Id is the d× d identity matrix. This estimate was

early presented in [LQ65]:

f̂U (u) =
k

|U |.Vk
=

k

|U |.vdρd
k(U, u)

(5.5)

where Vk is the ball volume of radius the distance to the k-th nearest neighbor ρk(U, u) equal

to vd.ρ
d
k(U, u): the volume vd of the unit ball in R

d times the distance to the k-th nearest

neighbor powered to dimension d.

An intuitive comparison between balloon and Parzen estimates can be made. In the

Parzen estimate (4.3), the density of U at sample u is related to the number of samples

falling into a window of fixed size h centered on the sample. The kNN balloon estimate (5.5)

is the dual approach: the density is related to the size of the window h necessary to include

its k nearest neighbors. The bandwidth “inflates” until it contains k points in the window,

gaining the name of balloon estimate.

Although the distance is usually computed in the Euclidean sense, other distances can be

used. Let us remind that the distances are between points R
d, where d is the dimension of

(a) Fixed (b) Balloon (c) Sample-point

Figure 5.3: Comparison of kernel-based PDF estimates: fixed-kernels and two local adaptive

kernels balloon kernels and sample point kernels

Figure 5.4: The size of the kernel is equal to the distance to ρk the k-th nearest neighbor. Left:

k=5, Right: illustration on a point cloud, estimation of the probability with k=50.
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the data.

One of the main advantages of balloon estimates, a part from its locally adaptive property,

is that the choice of k is much less critical than the choice of the window size in the Parzen

estimate. Actually, when the balloon approach is used for parameter estimation, k must be

larger than the number of parameters and such that k/|U | tends towards zero when both k

and |U | tend toward infinity. A typical choice is k =
√

|U |.
However, this estimator does not integrate to one, in particular in one dimension, outside

of the support defined by sample U , it has a decreasing speed of 1/x which yields high order

bias in the tails. However, it behaves better in high-dimension, typically for d > 3 [TS92].

A second method to introduce local adaptivity in the kernel density estimate is the sample

point estimate

5.3.2 Sample-point estimate

This estimator can also be written as a kernel density estimate (5.3), where the local adap-

tivity depends on the sample point H(ui) (illustrated on Fig. 5.3(c))

f̂U (u) =
1

|U |
∑

ui∈U

KH(ui)(u− ui). (5.6)

This estimator still places a kernel on each sample point, but the variable size of the

kernels placed on each sample points, but fixed for any estimate point u, gaining the name of

sample point estimate. For comparison, the balloon estimate at point u uses the same kernel

on all the sample points ui, but this unique kernel size is changing with u.

A typical choice for choosing the bandwidth variability is H(ui) ∝ f(ui)
−1/dId. Choosing

the Loftsgaarden estimate [LQ65] to estimate f , this choice is equivalent to take H(ui) =

ρk(U, ui) the distance to the k-th nearest neighbor. Other works suggest to take the Abramson

square rule [Abr82], H(ui) = h.f(ui)
−1/2, regardless of the dimension d.

In a simple form, choosing for kernel the uniform density and for H(ui) the distance to the

k-th nearest neighbor to ui, the kNN sample point expression writes

f̂U (u) =
1

|U |
∑

ui∈NSP (u)

1

vd ρd
k(U, ui)

. (5.7)

where NSP (u) = {ui ∈ U : ‖u − ui‖ ≤ ρk(U, ui)} is the kNN sample point window: the set of

points which allow u in their k first nearest neighbors.

If we compare the two density estimates the main advantage of balloon over sample point

estimate is that it has the simplest PDF expression based on kNN (5.5), it is never equal

to zero and it is efficient in high dimensions [TS92]. The main drawback is that it does not

integrate to one, thus can lead to bias in the statistical measure estimates. However, unbiased

expression of these measures will be derived in the next section.

5.4 Statistical measure estimates

These estimates of density are well known and currently used in statistics and in image

processing [Com03, TPJ05]. However, we propose to use the balloon estimate in its simplest

kNN form (5.5), to define a class of efficient entropy-based measures estimates.
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5.4.1 Estimation of entropy

The Ahmad-Lin estimate [AL76] is an empirical estimate of entropy where the distribution

is estimated non-parametrically using kernel density estimation.

ĤAL(XU ) = −EU [log f̂U (u)] = − 1

|U |
∑

ui∈U

log f̂U (ui) (5.8)

where f̂U is estimated through kernel density estimation (5.3) of actual PDF fU . Approxima-

tion (5.8) converges in mean to the differential entropy of U . Note that an entropy estimate

following the same fashion has later been proposed in [VW97]. However, this estimate pro-

posed to split the data points, one half pour the PDF estimate, one half for the empirical

entropy estimate. This Ahmad-Lin estimate allows to estimate entropy and the PDF with all

the samples available.

Plugging the kNN form of balloon estimate (i.e.with uniform kernels (5.5), [LQ65]), in the

Ahmad-Lin estimate (5.8), we have

H(XU ) = −
∫

ΩU

fU (u) log fU (u)du

= −EU [log fU (u)]

ĤAL(XU ) = − 1

|U |
∑

ui∈U

log f̂U (ui)

ĤkNN−Biased(XU )
kNN
= − 1

|U |
∑

ui∈U

log
k

|U |vdρk(U, ui)d

= log(vd|U |)− log(k) + d µU (log ρk(U)) (5.9)

where µU (a) is the mean of a for all the values it takes over the sample set U

µU (a(u)) =
1

|U |
∑

ui∈U

a(ui). (5.10)

Informally, the main term in estimate (5.9) is equal to the mean of the log-distances to the

k-th nearest neighbor of each sample (Fig. 5.5).

Figure 5.5: Entropy is a function of the mean of log-distances to the k-th nearest neighbor.

Left: k=2, Right: illustration on a point cloud k=3.
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Figure 5.6: Entropy is a function of the length of the k-nearest neighbor graph (k=3 on this

example, each point is connected to its 3-nearest neighbor), this graph follows the underlying

manifold as shown on some examples

Examples of k-nearest neighbors graphs are showed on some point clouds (Fig. 5.6). Visu-

ally, the graphs appear to follow the underlying manifold.

Moreover, one can note that expression (5.9) does not estimate explicitly the PDF fU ,

entropy is estimated directly from the data. This estimator, relying on an efficient locally

adaptive density function estimate is thus well adapted for high-dimensions.

However, this estimate of entropy is biased, the reason being that the balloon estimate

does not integrate to 1. Yet, we connect it with the Leonenko estimate of entropy [KL87,

GLMI05, PLS07]. They defined a consistent and unbiased entropy estimator. First proposed

for k = 1 [KL87]. Their work was extended to k > 1 with a proof of consistency under weak

conditions on the underlying PDF [GLMI05]:

ĤkNN(XU ) = log(vd (|U | − 1))− ψ(k) + d µU (log ρk(U, u)) (5.11)

where ψ is the digamma function Γ′/Γ. One can note the bias correction term ψ(k) replacing

log k and that ψ(k) tends to log k when k tends to infinity. Another difference is the log(|U |−1)

instead of log |U |. It comes from, whether or not, the k-th nearest neighbor of a sample point

includes or excludes the sample point itself. The bias problem of (5.9) is then only present for

low number of samples |U | (as typically k =
√

|U |) and vanishes when the number of samples
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grows.

The estimate (5.11) will show very good performance in both low and high dimensional

spaces, on Gaussian-distributed data (see Appendix A) and on natural image data, and will

be the entropy estimate used in this manuscript.

5.4.2 Estimation of entropy-based measures

This type of differential entropy estimate can be extended to any entropy-based measures:

Kullback-Leibler divergence, Mutual information, . . .

kNN estimation of Kullback-Leibler divergence

In a similar way, an estimate of Kullback-Leibler divergence using a kNN balloon estimation

of density can be written as

D̂KL(XT ‖XR) =

∫

ΩT

fT (t) log
fT (t)

fR(t)
dt

= ET

[
log fT (t)

log fR(t)

]

=
1

|T |
∑

ti∈T

log f̂T (ti)− log f̂R(ti)

kNN
=

1

|T |
∑

ti∈T

log
k

|T |vdρk(T, ti)d
− log

k

|R|vdρk(R, ti)d

= log
|R|
|T | + d µT (log ρk(R, t))

−d µT (log ρk(T, t)). (5.12)

This Kullback-Leibler divergence estimator can be also be retrieved by decomposing it into

a sum of two entropies, the classical differential entropy and the cross entropy:

D̂KL(XT ‖XR) =

∫

ΩT ∪ΩR

fT (t) log
fT (t)

fR(t)
dt

=

∫

ΩT

fT (t) log fT (t)dt−
∫

ΩT ∪ΩR

fT (t) log fR(t)dt

= −H(XT ) +H×(XT ,XR) (5.13)

kNN estimation of cross entropy

A similar expression can be then retrieved using the Leonenko estimate of entropy (5.11).

Cross entropy (also called relative entropy or likelihood) of two sample sets R and T can be

estimated by

Ĥ×
kNN(XT ,XR) = log(vd|R|)− ψ(k) + d µT (log ρk(R)). (5.14)

Note again that estimate (5.14) does not depend on any PDF and that its main term is the

mean of the log-distances to the k-th nearest neighbor among the samples of R of each sample

of T . Since a sample ti of T does not belong to R, the search for the k-th nearest neighbor

excluding ti itself does not in fact exclude any sample of R. This is why |R| appears in (5.14)

whereas |T | − 1 appears in (5.11).
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The expression of Kullback-Leibler can be retreived in (5.12).

D̂KL(XT ‖XR) = H×(XT ,XR)−H(XT ) (5.15)

kNN
= log

|R|
|T | − 1

+ d µT (log ρk(R, t))

−d µT (log ρk(T, t)). (5.16)

It has also been proven that this estimator is consistent and asymptotically unbiased [PLS07].

The classical estimate of Kullback-Leibler divergence has many numerical instabilities aris-

ing from the division by 0 or log of 0, for instance when the two PDFs have different supports.

Implicitly relying on a balloon estimate of PDF, these numerical instabilities are not present

in this kNN estimate as the PDFs are never equal to zero but are vanishing at a decreasing

speed of 1/x.

This estimate will also show great performance in both low and high dimensional spaces,

on Gaussian-distributed data (see Appendix A) and on natural image data, and will be the

Kullback-Leibler estimate used in this thesis. Finally, one could derive other entropy-based

measures, but this will not be used in this manuscript and can be pointed as perspectives.

kNN estimation of Jensen-Shannon divergence

Kullback-Leibler divergence is not symmetric, an alternative is the Jensen-Shannon diver-

gence: let M = T + R be a mixture of the two distributions, Jensen-Shannon divergence

writes:

DJS(XT ‖XR) =
1

2
DKL(T‖M) +

1

2
DKL(R‖M)

kNN
=

1

2
(log

(|M | − 1)(|M | − 1)

(|T | − 1)(|R| − 1)
+ d µT (log ρk(M, t)) + d µR(log ρk(M, t))

− d µT (log ρk(T, t))− d µR(log ρk(R, r)))

kNN
=

1

2
(logC + d µM (log ρk(M,m))− d µT (log ρk(T, t))− d µR(log ρk(R, r)))(5.17)

where |M | = |R|+ |T | and C = (|M |−1)(|M |−1)
(|T |−1)(|R|−1)

We can repeat the same process on estimation of mutual information. Mutual information

can be decomposed in a sum of joint entropy and differential entropy.

kNN estimation of joint entropy

Let U be the joint system of the two random variables {T,R} of dimension 2d. Using the same

framework, one can estimate the joint entropy as :

Ĥ+
kNN(XT ,XR) = log(v2d|R|)− ψ(k) + 2d µU (log ρk(U, u)). (5.18)

kNN estimation of Mutual Information

Mutual information can be written as

I(XT ,XR) = H(XT ) +H(XR)−H(XT ,XR)
kNN
= ĤkNN(XT ) + ĤkNN(XR)− Ĥ+

kNN(XT ,XR) (5.19)

A study showing that these estimates outperform classical Parzen estimates on both uni-

variate and multivariate Gaussian mixtures is available in Appendix A.
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5.5 Statistical measures differentiation using mean-shift

The new class of similarity measures introduced in the last section must be differentiated in

order to be used in practice in gradient-based variational problems, in particular optical flow

(Section 2.2). As these measures are entropy-based, the difficulty is to estimate the gradient

∇ log f̂U (.) = ∇f̂U (.)/f̂U (.), also called the normalized gradient of a PDF.

The kNN PDF estimates f̂U are differentiable almost everywhere. As an illustration let us

choose k = 1, the PDF estimate is differentiable everywhere, except on the Voronoi diagram

of the points, as the nearest neighbor changes. The Voronoi diagram is an hypersurface in

the chosen space of measure zero.

Mean-shift is a method to efficiently estimate this normalized gradient while classical

estimates fail in general when f vanishes (division by zero). Fukunaga [FH75] remarked

that one can write a simple expression of ∇f/f by combining two different kernel density

estimates for f . The approach focused on a Epanechnikov kernels as their gradients are

Uniform kernels and thus leads to a simple and intuitive normalized gradient estimation,

detailed in Section 5.5.1. It was latter generalized to the general class of kernels and applied

in image analysis by Comaniciu [CRM00, Com03], detailed in Section 5.5.2.

5.5.1 Fukunaga approach

Let f be a classical Parzen kernel density estimate, it can be written:

f̂(u) =
1

|U |.hd

∑

un∈U

K

(
u− un

h

)

(5.20)

where K is a kernel function, h is the bandwidth of the kernel. We consider the bandwidth to

be fixed-size and will extend to variable bandwidth later in this chapter. The gradient of the

kernel density estimates reads

∇uf̂(u) =
1

|U |.hd+1

∑

un∈U

∇K
(
u− un

h

)

(5.21)

Fukunaga [FH75] remarked that using a simple Epachnikov kernel:

K(X) =

{

c(1−XXT ) if 0 ≤ XTX ≤ 1

0 if XTX > 1
(5.22)

where c is a normalization constant, the gradient expression simply writes

∇f̂(u) =

(
k(u)

|U |.Vh

)
d+ 2

h2
Mh(u) (5.23)

where Vh = vd.h
d is the volume of the Parzen window of size h in dimension d, d is the

dimension of the features, k(u) is the number of samples falling in the Parzen window of u,

and where Mh is the sample mean shift:

Mh(u) =
1

k(u)

∑

un∈Nh(u)

(un − u) = [µh(u)− u] (5.24)

where Nh(u) is the Parzen window centered on u, µh(u) is a mean over the samples falling

into the Parzen window Nh(u) centered on u.
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One can recognize in (5.23), the Parzen approximation
k(u)

|U |.Vh
of f with Uniform kernels

(4.3). Thus, one can obtain a simple normalized gradient expression mixing two different

kernel density estimates, one with Epanechnikov kernels, the second with Uniform kernels:

∇f̂(u)

f̂(u)
=
d+ 2

h2
Mh(u). (5.25)

Informally speaking, the normalized gradient of a PDF at some point can be estimated

by computing the shift between this point and the mean over the samples falling into the

Parzen window centered on this point. The sample mean-shift (5.24) is here computed using

a Parzen fixed-size bandwidth estimate of f but Fukunaga also remarked that mean-shift

expression is also valid for variable bandwidth (kNN window). An example of mean-shift in

a kNN window is presented on Fig. 5.7.

Figure 5.7: Left: Illustration of Mean-Shift at a sample point on a point cloud, expressed as

the shift (red) between a point and the centroid (green) in its kNN window (blue), right: Zoom

on the Mean-Shift

Using a kNN estimate of (5.24), sample mean-shift writes

Mk(u) =
1

k

∑

un∈Nk(u)

(un − u) = [µk(u)− u] (5.26)

where k is for k-th nearest neighbor (equal to the number of un falling in the kNN window of

u), Nk(u) the kNN window centered on u i.e. containing the k nearest neighbor of u, µk(u) is

a mean over the k samples falling into the kNN window centered on u

Finally, the kNN mean-shift estimates reads

∇f̂(u)

f̂(u)
=

d+ 2

ρ2
k(U, u)

[µk(u)− u] (5.27)

Summarizing, Fukunaga remarked that mixing two different kernel density estimates,

one with Epanechnikov kernels, the other with Uniform kernels, one can obtain a simple

expression of the normalized gradient. Generalization has been done in [Com03], where the

authors remarked that this trick is valid for a general class of kernels K. Kernel K has

a profile k 1 and its normalized gradient expression can be simplified by mixing it with a

kernel density estimate G of kernel profile g, where g(x) = −k′(x). This work confirmed what

Fukunaga found as the gradient of the Epanechnikov kernel profile is the Uniform kernel

profile. Let us present this generalization.

1K(x) = k(‖x‖2)
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5.5.2 Generalized Approach

variable bandwidth mean-shift with any differentiable kernels

In dimension d, a kernel density estimate can be written as

∇f̂(u) =
1

|U |
∑

un∈U

k

(∥
∥
∥
∥

u− un

hn

∥
∥
∥
∥

2
)

(5.28)

where k is a kernel profile, hn is the bandwidth which depends on sample point un (sample

point estimate) and can also depend on sample u (balloon estimate). The generalized Mean-

shift expression writes:

∇f̂(u)

f̂(u)
= (d+ 2)h−1(u)M(u) (5.29)

with

M(u) = h(u)
∑

ui∈U

wih
−2
i ui − u (5.30)

h−1(u) =
∑

ui∈U

wi(u)h
−2
i (5.31)

and

wi(u) =

h−d
i g

(∥
∥
∥

u−ui

hi

∥
∥
∥

2
)

∑

un∈U h
−d
n g

(∥
∥
∥

u−un

hn

∥
∥
∥

2
) (5.32)

where g is a kernel profile derivated from k, g(x) = −k′(x).

Restriction to Epanechnikov kernels

Restricting k to Epanechnikov profile as performed by [FH75]:

k(x) =

{

1− x if 0 < x < 1

0 if x > 1
(5.33)

the gradient profile g(x) is piecewise constant.

Let us introduce generality on the variability of the bandwidth. The three different neigh-

borhoods, introduced and compared in Section 5.3, corresponding to fixed and variable band-

width PDF estimates, read

• The fixed-size neighborhood

NF (U, u) = {un ∈ U : ‖u− un‖ ≤ h} (5.34)

• The kNN balloon neighborhood

NB(U, u) = {un ∈ U : ‖u− un‖ ≤ ρk(U, u)} (5.35)

if there is no ambiguity about what is the data set U , NB(U, u) will be simply noted

NB(u)

• The kNN sample point neighborhood

NSP (U, u) = {un ∈ U : ‖u− un‖ ≤ ρk(U, un)} (5.36)
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The mean shift (5.29) simplifies to:

wi(u) =

{
ρk(U,ui)

−d

∑

un∈N(U,u) ρk(U,un)−d if i ∈ N (U, u)

0 0 otherwise
(5.37)

where N can be any of the three above mentioned neighborhoods,

h−1(u) =

∑

un∈N (u) ρk(U, un)−(d+2)

∑

un∈N (u), ρk(U, un)−d
(5.38)

M(u) =

∑

un∈N (u) ρk(U, un)−(d+2)un
∑

un∈N (u), ρk(U, un)−(d+2)
− u (5.39)

Using the corresponding neighborhood, we retrieve the expression of the original fixed-

bandwidth mean-shift (5.25)

∇f̂(u)

f̂(u)
=
d+ 2

h2
.

1

|NF (U, u)|
∑

un∈NF (U,u)

(un − u) (5.40)

as well as the balloon mean-shift (5.27)

∇f̂(u)

f̂(u)
=

d+ 2

ρ2
k(U, u)

.
1

k

∑

un∈NB(U,u)

(un − u) =
d+ 2

d2
k(u)

.[µB(u)− u] (5.41)

where dk(u) is a short notation for ρk(U, u) and µB(u) is a short notation for the mean in

a balloon neighborhood around u (of radius dk(u)) containing the k-th nearest neighbors of

u. This expression will demonstrate good performance on Gaussian mixtures and clustering

applications (Appendix A.4), it will be the expression used in this manuscript and called kNN

mean-shift.

Finally the expression of sample point mean-shift reads

∇f̂(u)

f̂(u)
= (d+ 2)

∑

un∈NSP (u) ρk(U, un)−(d+2)

∑

un∈NSP (U,u) ρk(U, un)−d

(∑

un∈NSP (U,u) ρk(U, un)−(d+2)un
∑

un∈NSP (U,u) ρk(U, un)−(d+2)
− u
)

(5.42)

Experiences on various Gaussian mixtures are presented in Appendix A.4. In particular,

(balloon) kNN mean-shift converges faster than Parzen mean-shift. It is also never equal

to zero, which is an advantage when trying to classify a point far from the modes of the

distributions, as it always indicates a direction while Parzen and sample-point mean-shift

would be stuck.

5.6 Conclusion

In this chapter, we derived a new class of statistical measure estimate to deal with variational

problems. These statistical measures are efficient in high dimensions, have a locally adaptive

PDF interpretation, and its gradient can also be approximated. Two estimates of local den-

sity were compared along this chapter, balloon and sample point. Both for simplicity of the

expressions and non-zero tails leading to interesting properties for mean-shift and clustering

(see Appendix A.4), we will focus on the balloon estimate.

Even if this balloon adaptive density estimate does not preform well in one dimension

against Parzen estimates, it behaves better in higher dimensions [TS92]. Moreover, even if
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Figure 5.8: kNN framework (from left to right): Entropy of a point cloud as the mean of log

kNN distances, gradient of Entropy at a sample point as a kNN Mean-Shift, probability of a

sample point as the distance to its kNN

this estimate is not efficient in 1-D, its associated statistical measure estimate outperforms

the natural Parzen-based entropy estimate (see Appendix A.4). In higher dimensions, the

difference between kNN and Parzen estimation increases as Parzen reaches its limitation.

Experimental results show that even on various test on Gaussian mixtures in Appendix A,

which is a favorable case for Parzen estimate with Gaussian kernel shapes, the new statis-

tical measure estimates is performing better. This is very encouraging for image processing

applications as the data are more complex than Gaussian distributions and may be higher-

dimensional.

Finally, complexity in this framework relies on the k-th nearest neighbor search. Efficient

tools allow to estimate nearest neighbors quickly. These methods use k-D trees, one of the

most famous is called Approximate Nearest Neighborhood (ANN) [AM93]. ANN proposes

to quickly estimate nearest neighbors with k-d tree construction. We also used a library

proposed by [GDB08] to compute nearest neighbors on graphical processing unit (GPU) in

order to speed up the computations.

Summarizing, the main result of this chapter is a new kNN framework (Fig. 5.8) which

1. estimates efficiently information theory measures such as

• differential entropy: kNN entropy estimate (5.11)

• Kullback-Leibler divergence: kNN Kullback estimate (5.16)

2. comes from (balloon) locally adaptive PDF (5.4), kNN PDF estimate (5.5)

3. approximates measure and PDF gradients through variable bandwidth mean-shift,

kNN mean-shift estimate (5.41).

Along this thesis we will mainly use the high dimensional space (x, y, u(x, y)) as a space

to define image probabilities Fig. 5.2(d). The 500 nearest neighbors of a sample point on this

figure are the neighbors used to compute statistics in the kNN framework (PDF estimate,

statistical measure estimate, mean-shift estimate). This space is simply computed with ap-

pending dimensions to the feature values as showed on Fig 5.9.

Appending “geometric” dimensions can better model image distributions as it captures

local patterns. PDF estimation is then called nonlocal, it builds statistics over all the image

but using a spatial constraint.

High dimensional feature space, which statistics are estimated with the kNN framework,

will revisit the three variational problem, in tracking to define smooth matching as presented
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Figure 5.9: High dimensional feature space to capture local patterns in image structure

in this chapter, in optical flow, to define adaptive regularization, and in segmentation to define

local statistics for segmentation.
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Part III

Revisiting three variational

problems in the kNN framework
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CHAPTER 6

TRACKING

This chapter will revisit kernel tracking algorithms, with high dimensions. Distance between

high dimensional templates of the data will be able to model and take into account geometric

deformations. These distances will be efficiently estimated using the kNN framework and

minimized using either derivative-free and gradient descent algorithms. This chapter follows

the general introduction written in Section 2.1.

6.1 Introduction

Tracking a region of interest (ROI) in a video is still a challenging task. Various high-level

applications rely on tracking, e.g., motion picture indexation, object recognition, video surveil-

lance, audiovisual post-production. . . The problem can be defined as follows: an ROI is defined

in a reference frame and the purpose is to determine in each subsequent frame the region

which best matches the ROI in terms of a given similarity measure. Geometrically speaking,

the two regions can be deduced from one another by an apparent motion that one usually re-

strict to a given model. Two classical similarity measures are the Sum of Squared Differences

(SSD) or the Sum of Absolute Differences (SAD) between the reference ROI and a candidate

region in a target frame.

6.1.1 A statistical approach for tracking

Similarity measures such as SSD and SAD impose a strict geometric constraint since the

underlying residual is computed with a deterministic pixel-to-pixel correspondence between

the reference ROI and the target region. In general, this apparent motion follows a rather

simple model so that the estimation of its parameters remains well-posed. Therefore, it is

not adapted to complex motions. Moreover, this type of similarity measures correspond to

implicit parametric assumptions on the residual probability density function (PDF) (respec-

tively, Laplacian and Gaussian for the two examples above). A solution is to relax this as-

sumption by using nonparametric estimate on the residual.

An alternative is to adopt another statistical point of view by building a PDF from the

ROI and using it as a template to be compared to a target PDF built from a candidate region

by means of a similarity measure. Such statistical methods account for randomness and
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uncertainty in the observations. At the first level of complexity, the PDFs describe the ROI

radiometry [CRM00, PHVG02], either in grayscale or color. However, to improve tracking

accuracy, later developments tend to show that more information is required than just color.

Different cues were then integrated into the ROI PDF template, e.g., recurring to the use

of filters such as spatial derivative filters [Low04, BRDW03, BBPW04], Gabor or wavelet

filters [PD02b], and temporal filters [BRDW03, BP07]. A review of methods based on this

framework proposed for segmentation was recently carried out [CRD07].

While this increase of knowledge improves accuracy, the combination of cues leads to high-

dimensional PDFs. There exist efficient [Sco92, Ihl] and fast [YDGD03] methods to estimate

multivariate PDFs using Parzen windowing. However, due to the fixed cardinality of the data

set, a limitation known as the curse of dimensionality [Sco92] appears: as the dimension of

the domain of definition of the PDFs gets higher, the domain sampling gets sparser. One

can think of dilating the Parzen window [BP07] so as to ensure that it will enclose enough

samples. However, the resulting PDF is oversmoothed. Another standard solution is to as-

sume independence between the different cues in order to bring out low-dimension marginal

laws [BRDW03] and/or make some parametric assumptions on the PDFs [EDD03]. While

these solutions may be satisfactory in some cases, we will discuss in Section 6.1.2 why they

are inappropriate for tracking.

6.1.2 High-dimensional feature space for tracking

To define a suitable high-dimensional feature space is to make a trade-off between decreasing

the number of cues, thus being less exposed to the curse of dimensionality, and increasing the

amount of (relevant) information about the ROI to ensure a reliable tracking. Therefore,

features should be chosen carefully as opposed to adding as many features as possible.

The combination of color and geometry proved to be efficient for tracking. This will be

referred to as a soft geometric constraint since the geometric correspondence between the

ROI and the target region will be imposed by a similarity measure between PDFs. In some

works, spatial information has been added by means of a Gaussian weighting of the samples

according to their distance to the center of the ROI [CRM00, PHVG02]. This weighting can

be seen as a radial layout constraint. This approach has the advantage not to add any di-

mension to the feature space. However, it lacks generality. Geometry can instead be added

directly to the radiometric vector (or any other feature vector), e.g., in the form of the Carte-

sian coordinates of the pixels of the ROI [EDD03]. Independence between color and geometry

cannot be assumed in order to avoid to manipulate high-dimensional PDFs. Indeed, geometry

alone, seen as a random variable, follows a uniform distribution whether in the ROI or in the

target region and, therefore, brings no information. While considering color and geometry

jointly, simplification can still be achieved by approximating the PDFs with parametric laws.

Nevertheless, fully data-driven nonparametric PDF estimation was advantageously applied

to segmentation [KFY+05, HSD+06].

6.1.3 Proposed approach

We propose to use the k-th nearest neighbor (kNN) framework in order to be able to han-

dle the components of a high-dimensional feature vector jointly, non-parametrically, and to

work in a locally adaptive manner in the feature space, thus avoiding under or oversmooth-

ing in processing the data set. Although kNN PDF estimators were proposed a long time
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ago [FH51, LQ65], they did not received much attention since they were known to be bi-

ased [TS92, Sai02]. Recently though, corrective terms have been derived to cancel the bias

and led to consistent kNN-based statistical measures such as entropy [KL87, GLMI05]. More-

over, even if the kNN PDF estimator is only adapted to high dimensions [TS92], the resulting

entropy estimator appears to be accurate in both low and high dimensions.

In this context, the Kullback-Leibler divergence between high-dimensional PDFs will be

suggested as a similarity measure for tracking. The divergence will be expressed directly

from the samples and, therefore, its computation does not require explicit estimation of the

underlying PDFs. This divergence estimator being well-adapted to high dimensions, it can be

used in an extended radiometric/geometric feature space [BDB07].

The chapter is organized as follows: Section 6.2 first provides some notations and moti-

vates the framework used for tracking, Section 6.3 motivates the choice of high dimensional

space and how it can handle deformations; Section 6.4 details the ROI tracking algorithm;

Finally, Sections 6.5 and 6.6 provide some results and comments for several standard se-

quences.

