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PARAMETRIC ESTIMATION OF SPIKE TRAIN STATISTICS BY GIBBS
DISTRIBUTIONS : AN APPLICATION TO BIO-INSPIRED AND

EXPERIMETAL DATA

Bruno Cessac∗, Juan-Carlos Vasquez†, Hassan Nasser‡, Horacio Rostro-Gonźalez§, Thierry Viéville¶ Adrian Palacios‖

ABSTRACT We review here the basics of the formalism
of Gibbs distributions and its numerical implementation,
(its details published elsewhere [1], in order to character-
izing the statistics of multi-unit spike trains. We present
this here with the aim to analyze and modeling synthetic
data, especially bio-inspired simulated data e.g. from Vir-
tual Retina [2], but also experimental data Multi-Electrode-
Array(MEA) recordings from retina obtained by Adrian
Palacios. We remark that Gibbs distribution allow us to
estimate the spike statistics, given a design choice, but also
to compare different models, thus answering comparative
questions about the neural code.

KEY WORDS Spike trains statistics, Gibbs measures, Nu-
merical implementations, MEA recordings.

1 Context.

Processing and encoding of information in neural dynamics
is a very active research field [3], although still much of
the role of neural assemblies and their internal interactions
remains unknown [4]. The simultaneously recording of the
activity of groups of neurons (up to several hundreds) over
a dense configuration, supply today a critical database to
unravel the role of specific neural assemblies.

A recent popular approach has been applied by [5].
They have shown that a model taking into account pair-
wise synchronizations between neurons in a small assem-
bly (10-40 retinal ganglion cells) describes most (90%) of
the correlation structure and of the mutual information of
the block activity, and performs much better than a non
homogeneous Poissonian model. Analogous results were
presented the same year by [6]. The model used by both
teams is based on a probability distribution known as the
Gibbs distribution of the Ising model and comes from sta-
tistical physics. We develop here a numerical method al-
lowing to parametrically estimate and compare, models
for the statistics of simulated multi-cell-spike trains. Our
method is not limited to firing rates models, pairwise syn-
chronizations as [5, 6, 7] or 1-step time pairwise correla-
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tions models as [8], but deals with general form of Gibbs
distributions, with parametric potentials correspondingto a
spiken-uplets expansion with multi-units and multi-times
terms. The method is exact (in the sense that is does not
involve heuristic minimization techniques) since it is based
on spectral properties of a transition matrix associated with
a Markov chain.

2 Theory

Spike trains and Raster Plots
Lets denote byi = 1 . . . N the neuron index, and assume
we have discretized the time in bins of size∆t sot denotes
the bin number, then to each membrane potential value
corresponding to each binVi(t) we associate a binary
variableωi(t) = Z(Vi(t)), whereZ(x) = 1 whenever
x ≥ θ and Z(x) = 0 otherwise andθ is the firing
threshold. The “spiking pattern” of the neural network at
time t is the vectorω(t) = (ωi(t))

N
i=1: it tells us which

neurons are firing at timet, (ωi(t) = 1) and which neurons
are not firing at timet (ωi(t) = 0). We denote byωt

s

the sequence orspike block ω(s) . . . ω(t). A bi-infinite
sequenceω = {ω(t)}+∞

t=−∞ of spiking patterns is called a
“raster plot”. In practice, raster plots are obviously finite
sequences of spiking patterns In the next sections we give
our main results whose details can be found in [1].

Empirical averaging
As a starting point, one computes experimental averages al-
lowing us to estimate the average value of some prescribed
observable φ(ω), i.e. a function which associates to a raster
plot a real number. Typical examples of observables are
φ(ω) = ωi(0) in which case the average ofφ is the firing
rate of neuroni; φ(ω) = ωi(0)ωj(0) then the average ofφ
measures the probability of spike coincidence for neuronj
andi; φ(ω) = ωi(τ)ωj(0) then the average ofφ measures
the probability of the event “neuronj fires and neuroni
firesτ time step later” (or sooner according tosign(τ)).

The average ofφ is computed, from the experimental
raster plots. Let us assume that it is sufficient to focus on
time average for a single raster plot, via the time-empirical
average:

π(T )
ω (φ) =

1

T

T
∑

t=1

φ(σtω). (1)
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Note that in (1) we have used the shiftσt for the time
evolution of the raster plot.

Inferring statistics with fixed observables
We are seeking a probability distributionν which is com-
patible with these empirical average i.e. for alll = 1 . . . L,

ν(φl) = π(T )
ω (φl) = Cl. (2)

This is a minimal, but insufficient requirement, since one
can construct infinitely many probability distributions sat-
isfying these constraints. One has therefore to add more
structure. We propose two additional requirements: Sta-
tionarity and using Gibbs measures as parametric statistical
models.

Stationarity The first one corresponds to assuming
that data are extracted from a stationary dynamics i.e. that
statistics are invariant under time translation, during the
observation window.On mathematical grounds, this corre-
sponds to requiring thatν is invariant. Indeed, by defini-
tion, an invariant measureν is ergodic if for any typical
raster plot (i.e.ν-almost every raster plot)ω, and for any
(measurable) observableφ, the empirical averageπ(T )

ω (φ)
converges, asT → +∞ to the theoretical expectation ofφ
with respect toν. Namely,

lim
T→+∞

π(T )
ω (φ) = ν(φ),

for ν-almost everyω. This means that the empirical av-
erage better and better approximates the expected value as
T → +∞

Gibbs distributions The second requirement states
that one only wants to take into account the constraints (2)
without adding additional assumptions. Statistical physics
naturally proposes a canonical way to construct such a sta-
tistical model: “Maximizing the statistical entropy under
the constraints (2)” [ 9]. In the present context, this amounts
to solving avariational principle:

P [ψ] = sup
ν∈m(inv)

h [ν] + ν [ψ] , (3)

wherem(inv) is the set of invariant measures andh the
Kolmogorov-Sinai entropy or entropy rate. The termψ is
given by:

ψ =

L
∑

l=1

λlφl, (4)

where theλl’s are adjustable Lagrange multipliers. It
is called a “potential. Typically, in the case considered
here, the observablesφl and therefore the potentialψ de-
pends on the raster plot over a finite time horizonR, i.e.
ψ(ω) = ψ(ω(0), . . . , ω(R − 1)). One speaks of “range-R
potentials”. They constitute Markovian approximations of
more general (infinite range) potentials occurring e.g. in
IF models with noise, where the degree of accuracy of the
approximation can be mathematically controlled : the ac-
curacy increases exponentially fast asR growths (see [10]
for details).

A probability νψ which realizes the supremum (3),
i.e.

P [ψ] = h [νψ] + νψ [ψ] , (5)

is called, in this context, an “equilibrium state”. Typically,
equilibrium states are alsoGibbs states or Gibbs distribu-
tions. The Gibbs distribution property means that one can
find some constantsP (ψ), c1, c2 with 0 < c1 ≤ 1 ≤ c2

such that for alln ≥ 0 and for allω ∈ X:

c1 ≤ µψ

(

ω0
−n

)

exp
[

−(n + 1)P (ψ) +
∑0

k=−n ψ(T kω)
] ≤ c2.

whereT is theright shift over the set of infinite sequences
X i.e. (Tω)(t) = ω(t − 1), t