6.2 Tracking formulation

6.2.1 Problem statement

Let Iref and Itgt be, respectively, the reference frame in which the ROI is (user-)defined and

the target frame in which the region that best matches the ROI, in terms of a given similarity

measure, is searched for. This search amounts to finding the geometric transformation Φ such

that

Φ = arg min
ϕ

D1(Iref(Ω), Itgt(ϕ(Ω))) (6.1)

where D1 is a similarity measure between two data sets and Ω is the domain of the ROI.

Domain Ω is a subset of R
2 or a subset of N

2 in the discrete framework. This search is

illustrated on Fig. 6.1.

For clarity, the reference data set Iref(Ω) will be denoted by R and the target data set

Itgt(ϕ(Ω)) will be denoted by Tϕ. Thus, R(i) and Tϕ(i), i ∈ Ω, represent corresponding samples

from their respective region.

Since a statistical approach was preferred over the deterministic formulation (6.1), the

geometric transformation Φ is instead expressed as

Φ = arg min
ϕ

D2(fR, fTϕ
) (6.2)

where fR, respectively fT , is the PDF which generated the samples {R(i), i ∈ Ω}, respectively

{Tϕ(i), i ∈ Ω}. Whenever appropriate, U will be used as a generic notation for either R or Tϕ.

Traditionally, U(i) is a triplet of color components in a given color space. From Section 6.3 on,

some geometric information will be appended to this feature vector. Generally speaking, the

samples will be regarded as elements of R
d.

6.2.2 Kullback-Leibler divergence

Several measures have been introduced to quantify the disagreement between two PDFs. In

this chapter, the Kullback-Leibler divergence DKL, or information gain, has been chosen. The
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Figure 6.1: Image matching example: find the transformation that maps a region of an image

to another

Figure 6.2: Order of the arguments of the Kullback-Leibler divergence: zero-forcing and

zero-avoiding solutions (Image courtesy of Pierre Dangauthier, Ph.D, E-Motion project, INRIA

Rhone Alpes/LIG, Grenoble, France).

discussion below about the order of the arguments of the divergence1 explains what motivated

this choice.

Let us reformulate the problem this way: fR is a reference PDF and the best approxi-

mation fTϕ
of it must be found. Minimizing DKL(T,R) leads to a so-called zero-forcing solu-

tion [Min05]: wherever fR is close to zero, the solution is strongly encouraged to be close to

zero as well. As a consequence, fTϕ
“focuses” on the dominant mode of fR, thus underestimat-

ing the variance of fR. This solution is also called exclusive since it can exclude some parts

of fR. Minimizing DKL(R, T ) leads to a so-called zero-avoiding solution [Min05]: the solution

is encouraged to cover the whole support of fR. As a consequence, fTϕ
usually overestimates

the variance of fR (see Fig. 6.2).

Various works proposed symmetric versions of the Kullback-Leibler divergence, e.g., J-

divergence and Jensen-Shannon divergence [Lin91]. Nevertheless, for tracking, DKL(T,R)

seems to be the appropriate choice. Indeed, fTϕ
can never be identical to fR due to noise,

1Remember that the Kullback-Leibler divergence is not symmetric.
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occlusion, motion blur, and the fact that a frame is a projection onto a two-dimensional plane

of a three-dimensional scene. However, both should have the same main modes if they cor-

respond to the same object. Thus, the zero-forcing divergence enforces a relevant behavior

in trying to “align” the main modes of the PDFs. By the way, it follows the same philosophy

as the Bhattacharya distance, a measure widely used for tracking since a Mean-Shift-based

implementation has been proposed [CRM00].

Using the efficient estimate presented in Chapter 5, the Kullback-Leibler divergence is

equal to

DKL(Tϕ, R) = H×(Tϕ, R)−H(Tϕ) (6.3)

kNN
= log

|R|
|Tϕ| − 1

+ d µTϕ
(log ρk(R))

−d µTϕ
(log ρk(Tϕ)). (6.4)

It has been proven that this estimator is consistent and asymptotically unbiased [GLMI05,

KL87]. The choice of feature space for R and T has now to be carried out.

6.3 Similarity-based tracking: handling geometry

As noted earlier, the radiometric feature vector will be enriched with geometry. Radiometry

allows to check if the ROI and the target region have similar colors, and geometry allows

to check with a given degree of strictness if these colors appear at the same location in the

regions. For comparison purposes (see Section 6.5), let us describe levels of strictness.

6.3.1 Classical similarity measures

Geometry-free similarity measures

The similarity measure between the ROI and the target region can be based solely on ra-

diometry. Classically, it can be a distance between color histograms or, similarly, PDFs. The

knowledge of where a given color was present within the region is lost. For example, let us

mention the Bhattacharya distance [CRM00, PHVG02]

DBHA(Tϕ, R) =

∫

Rd

√

fR(s) fTϕ
(s) ds (6.5)

where d is equal to three if all color components are used. The Kullback-Leibler divergence

on geometry-free PDFs will also be tested in Section 6.5.

Not accounting for the knowledge of where a given color was present in the region allows

to be more flexible regarding the geometric transformation ϕ between the ROI and the target

region. However, it increases the number of potential matches and then the risk for the

tracking to fail after a few frames. This can be avoided by using a geometry-aware similarity

measure.

Similarity measures with strict geometry

Geometry can be involved by means of a motion model (i.e., a constraint on ϕ) used to com-

pute a pointwise residual between the ROI and a candidate region. A function of the residual

can serve as a similarity measure: classically, the SSD or functions used in robust estima-

tion [BA96] such as the SAD. The geometric constraint being strictly defined by the motion
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model, these measures might be less efficient if the model is not coherent with the actual

motion. Indeed, this might generate too many outliers in the residual, including in the frame-

work of robust estimation. Moreover, even if the model is globally coherent with the actual

motion, the choice of the function of the residual is implicitly linked to an assumption on the

PDF of the residual, e.g., Gaussian for SSD or Laplacian for SAD. This might not be valid in

case of occlusion for example.

To fix the ideas, let us assume that |Tϕ| = |R| and let us define the following notations

DSSD(Tϕ, R) =
∑

i∈Ω

(Tϕ(i)−R(i))2 (6.6)

and

DSAD(Tϕ, R) =
∑

i∈Ω

φ(Tϕ(i)−R(i)) (6.7)

where φ can be either the absolute value or a smooth approximation of it, e.g., φ(x) =√
x2 + ǫ2 − ǫ [WS01].

6.3.2 Matching with uncertainties on appearance: entropy

Classical strict geometry similarity measure D1(R − Tϕ) in image matching use the SSD

or SAD for criteria D1. The SSD estimator is fully efficient only in the case of normally

distributed data, see e.g. [GM95].

The Gaussian assumption is not appropriate in image matching problems. Here we con-

sider instead minimizing the entropy of the estimation error. The properties of the measure of

entropy motivate its use as an estimation criterion: entropy is a convex function of the trans-

formation ϕ that coincides locally asymptotically with the likelihood at its optimum [WTP05].

This suggests that an estimator minimizing the entropy of the errors should be efficient. Also,

the shift-invariance property of the entropy of a density yields some robustness to outliers,

e.g. unexpected patches of pixels in an image, and makes it insensitive to a global variation

of illuminance between the two regions. In the present context we consider the residual on

region R − Tϕ, viewed as realizations of a random variable. Knowledge (or estimation) of the

probability mass function (in the discrete case) or of the probability density function (in the

continuous case) of these errors is required in order to compute the entropy of the block. A

minimum-entropy approach for discrete data would require a large number of data points

(pixels) in order to obtain an accurate enough estimation of the distribution, which makes it

unsuitable for matching purposes. Instead we consider turning the residual into an image

of continuously distributed pixel values. A uniform noise U(−.5; .5) is added to the residual

R − Tϕ (this choice is arbitrary, other types of distributions could be used). In this context,

a common PDF estimation procedure consists in using Parzen windowing technique, which

provides a smooth estimate that can be plugged into an empirical expression of the Shannon

entropy. Minimum-entropy estimation gives a consistent estimator of the parameters in a

regression model with unknown distribution of the observations errors, see [WTP05].

The minimum-entropy estimator of the transformation ϕ that minimizes the Ahmad-type

plug-in entropy estimate [AL76] is defined by

Φ = arg min
ϕ
H(Iref(R)− Itgt(Tϕ)) (6.8)

with

H(U) = − 1

|U |
∑

ui∈U

log f̂U (ui)
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Here, f̂U denotes a kernel density estimate, estimated on samples |U |, which bandwidth is set

either by a data-driven procedure [Sco92, DL00, BD94] or by the user. In dimensions larger

than 1, e.g. for color images, kernel estimation techniques rapidly become inefficient when the

dimension increases. The main difficulty lies in the choice of the kernel bandwidth: due to the

curse of dimensionality, the bandwidth of a multivariate kernel must be large enough to take

a sufficient number of data points into account, which causes oversmoothing. This leads to a

degradation of the performances of the estimator as defined by (6.8) for data having dimension

2 or 3 and for samples of reasonable size. For 3D (i.e. color) images, the alternative of using

a product of univariate kernels still remains relatively computationally costly and does not

perform well enough in general. New entropy estimators defined in Chapter 5 efficiently

circumvents these problems.

This robust strict geometry image matching model was successfully applied in applications

where there is good confidence on the transformation model: motion estimation between two

following frames including Block Matching [BWD+06] and variational optical flow [BDB08].

The latter application will be detailed in Chapter 7. Robustness of this method against var-

ious types of noise and comparisons to classical strict geometry measures are presented in

Appendix B.

Strict geometric approaches are robust if there is good confidence on the transformation

model. However, as deformations become too important2 these methods reach their limita-

tions as the residual is of high energy. On the other hand, methods based on divergences

between radiometric PDF templates (6.2) are flexible with respect to the transformation

model, but not discriminative as many regions yield the same PDF.

6.3.3 Matching with uncertainties on position and appearance: di-

vergence

An ideal measure should allow both flexibility on the appearance (color values) but also

flexibility on the pixel positions as the transformation model may be incorrect. On one

hand, the strict geometric constraint can be softened, e.g., by cascading a strict geometry

approach and a radiometric approach [VBPB07], or by relaxing parametric assumptions on

the data. On the other hand , constraints on non-geometric measures can be integrated, by

adding geometry to the PDF-based approach, i.e., by defining a joint radiometric/geometric

PDF [EDD03, BDB07].

On one viewpoint, it adds uncertainty in the transformation model in a strict geometry

method, on another viewpoint, it imposes some geometric constraints in a non-geometric

model. The PDFs of the templates R and T now contain some geometry information describ-

ing the position of pixels. This method will be called soft geometric.

Soft geometry model

A joint radiometric/geometric PDF is defined [EDD03, BDB07]. Formally, the PDF fU corre-

sponding to the sample set {U(i), i ∈ Ω} is replaced with the PDF fU,i corresponding to the

sample set {(U(i), i), i ∈ Ω}. Therefore, the color+geometry feature space is equal to R
5. In

general, i can be any couple of independent spatial coordinates. For the ROI tracking appli-

cation presented here, Cartesian coordinates (x, y) relative to the center of mass of the ROI

2for instance, between the first frame of a video and a frame 10 seconds later, assuming the reference region is

still visible
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or of the target region seem adapted as shown on Fig. 6.3.

The sample set R and T are now enriched with geometry and are in dimension 5. the

corresponding PDFs fR and fT are also in dimension 5 and we choose as similarity measure

the Kullback-Leibler divergence 3. The high dimensional feature space is handled by the kNN

framework defined in Chapter 5 using estimate (6.4).

Φ = arg min
ϕ

DKL(fR, fTϕ
) (6.9)

This choice is motivated by the asymptotic behavior of this space : suppose we need to

estimate the distance of the point T (s), α.s in a reference set (R(i), α.i) where α is a weighting

constant. As α tends to infinity, the closest point to T (s) is R(s) as there is an infinite penalty

on uncertainty pixel position. The measures is strict as the nearest neighbor search is now

‖T (s) − R(s)‖. As α tends to zero, the geometric features have no influence in the nearest

neighbor search, leading the measure to be classical PDF non-geometric matching. A rea-

sonable choice for α, in this paper we choose α = 1 is a soft-geometry compromise between

non-geometric and strict-geometric matching.

Geometric features

Several geometric feature choices are possible depending on the application. Matching rect-

angular regions, the canonical choice is to choose Cartesian coordinates. Matching circular

regions, the canonical choice is polar coordinates. Matching deformable and complex shapes,

more complex choices will be introduced. Basic choices for similarity measures are illustrated

on Fig. 6.3.

Figure 6.3: High dimensional feature to add uncertainty on position: add lattice information

to observations: Cartesian or polar coordinates

6.4 Tracking algorithm

6.4.1 The main steps

As a reminder, R and Tϕ are the following sample sets

{

R = {(Iref(i), i), i ∈ Ω}
Tϕ = {(Itgt(i), i), i ∈ ϕ(Ω)} (6.10)

3this choice was motivated in section 6.2.2
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Figure 6.4: zoom factor is retreived by aligning geometric components, no interpolation of the

radiometric features is used

where i represents some Cartesian coordinates (x, y) relative to the center of mass of the cor-

responding region (Ω for R and ϕ(Ω) for Tϕ), and ϕ is a geometric transformation representing

the motion of the ROI between the reference frame and the target frame. Then, we propose to

perform tracking by minimizing the kNN Kullback-Leibler divergence (6.4) between fR and

fTϕ
with respect to ϕ, or actually a set of parameters defining ϕ

Φ = arg min
ϕ

DKL(Tϕ, R). (6.11)

The chosen motion model is “translation+scaling”

ϕ(i) = i+M(i) p (6.12)

=

[

x

y

]

+

[

x 1 0

y 0 1

]





α− 1

u

v




 (6.13)

where α is the scaling factor and (u, v) is the translation. The main steps of the tracking

algorithm are

In this algorithm, λ is a test set of scaling factors. For the experiments of Section 6.5, λ

was chosen equal to {0.98, 0.99, 1, 1.01, 1.02} or {1} depending on whether scaling was taken

into account or not. One nice property about the geometric features is that one can match

two regions at different scales without interpolating colors, as shown on Fig. 6.4, zoom is

simply recovered by interpolating geometric features (basic multiplication) in order to align

both radiometric and geometric features.

6.4.2 Mean-Shift-based gradient descent using a kNN implementa-

tion

The derivative of the Kullback-Leibler divergence reads

∇ϕDKL(Tϕ, R) =
∑

s∈Tϕ

Ds(Tϕ)




∇fR(s)

fR(s)
− ∇fTϕ

(s)

fTϕ
(s)

+
1

|Tϕ|
∑

t∈Tϕ

∇Kh(t− s)
fTϕ

(t)



 . (6.14)

Estimation (6.4) being defined in the kNN framework, one can approximates its derivative
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Table 6.1: Tracking algorithm.

1. Set the parameters

• Neighboring order: k
e.g.← 3

• Spatial weight: δ
e.g.← 1

• Scaling factors: λ
e.g.← {0.98, 0.99, 1, 1.01, 1.02}

• Radiometric function: U(i)
e.g.
= I(i)

2. Manually select an ROI Ω in the reference frame Iref

(a) Let iR = (xR, yR) be the normalized Cartesian coordinate system relative to Ω

Perform either 2b or 2c depending on the minimization strategy (see below)

(b) Either: Set Rα = {(Iref(iR), αδiR), iR ∈ Ω} for all α ∈ λ
(c) Or: Set R = {(Iref(iR), δiR), iR ∈ Ω}

3. Let ϕ be the triplet (α, u, v) equal to (1, 0, 0) initially

4. For each remaining frame Itgt taken sequentially

(a) Let iT = (xT , yT ) be the normalized Cartesian coordinate system relative to ϕ(Ω)

Perform minimization using either strategy 4b or strategy 4c

(b) Either: Perform a series of minimizations as follows

i. For each β ∈ λ
• Determine the translation (m,n) such that

(m,n) = arg min
(a,b)

DKL(T(a,b), Rβ)

where T(a,b) = {Itgt(iT + (a, b)), δiT ), iT ∈ ϕ(Ω)}
• Let Dβ be equal to DKL(T(m,n), Rβ)

ii. Determine the triplet (β̃, m̃, ñ) that gave the lowest Dβ among the |λ| loops

of 4(b)i

(c) Or: Perform a gradient descent in (α, u, v) (see Section 6.4.2) to determine the

triplet (β̃, m̃, ñ) that minimizes DKL(T(m,n), Rβ) where Rβ is obtained by multiply-

ing the geometry stored in R by β

(d) ϕ = (α, u, v)← (α β̃, u+ m̃, v + ñ)

(e) ϕtgt ← ϕ
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Figure 6.5: On the left, gradient-descent search: motion is initialized at green position, the

gradient direction is computed and projected on one of the 8 vectors, next motion is then at

blue position. On the Middle, the diamond descent: motion is initialized at green position, the

8 blue positions are tested, at convergence the 4 yellow positions are tested. On the right, both

algorithms are repeated on a grid until the distance is not decreasing anymore.

using Mean-Shift.

∇ϕDKL(Tϕ, R) = − 1

k |Tϕ|
∑

s∈Tϕ

Ds(Tϕ)




d+ 2

ρ2
k(R, s)

∑

t∈NB(R,s)

(t− s)− d+ 2

ρ2
k(Tϕ, s)

∑

t∈NB(Tϕ,s)

(t− s)

−
∑

t∈Tϕ

|t−s|=ρk(Tϕ,t)

t− s
ρk(Tϕ, t)








(6.15)

where Ds(Tϕ) is a 3× d-matrix involving frame gradients, NB(·, s) are balloon neighborhoods

(5.35) of radius ρk(·, s) centered at sample s, and Kσ is a kernel of bandwidth σ. (The com-

plete definitions of these terms are given along the development leading to derivative (6.15)

presented in Appendix C.) As a consequence, the ROI tracking could be solved by gradient

descent in the space of the parameters (α, u, v). However, the sensitivity of the similarity

measure with respect to the scaling α is much higher than the sensitivity with respect to

translation. In practice, this can lead to undesirable convergence behaviors such as finding

a match in the target frame at a scale different from the scale of the reference ROI (i.e., the

reference could be matched to a region much larger or much smaller). Therefore, a procedure

based on a series of minimizations will be preferred (see Section 6.4.3).

6.4.3 Series of minimizations

The minimization of (6.4) with respect to ϕ = (α, u, v) can be performed by a series of mini-

mizations in (u, v) at α fixed, as illustrated in the algorithm of Section 6.4.1. This decoupling

allows to confine α to a reasonable interval, e.g., [0.98, 1.02]. The minimizations in (u, v) can

be achieved by a gradient descent setting the α-component of (6.15) to zero. For computa-

tional considerations, they can be performed using a suboptimal search procedure such as

the diamond search [ZM00]. Naturally, more sophisticated search techniques such as parti-

cle filters [PHVG02]4, also known as sequential Monte Carlo methods, can be used. Fig. 6.5

presents the two chosen descent possibilities: gradient-guided search (positions are tested

following the gradient direction) or diamond search (all directions are searched for).

4These methods are particularly efficient in case of total occlusion of the target on several frames.
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6.5 Experimental results

6.5.1 Distances comparison

In this part we show the differences between strict geometric methods, non-geometric meth-

ods and soft geometric methods. As an illustration, we compare in a first step some similarity

measures between two consecutive frames of sequence “Football”. In a second step, we com-

pare some similarity measures between two frames which are not consecutive as shown on

Fig. 6.6.

Figure 6.6: Sequence football, left frame 1 , right frame 20: matching of the region of interest

(head of the player) is difficult as deformations are important, several algorithms fail

We compare 8 similarity measures: 2 strict geometric measures, SSD, SAD; 2 strict geo-

metric measure with uncertainties on appearance (entropy of the residual (6.8)) Pz-H (en-

tropy of the residual estimated with Parzen) and kNN-H (entropy of the residual estimated

with kNN); 2 non-geometric methods Pz-KL (Kullback-Leibler divergence between radiomet-

ric PDFs estimated with Parzen) and kNN-KL (Kullback-Leibler divergence between radio-

metric PDFs estimated with kNN); 2 soft geometric methods with uncertainties on appear-

ance and position Pz-KL-G (Kullback-Leibler divergence between joint radiometric and geo-

metric PDFs estimated with Parzen) kNN-KL-G, (Kullback-Leibler divergence between joint

radiometric and geometric PDFs estimated with kNN).

The distance between the reference ROI in frame 1 and candidate regions in frame 2

on Fig. 6.7 resp., in frame 20 on Fig. 6.8 was computed as a function of the translation

parameters for these 8 similarity measures.

We plot the criteria value in a dashed-box 12 × 12 window around the true position. The

black spot at the center of the plane represents the correct motion, the two first measures

SSD and SAD are not convex around the solution. The two measures based on entropy Pz-H

and kNN-H are very effective on small deformations (Fig. 6.7), measures with no geometry

Pz-KL and kNN-KL are not enough discriminative around the solution. Finally the soft ge-

ometric methods are performing well. On larger deformations Fig. 6.8, when the head is

turning and motion blur corrupts the transformation model, strict geometry measures are

either biased or lead to highly non convex functionals. Soft geometric measures Pz-KL-G and

kNN-KL-G perform well on both small and large deformations and seem strictly convex in a

large window around the minimum. This property is interesting for the convergence of op-

timization algorithms (diamond search or gradient descent in our case). Moreover, one can

already see that soft geometric measures estimated with Parzen, Pz-KL-G, are more “flat”

around the minimum, due to PDF oversmoothing, and the solution is less accurate than with

kNN-KL-G.
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As a conclusion, strict geometric methods based on entropy of the residual Pz-H and kNN-

H are adapted when deformations w.r.t the transformation model are small. In fact we will

use these measures when estimating motion between two consecutive frames, for instance in

optical flow Chapter 7. Nevertheless, in a tracking application where large deformations are

possible between two templates, we will use soft geometric distances estimated accurately

with kNN estimate (kNN-KL-G).

6.5.2 Tracking algorithm setup

The proposed kNN-based algorithm presented in Section 6.4 will be referred to as kNN-KL-

G where KL stands for Kullback-Leibler and G stands for geometry. It was compared to

four other trackers: (i) a geometry-free version of the proposed method (kNN-KL), (ii) a ver-

sion of the proposed method where the kNN expression (6.4) of the divergence was replaced

with an estimation based on Parzen windowing5 (Pz-KL-G), (iii) an SAD version of the algo-

rithm described in Section 6.4.1 (i.e., replacing the Kullback-Leibler divergence in step 4(b)

by energy (6.7)), and (vi) a Mean-Shift-based tracker whose implementation is publicly avail-

able [CZT05].

Note that in these comparisons, we focused on the pros and cons of the different similar-

ity measures and their approximations. To try to avoid “corruption” of the results by other

methodological aspects, we kept the tracking algorithm simple, purposely setting aside im-

provements such as reference update and motion prediction. Moreover, for a fair comparison

between all these methods, the experimental setup of the above-mentioned Mean-Shift im-

plementation was followed, namely, a rectangular ROI Ω (see Figs. 6.11, 6.12, and 6.9 for

the dimensions) and a translation only motion ϕ (i.e., λ = {1}) with a pixel resolution. The

chosen radiometric space was YUV simply because the standard test sequences used in our

experiments are available in this color space.

For the kNN-based methods, parameter k in measure DKL(Tϕ, R) (see (6.4)) was chosen

equal to 3, which satisfies the conditions mentioned at Chapter 5. An experimental study of

the stability of the methods with respect to this parameter is presented in Section 6.5.3. The

distance ρk(s) to the k-th nearest neighbor of s was defined in the classical Euclidean sense.

For its computation, we used an implementation publicly available [Gt].

The components of the feature vectors were normalized as follows: Y, U, and V were

rescaled into the interval [0, 1] and the coordinates (x, y) were rescaled into [−1, 1], both in the

ROI and the candidate regions, the origin being located at the center of mass of the region.

This latter normalization was made before applying the scaling factor α to the coordinates,

meaning that (xT , yT ) actually belongs to the interval [−1/α, 1/α].

Finally, the minimization in ϕ = (α, u, v) was performed by a series of minimizations

at α fixed (see Section 6.4.3) implemented using a suboptimal search procedure known as

the diamond search [ZM00]. The size of the search window was empirically set to [−12, 12]2.

Tracking was performed with Iref being fixed equal to, say, I1 while Itgt was successively equal

to It, t = 2, 3, 4 . . . When searching for the ROI in frame It, the search window was centered

around the position of the ROI computed in frame It−1.

5This Kullback-Leibler implementation is publicly available [Ihl].
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Figure 6.7: Distance between the reference ROI of sequence “Football” and candidate regions

in frame 2 as a function of horizontal and vertical translations: from left to right, top to

bottom: (4 strict geometric methods) SSD, SAD, Pz-H, kNN-H (2 no geometric methods) Pz-

KL, Pz-kNN (2 soft geometric methods) Pz-KL-Pz, kNN-KL-G (proposed method). The search

is a 12×12-square (same size as the search window). The black spot at its center represents

the correct translation. The purple spot represents the actual minimum of the criterions. The

deformations between frame 1 and frame 2 are small, thus strict and soft geometric methods

are able to find the correct minimum.
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Figure 6.8: Distance between the reference ROI of sequence “Football” and candidate regions

in frame 20 as a function of horizontal and vertical translations: from left to right, top to

bottom: (4 strict geometric methods) SSD, SAD, Pz-H, kNN-H (2 no geometric methods) Pz-

KL, Pz-kNN (2 soft geometric methods) Pz-KL-Pz, kNN-KL-G (proposed method). The search

is a 12×12-square (same size as the search window). The black spot at its center represents

the correct translation. The purple spot represents the actual minimum of the criterions. The

deformations between frame 1 and frame 20 are large, thus only soft geometric method with

accurate kNN estimation of the divergence, kNN-KL-G, is able to find the correct minimum.PhD Thesis Sylvain Boltz
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Frame 1 Frames 5, 10 & 15 (cropped)

Frame 20

Figure 6.9: Tracking on sequence “Football”: frames 1, 5, 10, 15 and 20 (relative to the

reference frame). kNN-KL-G (proposed method): pink; kNN-KL: cyan; Pz-KL-G: green; Mean-

Shift: yellow; SAD: orange. This sequence is characterized by a fast motion generating motion

blur. Moreover, the motion of the object of interest has a rotational component responsible for

the disappearance of some areas and the exposure of others. The diagram represents the shift

(in percent of the ROI diagonal) with respect to a manually defined tracking as a function of

the frame index. Ω: 43×43-square.

Complex motion

Sequence “Football” is composed of 352×288-frames. Tracking was performed on 20 consecutive

frames (see Fig. 6.9). Note that part of the public has colors similar to colors that can be found

in the ROI. In some frames, this area of the public is right above the ROI. This is probably

the reason why kNN-KL stayed stuck in this region. Moreover, as the player runs, he turns

and almost faces the camera toward the end of the sequence. Therefore, the translation

model is not appropriate. This can explain why SAD, which relies on a strict translation

model, lost the ROI in the first frames. Mean-Shift succeeded to track the ROI approximately.

However, it could not avoid being attracted by the public. The geometric constraint of kNN-

KL-G and Pz-KL-G allowed to avoid being attracted by the public area (where the color spatial

arrangement is different from that of the reference ROI) while being soft enough to deal with

the mismatch between the translation model and the actual motion. The resulting trackings
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Figure 6.10: The PDF of the pointwise motion between the reference ROI and the target

ROI obtained with kNN-KL-G. For each pixel of the reference, this motion was computed as

the space displacement to the nearest neighbor in the extended radiometric/geometric space

among the samples of the target. The domain of definition is a 35×35-square (to be compared

with Ω, a 43×43-square) centered around the null translation.

Table 6.2: Stability of kNN-KL-G with respect to k.

Value of k 3 10 20 43=
√

|Ω|
Average tracking shift Reference 0.20 pixel 0.73 pixel 1.14 pixel

are accurate. (Nevertheless, kNN-KL-G performed better than Pz-KL-G, arguably because it

relies on variable kernel bandwidth.)

Fig. 6.10 represents the PDF of the pointwise motion between the reference ROI and

the target ROI obtained with kNN-KL-G. For each pixel of the reference, this motion was

computed as the space displacement (i.e., the distance after projection onto the geometric

subspace) to the nearest neighbor in the extended radiometric/geometric space among the

samples of the target. The PDF is not a Dirac delta function, illustrating the fact that the

translation model was not correct.

6.5.3 Stability with respect to k

To evaluate the stability of kNN-KL-G with respect to the choice of parameter k, tracking was

performed on sequence “Football” with various values of k that comply with the conditions

mentioned in Chapter 5. The tracking obtained for k equal to 3 was taken as a reference and

the average shifts over the 20 frames resulting from using other values were measured (see

Table 6.2). Therefore, the method appears quite stable with respect to k, which confirms the

toy experiment in Appendix Table A.1.

6.5.4 Robustness to difficulties

Partial occlusions

Sequence “Car” is an aerial car chase which is part of the VIVID tracking testbed [CZT05].

It is composed of 640×480-frames. Tracking was performed on 150 consecutive frames (see

Fig. 6.11). kNN-KL eventually lost the ROI and ended up tracking the second car which

has colors similar to the ROI. This is probably due to the fact that it is based on radiometry

only. Pz-KL-G also failed in tracking the first car. Mean-Shift performed quite well although
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Frame 1 Frames 30 & 60 (cropped)

Frames 90 & 120 (cropped) Frame 150

Figure 6.11: Tracking on sequence “Car”: frames 1, 30, 60, 90, 120 and 150 (relative to the

reference frame). kNN-KL-G (proposed method): pink; kNN-KL: cyan; Pz-KL-G: green; Mean-

Shift: yellow; SAD: orange. There is a frame drop of several frames at frame 38 (vertical

dashed line in the diagram) and the tracked car is partially occulted by trees from frame 42

to frame 122 (gray area in the diagram). The diagram represents the shift (in percent of the

ROI diagonal) with respect to a manually defined tracking as a function of the frame index.

Ω: 95×47-rectangle.
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the tracking shifted upward when occlusion occurred in order to avoid including the green

colors of the trees in the color PDF. Concerning SAD, the translation model being fairly well

respected within the ROI, taking the pointwise residual makes sense while the use of the

absolute value is robust to the outliers arising from the occlusion. As a consequence, the car

was accurately tracked. Finally, kNN-KL-G also performed very well.

Variations of luminance

Sequence “Crew” is composed of 352×288-frames. Two faces were tracked on 80 consecutive

frames (see Fig. 6.12). kNN-KL-G tracked the faces successfully. The other methods lost

progressively the ROI, probably because of the variations of luminance.

Noise

Sequence “Schnee” is composed of 352×288-frames. Two cars were tracked on 160 consecutive

frames (see Fig. 6.13).

6.5.5 Scale estimation

Sequence “WaterObject” is composed of 352×288-frames. Tracking was performed on 95 con-

secutive frames. For this sequence, the test set λ of scaling factors was chosen equal to

{0.98, 0.99, 1, 1.01, 1.02} (see Fig. 6.14).

6.6 Conclusion

This chapter presents a general framework for estimating high-dimensional statistical mea-

sures to perform ROI tracking. We focused on a measure derived from entropy with consis-

tency and unbiasedness estimator [GLMI05, KL87].

In term of comparison with other approaches, the proposed method can be characterized

by such keywords as statistical, non-parametric, variable kernel bandwidth (kNN), joint color

and geometry processing, and soft geometric constraint. (i) SAD, or similar non-robust and

robust similarity measures, is deterministic in essence although it corresponds to solving the

tracking problem with a parametric assumption on the residual PDF. The strict geometrical

constraint does not allow much tolerance regarding motion model mismatch and the para-

metric PDF assumption prevents data fitting. (ii) kNN-KL can adapt to the data thanks to

its non-parametric nature and the use of a variable kernel bandwidth. Because of its statis-

tical point of view, it can account for some color variability of the ROI. Unfortunately, as it

is well known, the absence of geometric constraint is a serious penalty. (iii) Pz-KL-G does

include a soft geometrical constraint. However, the approximation of a PDF-based measure

using a fixed kernel bandwidth, i.e., without adjustment to the local density of the samples, is

a weakness, as is clear from the experimental results. (iv) The Mean-Shift-based tracker used

in the comparisons [CRM00, CZT05] rely on another statistical measure: the Bhattacharya

measure. Whether the differences observed between this tracker and the proposed method

in the experimental results presented here depends on the measure itself or on the way ge-

ometry is involved6 is unclear. Finally, (v) to a certain extent, the proposed method seems

6A Gaussian weighting of the features according to their distance to the center of the ROI (which can be seen

as a radial layout constraint) for the Mean-Shift-based tracker versus a joint radiometric/geometric processing for

kNN-KL-G.
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Frame 1 Frames 20 & 40 (cropped)

Frame 60 Frame 80

Figure 6.12: Tracking on sequence “Crew”: frames 1, 20, 40, 60 and 80 (relative to the refer-

ence frame). kNN-KL-G (proposed method): pink; kNN-KL: cyan; Pz-KL-G: green; Mean-Shift:

yellow; SAD: orange. There are two kinds of intensity changes in the sequence: a slight, con-

tinuous intensity increase as the crew walks out of a dark area, and some strong and brief

intensity peaks due to camera flashes (vertical dashed lines in the diagrams). The diagrams

represent the shift (in percent of the ROI diagonal) with respect to manually defined trackings

as a function of the frame index. The diagram on the left corresponds to the face on the left.

The vertical axis on the right of each diagram corresponds to the blue dashed curves which

represent the evolution of the average intensity (Y component) within the manually defined

trackings. The average intensity in frame 1 is taken as the reference and the scale is in unit

of intensity. Both the continuous intensity increase and the camera flashes are noticeable. Ω:

33×52-rectangle.
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Frame 1 Frames 40 & 80 (cropped)

Frame 120 Frame 160

Figure 6.13: Tracking on sequence “Schnee”: frames 1, 40, 80, 120 and 160 (relative to the

reference frame). kNN-KL-G (proposed method): pink; kNN-KL: cyan; Pz-KL-G: green; Mean-

Shift: yellow; SAD: orange. This sequence can be considered noisy due to the snow flakes. The

diagrams represent the shift (in percent of the ROI diagonal) with respect to manually defined

trackings as a function of the frame index. The diagram on the left corresponds to the car on

the left. Ω: a 38×42-square for the car on the left and a 34×42-square for the car on the right.
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Frame 1 Frames 20, 40 & 60 (cropped)

Frame 95

Figure 6.14: Tracking on sequence “WaterObject”: frames 1, 20, 40, 60 and 95 (relative to the

reference frame). This sequence is characterized by zooms in and out. The diagram represents

the scaling of the ROI (parameter α in percent of the initial size) as a function of the frame

index. Ω: initially, a 48×28-square.
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to provide answers to the problems previously mentioned, either theoretically, in practice, or

both.
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CHAPTER 7

OPTICAL FLOW

This chapter will define a new general statistical framework for optical flow. First, a mea-

sure issued from information theory will be used as data and regularization terms. Second,

data and regularization term will be high dimensional and nonlocal to accurately model the

resulting optical flow. Third, these high dimensional measures will be estimated with the

kNN framework. Finally, the diffusion process takes advantage of the simple derivative ap-

proximation of the kNN framework and will end to meaningful equations in connections with

classical methods of state of the art. This chapter follows the general introduction written in

Section 2.2.

7.1 Introduction

The contribution of this chapter is a general statistical framework for optical flow compu-

tations. This statistical framework is expressed in a balanced manner as a sum of two dif-

ferent entropies, one on the residual, named data term and the other one on the flow field,

named regularization term. Entropy is a function of the distribution of the data as opposed

to a (robust) function of the data itself. Entropy is estimated non-parametrically to handle

outliers. These outliers can be for instance occlusions or variations of illuminance on the

data term, or motion discontinuities at objects boundaries on the regularization term. In the

case where parametric assumptions are too strong, nonparametric techniques (e.g.: entropy

minimization) performs better as it adapts to underlying data statistics. Moreover, recent

works in optical flow [BBPW04] and also in segmentation [RBD03] tend to show that the

more information you have, the more accurate will be your result. While optical flow methods

in the literature often consider grayscale images, the use of other features like color, gra-

dient [BBPW04], or structure tensor [RBD03] improves the accuracy of the results. These

features are often treated independently and added with weightings between each compo-

nents. In our framework, vector features naturally extend to multivariate data into a joint

entropy.

The minimization of the framework composed of two entropies will result in a nonlocal

coupled diffusion process for the data and regularization term. Each term taken indepen-

dently follows the same philosophy as nonlocal diffusions for image denoising [Yar85, AW06].

Finally, while using nonparametric techniques often enhance the quality of the results

97
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in various applications (e.g. segmentation [RBD03], tracking [CRM00, BDB07]) they often

increase both mathematical and computational complexity. Here, we show that using mean-

shift simplifications [FH75], we obtain simple equations where the nonlinearities can be eas-

ily isolated and estimated with fixed point iterations. The solution is then obtained with an

efficient linear iterated solver.

This chapter is organized as follows. The classical formulation of optical flow and its recent

improvements are presented in Section 7.2. Section 7.3 introduces our unified entropy-based

nonparametric framework for optical flow. Section 7.4 gives a numerical efficient solution to

minimize the cost functional. Section 7.5 validates the method on an optical flow benchmark.

Section 7.6 concludes.

7.2 Optical flow formulation

7.2.1 Classical methods

Classically, optical flow v can be retrieved by minimizing the following functional

E(v) = EData(v) + αESmooth(v). (7.1)

where EData is a data term on the image domain D,

EData(v) =

∫

D

Ψ(ǫ2(m, v(m))) dm (7.2)

where Ψ is a non quadratic robust penalizer, ǫ is a residual function and will be the first order

Taylor expansion of the image residual,

ǫm = ǫ(m, v(m)) = ux(m)v1(m) + uy(m)v2(m) + ut(m) (7.3)

where ux uy and ut represent the spatial and temporal partial derivatives of the features

extracted from the image u (image luminance, color values, . . . ), the notation ǫm will be pre-

ferred to ǫ(m, v(m)) in order to simplify notations.

ESmooth adds a regularization penalty in the cost functional.

ESmooth(v) =

∫

D

Ψ(|∇v1(m)|2 + |∇v2(m)|2) dm (7.4)

where Ψ is again a non quadratic robust penaliser, v1, resp. v2 are the horizontal and vertical

components of the optical flow.

7.2.2 Improvements

On the data term, two kinds of methods have recently enhanced the quality of optical flow

estimation.

The first one [BWS05] is based on constraining motion to be constant within a small neigh-

borhood as in [LK81] but extended into a global functional. They minimize the quadratic

form wT (m).Jσ(∇3I(m)).w(m) where w(m) = [v(m) 1], Jσ(∇I) = Gσ ∗ (∇3I∇3I
T ) is the struc-

ture tensor [BWS05], with Gσ a Gaussian kernel.

The second one [BBPW04] is to combine other features than just brightness consistency.

The authors have added gradient consistency. The image features u are now multi dimen-

sional u = [I,∇I] and the different dimensions in the data energy (7.2) are added using

different weightings.
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Other works [RB05] modified the regularization term. They studied the statistics of opti-

cal flow fields and they deduced a prior that captures the rich statistics of optical flow patches

(3× 3 or 5× 5).

7.2.3 Limitations

The data term is local: classical methods consider the residual seen at a pixel level or coherent

within a small neighborhood. Actually, the residual is assumed to follow a Laplacian distribu-

tion as Ψ(x2) generally smoothly approximates the absolute value function [WS01, BWS05].

No global statistics are used on the residual to model specific residual distributions due to

outliers such as occlusions or variations of illuminance.

The regularization term is also local: looking at classical anisotropic diffusion, the diffu-

sion term is computed in a small neighborhood. The gradient of the flow is again assumed to

follow a Laplacian distribution [WS01, BWS05]. A recent study on statistics of optical flow

fields modeled more accurately the distribution of the flow [RB05]. Again, no global statistics

on the flow are estimated to model specific flow distributions due to difficulties such as motion

boundaries or non-translational flow fields.

In this chapter we propose a unified statistical framework to estimate and use global

statistics (estimated with nonparametric techniques) of the data and regularization term.

This framework allows to estimate nonlocal statistics of the flow and the residual, natu-

rally adapts to multivariate features in a balanced functional (as opposed to techniques sum-

ming energies of different physical quantities). Finally, using entropy as a criterion naturally

adapts to variations of illuminance and isolates outliers into different modes of the PDF. Next

section will detail this framework.

7.3 A unified statistical framework

The global energy is defined as a sum of entropies, where global statistics are learnt on the

whole image, as underlying PDFs are estimated nonparametrically.

7.3.1 General formulation

The new cost function is then a sum of two entropies:

E(v) = EH−Data(v) + EH−Smoooth(v) (7.5)

where EH−Data is an entropy function of a data term, and EH−Smooth is an entropy function

of the vector field.

More precisely, the energy chosen is based an empirical estimate of entropy [AL76] over

some observations on the image domain tD = {tm, | m ∈ D}

H(tD) = −Et[log ft] (7.6)

= − 1

|D|
∑

m∈D

log ft(tm). (7.7)

One can note that as the image size |D| is constant, it will play no role in the energy or its

minimization. Thus, the Ahmad-Lin entropy will be multiplied by |D|.
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7.3.2 Entropy as a data term

We propose for EH−Data an entropy of the residual ǫ. The data term is based an entropy on

the residual ǫ (7.3) considered as a random observation.

EH−Data(v) = |D|.H(ǫD) = −
∑

m∈D

log fǫ(ǫm) (7.8)

where ǫD = {ǫm | m ∈ D}, fǫ is a PDF estimated non parametrically using kernel techniques.

Let us remind that ǫm is a short notation for ǫ(m, v(m)) and is function of v.

A kernel estimate of fǫ can be written as

fǫ(ǫm) =
1

|D|
∑

n∈D

Kh(ǫm − ǫn) (7.9)

where Kh is a kernel of bandwidth h. The choice of h is not an easy problem as discussed in

this thesis.

ǫ is one dimensional if the constraint is computed only on brightness consistency but natu-

rally extends to a vector when adding other features such as color or gradient consistency. In-

deed we choose as features u in ǫ (7.3) a combination of color components and spatial structure

tensor features as proposed in a segmentation application [RBD03]. The entropy EH−Data will

then be a joint entropy of dimension dǫ = 6 between residual of several features: 3 for colors,

3 for the different components of the symmetric 2× 2 color tensor Jσ(∇I) = Gσ ∗ (∇2I∇2I
T ).

The features u in (7.3) are 6-dimensional u = [I, Jσ(I)]

Finally, the energy EH−Data(v) accounts for the true distribution of the residual ǫ, it is

proposed to make the energy depend on an estimation fǫ of the residual distribution rather

than on the residual itself as in (7.2). Using entropy of the residual introduces uncertainty

on the appearance of each pixels, it was deeper motivated theoretically in Section 6.3.2 and

experimentally in Appendix B.

7.3.3 Entropy as a regularization term

The regularization term is based on an entropy of the vector field. We present entropy of the

vector field as regularizer.

EH−Smooth−Global(v) = |D|.H(v(D))−
∑

m∈D

ln fv(v(m)) (7.10)

where v(D) = {v(m) | m ∈ D}. A kernel estimate of fv can be written as

fv(v(m)) =
1

|D|
∑

n∈D

Kh(v(m)− v(n)) (7.11)

Let us explain it with an illustration on a discrete 1-D case on Fig. 7.1. A classical regu-

larization is the total variation based on SAD:

ESAD(v) =
∑

m∈D

|∇v(m)| (7.12)

First let us compare a piecewise constant versus a piecewise smooth function, SAD regular-

ization favors piecewise constant functions, often called on images “cartoon effect” of total

variation. Entropy regularization follows the same behavior: entropy favors piecewise con-

stant images. An idea of an entropic regularizer which does not favor piecewise constant
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images will be given in perspectives Chapter 10. Regarding regularization on an edge, SAD

does not favor smooth or sharp contours as the total variation is the same, while entropy

favors sharp contours.

Figure 7.1: Illustration of regularization: a discrete 1-D example, from left to right, top to

bottom: constant, linear, sharp, smooth. Score of the function
∑ |∇v|: constant 0, linear 16:

cartoon effect of SAD, score of H(v): constant 0, linear 2.8: cartoon effect of entropy. Score of

the function
∑ |∇v|: sharp 4, smooth 4, score of H(v) sharp 0.23, smooth 0.56, entropy favors

sharp contours

However, while the distribution of the residual ǫ is considered as noise with no spatial co-

herence, the distribution of the vector field should have local structures and form patterns. As

presented in section on new possibilities with high dimensions (Section 5.2), regularization

chosen nonlocal as a diffusion in joint space of vectors and pixel positions. The different reg-

ularizations will be illustrated and compared in section on equations understanding (Section

7.4.2).

EH−Smooth is then chosen to be a joint entropy of vector field and pixel positions.

EH−Smooth(v) = |D|.H([D, v(D)]−
∑

m∈D

ln fv(m, v(m)) (7.13)

where D = {m|m ∈ D} and v(D) = {v(m)|m ∈ D}.
Finally, kernel estimate of fv can be written as

fv(m, v(m)) =
1

|D|
∑

n∈D

Kh([m, v(m)]− [n, v(n)]) (7.14)
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7.3.4 Differentiation using mean-shift

In order to minimize E, energies EH−Data (7.8) and EH−Smooth (7.13) are differentiated with

respect to the optical flow v.

The different features implied here are high-dimensional (ǫ is 6-dimensional and the joint

position-vector space is 4-dimensional), thus energies are estimated within the kNN frame-

work defined in Chapter 5. These energies are differentiable and their derivatives can be

approximated with the kNN mean-shift as detailed in Section 5.5.

Details of the derivative can be found in Appendix D, simple expressions are obtained

functions of k-th nearest neighbors. For the data term, the derivative writes

∇vmEH−Data(v) = ∇vǫm.
dǫ + 2

dk(ǫm)
2 [µB(ǫm)− ǫm]. (7.15)

where µB(ǫm) is the mean over a balloon neighborhood: the k-th nearest samples of ǫm in the

6-dimensional space of the whole residual of the image features u computed over the image

domain ǫ(D), dk is the distance to this k-th nearest sample, and dǫ is the dimension of ǫ equal

to 6. ∇vǫm is a 2 × dǫ matrix of partial derivatives: partial optical flow vector derivatives

of the features in the rows and partial spatial derivatives of the features in the columns,

[µB(ǫm) − ǫm] is a vector dǫ × 1, ∇vEH−Data(m) is then a vector 2 × 1. For the regularization

term, the derivative writes

∇vmEH−Smooth(v) = P2.
dv + 2

dk
2(m, v(m))

[µB(m, v(m)) − [m, v(m)]] (7.16)

where P2 is the projection operator P2.[m, v(m)] = v(m), where µB(m, v(m)) is the mean over

a balloon neighborhood: the k-th nearest samples of [m, v(m)] in the 4-dimensional space of

the optical flow combined with its position, dv is the dimension of [m, v(m)] equal to 4.

7.4 Numerical Aspect

Optical flows are generally solved as solutions of linear solvers as they converge faster and

with more accuracy to a minimum than classical gradient descend. This matrix is defined

from ∇vE(v) = ∇vEH−Data(v) + ∇vEH−Smooth(v) = 0. Therefore, the derivative equations

(7.15) and (7.16) need to be linearized. Plugging the mean-shift approximations in the deriva-

tive expressions, we have equations (7.15) and (7.16) that are linear except for the PDF es-

timation step (represented here by the estimation of the means µB). The PDF is then re-

estimated with fixed point iterations. This technique is well known in optical flow community

as robust functions Ψ (7.2) and (7.4) (and their derivatives) are generally nonlinear and are

re-estimated using fixed point iterations [BBPW04].

∇vEH−Data +∇vEH−Smooth = 0 (7.17)

∇vǫ(m).
dǫ + 2

dk(ǫm)
2 [µB(ǫm)− ǫm] + P2

dv + 2

dk
2(m, v(m))

[µB(m, v(m))− [m, v(m)]] = 0 (7.18)

7.4.1 Linear system solution and stability

An iterative scheme, SOR (Successive Over Relaxation), is then applied to solve the linear

system (7.18). SOR has convergence proofs for diagonally dominant matrices. There is no

insurance that the linear system from kNN mean-Shift expression (5.41) is diagonally dom-

inant. However, one can note that in a kNN mean-shift expression the diagonal component
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has a weighting of 1 whereas the corresponding line is composed of k elements with a weight-

ing of 1/k and 0 otherwise. Assuming all the features have the same values, the matrix would

then be weakly diagonally dominant. In general, we will assume that the matrix is diagonally

dominant for convergence purpose. Plugging the linearized equations (7.15), (7.16) of the

derivatives in a SOR scheme, while keeping the neighborhoods estimations non linear, we

have the following diffusion process to estimate optical flow.

vl+1
1i = (1− w)vl

1i + w
RiµB(v1i

l,l+1) +Di[ux(i).µB(ǫi
l,l+1)− uxuy(i).vl

2i − uxut(i)]

Ri + u2
x(i)Di

(7.19)

vl+1
2i = (1− w)vl

2i + w
RiµB(v2i

l,l+1) +Di[uy(i).µB(ǫi
l,l+1)− uxuy(i).vl+1

1i − uyut(i)]

Ri + u2
y(i)Di

(7.20)

where Di = dǫ+2
dk(ǫi)2

and Ri = dv+2
dk(v(i))2 , ǫ is the residual function (7.3), where µB(v) and

µB(ǫ) are non local means detailed below.

µB(ǫi
l,l+1) = 1

k (
∑

ǫj∈N−
B

(ǫi)
ǫj

l+1 +
∑

ǫj∈N+
B

(ǫi)
ǫj

l) are nonlocal means over the k-th nearest

neighbors of ǫi (NB is the neighborhood containing the k-th nearest neighbor (5.35) and is

divided into two neighborhoods NB = N+
B ∪N−

B ).

µB(vi
l,l+1) = 1

k (
∑

vj∈N−
B

(vi)
vj

l+1+
∑

vj∈N+
B

(vi)
vj

l) are nonlocal means over the k-th nearest

neighbors of vi (NB is the neighborhood containing the k-th nearest neighbor (5.35) and is

divided into two neighborhoods NB = N+
B ∪N−

B ).

The nonlinearities of these equations are isolated in the neighborhoods NB (composed of

the k-th nearest neighbors in the 6-dimensional space for residual, 4-dimensional space for

regularization) used in the nonlocal means and in Di,Ri. Indeed the distances dk(ǫ) and dk(v)

to the k-th nearest neighbors in Di andRi along with the two neighborhoodsNB computed for

the data and regularization terms are recomputed as fixed point iterations at convergence of

the SOR scheme. The numeric stability of the SOR scheme being controlled by the previously

assumed diagonally dominance of the mean-shift.

7.4.2 Algorithm and equations interpretation

First, to connect with classic regularization terms, one can note that the approximation of the

Laplacian in the diffusion process of [HS81] is expressed as a mean-shift, where the mean is

computed in a local neighborhood. Indeed, in a more general view, heat equation results in a

Laplacian-based diffusion where a standard discretization of the Laplacian can be written as

a mean-shift. Isotropic regularization is then a mean-shift in the space of spatial coordinates

m. Anisotropic regularizations can also be expressed as a mean-shift in the space of spatial

coordinates but with weightings based on the gradient features. Indeed, the regularization

part of our diffusion equations (7.19) and (7.20) are coherent with the ones in the literature
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[BBPW04]: (7.21) and (7.22)

vl+1
1i =(1− w)vl

1i + w

∑

j∈N−(i)

(Ψ′
S)l

i∼jv
l+1
1j +

∑

j∈N+(i)

(Ψ′
S)l

i∼jv
l
1j −

(Ψ′
D)l

i

α
(uxuy(i)vl

2i + uxut(i))

∑

j∈N−
i ∪N+

i

(Ψ′
S)l

i∼j +
(Ψ′

D)l
i

α
u2

x(i)

(7.21)

vl+1
2i =(1− w)vl

2i + w

∑

j∈N−(i)

(Ψ′
S)l

i∼jv
l+1
2j

∑

j∈N+(i)

(Ψ′
S)l

i∼jv
l
2j −

(Ψ′
D)l

i

α
(uxuy(i)vl

2i + uyut(i))

∑

j∈N−
i ∪N+

i

(Ψ′
S)l

i∼j +
(Ψ′

D)l
i

α
u2

y(i)

(7.22)

where N−
i denotes the neighbors j of i with j < i and N+

i the neighbors j of i with j > i, ǫ is

ǫLK.

In the regularization term, local means
∑

j∈N−(i)

(Ψ′)l
i∼jv

l+1
1j +

∑

j∈N+(i)

(Ψ′)l
i∼jv

l
1j , (weighted

by some gradient-based term (Ψ′)l
i∼j) in (7.21) and (7.22) are replaced in our framework by

nonlocal means µB(v). Indeed, the local neighborhoods N (i) are replaced by nonlocal neigh-

borhoods NB . In addition, we have a mean-shift with (different) nonlocal neighborhoods NB

for the data term. Let us compare these different neighborhoods on a regularization example:

no data term is attached in the diffusion process, (7.19) and (7.20). A simple way to visualize

what are the remaining terms is to set Di to zero.

We made two toy examples on Fig. 7.2 and Fig. 7.3. We plot a noisy synthetic flow with a

square moving on a static background. The second flow has a grid in the foreground with a

different motion. The color flow code is extracted from [BRS+07]. Noise is chosen of enough

standard deviation (0.7) to overlap the distribution of the square motion [−2, 0.5]. We com-

pared four different diffusions process with different neighborhoods. One in the spatial do-

main m (the diffusion is computed in a local neighborhood: classical isotropic diffusion), one

in a weighted spatial domain (classical anisotropic diffusion), one in the feature domain v(m)

(the diffusion is computed in a local neighborhood of the feature distribution) and one in the

spatial and feature domain [m, v(m)] (the diffusion is computed in a local neighborhood in a

joint distribution of features and spatial locations). This is a statistical and nonlocal alter-

native to anisotropic diffusion [CSV03] where the diffusion process is computed in a small

neighborhood, weighted by the feature gradients. Results on anisotropic diffusion are, as ex-

pected, performing a lot better than isotropic diffusion on this example, however it is viewed

as a weighted, but still local process. The diffusions are called local when their expression

only implies neighboring pixels, even if, the effects propagate over large distances after sev-

eral iterations.

Finally, the balancedness of the equations appears as it is a sum between two different

mean-shifts, one for the data term, the other for the regularization term. As the mean-shifts

are expressed in their kNN forms, each term involves a neighborhood made of k terms. In

this statistical framework, we are adding values of similar physical quantities in a coupled

diffusion process, and the tuning between the data and regularization part, if needed, would

have more physical sense. Each resulting diffusion process have also the same behavior

than nonlocal methods [Yar85, AW06] which have gained much interest in the recent image

restoration literature as they can adapt to the inner image statistics. Finally one can still use

fixed-size kernel neighborhoods instead of knn neighborhoods, the terms D and R would be
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Figure 7.2: From left to right, top to bottom: synthetic flow, noisy flow, spatial diffusion m,

weigthed spatial diffusion (anisotropic diffusion), feature diffusion v(m), joint spatial and

feature diffusion [m, v(m)]. The diffusion in the spatial domain blur the contours, the diffusion

in the feature domain is sensible to noise as there is no spatial diffusion, a good compromise

is the spatial and feature diffusion in the 4-D space [m, v(m)].

constant, replacing dk by a fixed bandwidth h. The two mean-shifts would have a different

behavior, one would preserve one region if its features are far enough (larger than h) from

the other features in the images. The other would preserve a region if it is big enough in this

image (larger than k). However, using the kNN framework is important here as we deal with

high dimensional feature spaces (6-dimensional for data, 4-dimensional for regularization).

7.4.3 Multi resolution

The classical optical flow formulation contains a first order Taylor expansion to linearize ǫ.

The flow must be small relatively to the image derivatives. A multi resolution scheme is

then chosen: the flow is computed on down-sampled versions of the image, respecting the

Shannon theorem. Instead of choosing the optical flow at lower resolution to initialize the

next resolution k + 1, we warp the image with the flow at resolution k and we initialize the

flow at 0: vk+1 = vk + dvk, where vk is the optical flow obtained form the lower resolution and

used to warp the image, then we are looking for a new flow dvk. A theoretical justification

can be found in [BBPW04]. Let us now show some experiments to see the applicability of the

method.
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Figure 7.3: From left to right, top to bottom: synthetic flow, noisy flow, anisotropic diffusion,

joint spatial and feature diffusion [m, v(m)]. The diffusion in the spatial domain blur the

contours, the diffusion in the feature domain is sensible to noise as there is no spatial diffusion,

a good compromise is the spatial and feature diffusion in the 4-D space [m, v(m)].

7.5 Experimental results

The feature space considered for the data term in the experiments is u, 6-dimensional, com-

posed of the three color channels of the image in the RGB color space and Jσ being the color

spatial structure tensor with σ = 1. The feature space considered for the regularization term

is [m, v(m)], m being the spatial coordinates of the image defined in the interval [−1, 1]×[−1, 1],

[0, 0] being the center of the image. v is the optical flow field. The regularization term is then

4-dimensional. The SOR is applied in a multi resolution scheme: at the first resolution level,

we have 10 fixed point iterations to get a first, rough estimation, of the PDF and 10 SOR

iterations inside each fixed point iteration, at all the higher resolution levels, only 3 fixed

point iterations are computed to refresh the PDF as well as 10 SOR iterations inside each

fixed point iteration. The relaxation parameter w for the SOR resolution scheme is chosen

to be 1.8. The k for k-th nearest neighbor which decides the size of the neighborhood to ap-

ply the mean-shift is chosen to be
√
n where n is the size of the image. We validated the

results on the optical flow benchmark [BRS+07]. We show on Tab. 7.1 the Average Angular

Error (AAE) results of our method on the publicly available data and groundtruth (sequence:

”RubberWhale”, ”Hydrangea”, ”Dimetrodon”). We also applied on the benchmark with hidden

groundtruth (sequence: ”Army”, ”Mequon”, ”Schefflera”, ”Wooden”). We also show on Fig. 7.5

some visual results of the flow with the color code provided by the benchmark Fig 7.4.

Our method compares favorably to standard and more recent optical flow methods pre-

sented on the benchmark http://vision.middlebury.edu/flow/eval/ and shows the applica-

bility of this new framework.
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Figure 7.4: Optical flow color code: each vector direction corresponds to a color

Sequence RubberWhale Hydrangea Dimetrodon Army Mequon Schefflera Wooden

AAE 7.12 9.82 10.83 7.40 9.04 11.40 7.62

Table 7.1: Average angular error for our nonlocal optical flow method on several sequences

RubberWhale Hydrangea Schefflera Wooden

Figure 7.5: Visual results: first row, our method; second row, groundtruth

7.6 Conclusion

In this chapter, we have proposed a general nonparametric statistical framework to compute

optical flow. This framework is expressed as a sum of two entropies, one for the data term,

the other for the regularization term in a balanced and meaningful functional. It naturally

extends to some recent improvements of optical flow (integration of other features than image

brightness) and follows the same philosophy as recent improvements in regularization (non-

local filters). In this framework we can write some of the classical parametric optical flow

formulations, as well as our new nonparametric formulation. Minimizing these energies, we

end up with local diffusion for the parametric formulation, nonlocal diffusion for the nonpara-

metric formulation, taking full advantage of estimation of statistics over the whole image.

Finally, the numerical difficulties are avoided using kNN mean-shift for high dimensional

features which isolates the nonlinearities in the neighborhood computations, the remaining

terms of the equations being linear.

PhD Thesis Sylvain Boltz



108 CHAPTER 7. OPTICAL FLOW



CHAPTER 8

SEGMENTATION

This chapter revisits segmentation using region-based active contours. The main contribu-

tion of this chapter is a general high dimensional framework for active contours. Energy is

expressed through information-theory inspired measures: entropy, Kullback-Leibler diver-

gence. In particular, we derived a general framework for multivariate segmentation based on

joint entropy estimated with kNN. Multivariate as any high dimensional space can be used

including, RGB color spaces, nonlocal radiometric/geometric color spaces and shape priors,

motion cues. On several examples, kNN estimation is performing better than classical meth-

ods even on low dimensional spaces (RGB colors). This chapter follows a general introduction

written in Section 2.3.

8.1 Introduction

Image segmentation aims at partitioning an image into semantic objects. First, we consider

the general case where there is poor knowledge about these semantic objects. One solution to

partition the image is to follow some basic assumptions such as colors uniformity or coherence

of objects. This uniformity criterion can be for instance the partition such as the variance in

each region is minimum.

However color coherence or uniformity assumptions are often insufficient to characterize

real-world objects, other cues must be integrated making the data vector valued. Vector

values statistics in image processing applications are usually treated in two ways: either the

features are assumed Gaussian distributed and a mean vector and covariance matrix are

estimated to fit the data, or the features are estimated non parametrically and as Parzen

techniques are impractical in high dimensions, independence between features are assumed.

Both solutions are non satisfactory as various features extracted from images (RGB channels,

tensors [RBD03], wavelets sub bands) are in general non independent and non-Gaussian

distributed.

Information theory helps to define measures of uniformity of the (multivariate) random

variables hidden in each region. The chosen measure of uniformity is the joint entropy be-

tween the features. In most cases, the features are correlated (e.g. the three RGB channels),

in some other cases (e.g. color and motion), it is reasonable to consider the features as inde-

pendent in order to limit the number of dimensions.

109
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Let us see why this choice of energy is interesting. First, entropy is a measure of disper-

sion. If the object is assumed to be piecewise homogeneous, the color distribution has a small

dispersion. Moreover, entropy coincides locally asymptotically with likelihood at the opti-

mum 1. Thus, a minimum entropy criterion should have near optimal performances in case

of a parametric distribution while being able to adapt to nonparametric cases. In particular,

entropy appears to be less sensitive to outliers in practice.

We propose a general framework for multivariate segmentation: the joint entropy allows

to combine an arbitrary number of features/modalities and is estimated with kNN. Using

classical entropy estimation, the number of modalities that can be combined together is lim-

ited by the number of samples available, i.e., the number of pixels of the image or sequence

frame. Indeed, if the samples fill the distribution space too sparsely, then classical entropy

estimation (or any other statistical measure) cannot be approximated accurately. To a certain

extent, the high dimensional kNN framework, defined in this manuscript, circumvents this

problem.

Information theory also provides divergences connected with Shannon entropy. Kullback-

Leibler divergence is used integrate priors in our energies. As automatic segmentation re-

mains a challenge, a more realistic solution is to introduce priors. Priors can be defined for

instance on the appearance, shape or motion of the object. An example is a video tracking

application, if we assume that a segmentation of the object is known on a previous frame, one

can use this segmentation to define a prior on the appearance or shape of the object. Again the

multivariate kNN segmentation framework allows to define these priors jointly. Combination

of these priors with joint entropy segmentation is coherent as Kullback-Leibler divergence is

linked with Shannon entropy, however this link is not presented in this manuscript and is a

perspective.

Another cue information is motion. Searching for a moving object, one can add motion

as a cue information in the segmentation algorithm. Motion information can be integrated

with color in a joint entropy. Joint entropy was estimated with Parzen as it is reasonable, to

consider these features independent. However, kNN extension of this work is a perspective.

Finally, although some equations below have some similarities with existing, likelihood-

based or Bayesian methods, the philosophy here is different and somewhat more general.

Bayesian methods are directly tied to the definition of the probability of the (observed) image

or sequence given a segmentation. Assuming independence between the pixels, an energy

is derived, which usually writes as a sum or integral of log probabilities. In the proposed

approach, each region of the segmentation is regarded as a set of samples or realizations.

The energy is defined as a function of a multivariate distribution in order to best fit the

needs of the specific application. The link between the energy and the samples is then made

through a nonparametric, Parzen-like or kNN estimation. This allows for example to keep

the same energy definition while using different object features or different assumptions on

the features. In particular, one could think of discarding the assumption of independence

between the pixels and use a patch-based (or neighborhood-based) approach [AW06] to change

the spatial information from color to texture.

This chapter is organized as follows. Section 8.2 presents a multivariate image segmenta-

tion with the kNN framework, Section 8.3 introduces how to define priors in this framework

and gives a example in video tracking using a shape and appearance prior from a previous

1This is interesting since the maximum likelihood estimator is optimal when the distribution of data is paramet-

ric.
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frame. Section 8.4 shows how motion segmentation can be used as a cue integration in a

joint entropy segmentation. Finally, Section G presents a simplification of active contours

algorithms implemented for an object-driven video coding application.

8.2 Image segmentation

8.2.1 Multivariate segmentation

Parametric and nonparametric segmentation

The goal is to define a general functional for image segmentation. Let us remind the Bayesian

model for image segmentation (2.35):

EB(Γ) = −
∫

Ω

log fΩ(u(m)) dm (8.1)

where u(m) is the pixel feature value at position m, Ω is the inner region of Γ, fΩ is the PDF

estimated over Ω. Estimation of fΩ can be parametric or nonparametric: using Gaussian

assumption of fΩ and region competition this model is equivalent to [CV01], using nonpara-

metric estimation of fΩ and region competition this model is [ZY96].

A new multivariate framework based on information theory

As mentioned in the introduction, a more general nonparametric model for image segmenta-

tion is based on information theory, for instance [KFY+05]. We propose to extend this model

to vector-valued data. Let us consider a contour Γ defining region Ω and features inside this

region U = {u(m) | m ∈ Ω}. Features U are vector-valued random observations of a multivari-

ate random variable. This variable has the following joint differential entropy:

H(Γ) = −
∫

Rd

fΩ(α) log fΩ(α) dα (8.2)

where fΩ is the PDF over the region Ω, d is the dimension of the features u. Since the ac-

tual PDF fΩ is unknown, it must be estimated. As u is vector-valued, multivariate Parzen

windowing method estimates the PDF:

f̂Ω(α) =
1

|Ω|

∫

Ω

Kh(α− u(m)) dm (8.3)

where |Ω| is the area of Ω, where Kh is a multivariate, Gaussian kernel with standard varia-

tion, or bandwidth, h.

As segmentation energies are usually defined by an integral on the region, see for exam-

ples [CS05, BRDW03, KFY+05, RP02, ABFJB03], the Ahmad-Lin estimate (8.4) is preferred

to the classical integral estimate (8.2)

ĤAL(Γ) = − 1

|Ω|

∫

Ω

log fΩ(u(m)) dm. (8.4)

where again fΩ is estimated with (8.3).

Summarizing, we defined an information-theoretic energy for multivariate features u and

try to find a shape Γ, whose inner features have the minimum dispersion:

EIT(Γ) = − 1

|Ω|

∫

Ω

log fΩ(u(m)) dm (8.5)
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where fΩ is the PDF of the features u estimated inside region Ω.

fΩ(u(m)) =
1

|Ω|

∫

Ω

Kh(u(m)− u(n)) dn (8.6)

where Kh is a multivariate kernel of bandwidth h.

Region competition

In practice, due to approximations and roundoff errors, energy (8.5) might have the empty

set as a unique global minimizer. A common solution is known as region competition: the

energy of the background is added to the energy (8.5) of the object. It is not mandatory to

use the same energy for the object and the background. However, it can be appropriate to

do so. As a result, the segmentation will represent a trade off between the minimization of

the object energy and the minimization of the background energy. It can also be interpreted

as the maximal separation between object and background descriptors [YTW02], here, the

respective joint distributions.

To account for the relative areas of the object and the background, or, in other words, to

account for the probability of a pixel to belong to either of them, the following weighted sum

will be used

Erc(Γ) =
|Ω|
|D| EIT(Γ) +

|Ω|
|D| EIT(Γc) (8.7)

where Ω is the complement of Ω in D, the image domain, and Γc is its boundary ∂Ω.

Energy (8.7) can be rewritten as

Erc(Γ) = p(C = 1) EIT(Γ) + p(C = 0) EIT(Γc) (8.8)

where C is the characteristic function of the object and p(C = i) denotes the probability of

the event C = i. Finally, as the division by |D| can be omitted since it has no influence on the

minimization, energy writes:

E(Γ) = |D|.Erc(Γ) =

∫

Ω

log fΩ(u(m)) dm +

∫

Ω

log fΩ(u(m)) dm (8.9)

This energy ends up with the same equations as maximum likelihood in a Bayesian seg-

mentation framework (2.35), where PDFs are estimated nonparametrically.

The prior term on the smoothness of the curve is removed since we will use a spline

parametrization of the active contour, the smoothing parameter is hidden in the spline con-

struction.

Shape derivative and evolution equation

Detailed in Appendix E, the shape derivative of (8.9) is equal to

dE(Γ, F ) =

∫

Γ

(

−1 + log fΩ(u(s)) +
1

|Ω|

∫

Ω

Kh(u(s)− u(m))

fΩ(u(m))
dm

)

N(s) · F (s) ds

−
∫

Γ

(

−1 + log fΩ(u(s)) +
1

|Ω|

∫

Ω

Kh(u(s)− u(m))

fΩ(u(m))
dm

)

N(s) · F (s) ds

=

∫

Γ

(

log fΩ(u(s))− log fΩ(u(s))

+
1

|Ω|

∫

Ω

Kh(u(s)− u(m))

fΩ(u(m))
dm− 1

|Ω|

∫

Ω

Kh(u(s)− u(m))

fΩ(u(m))
dm
)

N(s) · F (s) ds(8.10)
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The shape derivative (8.10) has the following form

dE(Γ, F ) =

∫

Γ

((α(s)− αc(s)) N(s)) · F (s) ds = 〈(α− αc) N,F 〉 (8.11)

where 〈, 〉 is the L2-inner product on Γ. Therefore, (α − αc) N is, by definition, the gradient

of (8.8) at Γ associated with this inner product.

Based on the notion of gradient defined in (2.42), energy (8.9) can be minimized using a

steepest descent procedure in the space of contours. The following contour evolution process

is known as the active contour technique [CKS97, HR04]: an initial contour2 is iteratively

deformed in the opposite direction of the gradient until a convergence condition is met. The

evolution equation of the active contour is written as follows







Γ(τ = 0) = Γ0

∂Γ

∂τ
= (αc − α) N

(8.12)

where τ is the evolution parameter and αc has the same expression as α but is evaluated

on Ω. The convergence condition is αc − α = 0. This evolution equation is imple-

mented using explicit parametrization of active contours, i.e. a smoothing spline. This

parametrization will be preferred to the implicit representation along this thesis for its com-

putational speed. The active contour toolbox used for implementation is publicly available at

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11643&objectType=File

and can manage topological changes.

8.2.2 kNN multivariate segmentation

Energy

In order to better evaluate statistics on vector-valued data, we propose a kNN estimate of

entropy in a region competition framework:

E(Γ) = |U |(log(vd(|U |−1))−log(k)+d µU (log ρk(U)))+|U |(log(vd(|U |−1))−log(k)+d µU (log ρk(U)))

(8.13)

where U = {u(m) | m ∈ Ω} and U = {u(m) | m ∈ Ω}. In order to compute the shape derivative,

let us remind that this energy has a PDF interpretation and is equal to:

E(Γ) =

∫

Ω

log fΩ(u(m)) dm +

∫

Ω

log fΩ(u(m)) dm (8.14)

where f is estimated through the balloon estimate

f̂U (u(m)) =
1

|U |

∫

Ω

Kh(u(m))(u(m)− u(n)) dn (8.15)

where K is a uniform kernel of balloon variable bandwidth h(u(m)). The same shape deriva-

tive scheme as detailed in Appendix E can thus be applied.

2For example, a user-defined contour.
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Shape derivative

Shape derivative (8.10) becomes in the kNN framework:

dE(Γ, F ) =

∫

Γ

(

d log ρk(U, u(s))− d log ρk(U, u(s))

+
1

k




∑

u∈NB(U,u(s))

ρk(U, u)

ρk(U, u(s))
−

∑

u∈NB(U,u(s))

ρk(U, u)

ρk(U, u(s))





)

N(s) · F (s) ds(8.16)

where NB(U, u(s)) is the balloon neighborhood of u(s) in U (5.35)3.

This shape derivative splits in two parts, divided in two rows. Indeed energy E has a

double dependency in Ω. The first row comes from the first dependence of Ω in the entropy

construction (8.5). The second row is for the second dependence of Ω in the PDF construction

(8.6). The same remarks holds for Ω.

The first term on the equation log ρk(U, u(s))− log ρk(U, u(s)) is intuitive and connects with

knn clustering. The contour will inflate toward the region containing the nearest kNN. Using

clustering terminology, a point on the contour will be labeled with the class containing the

nearest kNN to the point. kNN clustering [FH51] is similar, each point has the class label of

the most common class among its k-nearest neighbors.

The second term of the equation is the second influence of a sample in the PDF estimate.

In practice, this term vanishes for large enough regions as the influence of one sample point

in the PDF of the region is minimum.

Finally, the shape derivative can be written as (8.11) and is minimized using a evolution

equation (8.12) in an active contour framework.

Local PDF definition

In order to define more accurate statistics inside a region, we propose to add a spatial con-

straint in the PDF construction.

In order to define local statistics, again, the d-dimensional color features U are enriched

with geometry Ug = {[m, u(m)] | m ∈ Ω}. (d + 2)-dimensional sample points of these features

enriched with geometry are noted ug(m) = [m, u(m)].

This choice corresponds to the illustration Fig. 5.2(d) to model natural image statistics in

a nonlocal neighborhood. The kNN energy inspired of classical energies (8.13) corresponds to

illustration Fig. 5.2(c). Statistics are computed on all the image without spatial constraints.

E(Γ) = |Ug|(log(vd(|Ug|−1))−log(k)+d µUg
(log ρk(Ug)))+|Ug|(log(vd(|Ug|−1))−log(k)+d µUg

(log ρk(Ug)))

(8.17)

Again the shape derivative writes

dE(Γ, F ) =

∫

Γ

(

d log ρk(Ug, ug(s))− d log ρk(Ug, ug(s))

+
1

k




∑

ug∈NB(Ug,ug(s))

ρk(Ug, ug)

ρk(Ug, ug(s))
−

∑

ug∈NB(Ug,ug(s))

ρk(Ug, ug)

ρk(Ug, ug(s))





)

N(s) · F (s) ds(8.18)

3The k-th nearest neighbors of u(s) in U
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where NB(Ug, ug(s)) is the balloon neighborhood of ug(s) in Ug (5.35)4,

Again, the shape derivative can be written as (8.11) and is minimized using a evolution

equation (8.12) in an active contour framework. Geometry is present explicitly as a new

feature. It enforces statistics to be computed in a spatial local window around point s. As it

is known that defining local statistics increases the number of local minima, this method will

be used after the minimization of a kNN energy with global statistics (8.13).

This method connects with recent methods which performed local segmentation by locally

weighting the PDF construction [MAT07].

8.2.3 Experimental results

Setup

The images are extracted from a segmentation benchmark [MFTM01], Fig. 8.1. This bench-

mark also provides ground truth. Unfortunately, this ground truth provides only contours

and not regions. As the above algorithms are region-based, we filled these contours to form

regions of interest (Fig. 8.2). In this section, the performance of seven algorithms are com-

pared on this image basis.

The segmentation algorithms are all region-based active contours, with an joint entropy

energy (8.9) (and to a certain extent, Bayesian energies) on RGB colors : u is 3-d dimensional,

ug is 5-d dimensional, only the methods used to estimate PDFs differ.

The seven different PDF estimations are:

• SSD: Gaussian distribution on independent features, equivalent to [CV01] using the

square function, each color channels are summed independently,

• SAD: Laplacian distribution on independent features, equivalent to SSD but using ab-

solute value,

• Pz-Hind: Nonparametric distribution with Parzen estimates (8.9) and where the di-

mensions are treated independently (product of univariate distributions), bandwidth is

tuned by rule-of-thumb,

• Pz-H: Joint Parzen estimation (3-dimensional multivariate distributions), bandwidth is

tuned by rule-of-thumb,

• kNN-H: kNN estimate of PDF and entropy (3-dimensional multivariate distributions)

(8.13),

• kNN-H-G: kNN estimate of entropy and PDF with spatial constraints, i.e. local statistics

(5-dimensional multivariate distributions) (8.17),

• kNN-H-G-I: kNN estimate of entropy and PDF with spatial constraints (5-dimensional

multivariate distributions) i.e. local statistics and initialized with kNN-H i.e. global

statistics .

As groundtruth is avaliable, the error criterion is a percentage of miss classified pixels

normalized by the size of the region.

d = 100

∑

i,j

|Mg(i, j)−Mc(i, j)|
∑

i,j

Mg(i, j)
(8.19)

4The k-th nearest neighbors of ug(s) in Ug
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where Mg is the mask of the ground truth segmentation and Mc is the mask obtained with

the segmentation algorithm. Initialization by a user is simulated by defining a rectangular

region of interest, 2/3 smaller than the real bounding box Fig. 8.3.

The results are presented in the table Tab. 8.1. For each image, if the result is worse

than initialization in terms of error (8.19), it is noted X. Green color means it is in the best

performing methods (+/ − 5) in terms of error, and orange color means it is in the good

performing methods (+/− 10) in terms of error. Last row is the count of how many times the

method was labeled green (first number) and orange (second number). The last row maximum

possible score is 27, as on 5 images, all segmentation algorithms fail.

kNN-H segmentation on RGB components is giving the best results compared to other

segmentation algorithms. It outperforms similar algorithms Pz-Hind and Pz-H based on

entropy but with Parzen estimates of entropy. Finally, local PDF segmentation kNN-H-G and

kNN-H-G-I are performing better on some images. However, they are too sensitive to local

minima and are not performing better than kNN-H on RGB components on the whole image

base.

Visual segmentation results of the top performing method are showed on Fig. 8.4, kNN-H.

Only the 27 images where segmentation was possible with one at least of the methods are

showed.

8.2.4 Conclusion

Results on the segmentation image base tend to show that even when performing on rel-

atively low dimensional spaces (3-D spaces: RGB components), Parzen windowing, either

estimated on joint feature space Pz-H or with independence assumptions Pz-Hind, reaches

its limitation. Whereas H-kNN provides accurate segmentation due to the accuracy of kNN

estimate of entropy and the kNN PDF estimate (in the evolution equation).

In order to improve accuracy of the method, one can introduce priors in the same frame-

work, for instance by using a divergence linked with Shannon entropy: the Kullback-Leibler

divergence, based on features spaces defining priors. In the next section, a joint appearance

and shape prior will be defined as a Kullback-Leibler divergence on an high dimensional

appearance-shape space, following the same presentation of the tracking algorithms detailed

in Chapter 6.

8.3 Segmentation with a prior: a tracking example

In the last section, segmentation priors were limited to smooth contour assumptions. If a

more accurate prior is available, for instance, a training set of segmentations of similar objects

of interests. One way to integrate this prior is through computing of a similarity measure

between the prior and the image being segmented.

Information theory provides a measure in connection with entropy, the Kullback-leibler

divergence. The example chosen in this section is video tracking, the goal is to incorporate

priors from the previous segmented frames. Two priors are then available, an appearance

prior of the object of interest, as well as a shape prior of this object. While these two priors are

often treated independently, we propose a joint prior definition in a high dimensional space.

This high dimensional space will be efficiently handled by the kNN framework. Finally, this

problem is presented as in Chapter 6, a tracking problem. The differences come from the

geometric features, which must handle deformable shapes, and the active contour framework.
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H
H

H
H

H
H

Img

Energy
Init SSD SAD Pz-Hind Pz-H kNN-H kNN-H-G kNN-H-G-I

1 55.1 13.7 13.8 13.7 13.9 14 18.6 14.7

2 69 26 28.7 38.2 13.8 12.9 11.3 11.2

3 78.2 X X X X 67.3 X 74.5

4 65.4 13.6 13.5 23.6 12.1 9.7 15.6 15.4

5 45.9 X X 39.8 32.2 35.2 X X

6 65.7 17.7 18 25.4 5.5 5.3 20.5 5.6

7 51.6 X X X X X X X

8 81.4 28.3 29.2 27.9 7.3 8.2 41.4 7.9

9 62.7 60.9 61.4 39.8 X 38.9 X X

10 100.4 X X X 68.5 X X X

11 97.9 59.8 62.8 79.1 54.5 70.8 X X

12 49.7 X X X 37.5 10.6 35.4 14.3

13 87.7 69.9 70.8 72.1 60.4 19.8 X 14.3

14 67.4 27.3 27.9 26.6 29.5 18.4 21.3 17.3

15 39.7 32.1 31.9 21.8 25.6 21.3 17.3 18.2

16 35.3 17.9 X 14.0 X 8.5 8.1 7.8

17 61.1 X X X X X X X

18 51.5 X X 18.1 8.9 9.1 16.9 10.3

19 80.1 X X 73.5 77.9 X X X

20 43.1 X X X X 14.1 X X

21 67.3 X X 45.9 X 34.3 36.3 36

22 51.9 X X X X X X X

23 54.7 X X X X X X X

24 45.7 X X X 35.2 26.8 26.8 25.5

25 107.5 103.1 X 37.0 60.6 29 X 28.3

26 42.3 X X X 9.5 8.3 7.8 7.6

27 55.1 X X X X X X X

28 48.7 X X X 22.9 15.1 19 20.2

29 44.5 39.7 40.4 37.8 15.7 13.4 18.9 19

30 49.6 X X 49.1 21.3 21.6 21.2 21.1

31 43.9 X X 22.0 27.9 9.6 14.3 14.4

32 38.7 X X 21.6 6.2 3.8 6.1 6.6

Score(on 27) 1 +1 1 +1 3 +4 14 +3 23 +1 10 +5 17 +4

Table 8.1: Results compares 7 segmentation energies on 32 images of the segmentation bench-

mark. Error (8.19) based on normalized symmetrical mask difference with ground truth for 32

images (rows) comparing 7 segmentation methods (columns). X means segmentation is worse

than initialization. Green color means it is in the best performing methods (+/−5) and orange

color means it is in the good performing methods (+/− 10). Last row is the count of how many

times the method was labeled green (first number) and orange (second number).
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Figure 8.1: Image database extracted from Berkeley segmentation benchmark

8.3.1 Introduction

Two aspects of similarity measures between the reference region and a target region can be

distinguished: radiometry, which indicates if the regions have similar color distributions (ap-

pearance prior), and geometry, which correlates where these colors are present in each region

(shape prior). Similarity measures based solely on radiometry include distances between
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Figure 8.2: Ground truth segmentation masks, extracted from Berkeley segmentation bench-

mark and filled to define objects of interest

color histograms or probability density functions (PDF), for instance, mutual information

[KFY+05], Kullback distance [FZ04]. Not accounting for the information of where a given

color was present in the region allows to be more flexible regarding the geometric transfor-

mation between the reference region and the target region. However, it increases the number
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Figure 8.3: Simulated initializations by an operator: an active contour 2/3 smaller than the

actual bounding box of the mask is chosen.

of potential matches and then the risk for the tracking to fail after a few frames. This can be

avoided by using a geometry-aware similarity measure. The absence of geometric information

implies that several candidate regions can appear as good matches.

As an alternative, geometry can be added by means of a motion model used to compute
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Figure 8.4: The 24 segmentations labeled green or orange for top performing segmentation

algorithm kNN-H, in table 8.1

the point-wise residual between reference and candidate regions. A function of the residual

can serve as a similarity measure, classically, the sum of squared differences (SSD), functions

used in robust estimation [BA96] such as the sum of absolute differences (SAD), or statistical

measures. An example where the energy is defined on a first order approximation of the point-

wise residual, the optical flow constraint, in segmentation is [CS05]. However, in presence of

complex motions or homogeneous zones, the residual term looses its efficiency. The geometric
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constraint can be softened, e.g., by combining an energy based on a color distribution and

an other based on optical flow [BRDW03]. An alternative is to add a shape prior to the

energy [RP02, COS06].

Another approach defines a joint geometric/radiometric PDF, for example in bounding box

tracking [EDD03]. Geometric data add a spatial location information to the radiometric PDF.

In bounding box tracking [EDD03], the choice of good spatial coordinates is straightforward,

for instance Cartesian coordinates of the box. However, defining spatial coordinates for de-

formable regions is an issue. One can think on defining a coordinate system embedded in

the region, shape coordinates. Shape coordinates can be canonical Cartesian coordinates or

polar coordinates. The latter would better handle rotations of some parts of the shape. The

polar coordinates mapping of regions is a simplified version of the recent results for shape

recognition in [SM06]. However, the last two shapes coordinate change when the region goes

under deformations. A third shape coordinate based on the distance map, already applied

in medical imaging [LFGWI00], can be considered. These shape coordinates suit very well

medical imaging as the intensity is constant over the level sets of the regions. To handle non

medical videos, one can extend it adding a nearest contour coordinate, the arc length of the

nearest point (NAL). This approach is motivated by the fact most of the shape coordinates and

shape correspondences algorithms in the literature [BMP02] are based on correspondence of

the contour. By combining both distance map and contour correspondence with NAL, we ex-

tend this model to region correspondence. These region coordinates are constant under many

object deformations.

Shape coordinates are added to radiometric data in a single joint high-dimensional PDFs.

Although there are efficient methods [Sco92] to estimate multivariate PDFs using Parzen

windowing, limitations appear as the dimension of the domain of definition of the PDFs in-

creases.

The first contribution of this section is to apply in segmentation a joint radiomet-

ric/geometric, color-spatial criterion [EDD03]. We propose as geometric data, shape coor-

dinates, adapted for deformable regions. Recent segmentation methods also tried to combine

multiple features (spatial data, gradient, wavelets coefficients, motion) to perform accurate

segmentation [BRDW03]. The PDFs are then high-dimensional and some assumptions have

to be made (e.g.: independence between components, Gaussian assumptions). The second

contribution of this section is to plug kNN methods in an active contour framework using the

shape derivative tool [ABFJB03]. This high dimensional Kullback distance is not differen-

tiable, however using the shape derivative, no direct differentiation of the Kullback distance

is needed and we can bypass this difficulty.

In this section we use the high dimensional statistical measure estimation based on the

kNN framework proposed in [BDB07]. This study in tracking did not require PDF estima-

tion. Here we build the kNN framework using both kNN PDF estimation and statistical

measure estimation. Indeed, in this section we compute the shape derivative of the crite-

rion proposed in [BDB07] and this derivative requires the underlying PDF estimation of the

statistical measure. Moreover the work [BDB07] was presented on rigid shapes (rectangles)

with Cartesian coordinates. This section takes into account deformable shapes and a new

system of coordinates had then to be defined.

This section is organized as follows. Section 8.3.2 defines Kullback distance on geomet-

ric/radiometric data. Section 8.3.3 defines geometric data for deformable shapes. In Sec-

tion 8.3.4 we plug this distance in a segmentation method through active contours. Sec-
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tion 8.3.5 provides some results of segmentation performed on two standard sequences. Fi-

nally Section 8.3.6 concludes.

8.3.2 Similarity measures with a soft geometric constraint

Let Iref and Itarget be, respectively, the reference frame in which the ROI ΩR is (user- ) defined

and the candidate, or target, frame in which the region ΩT best matches the ROI, in terms of

a given similarity measure, is to be searched for. This search amounts to finding the region

ΩT which minimizes

E(ΩT ) = D(Iref(ΩR), Itarget(ΩT )) (8.20)

where D is a similarity measure, or distance, between the two sets of data. ΩT and ΩR are

subsets of R2 (or subsets of N
2 in the discrete framework).

For clarity, the reference data set Iref(ΩR) will be denoted by R and the target data set

Itarget(ΩT ) will be denoted by T . Thus, r(m) resp. t(m), m ∈ ΩR resp. m ∈ ΩT , represent

corresponding samples from their regions R resp. T . Traditionally, r(m) and t(m) are a triplet

of color components in a given color space, e.g., RGB or YUV.

Two aspects of similarity measures can be distinguished: radiometry which indicates if

the regions have similar colors and geometry which correlates where these colors are present

in the regions. Measures based solely on geometry, do the point-wise difference between the

reference region and the target region. An example in segmentation is based on the Taylor

expansion of this point-wise difference, the optical flow constraint [CS05].

Measures based solely on radiometry include distances between the probability den-

sity functions (PDF) of the color information in the regions, for example mutual informa-

tion [KFY+05], Hellinger distance [ABFJB03].

A widely used distance, in segmentation in [FZ04], is the Kullback divergence5

DKL(T,R) =

∫

Rd

fT (α) log
fT (α)

fR(α)
dα

= −H(fT ) +H×(fT , fR) (8.21)

where fT is the PDF of data set T , fR is the PDF of data set R, H is the Shannon entropy and

H× is the cross entropy, also called relative entropy or likelihood.

The geometric constraint can be softened by expressing it in the PDF-based approach, i.e.,

by adding geometry to the original radiometric data [EDD03]. Formally, the PDF fR(α) resp.

fT (α) is built on α = t(m) = {Itarget(m),m} for m ∈ ΩT resp. on α = r(m) = {Iref(m),m} for

m ∈ Ωref . m are spatial features, based on a coordinate system. In the next section, we will

discuss which coordinate system could be used and which best fits our method.

8.3.3 Spatial features

First spatial features choice are the canonical Cartesian coordinates of the image. It needs

though to be compensated by the motion of the region. A complex motion model is hard to

define (for example for articulated objects) and computationally expensive to estimate. In-

stead we propose to define coordinates embedded in the region, named shape coordinates. In

this way, estimation motion is skipped as shape coordinates change when the region deforms.

5Kullback-Leibler divergence is a not a distance, as it is not symmetric. The symmetrised Kullback divergence

DKL(T, R)+ DKL(R, T ) is a distance. For clarity, we presented all the calculus with the classic Kullback-Leibler

divergence.
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The segmentation and motion deformation (hidden in the shape coordinates) are then jointly

solved.

Most shape coordinates for shape correspondence are based on contour [BMP02]. Here

we aim at defining interior region coordinates. In practice, shape coordinates should have

three properties. First they should map efficiently the region, i.e. each point should have a

unique representation in the shape coordinates. Second, the shape coordinates should remain

constant when the region goes under deformation. Third property, computational speed must

remain reasonable, as the spatial features are computed at each iteration of the active contour

evolution.

Region Cartesian coordinates

One can define Cartesian coordinates local in the region, for example, we choose the bounding

box of the region. Inside the bounding box, we define Canonical Cartesian region coordinates

{xregion, yregion} .

This method, Kullback with Cartesian geometric data (KL-CG) has 5-dimensional fea-

tures: {Y,U, V, xregion, yregion}. The last two features are plotted on a example on Fig. 8.5.

This model should perform well for rigid objects, and is the one used for bounding box

tracking in [EDD03].

Region polar coordinates

We now consider polar coordinates. We define as the origin of the polar coordinates the

barycenter of the region. When the object is articulated, the radius coordinate should remain

constant, while the angle coordinate should measure the deformation. On the opposite, with

the previous region Cartesian coordinates, both coordinates change, in particular articulated

members under rotation far from the barycenter (for example feet of a human body).

This approach could be extended to conformal mapping of a shape to a circle [SM06]. But

for computational considerations, as the spatial features will have to be computed at each

iteration of the active contour framework, we preferred basic polar coordinates.

This method, Kullback with polar geometric data (KL-PG) has 5-dimensional features:

{Y,U, V, rregion, θregion}. The last two features are plotted on a example on Fig. 8.5. The dis-

continuity visible on this figure is due to the transition between the angles −π to +π.

Distance map and contour correspondence

As mentioned in the previous section, both Cartesian and polar coordinates on the region

change when the region goes under deformations. In this section, we define shape coordinates

constant under shape deformations. First, we propose to use the distance map d

d(m) = min
t∈[0,1]

||m− C(t)||2 (8.22)

where C : [0, 1]→ R
2 is a parametric curve representation of the contour.

This model has been proposed in medical images [LFGWI00] where regions of interest

have uniform intensity on the level sets of the distance map. This model is in general not

true on non medical videos. We propose to complete the distance map with another spatial

feature: a contour correspondence. We chose the simplest contour correspondence coordinate,

arc length of the nearest point on the contour l (NAL).
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tm = arg min
t∈[0,1]

||m− C(t)||2 (8.23)

l(m) =

∫ tm

0

||C ′(t)|| dt (8.24)

Combining distance map coordinate and a nearest contour coordinate {d, l}, we have a

unique representation of each point in the shape. We must define an origin C(0) on the para-

metric contour to define the NAL. We used as reference point the highest point of the curve in

the image. This reference point can move with rotating or articulated objects but it is not the

case in the videos used in our experiments. There are many works in the literature to define

more efficient contour correspondences between two deformable shapes [BMP02]. However,

we did not yet implement these techniques, and even with this basic contour correspondence,

our shape coordinates can handle many types of deformations.

This method Kullback with Distance Map and NAL Geometric data (KL-DG) has 5-

dimensional features: {Y,U, V, d, l}. The last two features are plotted on a example on Fig. 8.5.

The two discontinuities visible on this figure are on the skeleton of the region as the NAL

changes. The other discontinuity is on the top of the head as it is the origin of the arc length.

Finally, this method can be seen as a joint distribution of radiometric data with a shape

prior. While shape priors energy are often internal as they do not depend on the image (they

contains no radiometric information). Shape priors geometrically match two regions [RP02]

and the idea is to add radiometric information in this geometric match.

Weighting between components

One could claim our method is parameter-free as the use of joint probability allows no difficult

weightings considerations (in comparison with quadratic error of different physical quanti-

ties). However, one may still want to define weightings between color and spatial components.

On one hand, if there is knowledge on the rigidity on the object, one can increase the weight-

ings on the spatial components, allowing more variability in color changes. On the other

hand, if the object is articulated, one can lower the weighting of spatial components, relying

more on color distributions.

To tune this parameter, we rescale spatial features, shape coordinates, into the interval

[0, 1], and we rescale the color features on the interval [0, α], α being the weighting parameter.

Moreover, for the DG coordinates system, if we assume the region is a circle of radius r, the

maximum of the distance map would be r while the maximum of the NAL would be 2πr. To

circumvent this, we divide the NAL coordinates by 2π.

8.3.4 Segmentation using active contours

Estimation of entropy and probability distributions

The energy used is the KL divergence. As developped in (8.21), it is a sum of two entropies.

In this section we present a method to estimate entropy.

ΩU defining dataset U = {u(m),m} for m in ΩU (U being either T or R, ΩU being either ΩT

or ΩR) has the following Shannon entropy:

H(XU ) = −
∫

Rd

fU (α) log fU (α) dα (8.25)
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Figure 8.5: Spatial features components {x, y}, first component red color, second component

green color: {0, 0} black, {1, 0} red, {0, 1} green, {1, 1} yellow. From left to right: region Carte-

sian coordinates (CG), region polar coordinates (PG), distance Map and NAL (DG)

Again, we used the Ahmad-Lin estimate [AL76], named resubstitution estimate of entropy

ĤAL(fU ) = − 1

|U |

∫

ΩU

log fU (u) du (8.26)

where |U | is the area of ΩU . Since the actual PDF fU is unknown, it must be estimated. A

common practice is to use the non-parametric, Parzen windowing method.

f̂U (u) =
1

|U |

∫

ΩU

Kh(u−m) dm (8.27)

where Kh is a multivariate, Gaussian kernel with standard variation, or bandwidth, h.

Shape derivative

The energy to be minimized through active contours is the Kullback divergence (8.21). In

addition, as the distribution of the object can be characterized by a subregion inside the

object, we propose to add a maximum area constraint with a weighting λ.

E(T ) = DKL(T,R)− λ.|T | (8.28)

To differentiate this energy we write its expression (8.26).

E(T ) = − 1

|T |

∫

ΩT

log fT (t(m)) dm

− 1

|T |

∫

ΩT

log fR(t(m)) dm− λ.|T | (8.29)

We have an energy which has many dependencies with the region ΩT . We propose to

compute the shape derivative [ABFJB03] on ΩT in the direction of a vector field V . Computing
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the derivative, we obtain:

dE(Γ, F ) =

∫

Γ

[

1

|T | (DKL(T,R)− log fT (t(s)) + log fR(t(s)) ) + λ

+
1

|T |2
∫

ΩT

1− Kh(t(m)− t(s))
fT (t(m))

dm

]

N(s).F (s) ds (8.30)

where Γ = ∂ΩT and where N is the inward unit normal of Γ. It can again be written as a

scalar product.

dE(Γ, F ) =

∫

Γ

((α(s)) N(s)) · F (s) ds = 〈α N,F 〉 (8.31)

where 〈, 〉 is the L2-inner product on Γ.

Based on the notion of gradient defined in (2.42), energy (8.28) can be minimized using a

steepest descent procedure in the space of contours. The following contour evolution process

is known as the active contour technique [CKS97, HR04]: an initial contour6 is iteratively

deformed in the opposite direction of the gradient until a convergence condition is met. The

evolution equation of the active contour is written as follows






Γ(τ = 0) = Γ0

∂Γ

∂τ
= −α N

(8.32)

where τ is the evolution parameter. The convergence condition is α = 0. This evolution

equation is implemented using explicit parametrization of active contours, i.e. a smoothing

spline.

One can note that Eq. (8.30) requires the PDF estimation of a 5-dimensional joint geomet-

ric/radiometric data set (three color components plus two spatial components) of the reference

region and the target region: R and T . The sparsity of this high-dimension data space makes

the PDF estimation, and therefore the similarity measure estimation, even more problematic.

The kNN framework can be applied as it is the same shape derivative with balloon variable

kernels, it provides again an advantageous alternative to circumvent high dimensions.

Simplification in active contours using kNN

Using for fR and fT the kNN expression given in (5.5) and for DKL the expression given

in (5.12), expression (8.30) reduces to :

dE(Γ, F ) =

∫

Γ

[

− d

|T | [µT (log ρk(R))− µT (log ρk(T ))

− log ρk(R, t(s)) + log ρk(T, t(s))] + λ (8.33)

+
1

|T | (1−
1

k

∑

ti∈NB(T,t(s))

(
ρk(T, ti)

ρk(T, s)

)d

)

]

N(s).F (s) ds.

where NB(T, t(s)) is the balloon neighborhood of sample t(s) in data set T , i.e. the support of

Kh(s), which in the kNN framework, is a uniform kernel centered in s of size ρk(T, s) (5.5).

Moreover one can note that choosing the sample point estimate expression (5.6) instead of

the balloon estimate expression (5.5), the last row in (8.33) would be equal to zero. How-

ever both simplified expression of Kullback distance (5.12) and simplified expression of PDF

estimate (5.5) are only valid for balloon estimate.

6For example, a user-defined contour.
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dE(Γ, F ) =

∫

Γ

[

− d

|T | [µT (log ρk(R))− µT (log ρk(T ))

− log ρk(R, t(s)) + log ρk(T, t(s))] + λ (8.34)

+
1

|T | (1−
1

k

∑

ti∈NSP (T,t(s))

1)

]

N(s).F (s) ds.

Finally, kNN version of energy derivative (8.33) is plugged in the evolution equation (8.32).

Let us remind active contour energy (8.28) and active contour evolution equation (8.32) re-

quired a high dimensional joint PDF over the data. The kNN framework estimates both active

contour energy (8.28) and active contour evolution equation (8.32) without explicit estimation

of the PDF but with a reduced expression using distances to nearest neighbors.

8.3.5 Experimental results

In this section we will compare two methods, the Kullback distance computed through kNN

but with no geometry kNN-KL (no spatial features, R and T are 3-dimensional) and the Kull-

back distance computed through kNN with geometry in a general sense kNN-KL-G (spatial

features, R and T are 5-dimensional), geometry being either Cartesian kNN-KL-CG, polar

kNN-KL-PG or distance map with NAL kNN-KL-DG. k of the kNN framework is set to
√

|T |.
The reference histograms for kNN-KL and kNN-KL-G are built over a region ΩR on frame

1 for “Erik” Fig. 8.6, frame 74 for “Football” Fig. 8.7 using a manual segmentation. The goal is

to find the corresponding region ΩT in frame 6 for “Erik”, frame 75 for “Football”. We initialize

the segmentation with a circle far from the solution to show the stability of the method.

First we present results on sequence “Erik” Fig. 8.6, size 288 × 352. This sequence shows

a translating man over a static background. This sequence was chosen because its motion is

very simple, while it is composed of many colors which will lead to complex color histograms.

This sequence is considered as rigid, we tuned the weighting α presented in Section 8.3.3

to 1. This means, an error of 1 unit in geometry is similar to an error of 1 color intensity.

Some parts of the background have similar colors than Erik. Therefore kNN-KL includes it

as object while kNN-KL-G detects their spatial features are not correct so it does not include

it as object. These results did not use maximum area constraint, λ = 0. As expected for

rigid objects, all spatial features kNN-KL-CG, kNN-KL-PG and kNN-KL-DG led to exactly

the same results, which is the correct segmentation.

Results are presented on sequence “Football” Fig. 8.7, size 288× 352. This sequence shows

fast and articulate motions. This sequence is considered as nonrigid, we tuned the weighting

α presented in Section 8.3.3 to 10. This means, an error of 10 units in geometry is similar to an

error of 1 in color intensity, a good motion variability is allowed in this sequence. Some parts

of the public on the upper part of the video have the same colors as the player. kNN-KL-G

excludes again them as their spatial features are not correct while kNN-KL includes them in

the segmentation. The Kullback distance kNN-KL-G slightly increases when taking the legs

of the player as their are articulated (error of registration in the spatial features). However, as

the geometric constraint is soft, it increases less than with segmenting the public, the player

is then correctly segmented with the help of maximum area constraint. Here the results with

different spatial features are not the same. kNN-KL-CG has difficulties to properly segment

the legs of the player as it is nonrigid (spatial features have changed). kNN-KL-PG is a little

better as the spatial features change only on one spatial feature components (the angle).
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Figure 8.6: Segmentation on sequence “Erik” on frame 6: (from left to right and top to bot-

tom) region of interest ΩR manually segmented on frame 1, initialization of the segmentation,

results ΩT of segmentation with method kNN-KL, results ΩT of segmentation with method

kNN-KL-CG,results ΩT of segmentation with method kNN-KL-PG,results ΩT of segmentation

with method kNN-KL-DG

Finally kNN-KL-DG gives the best results as the spatial features on the reference frame and

on the target frame represent the same pixels.

The maximum area constraint was tuned to segment the whole object in all cases. kNN-

KL and kNN-KL-CG required a parameter λ = 2.10−4 to ignore color variability for kNN-KL,

and to ignore spatial features variability for kNN-KL-CG. It segmented all the football player

but it led to an over-segmentation in some parts of the image. kNN-KL-PG only needed a

parameter λ = 1.10−4 to segment all the football player, leading to less over-segmentation.

Finally kNN-KL-DG needed a parameter λ = 5.10−5 to segment all the football player, leading

to accurate segmentation.

Finally we discuss about the robustness to the bandwidth parameter k of kNN. k =
√

|T |,
setting k to 2n

√

|T |, from n = −2 to n = 2, the absolute difference between the segmentation

masks and the one generated is less than 3.7%×|T |. The segmentation algorithm is robust to

the bandwidth k, changing from 1 time to 16 times its initial value, while segmentation meth-

ods based on Parzen techniques observed an high sensitivity to the bandwidth parameter.
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Figure 8.7: Segmentation on sequence “Football” on frame 75: (from left to right and top to

bottom) region of interest ΩR manually segmented on frame 74, initialization of the segmenta-

tion, results ΩT of segmentation with method kNN-KL, results ΩT of segmentation with method

kNN-KL-CG,results ΩT of segmentation with method kNN-KL-PG,results ΩT of segmentation

with method kNN-KL-DG

8.3.6 Conclusion

The results presented for this method show the applicability of kNN framework in active

contour segmentation. It shows that it can be particularly efficient in high dimensional

cases such as joint feature-spatial segmentation. We proposed new shape coordinates for

deformable regions. The results tend to show that for rigid object, shape coordinates are not

an issue. On the opposite, for deformable regions, our region shape coordinates compares

favourably to other region coordinates systems.

We only compared soft geometric to no geometric, and different shape coordinates. One

could expect comparisons with classical Parzen techniques for segmentation. First, a compar-

ison would not be fair as the model presented in [LFGWI00] is only valid for medical images

as discussed in Section 8.3.3. Second, this model uses only grayscale and distance map fea-

ture, namely 2-dimensional features. This model is acceptable for Parzen, but when using

more high dimensional features (5-dimensional features in our model) Parzen techniques suf-
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fer from the curse of dimensionality while kNN can handle it. We refer to [TS92] for details

on this subject.

Finally our method compares favorably to state of the art, on sequence “Football”. In this

section we compared to a radiometric method. Geometric methods often require a motion

estimation step. An affine motion model cannot model the high level of deformations of the

articulated player. In addition the sequence has motion blur and there are fast motions. As a

consequence, optical flow estimation is also very difficult on this sequence.

8.4 Motion segmentation

In this section we demonstrate how motion segmentation can be simply performed by adding

a motion cue in the vectors. Color and motion residual are combined in a joint entropy. Mo-

tivations to treat color and residual independently are also given. Indeed, even if the kNN

framework allows to efficiently deal with higher dimensional energies. It is sometimes of

less interest when data are assumed enough decorrelated (in a meaning defined in this sec-

tion). In this section, Parzen estimation will then be preferred as it is fast and efficient in low

dimensions.

8.4.1 Introduction

Video segmentation aims at partitioning some video frames into objects and background. (For

simplicity, it will be supposed that there is a single object.) This task can be performed with-

out motion computation. If reference values of some descriptors are available (e.g., mean color,

color variance, color distribution. . . of the object of interest), an object can be segmented by

minimizing a distance between the actual values of the descriptors computed on a candidate

object domain and the reference values [FZ04]. However, the lack of sensitivity of some de-

scriptors near the object boundary (e.g., the color distribution might not vary significantly if

the candidate domain is slightly deformed) and the degree of freedom of the object motion (a

priori infinite) may increase the number of potential solutions. Therefore, the segmentation

framework involving motion computation will be considered.

Let us first consider the motion estimation task. Dense flow field estimation (i.e., one

motion vector per pixel) is an underdetermined problem. Moreover, when using the first or-

der approximation of the brightness/color constancy constraint, only the motion component

in the direction of the image gradient can be estimated. This limitation is known as the

aperture problem. Motion estimation is therefore an ill-posed problem. It needs to be reg-

ularized, i.e., constrained. On the one hand, the so-called global methods estimate a dense

flow field while imposing the solution to be smooth [WS01, BBPW04]. On the other hand,

local methods constrain the motion to follow a parametric model (e.g., translation, affine mo-

tion, homography) with constant parameters, either in the whole image or within blocks or

regions [LK81, OB95, WK93]. Both approaches have also been combined [BWS05]. Given

the link between motion estimation and object segmentation in a video, it can be noted that

global methods require anisotropic smoothing to preserve object boundaries [WS01] whereas

local methods are characterized by a chicken-and-egg dilemma: (i) estimating motion know-

ing the object boundary while (ii) the boundary is defined as an optimal partition knowing

the motion of the object and its neighborhood. This suggests to perform motion estimation

and segmentation jointly [CS05], which will be the approach followed here.
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Focusing on motion estimation again, imposing the brightness/color constancy constraint

is equivalent, in variational terms, to minimizing a function of the motion compensation er-

ror (MCE), or of its first order approximation, as already mentioned. There is a correspon-

dence between the choice of one such function and an assumption on the distribution of the

MCE, e.g., the square function and the assumption of a Gaussian distribution or the abso-

lute value [WK93] and the assumption of a Laplacian distribution. This point of view will

be referred to as parametric since the underlying distribution is characterized by a small

set of parameters. In contrast, it is proposed to get rid of the parametric assumption on

the data by trying to estimate the actual distribution as proposed for various related prob-

lems [CRM00, ABFJB03, KFY+05, MP04] or in the context of shape prior [COS06, LGF00].

This approach will be referred to as nonparametric.

In this nonparametric framework, we propose to use a unique statistical measure to

both estimate the motion and segment the object. (A review of statistical methods in im-

age segmentation was done recently [COS06].) Among the popular measures such as en-

tropy [CH04], mutual information [VW97], or the Kullback-Leibler divergence [Kul59], the

entropy [BHDB06, HBDB06] was chosen for its interesting properties (it is a measure of

dispersion and it is robust to outliers - see Section 8.4.3) and because manipulating a sin-

gle distribution (the distribution of the MCE) was preferred over taking the reference/target

distribution comparison approach.

Motion-based segmentation can fail in areas insufficiently textured. In particular, the

MCE is equal to zero in any homogeneous region. Therefore, adding such a region to, or sub-

tracting it from, a given segmentation still produces potential solutions. This can be solved

with the help of shape regularization [CS05], by adding spatial terms to the motion-based

energy [BRDW03, PD02a], or by processing color and motion sequentially [DPM06]. This

last alternative is interesting but asks the difficult question of ordering the features, say, by

importance (especially if involving even more features). The first two ones often require a

non-trivial adjustment of the weighting of the different terms. It will be shown that, using

joint distributions, an objective choice of the weighting of the motion term and the spatial

term can be made (namely, equal weighting or, equivalently, weight-free).

In brief, we propose to define a single spatio-temporal energy7 to perform joint motion

estimation and segmentation. To account for noise and model mismatch, the energy will be

based on a statistical measure, namely entropy. In order to adapt to the data, no assumption

will be made on the MCE or color distributions; they will be estimated using a nonparametric

method. Finally, it will be shown that, with the proposed approach, the motion term need not

to be weighted relative to the spatial term. In a way, this offers a solution to the implemen-

tation of the operator AND between several properties (related here to motion “and” color)

jointly describing the object of interest.

The section is organized as follows: Section 8.4.2 details the problem statement. In Sec-

tion 8.4.3, the classical parametric assumption on the MCE distribution is discarded and the

proposed nonparametric framework for video segmentation, involving the actual residual and

color distributions, is described. A single spatio-temporal energy is proposed to perform mo-

7Note that, here, the usage of the terms “temporal” and “spatio-temporal” should be understood as “motion-based”

and “based on motion and color”, respectively. “Spatio-temporal” more typically refers to a process performed in the

xyt-space where x and y are video frame coordinates and t is the time coordinate. As far as active contours are

concerned, such a process would manipulate a tube oriented along the time dimension as opposed to a planar curve

here.
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tion estimation and motion-based segmentation simultaneously. A piecewise motion model is

introduced to allow enough flexibility for segmenting articulated objects. An active contour

procedure is proposed in Section 8.4.4 to minimize the energy. Finally, Section 8.4.5 presents

some results on synthetic and natural video sequences.

8.4.2 Problem Statement

The motion of an object domain Ω can be computed by choosing a motion model and finding

the motion parameters that minimize a function of the MCE over Ω. At a pixel level, making

the assumption of brightness/color constancy, the MCE is classically equal to the following

residual

en(v(m),m) = In(m)− In+1(m + v(m)) (8.35)

where m is a pixel of Ω, In is the nth grayscale or color frame of the sequence, and v(m) is the

apparent motion between In and In+1 at m (known as the optical flow). Ideally, en(v(m),m) is

equal to zero up to some noise. In grayscale, this condition provides a single equation for two

unknowns (the components of v(m)) and, both in grayscale and color, it is likely that several

pixels y have the same value In+1(y). As a consequence, the motion estimation problem

cannot be solved without additional constraints. A possible way to constrain the problem is to

assume that the motion is coherent with a chosen model inside Ω [WK93]. Then, the motion

estimate v can be computed as

v = arg min
w

∫

Ω

ϕ(en(w,m)) dm (8.36)

where ϕ can be, for example, the square function, the absolute value, or a function typical of

the robust estimation framework [BA96, CBFAB97].

The motion-based segmentation of frame In can be formulated as the largest domain Ω

inside which the motion is coherent with model (8.36), formally,







Ω̂ = arg min
Ω

∫

Ω

ϕ(en(v(Γ),m)) dm

v(Γ) = arg min
w

∫

Ω

ϕ(en(w,m)) dm
(8.37)

where Γ is the boundary ∂Ω of Ω. Note that writing v(Γ) or v(Ω) is only a matter of notation

since Ω is completely determined by Γ and conversely. Let us denote by Et the following

domain energy8

Et(Γ) =

∫

Ω

ϕ(en(v(Γ),m)) dm . (8.38)

Choosing ϕ results in making an assumption on the distribution of the residual en in Ω.

However, these assumptions may not be appropriate. In particular, the presence of outliers

in the residual (e.g., due to occlusions, mismatch between the chosen motion model and the

actual motion, variation of luminance. . . ) may result in a complex, multimode distribution.

As a consequence, the motion estimator in (8.37) may be biased, leading to a loss of accuracy

of the motion-based segmentation.

8.4.3 Proposed segmentation energy

Three steps will be taken to derive the proposed energy: the definition of an ideal energy, its

simplification, and its “symmetrization”.

8Subscript t stands for temporal.
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Nonparametric, entropy-based energy

To account for the true distribution of the residual en, and in general any feature that will

be used for segmenting, it is proposed to make the energy depend on an estimation of the

feature distributions rather than on the features themselves as it was the case in (8.38) con-

cerning the residual. For the present segmentation task, the residual en will be combined

with the spatial feature In (similar combinations of geometry and radiometry have been pro-

posed [EDD03, LFGWI00]). The proposed energy has the following form







E(Γ) = − 1

|Ω|

∫

Ω

log f(en(v(Γ),m), In(m)) dm

v(Γ) = arg min
w
EΓ(w)

(8.39)

where f is the joint distribution of the residual en(v(Γ)) and the image color In inside the

object domain Ω, and

EΓ(w) = − 1

|Ω|

∫

Ω

log f(en(w,m), In(m)) dm . (8.40)

Energy (8.39) is the continuous version of the Ahmad-Lin approximation of differential en-

tropy [AL76]. In both (8.39) and (8.40), f is the joint distribution of the residual and the color.

The residual being a function of the motion, f is itself a function of v(Γ) in the former and w

in the latter.

Let us see why this choice of energy is interesting. First, entropy is a measure of dis-

persion. If the segmentation is optimal, the residual should be distributed around zero with

a minimal dispersion. Similarly, if the object is assumed to be piecewise homogeneous, the

color distribution has a small dispersion. Thus, a minimum entropy criterion should have

near optimal performances in case of a parametric distribution while being able to adapt to

nonparametric cases. In particular, entropy appears to be less sensitive to outliers in practice.

Simplification using marginal distributions

A fixed-size kernel-based procedure will be employed to estimate the distributions (see Sec-

tion 8.4.3). To avoid that the entropy estimation be biased as an effect of the curse of dimen-

sionality, energy (8.39) will be “simplified”. Thus, the residual and the color will be assumed

to be independent (See Appendix F.2). As a consequence, energy (8.39) can be rewritten as

the following sum involving the marginal distributions

E(Γ) = − 1

|Ω|

∫

Ω

log ft(en(v(Γ),m)) dm− 1

|Ω|

∫

Ω

log fs(In(m)) dm (8.41)

= Et(Γ) + Es(Γ) (8.42)

where subscript t, respectively s, in ft and Et, respectively fs and Es, stands for temporal,

respectively spatial. Note that the second integral in (8.41) was proposed for image segmen-

tation [KFY+05].

The temporal energy in (8.41) is of the form

Et(Γ) =

∫

Ω

ψ(ft(en(v(Γ),m))) dm . (8.43)

One can say that the parametric approach (8.38) is extended to nonparametric distributions

by substituting for a function of the residual ϕ(en) a function of its distribution ψ(ft(en)).
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By making the assumption of independence, one obtains a sum of two energies, meeting

the philosophy usually adopted when one wants to simultaneously minimize several ener-

gies. However, in general, weighting parameters are introduced to tune the influence of the

respective energies whereas, here, there are no such weights (it seems indeed natural not to

favor any of the two terms since they have the same unit).

Similarly to section 8.2 a region competition framework is defined justified by conditional

entropy.

Erc(Γ) =
|Ω|
|D| Enp(Γ) +

|Ω|
|D| Enp(Γc) (8.44)

As defined in (8.39), energy E(Γ) is (an approximation of) the joint entropy of the residual

and the color conditional on C = 1. Let us denote it by H(en, In|C = 1). Equivalently, E(Γc) is

equal to H(en, In|C = 0). Then, Eq. (8.8) is equal to

Erc(Γ) =
∑

i∈{0,1}

p(C = i) H(en, In|C = i) (8.45)

= H(en, In|C) . (8.46)

where C is the characteristic function of the object and p(C = i) denotes the probability of the

event C = i. Therefore, energy (8.44) is equal9 to the conditional, joint entropy of the residual

and the color H(en, In|C).

Motion estimation

As mentioned in Section 8.4.2, the motion v is assumed to follow a given model inside Ω. For

example, it can be defined by a set of parameters p [OB95]. Then, estimating v in (8.43) is

only a matter of estimating p. This task is certainly made easier if the relation between v and

p is linear

v(Γ) = M p(Γ) (8.47)

where M is a 2× l matrix if p is an l-vector. Even if the motion model is complex, it will hardly

account for general motions such as motions of articulated objects, and if it does, solving for

the model parameters is likely to be an ill-posed inverse problem. Instead, we propose to keep

the model simple while solving for its parameters locally. Frame In is divided into k blocks

Bi of identical size, where k depends on the frame size. Let Ωi be the intersection of Ω with

Bi and let Γi be the boundary ∂Ωi of Ωi (see Fig. 8.8). The temporal energy (8.43) is replaced

with

Elocal
t (Γ) = − 1

|Ω|

∫

Ω

log ft(en(v1, . . . , vk,m)) dm (8.48)

where vi is a short notation for v(Γi), the motion of Ωi. (The consequence of using this local

approach is discussed in Appendix F.4.) In this context, the motion model can simply be

translation. Therefore, Eq. (8.35) is replaced with

en(vi,m) = In(m)− In+1(m + vi), m ∈ Ωi . (8.49)

This local approach will be used when the object of interest is articulated (see Sec-

tion 8.4.5). In the other experiments, a global translation will be used. It corresponds to

decomposing In into a single block B1 covering the whole frame. Note that in the following,

9In fact, would be equal if the assumption of independence between en and In had not been made (see Sec-

tion 8.4.3).
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Figure 8.8: Solid line: contour Γ = ∂Ω; Dashed blocks: Bi; Gray-filled block: an example of a

domain Ωj with boundary Γi.

for clarity, the notations Et and en(v(Γ),m) will be preferred over Elocal
t and en(v1, . . . , vk,m),

respectively.

Finally, to minimize the influence of occlusions, expression (8.49) is regarded as the for-

ward residual and compared with the backward version as follows

en(v,m) = minabs{In(m)− In+1(m + v), In(m)− In−1(m− v)} (8.50)

where minabs is equal to

minabs{a, b} =

{

a if min{|a|, |b|} = |a|
b if min{|a|, |b|} = |b| . (8.51)

Function 8.51 is not differentiable. However, in the present work, it does not need to be

differentiated (see Appendix F.3).

Distribution estimation

Parzen windowing is a classical distribution estimation procedure [Par62]. The following

continuous version was used

f(r) =
1

|Ω|

∫

Ω

Kh(r − g(m)) dm (8.52)

where |Ω| is the measure of Ω, Kh is a Gaussian kernel with zero mean and a variance equal

to h2, and g is a random variable whose distribution is to be estimated (i.e., en(v(Γ)) or In). It

is usual to adapt h2 to the data [Sil86, Sco92].

8.4.4 Segmentation using active contours

Shape gradient of the energy

Minimization of energy (8.41) requires the computation of its derivative with respect to Γ.

There exists an infinite number of ways of deforming Γ. The shape derivative [DZ01, HR04,
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JBBA03, ABFJB03] of (8.41) can be interpreted as the derivative in a direction F , a vec-

tor field defined on Γ. It can be shown that the shape derivative of (8.43) is equal to (see

Appendix F.3)

dEt(Γ, F ) =
1

|Ω|

∫

Γ

[

log ft(en(v(Γ), s))− 1 + Et(Γ) (8.53)

+
1

|Ω|

∫

Ω

Kh(en(v(Γ), s)− en(v(Γ),m))

ft(en(v(Γ),m))
dm

]

N(s) · F (s) ds

where N is the inward unit normal of Γ.

Note that the distribution ft appears explicitly in (8.53), hence the necessity to estimate

it.

The expression of dEs is similar to (8.53) (see Appendix F.3). Finally, the shape derivative

of (8.41) is equal to

dE(Γ, F ) = dEt(Γ, F ) + dEs(Γ, F ) . (8.54)

The shape derivative (8.54) has the following form

dE(Γ, F ) =

∫

Γ

((αt(s) + αs(s)) N(s)) · F (s) ds = 〈α N,F 〉 (8.55)

where 〈, 〉 is the L2-inner product on Γ. Therefore, α N is, by definition, the gradient of (8.41)

at Γ associated with this inner product.

Region competition

The shape derivative of (8.44) can be obtained by applying the traditional differentiation rule

(u v)′ = u′ v + u v′ and determining the shape derivative of |Ω| (see Appendix F.3). The terms

related to the object and the terms related to the background can be gathered together by

noting that Γ and Γc are identical up to a change of orientation. In particular, the inward unit

normal N c of Γc is equal to −N .

Evolution equation

Based on the notion of gradient defined in Section 8.4.4, energy (8.41) can be minimized using

a steepest descent procedure in the space of contours. The following contour evolution process

is known as the active contour technique [CKS97, HR04]: an initial contour10 is iteratively

deformed in the opposite direction of the gradient until a convergence condition is met. The

evolution equation of the active contour is written as follows






Γ(τ = 0) = Γ0

∂Γ

∂τ
= (αc − α) N

(8.56)

where τ is the evolution parameter and αc has the same expression as α but is evaluated on

Ω. The convergence condition is αc − α = 0.

8.4.5 Experimental results

Test settings

As a reminder, the proposed segmentation energy has the following form

Erc(Γ) = |Ω| E(Γ) + |Ω| E(Γc) (8.57)

10For example, a user-defined contour.
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where

E(Γ) = Et(Γ) + Es(Γ) . (8.58)

For comparison purposes, energy (8.57) will also be used in two incomplete forms: when Es is

removed from the definition of E in (8.58), the energy will be called temporal energy; when Et

is removed from the definition of E, the energy will be called spatial energy. In its complete

form, it was already defined as the spatio-temporal energy.

The tests were performed on synthetic and natural sequences composed of 300× 300-pixel

frames and cif11 frames, respectively, all defined in the Y UV -color space. The V channel was

discarded. Therefore, the distributions of In and en are functions from R
2 to R with support

[0, 255]2 and [−255, 255]2, respectively. In computing en, In+1(m + v) was bilinearly interpo-

lated. Independence between spatial and temporal information was assumed in Section 8.4.3

in order to write E as the sum of Et and Es. The computation of these two components was

also simplified by assuming independence between the channels Y and U . As a consequence,

Et and Es were themselves estimated as the sum of a Y -based entropy and a U -based entropy.

The standard deviation h of the Parzen kernel (see Eq. (8.52)) was adapted to the data12

by using the empirical standard deviation σ̂ of the residual or the color in Ω

h = 0.9min(σ̂, p̂/1.34) |Ω|−1/5 (8.59)

where p̂ is the interquartile range of the data in Ω. Therefore, h should be regarded as a

function of Ω. This would add some terms to the shape derivative dE since expression (E.27)

would not be valid anymore. However, these terms can be neglected because h does not change

significantly between two iterations of the active contour process.

As mentioned in Section 8.4.3, translation was chosen as the motion model. The motion es-

timation in (8.43) was performed by fast, suboptimal (as opposed to exhaustive) search [ZM00]

within a search window of -12/+12 pixels in both directions and a quarter of a pixel precision.

This procedure was used whether the motion was estimated globally in Ω or locally in each

Ωi.

In the following, “segmentation” refers to object detection with an initialization far from

the solution (typically a circle) while “tracking” refers to object detection with an initialization

obtained by translating by vglobal the object contour as detected in the previous frame, where

vglobal is the motion of Ω computed by the suboptimal procedure described above.

Comparing spatial, temporal, and spatio-temporal energies

In this section, motion is estimated globally on Ω (see Section 8.4.3).

Synthetic sequences

Several synthetic sequences were designed by combining different textures and homogeneous

areas with a given motion scenario: an object is translating horizontally by -3 pixels over a

background translating horizontally by 1 pixel. Segmentation was performed with the spatial

energy, the temporal energy, and the spatio-temporal energy (see Fig. 8.9). These results

suggest that the temporal energy is adapted whenever there is texture. On the contrary,

the spatial energy seems more reliable in homogeneous areas. Finally, the combination of

temporal and spatial information appears appropriate for segmenting sequences that contain

homogeneous areas, textured areas, or both.

11The frame size cif corresponds to 352 × 288 pixels.
12Adapting the kernel bandwidth to the data is known as a plug-in procedure [Sil86].
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Temporal only Spatial only Spatio-temporal

Figure 8.9: Segmentation of synthetic sequences accounting for motion, color, or both. First

row: homogeneous object over homogeneous background; second row: homogeneous object over

textured background; third row: textured object over homogeneous background; last row: tex-

tured object over textured background.

Standard test sequences

The same comparison as in Section 8.4.5 was performed with standard test sequences

‘Flowers and garden’ and ‘Soccer’.
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In sequence ‘Flowers and garden’, the sky bordering the tree is rather homogeneous

(see Fig. 8.10). Therefore, oversegmentation occurs with the temporal energy, as noted in

Initialization Temporal only

Spatial only Spatio-temporal

Figure 8.10: Segmentation of frame 237 of sequence ‘Flowers and garden’ accounting

for motion, color, or both.

Appendix F.1. With the spatial energy, the segmentation process also fails because part of

the houses in the background have colors similar to the tree. Finally, the spatio-temporal

segmentation mostly excludes the sky since it has a different color (spatial information) and

also excludes the houses since they have a different motion (temporal information).

In sequence ‘Soccer’, the soccer player has a complex, articulated motion (see Fig. 8.11).

The temporal energy only captures the rigid part of the body while the spatial energy does

not capture the head as it has colors similar to the background. The spatio-temporal energy

provides a good tradeoff, although it sometimes misses a foot of the player (see Fig. 8.16) for

which both the temporal information and the spatial information (the color of the shoe is

similar to background colors in the Y U -color space) are unreliable. This satisfying result can

be explained by the fact that the spatial energy helps the temporal term when the motion

model mismatches the actual motion, and the temporal energy helps the spatial term when

the color is not discriminating.
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Initialization Temporal only

Spatial only Spatio-temporal

Figure 8.11: Segmentation of frame 162 of sequence ‘Soccer’ accounting for motion, color,

or both.

Parametric vs. nonparametric

In this section, motion is estimated globally on Ω (see Section 8.4.3).

One can wonder the practical benefits of relying on nonparametric estimations of the

residual distribution and the color distribution as opposed to using classical error terms cor-

responding to parametric assumptions. For a fair comparison, the parametric assumptions

for the residual and the color distributions have to be chosen appropriately. The residual is

corrupted by outliers mainly due to noise, illumination variations, motion model mismatch,

and occlusion. The Sum of Absolute Differences (SAD) [WK93] was chosen since it is robust

to outliers. Note that it follows from a Laplacian assumption (see Appendix F.5.1).
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It is clear that there is no ideal parametric assumption concerning the spatial term. Nev-

ertheless, noting that the spatial entropy in (8.41) can be interpreted as a piecewise color

homogeneity criterion, it seems reasonable to make the assumption of a Gaussian distribu-

tion13 (see Appendix F.5.2).

The continuous form of criteria (F.32) and (F.34) can be linearly combined to define a

parametric, space-time segmentation energy

Ep(Γ) =

∫

Ω

(In(m)− µI(Γ))2 dm + α

∫

Ω

|In(m)− In+1(x+ v(Γ))| dm (8.60)

where 





µI(Γ) =
∫

Ω
In(m) dm/

∫

Ω
dm

v(Γ) = arg minw

∫

Ω
|In(m)− In+1(x+ w)| dm

. (8.61)

and α is a positive constant. The nonparametric energy (8.41) does not weight the spatial

term relatively to the temporal term. Therefore, to be coherent, α should be equal to one.

However, the results on sequence ‘Flowers and garden’ suggest to choose α larger than

one (see Fig. 8.12). In each experiment, the optimal value was determined empirically. More-

over, to give an idea of the behavior of each term of the parametric energy (8.60), segmenta-

tion was also performed using each term separately (same procedure as in Section 8.4.5). The

parametric approach was also tested on the other, more challenging sequence ‘Football’.

Even when assigning a higher weight to the temporal term, the segmentation is not satisfying

(see Figs. 8.13, 8.14, and 8.15).

In light of these results, three intuitive conclusions can be made. (i) As expected, when the

parametric assumptions are roughly in accordance with the actual distributions (sequence

‘Flowers and garden’), the parametric approach can perform well. (ii) The Laplacian as-

sumption for the residual distribution is more reliable than the Gaussian assumption for the

color distribution. Indeed, with sequence ‘Flowers and garden’, the correct segmenta-

tion is obtained only when the temporal term is weighted significantly more than the spatial

term. (iii) Again, as expected, when the parametric assumptions clearly mismatch the ac-

tual distributions for the motion being complex or the object and background being composed

of several colors (sequence ‘Football’), the parametric approach fails, as opposed to the

proposed nonparametric approach (see Figs. 8.10 and 8.11).

Tracking and piecewise motion estimation

In this section, an object of interest is tracked in two standard test sequences using the

proposed method. In both sequences, the object of interest is composed of several colors and

has a complex, articulated motion. Therefore, they are appropriate for comparing the global

(on Ω) motion approach and the local (on Ωi) motion approach (see Section 8.4.3). Sequence

‘Soccer’ (already seen in Section 8.4.5) is less complex than sequence ‘Football’ (already

seen in Section 8.4.5) since the latter suffers from motion blur. For the piecewise motion

estimation, each frame was divided into 16×16 blocks Bi of size 22×18 pixels. As a reminder,

domain Ωi is defined as Ω ∩ Bi. The comparison between the two approaches is presented in

Figs. 8.16 and 8.17. Although the local approach clearly improves the segmentation, it is not

perfect in sequence ‘Football’. This can be explained by the combined effects of motion

13To be coherent with the piecewiseness property of entropy, a mixture of Gaussians would be more appropriate.

However, the purpose of this section is to compare the proposed approach with classical error terms such as the Sum

of Squared Differences (SSD).
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Spatial only Temporal only

Spatio-temporal with α = 1 Spatio-temporal with α ≃ 9

Figure 8.12: Segmentation of frame 237 of sequence ‘Flowers and garden’ assuming

parametric distributions and using the same initialization as in Fig. 8.10. (Lower left) The

spatio-temporal energy relies equally on space and time and (Lower right) the spatio-temporal

energy favors the temporal term.

blur and a domain Ωi too small (which may happen for blocks Bi that intersect Γ), resulting

in a less reliable local motion estimate.

8.4.6 Conclusion

The addressed problem was the segmentation of a video sequence. A spatio-temporal ap-

proach was chosen in order to make use of both spatial and temporal coherence. As opposed

to the classical approach consisting in dealing with time by involving the MCE directly, the

proposed method is based on the use of the distribution of the MCE. This allowed to combine

temporal and spatial information coherently using joint distributions. The distributions were

estimated nonparametrically to fit the data. Entropy was chosen as the energy to minimize,

in particular because, in practice, it is robust to outliers. In order to make the motion model

complex enough to describe articulated objects, it was proposed to keep it simple (namely,

translation) while estimating its parameters locally.

The proposed method was qualitatively compared with a classical, parametric approach

followed by some existing methods. Thorough comparison with specific methods is out of
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Initialization Temporal only

Spatial only Spatio-temporal

Figure 8.13: Segmentation of frame 72 of sequence ‘Football’ assuming parametric distri-

butions. The spatio-temporal energy relies equally on space and time (α = 1).

Figure 8.14: Segmentation of frame 72 of sequence ‘Football’ assuming parametric distri-

butions. The spatio-temporal energy favors the temporal term (α ≃ 9).

scope of this section. Nevertheless, on sequence ‘Flowers and garden’, our results (see

Fig. 8.10) are comparable to those of recent segmentation methods [CS03], Fig. 4 in both

articles.
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Temporal only Spatial only

Spatio-temporal

Figure 8.15: Segmentation of frame 72 of sequence ‘Football’ with the nonparametric

approach using the same initialization as in Fig. 8.13.
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CHAPTER 9

CONCLUSION

The main contribution of this thesis is a new general framework to deal with high dimensions

in variational problems. Through three classical image processing problems, kernel tracking,

optical flow and segmentation, various mechanisms involved in variational problems solu-

tions were exhibited. In these problems, high dimensionality of the data is often pointed as a

major direction of improvement but lacked an efficient nonparametric framework to use it in

practice.

Indeed, a framework for variational problem able to: (1) efficiently estimate statistical

energies (all variational problems basically require to compute an energy); (2) approximate

derivatives of these energies in order to be used in derivative-based solution (in particular for

optical flow estimation); (3) approximate locally a probability connected to these energies (in

particular for image segmentation); on high dimensional data, was never, to the best of our

knowledge, exhibited and is the major contribution of this thesis.

We have proposed a unified framework relying on kNN distances, which satisfies all the

above conditions:

1. the class of kNN estimates of entropy-based measures is computed directly on the data

shortcutting PDF estimation,

2. the kNN mean-shift is able to approximate derivatives of kNN estimates of entropy-

based measures,

3. the kNN estimate of PDF is the underlying PDF construction behind these kNN esti-

mates.

Finally, complexity is isolated in the k-nearest neighbor search, which can be solved very

efficiently using k-d trees or GPU-based implementations [GDB08].

Novelty of this framework relies on simple kNN forms of various entropy-based measures

derived from locally adaptive PDF estimates. The unification of kNN entropy-based mea-

sures, kNN mean-shift methods and kNN locally adaptive PDF estimates, is also novel, and

aims at solving efficiently variational problems.

Mean-shift was already applied in image processing [CRM03, Com03] but used as a gradi-

ent ascent algorithm rather than a derivative of entropy-based statistical measures. Locally

adaptive PDF estimates were also applied in image processing [Com03, TPJ05] but as a clus-

tering algorithm rather than a PDF estimate connected to statistical measures.
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The problem of dimensionality being, to a certain extent, circumvented, we explored high

dimensional spaces and exhibited how they can advantageously capture natural image statis-

tics.

We revisited the three initial variational problems using the kNN framework, tracking,

optical flow and segmentation as well as contributions which take advantage of high dimen-

sions. In particular, these new dimensions allow to introduce smooth constraints for image

matching, smooth regularization for optical flow and define local probabilities or shape pri-

ors for segmentation. In general, the kNN framework allows to define information-theoretic

energies on multivariate data in variational problems.

We obtained competitive results in the three variational problems in terms of accuracy and

quality. Yet, this thesis had two industrial applications. The tracking algorithm presented in

Chapter 6 with GPU implementation of the kNN search is being implemented by a cinema

post-production company (Mikros Image). The simplified version of the motion segmentation

algorithm is implemented in a H264 video coder by the French national telecom operator

(Orange).
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PERSPECTIVES

10.1 Exploration of high dimensional spaces

The problem of dimensionality is circumvented, to a certain extent, in the kNN framework.

Thus, exploration of high dimensional spaces for variational problems can be pushed further.

10.1.1 Space of Neighborhood patches

One possible study is the integration of neighborhood patches in this framework, following

the idea of recent denoising algorithms [BCM05, AW06] and our illustrations on Fig. 5.2. In

particular, in the regularization term for optical flow (7.13) we can simply write um = V (m) =

{v(n) | n ∈ N (m)}, where N (m) is a spatial neighborhood of m (typically a 5× 5 patch, in this

case V is a vector field in a 25 dimensional space). This perspective has already led to some

applications in image retrieval, [ADPB08, PADB08].

10.1.2 Medical imaging

Medical imaging offers by nature multiple features derived directly from the acquisition pro-

cess (DTI,QBI), from simultaneous or multiple acquisitions (e.g., PET/CT scans, intra pa-

tient/inter patient studies), or from priors (acquisition vs. atlas). Variational formulations of

medical imaging through entropy-based measures, for instance image registration through

mutual information, could take advantage of these high dimensional spaces.

10.1.3 Regularization

Entropy of an image luminance, as a regularization term, still suffers from cartoon effect as

classical total variations. One could try entropy of the gradient instead of entropy on the

data. Indeed, the gradient of a piecewise smooth function has a low entropy. This type of

regularizer would not favor piecewise constant but piecewise smooth functions.
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10.1.4 Shape priors

Shape priors can be define with geometric features based on shape coordinates as defined

in the section on shape priors in segmentation 8.3. We will explore other priors by using

a more efficient shape coordinates system based on contour correspondence such as shape

contexts [BMP02], or other shape coordinates such as free form deformations [HPM06] or

conformal mapping [SM06].

10.1.5 Manifolds

High dimensional spaces on several data in image processing (neighborhood patches [HM99],

optical flow [RB05], tensors [AFPA06], shapes [ESK07]) have exhibited specific manifolds.

We will also explore the manifold structure of such high-dimensional data and explore PDF

estimation that accounts explicitly for underlying manifolds. Indeed, the Euclidean metric

used in the kNN framework may reach here its limitations in these cases and adapted metrics

should be derived to introduce anisotropy.

10.2 Dimension reduction techniques

As the number of dimensions increases, a strategy is to employ dimension reduction tech-

niques. These algorithms project high dimensional spaces to lower dimensional space. The

basic idea is that correlated dimensions are grouped together. This idea is closely related to

PDF factorization which allows to group correlated dimensions together. To deal with very

high dimensional spaces, a dimension reduction technique could be applied as a preprocess-

ing step. The metric derived from the projection algorithm can then be used as a distance to

search for the k-nearest neighbor in the remaining dimensions.

10.3 A unification between variational methods and in-

formation theory: coding applications

The kNN framework allows to minimize energies issued from information theory. These

measures have a physical sense as a amount of information for coding. Minimizing this

amount of information, one can find optimal solutions of motion estimation (optical flow) or

partitions of videos (segmentation) in a coding sense. This motion or partition will be optimal

in terms of coding rate. A possible application would be region-based video coding, where the

region of interest would have an high coding rate.

Indeed, variational methods and video compression algorithms are often used together

but applied sequentially. The variational problem gives an optimal solution in the sense of

a criterion (for instance motion estimation uses block matching with SAD criterion) and the

video compression algorithm compresses the data in the sense of another criterion (quanti-

zation of the motion field uses minimum entropy criterion). There is no global optimization

between the coding rate and the quality of the result of the variational problems, we believe

that a joint optimization would be of great interest.

Moreover, video compression is a chain dealing with multiple features (motion, image

wavelets sub bands), at the end of the chain, these high dimensional features go through an
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entropic coder. Minimizing the joint entropy of all these features before sending them to the

entropic coder can decrease the number of the bits at the output of the coder.

A simplified motion segmentation problems proves that it is realistic to use variational

solutions for video coding purpose, the kNN framework proved that information theory crite-

ria, commonly use for coding, can not only be used, but enhanced the solution of variational

problems. Joint methods are possible.

10.4 Other measures

Other types of measures born from information theory can also explored such as Bregman

divergences [BMDG05, NBN07] and adaptive windows for PDF estimation, such as Voronoi

diagrams.

10.5 Efficient k-th nearest neighbor search using GPU

Implementation

In this thesis, complexity has been isolated in the kNN search. Approximate nearest neighbor

search (ANN) rather than nearest neighbor search speeds up the computations. One can

explore how bounded errors on neighbors neighbor search will imply a bound error on entropy.

Another strategy is highly parallelized nearest neighbor search on GPU [GDB08] using the

new NVIDIA library CUDA. The tracking algorithm presented in this thesis has already been

implemented using GPU for industrial applications. Other algorithms defined in these thesis

can also be easily implemented on GPU using this library.

PhD Thesis Sylvain Boltz



156 CHAPTER 10. PERSPECTIVES



Part V

Appendix

157





APPENDIX A

KNN FRAMEWORK:

PERFORMANCE ON GAUSSIAN

MIXTURES

In this Appendix, we compare the estimates of the “kNN framework” to their classical alterna-

tives. The comparisons include PDF estimates, statistical measure estimates and derivative

estimates of these measures.

In the following experiments, “Histogram” is the histogram density estimate, “Parzen” de-

notes the fixed-size kernel density estimate with gaussian kernel and a bandwidth estimated

with rule of thumb, “Parzen ind” means components were assumed independant. “kNN-B” is

the balloon estimate with a uniform kernel and a bandwidth estimated with kNN, “kNN-SP”

is the sample point estimate with a uniform kernel and a bandwidth estimated with kNN.

When these names are used for an entropy estimate, it means that the mentioned kernel

density estimate was plugged in an Ahmad-Lin estimate of entropy.

A.1 PDF estimation

Let us define a 1-D gaussian mixture.

fU (u) =
3∑

i=1

wifµi,σi
(u), u ∈ R (A.1)

The mixture is composed of three Gaussians of means 128, resp. 160, resp. 150, of standard

deviation 40, 100, 10 and of weightings 0.6, 0.3, 0.1. Given a varying number of samples from

this distribution we visually compare the density estimates of various estimates: Histogram,

Parzen, Balloon, Sample point Fig. A.1. This is the ideal case for Parzen estimate which is

performing well. Balloon estimate is less accurate and has an high order bias in the tails. It

is clearly non competitive in 1-D dimensions on a classical distribution.
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(a) Original PDF (b) estimation with 100 samples

(c) estimation with 1,000 samples (d) estimation with 10,000 samples

Figure A.1: PDF estimation performance on a 1-D Gaussian mixture for different sample

sizes, from left to right: groundtruth, PDF generated from 100 samples, 1,000 samples, 10,000

samples

Robustness to bandwidth parameter is now studied on Fig. A.2. The only parameter in

Parzen estimate is the standard deviation, called bandwidth of the kernel whereas in the

balloon estimate the only parameter is k, to compute the k-th nearest neighbor. In Parzen,

the bandwidth h computed with plugin rule is 4.4 on this example, we also plotted the PDF

for h = 1 and h = 10. In kNN balloon, the parameter k is choosen to be
√

1000 = 32, we also

plotted the PDF for k = 3 and k = 100. Small values of k are sensitive to noise.

A.2 Entropy estimation

As analytic formula of the entropy of a Gaussian mixture does not exist, instead a highly

sampled quadrature numerical integration is performed on the PDF in order to find a good

approximation of true entropy. We run 100 generations on five different sample of sizes 10i, i =

2..5 and plot the mean of entropy obtained. This experience is done on one dimensional and

three dimensional mixtures. The correlation matrices of three dimensional Gaussians are

generated though three random correlation matrices as follow: we generate three 3×3 random

matrices X, each component being between 0.1 et 1 following a uniform law, and we compute

a correlation matrix Σ = XXT . We also multiply the diagonal components by 3 to enhance
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(a) Parzen (b) kNN

Figure A.2: PDF robustness on a 1-D Gaussian mixtures for different values of parameters

(means over 100 generations for each sample size)

the condition number of the matrix. We compare estimates of entropy on Fig. A.3 on a 1-D

experiment and 3-D experiment.

Figure A.3: Entropy estimation performance on a 1-D Gaussian mixtures for different sample

size (means over 100 generations for each sample size, Entropy estimation performance on a

3-D Gaussian mixtures for different sample size (means over 100 generations for each sample

size)

Robustness to parameter is tested on Tab. A.1, parameter k in both balloon and sample

point estimates appears to be less critical than Parzen. Indeed, k is not a fixed value but a

range of smoothing which adapts to the data.

Even with a bad estimation of the PDF Fig. A.2, kNN provides a good entropy estimate

A.3 Kullback-Leibler divergence estimation

We compute the Kullback-Leibler divergence between two distributions Fig. A.4. Various

number of samples of two Gaussian mixtures with 3 overlapping and non overlapping modes

are generated. As there is again no analytical solution to compute the exact Kullback-Leibler

divergence between two Gaussian mixtures, we compute a highly sampled quadrature inte-
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real entropy: 4.1763 ”Undersmooth” ”Correct” ”Oversmooth”

Entropy estimated with Parzen 4.1512 4.2095 4.3180

Entropy estimated with kNN 4.1710 4.1732 4.1778

Entropy estimated with Sample-Point 4.1720 4.1754 4.1771

Table A.1: Entropy estimation performance on a 1-D Gaussian mixtures, 1,000 samples,

”Undersmooth” bandwidth h=1 for Parzen, k=3 for kNN, ”Correct” bandwidth: h=plugin par

Parzen , h=32 for kNN, Oversmooth bandwidth h=10 for Parzen, k=100 for kNN

gration over the PDF. We compare estimates of Kullback-Leibler divergence based on three

different PDF estimates: the Parzen estimate, the balloon estimate and the sample point es-

timate. The same test is then performed on 3-D Gaussian mixtures selected randomly as in

the entropy estimate experiments. We compare three Kullback-Leibler divergence estimates

for various sample sizes.

Figure A.4: Kullback estimation performance on a 1-D Gaussian mixtures (left) and 3-D

Gaussian mixtures (right) for different sample size (means over 100 generations for each sam-

ple size)

In order to test parameter estimation, let us suppose we must match two Gaussian PDFs

Fig. A.5. The first example is two 1-D Gaussians with slightly different means. The variance

of the first Gaussian is known and we search for the optimal variance for the second Gaussian.

The second example is two 5-D correlated Gaussians with (slightly different variances). We

are searching for the mean of the sample minimizing the Kullback-Leibler divergence.

A.4 Mean-shift estimation

Analytical expression of mean shift ∇f/f of a Gaussian function is a linear function. We

compare three diferent mean-shift estimates described in this chapter with the analytical

formula Fig.A.6. Far outside of the support of the samples, both Parzen and sample-point

mean-shift estimates are equal to 0. Indeed, there are no samples in the Parzen or sample-

point mean shift estimates. Sample-point mean-shift is non-zero further than Parzen because

it uses large bandwidth in the tails. However kNN window always contains at least k samples,

it is thus never equal to zero.
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Figure A.5: Kullback minimization performance between two Gaussians: from left to right,

1-D Gaussian with varying variance, 5-D correlated Gaussian with varying means

A Gaussian mixture generates 1000 samples, an initialization point is choosen, Mean-

shift converges to the closest mode Fig A.7. Mean-Shift with Fixed-size bandwidth (Parzen)

converges slower than variable-size bandwidth balloon Mean-Shift.
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Figure A.6: Mean shift estimation of a Gaussian, left undersmooth, right optimal, bottom

oversmooth

Figure A.7: Mean shift illustration, fixed size bandwidth (left), variable bandwidth (right)



APPENDIX B

ROBUSTNESS OF ENTROPY TO

NOISE AND DEGRADATIONS

In this appendix, we compare an entropy-based similarity measures with state of the art strict

geometric methods (from classical sum of square difference (SSD) to more robust estimators

as sum of absolute differences (SAD). Experimental studies focus on robustness to various

noise and natural motion estimation difficulties (occlusions, variations of illuminance, . . . )

Visual comparisons

We compare an entropy-based similarity measures with state of the art strict geometric meth-

ods (from classical sum of square difference (SSD) to more robust estimators as sum of ab-

solute differences (SAD). A complete experimental study on robustness to various noise and

natural matching difficulties (occlusions, variations of illuminance, . . . ) can be found in Ap-

pendix B.

We show some visual results, we plot the criteria value in a 12 × 12 translation window

around the true position of a reference template in sequence “Edberg”. Both SAD and SSD

criteria are non convex around the solution while entropy based criterion Pz-H and kNN-H

are convex around the solution.

Natural difficulties

As the performances of SAD or SSD drops when the data are not normally distributed we

expect a significant gain when the residual error is assumed not gaussian (in the presence of

occlusions or high texture for instance). In this section, we compare SSD and SAD measures

with an entropy similarity measure based on parzen Pz-H (4.15) and with an entropy simi-

larity measure based on kNN kNN-H (5.11) . We present results on real standard sequences

that present typical difficulties for image matching

Occlusions

We first consider the Erik sequence, which consists in a head moving on a static background.

We test the methods on a close-up on blocks around the left edge of the face as shown in
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Figure B.1: Minimization for two ϕ functions fails, entropy succeeds SAD, SSD, Pz-H, kNN-H

Figure 2. Between In and In+1, the face (foreground) occludes the curtain (background). Here

SAD does not find the correct match for the block from In (the mid-left block in Fig. 2, left)

and tries to match it further downwards. kNN-H performs well since it finds no motion in the

background (there are no motion vectors for the left blocks in Fig. 2, right).
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Figure B.2: Occlusions: close-up of Erik processed with, from left to right SSD, SAD, Pz-H

and kNN-H

Highly textured images

Here we focus on the highly-textured public in the background of the standard Edberg se-

quence. Motion estimation on a highly textured image is very sensitive to even slight errors

in the motion vector (which happen naturally for instance for non-uniform translations or

motion vectors quantizations) and to suboptimal motion search, as the common criteria are

non-convex. Figure 3 illustrates how SAD fails to find a uniform motion in the public (left)

whereas kNN-H gives satisfaction (right).
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Figure B.3: High texture: from left to right SSD, SAD, Pz-H and kNN-H applied to Edberg;

close-up of the public

Other significant improvements can be observed for other kinds of difficulties, such as

motion blur, variations of illuminance, or different motions in a same block. These results are

avaliable upon request.

Some extreme robustness experiments

Let us now consider a synthetic color sequence, for which the ground truth is known, in order

to perform exact error measurements. The YUV color sequence considered here consists in

the superposition of two images: an horizontal translation of a face (Foreman’s) towards the

left handside and a background (a view of Boston) travelling also horizontally but towards

the right handside. There is no other movement in the scene; for instance the face does not

move. The main difficulty with this sequence resides in frequent occurrences of occlusions (at

the edges of Foreman’s face or on the borders of the image) and in the texture of the object and

the background. As the sequence considered here is a pure travelling, there are not enough

occlusion problems to illustrate the robustness property of the entropy estimators. We thus

consider the same sequence, that we name Original, but randomly altered as shown in Figure

B.4 by the addition of

• Flash: variations of brightness between two successive frames (like a camera flash) of

40 units of luminance;

• Noise: ”salt and pepper” noise covering 10% of a frame;

• Patch: black patches (similarly to scratches on a film);

• Altered: the 3 previous noises all at the same time, but with 5 units of variation of

luminance instead of 40.

The results in terms of mean and standard deviation of the angular error are shown in Table

2. In addition to applying the SSD, Pz-H and kNN-H criteria to 3D data, we also consider

their 1D alternative applied to the luminance (Y) channel of the image, as well as the SAD

criterion, as these may turn out to be reasonable alternative estimation procedures in prac-

tice. Overall, the (3D) kNN-H method outperforms all other procedures and it seems more

robust to the perturbations that were introduced. The Pz-H estimator fails hard, which only

highlights that selection of the kernel bandwidths is a critical problem in the presence of

perturbations (it is even more important with the 3D version). The kNN-H estimator does

not suffer from these aspects. 1D kNN-H may provide a reasonable alternative since it is

computationally less demanding and provides good results.
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Figure B.4: The ”Foreman-Boston” sequence and altered with (from left to right, top to

bottom), flash, noise and all three together

Figure B.5: Sequence ”Football” and its altered version
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Sequence Original Flash Snow Patches All

SAD ω̄ 8.9 57.1 14.4 13.7 26.9

σω 28.2 42.9 39.0 33.0 33.7

SSD ω̄ 9.5 45.1 33.3 22.4 44.9

σω 27.7 47.7 36.4 38.7 41.1

Pz-H (ĥ) ω̄ 6.7 7.0 39.8 12.5 44.8

σω 22.1 21.8 40.0 26.8 42.2

Pz-H (h = 3) ω̄ 5.83 6.23 7.98 6.77 10.30

σω 22.24 22.12 27.46 24.13 29.68

kNN-H ω̄ 4.4 5.0 5.6 4.5 9.7

σω 21.0 21.0 22.2 21.1 28.5

SAD (1D) ω̄ 9.1 67.2 15.8 16.91 28.5

σω 27.8 41.6 33.5 35.3 40.5

SSD (1D) ω̄ 10.6 48.7 31.3 22.5 43.6

σω 29.4 47.3 34.0 38.5 41.7

Pz-H (ĥ, 1D) ω̄ 9.1 12.8 27.4 17.7 35.1

σω 27.1 30.3 34.6 36.5 40.6

Pz-H (h = 3, 1D) ω̄ 8.10 11.88 11.07 9.65 11.53

σω 26.28 31.54 30.60 28.39 30.79

kNN-H (1D) ω̄ 8.8 11.5 9.4 11.0 11.6

σω 27.7 31.3 27.7 30.9 32.5

Table B.1: Motion flow error on Foreman-Boston altered with several methods: comparison

with ground truth. Mean µ and standard deviation σ2 of angular error are given in degrees.

Criterion Mean ω̄ Std-dev σω

SAD (1D) 11.15 23.01

SAD 11.28 22.91

SSD (1D) 29.2 28.9

SSD 31.4 30.4

Pz-H (ĥ, 1D) 23.8 24.0

Pz-H (ĥ) 35.3 32.8

Pz-H (h = 3,1D) 8.53 19.46

Pz-H (h = 3) 10.30 21.32

kNN-H (1D) 8.2 22.0

kNN-H 7.7 21.0

Table B.2: Motion flow error on altered Football: comparison with the unaltered sequence

Experiment on a real sequence: Football

The different motion estimators considered are now applied to a real sequence, “Football”. As

there is no ground truth on this sequence and as the distortion error of the DFD cannot be

lower than the value provided by SSD, we have to define another test for robustness. First,

compute the motion on the original video with several criteria; then alter the video with a

PhD Thesis Sylvain Boltz



170 APPENDIX B. ROBUSTNESS TO NOISE

“salt and pepper noise” with 10% coverage and random black patches, and finally compute

the motion on this altered sequence with the same criteria and compare them to the original

results. Under these heavy perturbations, only kNN-H in both its 1D and 3D versions remain

close enough to the original estimate, while the others criteria all fail, as shown in Table 3.



APPENDIX C

GRADIENT OF THE

KULLBACK-LEIBLER

DIVERGENCE:

MEAN-SHIFT-BASED EXPRESSION

AND KNN IMPLEMENTATION

C.1 Preliminary note

In the context of tracking, Mean-Shift is often used to refer to a Mean-Shift-based algorithm.

Here, it refers to the original meaning [FH75] of approximation of ∇f/f using the shift from

the mean of neighboring samples

∇f(s)

f(s)
≃ d+ 2

h2
(µF (s)− s) (C.1)

where

µF (s) =
1

n

∑

t∈NF (s)

t (C.2)

is the mean of the samples (which happens to be n in number) contained in a window NF of

radius h centered at s. If f is a normal distribution with mean µ and variance h2, then the

Mean-Shift has the following, simple analytical expression

∇f(s)

f(s)
=
µ− s
h2

. (C.3)

C.1.1 Derivative

The Kullback-Leibler divergence is equal to

DKL(Tϕ, R) = H×(Tϕ, R)−H(Tϕ) (C.4)
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where the cross-entropy H×(Tϕ, R) is equal to

H×(Tϕ, R) = −
∫

Rd

fTϕ
(s) log fR(s) ds (C.5)

= ETϕ
[− log fR] (C.6)

≃ − 1

|Tϕ|
∑

s∈Tϕ

log fR(s), (C.7)

and the differential entropy H(Tϕ) can be approximated by the Ahmad-Lin estimator [AL76]

ĤAL(Tϕ) = − 1

|Tϕ|
∑

s∈Tϕ

log fTϕ
(s). (C.8)

In (C.8), the PDF is by definition equal to

fTϕ
(s) =

1

|Tϕ|
∑

t∈Tϕ

Kh(s− t). (C.9)

The same estimation (replacing Tϕ with R) will be used in (C.7).

Therefore, we have

E(ϕ) = −|Tϕ| DKL(Tϕ, R) (C.10)

≃
∑

s∈Tϕ

log fR(s)− log fTϕ
(s). (C.11)

Note that
∑

s∈Tϕ
a(s) is a convenient notation to designate

∑|Tϕ|
n=1 a(Tϕ(n)) where Tϕ(n) is

the nth sample in Tϕ. Moreover, |Tϕ| is constant for all candidate regions in a given frame.

Consequently, taking the derivative of (C.11) with respect to ϕ does not require to care about

the interval of summation. Let the transformation ϕ be a translation (u, v) combined with a

scaling by α. Sample set Tϕ is equal to

Tϕ = {(Itgt(x+ u, y + v), x/α, y/α), (x, y) ∈ Ω}. (C.12)

The derivative of (C.11) with respect to ϕ = (α, u, v) is equal to

∇E(ϕ) =
∑

s∈Tϕ

1

fR(s)

1

|R|
∑

t∈R

∂

∂ϕ
Kh(s− t)

− 1

fTϕ
(s)

1

|Tϕ|
∑

t∈Tϕ

∂

∂ϕ
Kh(s− t) (C.13)

=
∑

s∈Tϕ

1

fR(s)

1

|R|
∑

t∈R

Ds(Tϕ) ∇Kh(s− t)

− 1

fTϕ
(s)

1

|Tϕ|
∑

t∈Tϕ

∂

∂ϕ
Kh(s− t) (C.14)

where

Ds(Tϕ) =






0 0

∇IY
tgt

(

sx + u

sy + v

)

∇IU
tgt

(

sx + u

sy + v

)

0 − 1
α2 [sx sy]

∇IV
tgt

(

sx + u

sy + v

)

[
0
]

[2×2]




 . (C.15)
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Matrix Ds has p lines corresponding to the number of parameters of the motion model ϕ and d

columns corresponding to the dimension of the feature space (here, (Y,U, V, x, y)). After some

steps, one gets

∇E(ϕ) =
∑

s∈Tϕ

Ds(Tϕ)

(∇fR(s)

fR(s)
− ∇fTϕ

(s)

fTϕ
(s)

)

+
1

|Tϕ|
∑

s∈Tϕ

Ds(Tϕ)
∑

t∈Tϕ

∇Kh(t− s)
fTϕ

(t)
(C.16)

=
∑

s∈Tϕ

Ds(Tϕ)

(∇fR(s)

fR(s)
− ∇fTϕ

(s)

fTϕ
(s)

+
1

|Tϕ|
∑

t∈Tϕ

∇Kh(t− s)
fTϕ

(t)



 . (C.17)

C.1.2 Term interpretation

Let us focus on the following term of (C.16)

A(s) :=
1

|Tϕ|
∑

t∈Tϕ

∇Kh(t− s)
fTϕ

(t)
. (C.18)

When the number of samples |Tϕ| tends toward infinity, A tends toward

A∞(s) =

∫

Rd

fTϕ
(t)
∇Kh(t− s)
fTϕ

(t)
dt. (C.19)

Since Kh is radially symmetric, we have

∀x and y ∈ R
d such that x = −y,∇Kh(x) = −∇Kh(y). (C.20)

Therefore, (C.19) convergences (at least weakly) toward zero.

C.1.3 kNN-based expression of the derivative

The first sum in (C.16) involves two terms that can be approximated using the Mean-

Shift (C.1). The expression of the mean (C.2) can be replaced with its kNN equivalent [FH75]

µB(s) =
1

k

∑

t∈NB(s)

t. (C.21)

where NB(s) is a balloon neighborhood 5.35 centered at point s. In the second sum in (C.16),

the PDF fTϕ
can also be replaced with its kNN expression (5.5). Therefore, using the Mean-

Shift approximation, the derivative of the Kullback-Leibler divergence can be written as a

kNN-based expression

k ∇E(ϕ) =
∑

s∈Tϕ

Ds(Tϕ)




d+ 2

ρ2
k(R, s)

∑

t∈NB(R,s)

(t− s)

− d+ 2

ρ2
k(Tϕ, s)

∑

t∈NB(Tϕ,s)

(t− s)

+vd

∑

t∈Tϕ

ρd
k(Tϕ, t) ∇Kρk(Tϕ,t)(t− s)





(C.22)
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where Kρk(Tϕ,t)(· − s) is a window of radius ρk(Tϕ, t) centered at s.

C.1.4 Term interpretation

Let us now focus on the term of (C.22) corresponding to the term studied in Section C.1.2

AkNN(s) =
∑

t∈Tϕ

ρd
k(Tϕ, t) ∇Kρk(Tϕ,t)(t− s). (C.23)

Window Kρk(Tϕ,t)(· − s) at t is equal to 1/(ρd
k(Tϕ, t) vd) if |t− s| ≤ ρk(Tϕ, t) and zero otherwise.

A finite difference approximation can be used to write

∇Kρk(Tϕ,t)(t− s) =

{
1

ρd
k
(Tϕ,t) vd

s−t
|s−t| if |s− t| = ρk(Tϕ, t)

0 otherwise
. (C.24)

Therefore, term (C.23) can be approximated by

AkNN(s) ≃ 1

vd

∑

t∈Tϕ

|t−s|=ρk(Tϕ,t)

s− t
ρk(Tϕ, t)

. (C.25)

Finally,

k ∇E(ϕ) ≃
∑

s∈Tϕ

Ds(Tϕ)




d+ 2

ρ2
k(R, s)

∑

t∈NB(R,s)

(t− s)

− d+ 2

ρ2
k(Tϕ, s)

∑

t∈NB(Tϕ,s)

(t− s)

−
∑

t∈Tϕ

|t−s|=ρk(Tϕ,t)

t− s
ρk(Tϕ, t)







. (C.26)



APPENDIX D

GRADIENT OF THE OPTICAL FLOW

ENERGY: MEAN-SHIFT-BASED

EXPRESSION AND KNN

IMPLEMENTATION

In the following part, for differentiation and for future possible extensions (in Chapter 10) we

write a generic formula for EH that can be either EH−Data or EH−Smooth.

EH(v) = −
∑

m∈D

ln ft(tm) (D.1)

where tm = t(m, v(m)) is a generic notation and can be either ǫm or [m, v(m)]. Indeed we

can write EH as EH−Data (7.8) with t = ǫ and as ESmooth (7.13) with tm = [m, v(m)]. A kernel

estimate of ft can be written as

ft(tm) =
1

|D|
∑

n∈D

Kh(tm − tn) (D.2)

In order to minimize EH , we differentiate energy EH (D.1) with respect to the optical flow

v.

As the energy (D.1) has a double dependency in v (this double dependency is in t, which

hides v as tm = t(m, v(m))), the derivative can be separated into two terms:

∇vEH(v(m)) = A(tm) + B(tm) (D.3)

with

A(tm) =
∇tf(tm)

f(tm)
∇vtm (D.4)

and

B(tm) = −∇vtm
|D|

∑

n∈D\m

∇tKh(tn − tm)

f(tn)
. (D.5)
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The second term B is from the construction of the density function which depends on t

(7.9). However, if we suppose the density function changes slowly when changing one feature

from t (because there are enough sample points to estimate the PDF) we can write B(m) ≈ 0.

Moreover, one can note that using the sample mean entropy [VW97] instead of the resubsti-

tution estimate of entropy [AL76], this term would be equal to zero.

Using the mean shift simplifications detailed in Chapter 5.5, we can simply estimate

A(tm).

Replacing (5.41) in (D.4), we have an expression of ∇vEH

∇vEH(v) = ∇vtm.
dt + 2

dk(tm)
2 [µB(tm)− tm]. (D.6)

where µB is the mean in a balloon neighborhood around tm of size dk(tm) the distance to the

k-th nearest neighbor of tm. We can now write ∇vEH−Data with tm = ǫm and ∇vESmooth(v)

with tm = [m, v(m)].

Replacing t with the corresponding function, we have an expression for ∇vEH−Data and

∇vESmooth.In ∇vEH−Data, tm is replaced by ǫm = ǫ(m, v(m)) and ∇vt by ∇vǫ, which is a matrix

2 × dǫ, dǫ = 6 being the dimension of the image features u, ∇f being a vector dǫ × 1. In

∇vESmooth, tm is replaced by [m, v(m)] and ∇vt by P2, the projection operator P2.[m, v(m)] =

v(m).



APPENDIX E

GRADIENT OF AN ACTIVE

CONTOUR SEGMENTATION

In this section we will focus on the general derivation of a bayesian segmentation problem

with nonparametric distributions as formulated in (2.37). The energy (2.37)can be written

in a more general form as

E(Γ) = − 1

|Ω|

∫

Ω

log fΩ(u(v(Γ),m)) dm (E.1)

where 





fΩ(r) =
1

|Ω|

∫

Ω

Kσ(u(v(Γ),m)− r) dm

v(Γ) = arg min
w
− 1

|Ω|

∫

Ω

log fΩ(u(w,m)) dm

. (E.2)

where u(v(Γ),m) = I(m) in [HSD+06], in a motion estimation problem u(v(Γ),m) = In(m) −
In+1(m + v(Γ)).

Note that, for simplicity, residual u has been defined for a translation motion model. How-

ever, the following development is valid for any functions.

The definition of the shape derivative of (E.1) is based on a domain transformation T

whose amplitude continuously depends on a parameter τ such that T (Ω, τ = 0) is equal to Ω

and T (Ω, τ) is equal to Ω(τ) [DZ01, HR04, JBBA03, ABFJB03]. Functions of Ω, or Γ, can then

be rewritten as functions of τ . In this context, the shape derivative of

E(Γ) =

∫

Ω

G(Γ,m) dm (E.3)

is equal to

dE(Γ, F ) =
dE

dτ
(τ = 0) =

∫

Ω

∂G

∂τ
(τ = 0,m) dm−

∫

Γ

G(Γ, s) N(s) · F (s) ds (E.4)

where F is a vector field defined on Γ and linked to T , s is the arclength parameter of Γ,

G(Γ, s) is a short notation for G(Γ,Γ(s)), and N is the inward unit normal of Γ.

Let us define E as follows

E(Γ, w) = − 1

|Ω|

∫

Ω

log fΩ(u(w,m)) dm . (E.5)
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Hence,

E(Γ) = E(Γ, v(Γ)) (E.6)

and

v(Γ) = arg min
w
E(Γ, w) . (E.7)

Then, the shape derivative of (E.1) is equal to

dE(Γ, F ) =
dE
dτ

(τ, v(τ))|τ=0 (E.8)

=
∂E
∂τ

(τ, v(τ))|τ=0 +
∂E
∂w

(τ, v(τ))|τ=0

dv

dτ
(τ = 0) . (E.9)

Recalling that τ = 0 corresponds to Γ and according to (E.7), the second term in (E.9) is equal

to zero. Therefore, expression (E.9) is equal to

dE(Γ, F ) =
∂E
∂τ

(τ, v(τ))|τ=0 . (E.10)

Note that the derivative of E is taken with respect to the first variable, v(τ) being considered

as a constant (including in all the following calculations). We compute the shape derivative

of 1
|Ω| , the shape derivative of |Ω| is equal to

d(|Ω|)(Γ, F ) = d

(∫

Ω

dm

)

(Γ, F ) (E.11)

=
d

dτ

∫

Ω(τ)

dm

∣
∣
∣
∣
∣
τ=0

(E.12)

=

[∫

Ω

∂1

∂τ
(τ = 0,m) dm−

∫

Γ

N(s) · F (s) ds

]

(E.13)

= −
∫

Γ

N(s) · F (s) ds . (E.14)

The shape derivative of 1
|Ω| is equal to

d(1/|Ω|)(Γ, F ) =
d

dτ

1

|Ω(τ)|

∣
∣
∣
∣
τ=0

(E.15)

= − 1

|Ω|2
d

dτ

∫

Ω(τ)

dm

∣
∣
∣
∣
∣
τ=0

(E.16)

=
1

|Ω|2
∫

Γ

N(s) · F (s) ds . (E.17)

The classical rule for differentiating a product leads to

dE(Γ, F ) =
E(Γ)

|Ω|

∫

Γ

N(s) · F (s) ds

− 1

|Ω|
d

dτ

∫

Ω(τ)

log fΩ(u(v(Γ),m)) dm

∣
∣
∣
∣
∣
τ=0

(E.18)

=
1

|Ω|

[∫

Γ

E(Γ) N(s) · F (s) ds−A
]

(E.19)

where fΩ is also seen as a function of τ

fΩ(u(v(Γ),m)) =
1

|Ω(τ)|

∫

Ω(τ)

Kσ(u(v(Γ), y)− u(v(Γ),m)) dy . (E.20)
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Remember that v(Γ) is considered as a constant and not as a function of τ as a result of the

decoupling (E.6). Therefore, for clarity, u(v(Γ), ·) will be denoted by u(·).
Term A can be computed by applying the general rule (E.4) successively

A =

∫

Ω

∂ log fΩ
∂τ

(τ = 0,m) dm−
∫

Γ

log fΩ(u(s)) N(s) · F (s) ds (E.21)

=

∫

Ω

B dm−
∫

Γ

log fΩ(u(s)) N(s) · F (s) ds . (E.22)

Then,

B =
∂fΩ

∂τ (τ = 0,m)

fΩ(u(m))
(E.23)

=
1

fΩ(u(m))

[
fΩ(u(m))

|Ω|

∫

Γ

N(s) · F (s) ds

+
1

|Ω|
d

dτ

∫

Ω(τ)

Kσ(u(y)− u(m)) dy

∣
∣
∣
∣
∣
τ=0

]

(E.24)

=
1

|Ω|

[∫

Γ

N(s) · F (s) ds+
C

fΩ(u(m))

]

. (E.25)

Finally,

C =

∫

Ω

dKσ(u(y)− u(m))

dτ
(τ = 0) dy

−
∫

Γ

Kσ(u(s)− u(m)) N(s) · F (s) ds (E.26)

= −
∫

Γ

Kσ(u(s)− u(m)) N(s) · F (s) ds (E.27)

sinceKσ(. . . ) does not depend on τ . Gathering all the intermediate results together, the shape

derivative of (E.1) is equal to

dE(Γ, F ) =
1

|Ω|

∫

Γ

(

E(Γ)− 1 + log fΩ(u(s))

+
1

|Ω|

∫

Ω

Kσ(u(s)− u(m))

fΩ(u(m))
dm

)

N(s) · F (s) ds . (E.28)
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APPENDIX F

MOTION SEGMENTATION

F.1 Disambiguation using spatial information

Energy (8.43) is well suited for segmenting objects over a textured background. However, it

might cause segmentation to include homogeneous or quasi-homogeneous areas of the back-

ground. Indeed, this type of areas has a low residual even if compensated with the motion

estimated for the object, at least as long as the motion-compensated object domain remains in

the homogeneous area. Therefore, the energy might increase only negligibly when expanding

in such areas. Since the notions of object and background are arbitrary and can be swapped

for one another, one can note that an equivalent undersegmentation phenomenon can occur

if the object contains homogeneous areas near its boundary.

On the other hand, the entropy of the object color increases if the object domain includes

some background since it adds new colors to the object1 and, therefore, increases the disper-

sion of its color distribution. Consequently, the joint entropy of the residual and the color also

increases.

F.2 “Independence” between residual and color

Let us consider the following sequence model

In+1(x) = In(T (x)) + n(x) (F.1)

where T is a transformation and n is a Gaussian white noise. The residual is equal to

en(v(x), x) = In(x)− In+1(v(x)) . (F.2)

If the transformation T exists and the motion is perfectly estimated, then v is equal to T−1

and en(v(x), x) = −n(T−1(x)), which is independent of In. However, model (F.1) is an approx-

imation: in general, there is no such transformation T , frame In+1 being a projection on a

two-dimensional plane of a three-dimensional scene. Often, some parts of objects in In be-

come invisible in In+1 while others become visible. Therefore, frame In+1 cannot be deduced

1If the background has the same color as the object near the boundary, there is no objective information to find

the object boundary.

181



182 APPENDIX F. MOTION SEGMENTATION

entirely from In. In the unpredictable areas, the residual is by definition independent of In.

Overall, whether a transformation T exists or not, if the motion v(Γ) is fairly well estimated,

then the assumption of independence should be acceptable.

F.3 Energy derivative

Temporal energy

The temporal energy is equal to

Et(Γ) = − 1

|Ω|

∫

Ω

log ft(en(v(Γ), x)) dx (F.3)

where







ft(r) =
1

|Ω|

∫

Ω

Kσ(en(v(Γ), x)− r) dx

en(v(Γ), x) = minabs(In(x)− In+1(x+ v(Γ)), In(x)− In−1(x− v(Γ)))

v(Γ) = arg min
w
− 1

|Ω|

∫

Ω

log ft(en(w, x)) dm

. (F.4)

Note that, for simplicity, residual en has been defined for a translation motion model. How-

ever, the following development is valid for any motion model.

Using the result of Appendix E the shape derivative of (F.3) is equal to

dEt(Γ, F ) =
1

|Ω|

∫

Γ

(

Et(Γ)− 1 + log ft(en(s))

+
1

|Ω|

∫

Ω

Kσ(en(s)− en(m))

ft(en(m))
dm

)

N(s) · F (s) ds . (F.5)

Spatial energy

The spatial energy is equal to

Es(Γ) = − 1

|Ω|

∫

Ω

log fs(In(x)) dm (F.6)

where

fs(r) =
1

|Ω|

∫

Ω

Kσ(In(x)− r) dm . (F.7)

Following the same approach as in Section F.3, it can be shown that the shape derivative

of (F.6) is equal to

dEs(Γ, F ) =
1

|Ω|

∫

Γ

(

Es(Γ)− 1 + log fs(In(s))

+
1

|Ω|

∫

Ω

Kσ(In(s)− In(x))

fs(In(x))
dm

)

N(s) · F (s) ds . (F.8)
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Shape derivative of |Ω| and 1
|Ω|

The shape derivative of |Ω| is equal to

d(|Ω|)(Γ, F ) = d

(∫

Ω

dm

)

(Γ, F ) (F.9)

=
d

dτ

∫

Ω(τ)

dm

∣
∣
∣
∣
∣
τ=0

(F.10)

=

[∫

Ω

∂1

∂τ
(τ = 0, x) dm−

∫

Γ

N(s) · F (s) ds

]

(F.11)

= −
∫

Γ

N(s) · F (s) ds . (F.12)

The shape derivative of 1
|Ω| is equal to

d(1/|Ω|)(Γ, F ) =
d

dτ

1

|Ω(τ)|

∣
∣
∣
∣
τ=0

(F.13)

= − 1

|Ω|2
d

dτ

∫

Ω(τ)

dm

∣
∣
∣
∣
∣
τ=0

(F.14)

=
1

|Ω|2
∫

Γ

N(s) · F (s) ds . (F.15)

F.4 Piecewise motion decomposition

The following development should give some intuitions to study the validity of the piecewise

motion decomposition. As will be clear from the concluding remarks, it does not provide a full

and rigorous analysis.

The frame In is divided into blocks Bi of identical size. Let Ωi be the intersection of Ω with

Bi and let Γi be the boundary ∂Ωi of Ωi (see Fig. 8.8). For clarity, v(Γi) will be denoted by vi.

Energy (F.3) is replaced with

Elocal
t (Γ) = − 1

|Ω|

∫

Ω

log ft(en(v1, . . . , vk, x)) dm (F.16)

where






ft(r) =
1

|Ω|

∫

Ω

Kσ(en(v1, . . . , vk, x)− r) dm

en(v1, . . . , vk, x) = minabs(In(x)− In+1(x+ vi), In(x)− In−1(x− vi))

if x ∈ Ωi

vi = arg min
w
− 1

|Ω|

∫

Ωi

log ft(en(v1, . . . , vi−1, w, vi+1, . . . , vk, x)) dm

. (F.17)

Note that the motions vj , j 6= i, in the energy minimized to solve for vi are irrelevant constants

since they are not used in the computation of the residual en on Ωi.

Let us define E i
t as follows

E i
t (Γ, w1, . . . , wk) = − 1

|Ω|

∫

Ωi

log ft(en(w1, . . . , wk, x)) dm . (F.18)

According to the remark on the residual above, it can be concluded that E i
t is independent of

wj , j 6= i.
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Energy (F.16) is equal to,

Elocal
t (Γ) =

∑

i

E i
t (Γ, v1, . . . , vk)) (F.19)

and

vi = arg min
w
E i

t (Γ, v1, . . . , vi−1, w, vi+1, . . . , vk) . (F.20)

Then, the shape derivative of (F.16) is equal to

dElocal
t (Γ, F ) =

∑

i

dE i
t

dτ
(τ, v1(τ), . . . , vk(τ))|τ=0 (F.21)

=
∑

i

∂E i
t

∂τ
(τ, v1(τ), . . . , vk(τ))|τ=0

+
∑

i

∑

j

∂E i
t

∂wj
(τ, v1(τ), . . . , vk(τ))|τ=0

︸ ︷︷ ︸

Ai
j

dvj

dτ
(τ = 0) . (F.22)

Recalling that τ = 0 corresponds to Γ (and, therefore, vi(τ = 0) = vi), Ai
j is equal to zero if j

is equal to i because of (F.20). Moreover, according to the independence of E i
t with respect to

wj , j 6= i, Ai
j is also equal to zero if j is not equal to i. Therefore, expression (F.22) is equal to

dElocal
t (Γ, F ) =

∑

i

∂E i
t

∂τ
(τ, v1(τ), . . . , vk(τ))|τ=0 . (F.23)

By definition, the shape derivative is based on a domain transformation T operating on Ω (see

Appendix F.3). Energy E i
t is an integral over Ωi. Its shape derivative is naturally related with

the restriction of T to Ωi. However, ft is still an integral over Ω. Keeping that in mind, the

approach of Section F.3 can be followed to determine the shape derivative of (F.16)

dElocal
t (Γ, F ) =

Elocal
t (Γ)

|Ω|

∫

Γ

N(s) · F (s) ds

− 1

|Ω|
∑

i

d

dτ

∫

Ωi(τ)

log ft(en(v(Γ), x)) dm

∣
∣
∣
∣
∣
τ=0

(F.24)

=
1

|Ω|

[
∫

Γ

Elocal
t (Γ) N(s) · F (s) ds−

∑

i

Ai

]

. (F.25)

For clarity, en(v1, . . . , vk, ·) will be denoted by en(·).
Term Ai is equal to

Ai =

∫

Ωi

∂ log ft

∂τ
(τ = 0, x) dm−

∫

Γi

log ft(en(s)) Ni(s) · F (s) ds (F.26)

=

∫

Ωi

B dm−
∫

Γi

log ft(en(s)) Ni(s) · F (s) ds (F.27)

where Ni is the inward unit normal of Γi. Term B is identical to the corresponding term (E.25)

in Appendix E, i.e.,

B =
1

|Ω|

∫

Γ

(

1− Kσ(en(s)− en(m))

ft(en(m))

)

N(s) · F (s) ds . (F.28)
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Gathering all the intermediate results together, the shape derivative of (F.16) is equal to

dEt(Γ, F ) =
1

|Ω|









∫

Γ

(

Elocal
t (Γ)− 1 +

1

|Ω|

∫

Ω

Kσ(en(s)− en(m))

ft(en(m))
dm

)

N(s) · F (s) ds−
∑

i

∫

Γi

log ft(en(s)) Ni(s) · F (s) ds

︸ ︷︷ ︸

S









. (F.29)

Let Bi and Bj be 2 adjacent blocks with boundaries Γi and Γj , respectively. On their common

boundary, log ft(en) and F are uniquely defined. However, Ni and Nj have opposite directions,

each pointing inward relatively to its (oriented) boundary. Therefore, the sum of the integrals

over Γi and Γj in S on this common boundary is equal to zero. When considering all the

blocks, the only portions of integral that remain of S are the ones which are not in common

with any other block boundary. These portions sum to Γ. The normals Ni on these portions

are equal to N . In conclusion, shape derivative (F.29) is identical to (F.5): it seems that this

hierarchical motion decomposition approach can be safely used with minimal changes to the

implementation (only the residual computation changes). However, one condition has not

been mentioned so far. The shape derivative framework is valid for smooth contours. In

particular, the presence of the contour normal in the expressions implicitly requires that the

contour be at least continuously differentiable. Unfortunately, the contours Ωi of the proposed

partition of Ω are not smooth, independently of the smoothness of Ω. Actually, any paving of

Ω using patches contains multiple junctions. As a consequence, the previous development is

theoretically invalid. Nevertheless, the set of singularities is finite and it might be possible

to rigorously confirm the result by studying the limit of a related, smooth setting similar to

some works on classification [SBFGJ00]. Moreover, in practice, the (wrongly) obtained result

can be easily implemented since it does not involve these singularities.

F.5 Parametric assumptions

F.5.1 Residual

If the residual en is a spatially uncorrelated random field with a Laplacian distribution with

mean µe and scale σ, the probability of having a given field, conditional to a motion v, is equal

to

p(en|v) =
1

(2σ)|Ω|

∏

x∈Ω

exp−|en(v, x)− µe|
σ

. (F.30)

The maximum log-likelihood estimation of v is given by

arg min
v

∑

x∈Ω

|en(v, x)− µe| . (F.31)

In practice, choosing µe different from zero can only be motivated by a global change of il-

lumination occurring between frames In and In+1. Making the assumption that the global

illumination remains constant, µe will be set to zero. Therefore, estimation (F.31) is equiva-

lent to

arg min
v

∑

x∈Ω

|In(x)− In+1(x+ v)| (F.32)
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which is the SAD criterion.

F.5.2 Color

If the color In is a spatially uncorrelated random field with a Gaussian distribution with mean

µI and standard deviation σ, the probability of having a given field, conditional to a motion v,

is equal to

p(In|v) =
1√
2π σ

∏

x∈Ω

exp− (In(x)− µI)
2

2σ2
. (F.33)

The maximum likelihood estimation of v is then equivalent to minimizing the Sum of Squared

Differences (SSD)

arg min
v

∑

x∈Ω

(In(x)− µI)
2 . (F.34)

In practice, µI can be approximated by the mean of In in Ω [JBBA03].



APPENDIX G

PUZZLE: OBJECT DRIVEN VIDEO

CODING

The goal of this section is to propose a simple method to estimate motion segmentation in

video sequences for video coding purposes. Most video coders, including MPEG-like coders,

recent wavelet-based coders [CAAB04] and H264 coders, use simple motion estimators based

on block matching (BM) algorithms. These algorithms classically split the image into blocks

of regular size (called Macroblocks (MBs)). Even though these algorithms are fast and quite

accurate, they still have some issues : indeed, since the subdivision into blocks does not match

the positions of the moving objects, some blocks overlap regions with different motions, which

creates blocking artifacts in the coded-decoded sequence. To overcome this problem, H264

coders test various modes for coding MBs, adapted for different cases and selects the most ef-

ficient, one for each MB, efficient in terms of final Rate Distortion (RD) i.e. the ratio between

the amount of distortion in the final video brought by a mode, and the coding rate of the

mode. Among the possible modes in competition are “intra”, Fig. G.1(a) which skips motion

estimation and codes the MB frame by frame; “inter”, Fig. G.1(b) which performs motion esti-

mation and compensation on the whole MB; “inter+4v”, Fig. G.1(c) which splits the MB into 4

smaller blocks and performs motion estimation and compensation. Our contribution is a new

coding mode for coding MBs, called “split”, Fig. G.1(d) derived from a motion segmentation

algorithm. The split mode splits the MB into 2 regions.

Indeed, one should consider a segmentation of the moving objects. Unfortunately, most

of the image segmentation techniques based on active contours [ABFJB03, CKS97, CV01,

CS05, JBBA03] are not fully automatic, and are too complex to be implemented within a

video coder. For this reason, we propose a simplified active contour approach to estimate

motion and segmentation simultaneously in a local context. More precisely, we divide the

image into MBs in which segmentation is performed independently. We suppose that there

are at most two regions with different motion in each MB.

In order to decide whether each MB should be splitted or not, a block selection process will

be run. The selected blocks are now distinct joint motion segmentation problems and we will

define a cost functional to solve them simultaneously. Finally, we will show how this model

allows to avoid occlusion.

An active contour description of the segmentation is usually quite finer than what is actu-
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ally needed: since the blocks are relatively small, a high order spline description of a border

is not really necessary, while a simple straight line border would be almost as much effective

but much cheaper in terms of coding rate. Moreover, an active contour algorithm is not realis-

tic for video coding applications as it suffers from a possible infinite number of iterations. We

kept the same framework and energy but implemented a simplified minimization, with lines

instead of splines, and testing a finite number of configurations. This technique is unable to

provide a global segmentation of the image, but this information is not mandatory for coding

purposes. Finally this mode was implemented in the Orange (the French national operator)

H264 video coder.

This section is organized as follows: Section G.1 presents motivations, Section G.2 gives

the motion segmentation algorithm, Section G.3 defines a simplified algorithm of the split

mode for industrial purpose, Section G.4 presents results on the split mode, finally Section

G.5 concludes.

G.1 Basic Idea and Motivations

G.1.1 Blocks versus Regions

A simple block-based description of the motion in a scene is often not accurate enough, be-

cause in some area a finer description of the motion can be necessary. This happens usually

at object borders, or when small moving objects are present in the scene.

A common solution in these cases is to further divide the MB into four smaller sub-blocks,

see Fig. G.1(c). This case is what we call inter+4v in this section. In fact, with this strategy,

each MB is analyzed, and according to some suitable criterion, a decision is made whether

this MB should be divided or not into four sub-blocks. If the MB must be divided, for each

sub-block we can run the same BM algorithm used for the larger block, that is for example, a

SAD-based search into the reference frame.

When the inter+4v approach is chosen, for each MB we should send the information sig-

naling whether the MB has been divided or not, and, according to this information, one or

four motion vectors.

This approach is simple and has the advantage that the BM algorithm for the sub-blocks

can be the same used for the MB. Moreover in principle, the sub-blocks can be further divided.

The main drawback of this approach is that the division of a MB in four symmetric sub-

block is completely arbitrary, and nothing assures that it is well suited to describe the motion

of the objects. A common situation in which this approach is inefficient is when there is an

object moving on a (fixed or moving) background. If the current MB is amid the object and

the background, the inter+4v description can be ineffective because:

1. it is not assured that the subdivision separates the object and the background; and

2. four vectors are used when there are only two movements to describe.

From these considerations it is clear that a better description of the movements could be

given if we knew where the object and the background are. If we know the curve describing

the border between them, we could have a very effective representation of the motion in the

scene, like in Fig. G.1(d). In this case, the motion is described by the curve and the two motion

vectors. A parametric description of the curve can be very effective. For example, the curve
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in Fig. G.1(d) is a spline, and it is completely described by its four control points, highlighted

with small circles.

Even when this segmentation strategy (called split throughout this section) is chosen, the

general algorithm is similar to the one described for the inter+4v case: first we use a suitable

criterion to decide if a MB must be splitted or not, and if it has to be splitted, a suitable

BM algorithm is performed on it. This model might not perform better than the block-based

model with small blocks in all cases. However it should be a good alternative specially on

object borders, as shown in figure G.1

(a) intra (b) inter

(c) inter+4v (d) split

Figure G.1: 4 modes in competition for coding Macroblocks in video coding, three classical

modes with a new one (a) “intra”: no motion estimation is performed, (b) “inter”: a global

motion estimation is performed on all the macroblock (c) “inter+4v”: motion estimation is split

into 4 smaller blocks (d) “split”: a new mode adapted for object boundaries is introduced

G.1.2 Transmission cost

Let us compare the transmission cost between two methods inter+4v and split : the first

method divides a block into 4 smaller blocks (4 motion vectors); whereas the second method

divides it into 2 regions (4 control points and 2 motion vectors), figure G.1. The precision of the

motion vectors is typically 1/8 pixel precision, and the precision of control points is one pixel.

Moreover 2 out of 4 control points are on the border of the block so these points are represented

by only one parameter. The region-based representation can be coded using 5 vectors: 2

control points, 1 vector made of 2 parameters and 2 region motion vectors, versus 4 vectors

with smaller blocks. The transmission cost in each MB is then : 2 motion vectors at 1/8 pixel

precision plus 3 control points position at pixel precision. With the smaller blocks method

it would be 4 motion vectors at 1/8 pixel precision. In a coder, this represents 64bits/MB for

our method versus 64bits/MB for the block-based method. Assuming that not all blocks are

divided by a spline, we even obtain a smaller motion information in the compressed video

with the bonus of a greater spline precision Fig. G.1.
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G.2 Motion segmentation

G.2.1 Criterion definition

A region in the frame will be defined by its motion, also called optical flow. Let I(m, i) be a

video sequence, m the spatial coordinates, i the frame number, and v the optical flow between

image i and image i+ 1. v is a vector field representing an apparent motion related to a local

gray-scale coherence between two consecutive images [HS81, NE86, WS01, DGBA05] .

(I(m, i)− I(m + v, i+ 1))2 = 0 (G.1)

As presented in the chapter 7 on optical flow, (G.1) has several solutions, since many points

in an image have the same gray-scale value. Therefore, the problem of computing the motion

of a point must be regularized. First, (G.1) can be extended to a domain surrounding this

point, second, we assume that the optical flow v constant over a region Ω. Therefore, region

Ω should be a minimizer of the following energy (G.2):







E(Γ) =

∫

Ω

(I(m, i)− I(m + v(Γ), i+ 1))2 dm

v(Γ) = arg min
v

∫

Ω

(I(m, i)− I(m + v, i+ 1))2 dm
(G.2)

The cost functional E (G.2) is minimized to solve motion and segmentation problems simul-

taneously.

For higher robustness, the functional is defined on a set of two frames surrounding the

image of interest, a forward and a backward frame (previous equation is forward only), and

we constrain the motions v computed backward and forward to be equal i.e uniform motion

assumption:

k(m, v) = (I(m, i)− I(m + v, i+ 1))2

+ (I(m, i)− I(m− v, i− 1))2 (G.3)







E(Γ) =

∫

Ω

k(m, v(Γ)) dm

v(Γ) = arg min
v

∫

Ω

k(m, v) dm
(G.4)

A classical block matching method is used to compute motion. However the matching

is performed with regions instead of blocks, and more precisely a fast suboptimal matching

algorithm is used: the Diamond Search [ZM00].

G.2.2 Segmentation through region competition

In order to find the region that minimizes the cost functional, we use a region competition

algorithm. For instance, the functional E for two regions including a regularization term can

be written as follows:

As the two regions form a partition of the block there is only one unknown, the boundary

Γ defining two regions Ω and Ω. We note ∂Ω = Γ and ∂Ω = Γc.

E(Γ) =

∫

Ω

k(m, v(Γ)) dm +

∫

Ω

k(m, v(Γc)) dm +

∫

∂Ω

β dt (G.5)
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The first and second terms are the energy (G.2) applied on the two regions of the block,

and the last term is the regularization term where Γ = ∂Ω is the contour between the two

regions and β a constant, Γ and Γc are identical up to a change of orientation: Γc = ∂Ω.

Differentiating this functional is done through shape gradients. A shape gradient model

[ABFJB03, DZ01, JBBA03] is used to make the energy depend on an evolution parameter τ :

dEt(Γ, F ) =

∫

Γ

(k(s, v(Γc))− k(s, v(Γ)))N(s).F (s)ds

+

∫

Γ

(−βκ)(N(s).F (s))ds (G.6)

F is the unknown local deformation of Γ and N is the inward unit normal to Γ. Details on

this shape derivative can be found Appendix E (assuming the probability is Gaussian).

The derivative (G.6) must be negative to go towards the minimum of the functional. The

evolution equation ∂Γ
∂τ is then:

∂Γ(s)

∂τ
= (k(s, v(Γc))− k(s, v(Γ)) + β.κ).N(s) (G.7)

We use active parametric contours to model the boundary Γ. Γ is represented by an open

spline, the first and last control points of the splines are located on a block border and their

evolution are also projected to stay on the border. An explicit parametrization of the active

contour is performed by interpolating a spline between the control points.

G.2.3 Implementation details

Let us first present initialization and block selection. A block of homogeneous motion does

not require to be splited by a spline. The algorithm must select the blocks to be divided and,

at the same time, must initialize a first spline in these blocks. This selection is a three-step

procedure:

• First, every block is divided into 4 smaller blocks. Then are computed the motion vec-

tors in these smaller blocks with a block matching algorithm. Finally we compute a

normalized distance between each pair of vectors:

d = max
i=1..4,j>i

‖vi − vj‖
min(‖vi‖, ‖vj‖)

(G.8)

and we threshold this value to choose if a block should be splitted by a spline or not.

• As a requirement for compression applications, we threshold the mean value of the

prediction error at initialization, which helps to produce an effective segmentation for

video coding rather than a regularized one.

• Finally, we threshold the same criterion (G.8) applied to the motion vectors of the two

regions delimited by the spline

In addition, we use the first threshold to initialize a first spline in the block : the blocks (i, j)

found by maximizing d in (G.8) defines the two classes of motions. The two other blocks are

classified whether they are closer from the motion of i or the motion of j, closer in the sense

of the same normalized distance. The motion classification leads to six different possible

initializations made of control points splitting the blocks. Topology management assumes

that a block is composed of at most two connex regions separated by a spline. However if the
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(a) Six possible initializations (b) Topology Management

Figure G.2: Implementation

spline reaches a border, it splits the block in 3 regions; in this case the spline is cut into two

parts and the shortest one is discarded, so that only two regions remain (See Fig. G.2).

One must take occlusion into account. As the problem is local we suppose there is only

one kind of occlusion which happens only in backward or forward estimation. To correct this

problem, a weighting between forward and backward estimations will be used. For the bidi-

rectional prediction, the weighting is the same in both directions, we will adjust the weight-

ings in forward prediction or backward prediction if occluded parts are detected. The new

criterion with weightings is thus described in (G.9).

k(m, v) = cf ∗ ϕ((I(m, i)− I(m + v, i+ 1)))

+ cb ∗ ϕ((I(m, i)− I(m− v, i− 1))) (G.9)

where ϕ is a penalizing function, for simplicity it is chosen to be ϕ(x) = x2. The occlusion

detection method is now to be defined as well as the set of weightings. The constraint Block

Matching algorithm gives us two values of the criterion (G.5): one forward and one backward.

Comparing these two values, we can assume that if the forward (resp. backward) criterion

value is some percentage higher than the other backward (resp. forward) criterion value there

is an occlusion problem, so we set cf (resp. cb) to 0 and the other to 2. Otherwise, we use the

constraint bidirectional method, so cf and cb are set to 1.

G.2.4 Experimental results

The proposed method was tested on the sequence ”Eric”, on the frames 18 to 24 which repre-

sent a quite uniform translation, needed by the bidirectional constraint. Let us analyze the

result on the mid frame 21, the result is shown on the left of Fig. G.3. The method seems

to perform well. Note that some blocks at the bottom of the frame were not divided by a

spline because the background is quite homogeneous, so even with Eric’s motion, the pre-

diction error is lower than the energy’s threshold. Left figure G.3 shows that segmentation

splines are actually located a few pixels away from the object to be segmented. This is due to

the background being occluded by Eric. Indeed, since criterion (G.3) is bidirectional, occluded

background parts are on both sides of Eric. The occluded background on the Eric’s sequence

represents up to 10% of a block, which is much more important than in a classical algorithm

on the whole image where occluded parts represent about 1% of the image. Visually, we ob-

serve an important diminution of the wrong classified pixels, the splines are much closer to

Eric; we can also notice some improvements of the selection algorithm behavior; a spline at

highlighted block wrongly removed by criterion (G.3), Fig. G.3 are now back in the video, Fig.

G.3.

We compare the segmentation results with and without occlusion management. We count

the wrong-classified points in the two cases and we compare the results with a manual seg-

mentation. There are 1400 wrong pixels using our method without occlusion management
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Figure G.3: Macroblock spline segmentation: without occlusion and with occlusions manage-

ment

and only 1000 wrong pixels using our method with occlusion management, see figure G.3. In

order to estimate the performances in terms of prediction error the proposed segmentation

method was applied to the 8 frames of sequence Eric. Each frame was processed using the

next and previous frame as detailed above. Tab. G.1 presents the prediction error energy per

frame (PEEF), averaged over the 8 frames. The PEEF is defined as follows:

• inter+4v mode: the PEEF is equal to the sum of the prediction errors (from (G.3)) of the

4 blocks composing a MB, summed over each MB in which inhomogeneous motion was

detected.

• split mode: the PEEF is equal to the sum of the prediction errors (from (G.3)) of the 2

regions composing a MB, summed over each MB in which inhomogeneous motion was

detected, i.e splited by a spline.

By definition, in both cases, the same MBs are considered. The proposed method leads to

a decrease of about 1/3 of the average PEEF on the 8 frames. The results shown on the

8 frames in Tab. (G.1) in terms of PEEF, are not better because our error criterion (G.3)

does not take account on occlusions. However using an adaptive filtering, as presented in

[AAB05a, AAB05b], this accurate segmentation should provide better results.

Macroblock division 4 blocks 2 regions gain in %

Method 1 59.9 39.1 33.90

Method 2 57.9 42.8 25.83

Table G.1: Average PEEF on the split macro-blocks, first row: with occlusion management,

second row: without occlusion management

G.3 The split algorithm: simplified motion segmentation

As a gradient descent of active contours suffers from possible infinite number of iterations, we

consider a finite alternative: instead of splitting the block with a spline, the block is splitted

by a line.
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G.3.1 Segmentation Method

We observe that a BM algorithm producing this segmentation information gives a very rich

description of the motion, which however is quite expensive in terms of rate needed to repre-

sent it. In fact, in the example of Fig. G.1, we need to send two vectors and four control points

for each MB. Such a description of the segmentation is usually quite finer that what is actu-

ally needed: since the blocks are relatively small, a high order spline description of a border

is not really necessary, while a simple straight line border would be almost as much effective

but much cheaper in terms of coding rate. This is visually justified in Fig. G.4. The spline

contour originates the region in light red in the left part of the figure, while the straight line

contour originates the region in green and red in the right part. As it can been seen, only a

few pixels are misclassified by the straight line contour, which on the other hand is much less

expensive to describe.

In order to further simplify the description of the split, the extremes of the segment can

only be in some fixed positions on the MB perimeters. A parameter called step is introduced:

its values corresponds to the number of allowed positions for the points on the MB perimeter.

(a) (b)

Figure G.4: Digital contours: (a) spline, (b) line.

In conclusion, the algorithm used in this section produces a block-based segmentation; for

each MB a decision is taken whether it should be divided or not, and in the case a positive

decision is taken, the MB is segmented by a straight line. It follows that in the split case

we have to send for each MB the information about the position of the split, and two motion

vectors. Moreover, in the case the MB is splitted, the BM algorithm computes the four motion

vectors related to the inter+4v case as well.

In conclusion, the operation flow of the algorithm is the following:

• For each MB a single motion estimation is computed, like in the inter mode.

• A test on the effectiveness of the inter mode can be carried out. If the test fails, the split

algorithm is actually performed1.

• When required, the split algorithm is performed. The parameter to be optimized are

jointly the split position and the two motion vectors. Since the test space is very large,

a suboptimal iterative research technique is performed: first some fixed split positions

are tested, then they are refined.

1We note that this decision should be taken with a rate distortion optimization technique, so in a second moment

we will force the algorithm to always perform the split algorithm, so we can choose among various modes.
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• Finally, the algorithm produces a inter+4v estimation for the blocks where the test fails.

It means that for these MBs we have also the finer motion description corresponding to

smaller-sized blocks.

G.3.2 Criterion and split decision

The encoder must decide whether each MB should be splitted into two regions (or four blocks,

in the inter+4v case) or not. This decision affects very much the compression performances

and should be taken on a rate distortion-optimized basis. However, the first version of the

algorithm used a different criterion. For each MB the ME algorithm computes the full-block

backward and forward motion vectors. Then it computes the backward and forward motion-

compensated predictions, which are used to evaluate the error (G.9) integrated on the mac-

roblock. In the experiments, for robustness purposes, absolute value is preferred to square

penalizing function and it is computed on the three color channels, the criterion is then a sum

of absolute values over the three color channels (SAD-3D). The energy functional in each MB

is then:

E(Γi) =

∫

Ωi

k(m, v(Γi)) dm +

∫

Ωi

k(m, v(Γc
i )) dm (G.10)

where Γi is a simple line, splitting the blocks into two regions Ωi and Γi, where expression

k(m, v(Γi)) is given in (G.9) with ϕ(x) = |x|.
Finally, the idea behind this algorithm is that the MBs in which the error is important

should be splitted. However it is clear that such an approach is suboptimal. The decision

to split a MB should be taken after a RD-optimization algorithm. Some segmentation map

produced by this algorithm are shown here (see Fig. G.5).

Figure G.5: Examples of segmentation produced by the split algorithm

G.3.3 Motion estimation for the object and the background

Once the decision to split the MB has be taken, the algorithm must find:

• the optimal segmentation of the MB in foreground and background;

• the optimal motion vectors.

Not all the possible splits are tested in order to find the best one. This mode method will

be referred to as “split-fast”, an exhaustive version which tests all configurations with two

given precisions (one for motion segmentation and one for estimation) will be referred to as

“split-full”. The “split-fast” mode first tests 8 configuration, and the best among them is kept.
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Mode inter inter+4v split-fast split-full

Fast 110570 128560 64038 63767

Table G.2: Sum of criterion SAD-3D value over all blocks on “Boston” sequence)

Mode inter inter+4v split-fast split-full

Fast 470910 421230 400910 396230

Table G.3: Sum of criterion SAD-3D value over all blocks on “Football” sequence

From it, we derive a subset of possible splits (obtained by small perturbation), and we look

the best segmentation among these splits.

The first 8 initial segmentation of the MB are shown in Fig. G.6. For the i-th test config-

Figure G.6: The initial split configuration tested by the ME algorithm

uration, the two motion vectors and the corresponding error block are computed. Then the

criterion E(Γi) is computed. At the end of this phase, we find the best initial configuration

j = arg miniE(Γi). Then, this configuration is slightly perturbed in order to find a set of simi-

lar segmentations. For each of them the criterion E is computed, using the same vectors v(Γi)

found at the previous step. When the best segmentation is found, the vectors are recomputed.

This is necessary because the new segmentation is different (even though slightly) from the

one the motion vectors have been computed for.

G.3.4 Occlusion control

The motion estimation algorithm uses a technique for detecting the occlusions. If one between

the backward and the forward errors is considerably larger than the other, its contribution is

not considered in the ME procedure, i.e. only the backward or the forward contribution to the

error block is considered.

G.4 Results

BM algorithm uses as criterion a bidirectional with SAD constraint in color (3-D) G.10, and

uses interpolation in order to achieve a quarter pixel precision. The fast-split and full-split

mode were experimented.

Results are shown on sequence “Boston”, a synthetic video sequence with a head traveling,

split segmentation results are shown on Fig. G.7.
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Figure G.7: Full versus fast method in split mode: split-fast, left column, split-full, right

column

G.5 Conclusion

We have described a joint motion segmentation and motion estimation algorithm. We adopted

a simplified approach using MBs in which the problem is solved independently in each MB.

We presented interesting first results on video coding. Finally this new mode was imple-

mented in an industrial video coder in competition with existing inter and inter+4v modes.

As expected, the split mode was chosen as the optimal one at object boundaries on Fig. G.8.

Figure G.8: Integration in a video coder with modes in competition: inter+4v (green) and

split modes (red)
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G.6 Conclusion

In this chapter, we demonstrated that using the kNN framework, one can derive an efficient

multivariate framework for active contours based on information theory. This framework

shows that even on low dimensional space such as RGB colors, using features jointly is ef-

ficient for segmentation purpose. Other features are combined than just color to integrate

local statistics or motion cues. This information theoretic framework also allows to define

high dimensional joint shape and appearance priors for segmentation. Finally, last chapter

presented a simplified motion segmentation algorithm for video coding and was implemented

in the video coder of the French national operator “Orange”.
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210 ABSTRACT

Résumé: Cette thèse aborde le traitement d’images et de vidéos sous l’angle variationnel, c’est-à-

dire sous forme d’une énergie dont le minimum est atteint pour la solution. La modélisation adoptée

pour formaliser le problème et obtenir ces énergies peut être déterministe ou stochastique. Il est

connu que la première approche est équivalente à la classe paramétrique de la seconde. Ce constat

nous a amenés à faire le choix de la seconde approche a priori plus générale si l’on se débarrasse de

l’hypothèse paramétrique. En contrepartie, il s’agit d’tre capable d’exprimer et d’estimer une énergie

en fonction des données alors interprétées comme des échantillons d’une variable aléatoire. Ce premier

obstacle est classiquement surmonté par l’emploi de méthodes à noyau fixe sur des lois marginales,

autrement dit, en supposant les canaux de données indépendants entre eux. Or cet obstacle en cache

deux autres : l’inhomogénéité de la répartition des échantillons dans leur espace d’appartenance et leur

faible densité dans cet espace. Ces difficultés, ainsi que l’hypothèse d’indépendance mentionnée plus

haut, sont d’autant plus pénalisantes que le modèle proposé pour les données est de grande dimension

(canaux couleur, mais aussi ajouts d’autres canaux pour prendre en compte les structures locales des

images). Au fondement d’estimateurs de mesures statistiques telle que l’entropie, l’idée du kième

plus proche voisin permet de résoudre les difficultés évoquées en s’adaptant à la densité locale des

données, en considérant les canaux conjointement, et ce quel que soit leur nombre. Dans ce contexte,

nous proposons une approche statistique générale inspirée de la théorie de l’information, dédiée aux

approches variationnelles car estimant efficacement des énergies en haute dimension, permettant le

calcul de leur dérivée et pouvant estimer localement des probabilités. Ce cadre est appliqué aux trois

problèmes de traitement d’images ou de vidéos que sont l’estimation de flot optique, le suivi d’objets

vidéos et la segmentation. Ce point de vue, en permettant de limiter sinon de s’affranchir du problème

de la dimension des données, autorise la définition de nouvelles mesures et lois de probabilités plus

adaptées aux images naturelles. Certains travaux en suivi d’objets et en segmentation ont conduit à

des implémentations industrielles.

Abstract: This thesis addresses variational formulation of image and video processing problems.

This formulation expresses the solution through a minimization of an energy. These energies can be ex-

pressed as deterministic or stochastic. The first approach corresponding to the parametric class of the

second one. The second class is then more general if we get rid of the parametric assumption. In return,

the energy must be expressed as a function of the data considered as random variables. These functions

are classically estimated with fixed-sized kernels on marginal distributions of the data, assuming the

different channels are independent. These methods have two limitations, the inegal repartition and

sparsity of the data in the space. These difficulties, as well as the independence assumption are en-

hanced when the data of the image are high dimensional (color channels, or other channels describing

local patterns of natural images). At the foundation of statistics, the k-th nearest neighbor can solve

these difficulties by locally adapting to the repartition of the data and treating the channels jointly. We

propose a general statistical framework based on statistics and information theory. This new framework

is dedicated to variational problems as it efficiently estimates, high dimensional energies, gradients of

these energies and local probabilities. This framework is applied to three problems of image and video

processing: optical flow, object tracking and segmentation. This framework circumvents the problem

of dimensionality and allows us to introduce new measures and probabilities more adapted to natural

images. Some results obtained have been applied in an industrial context.
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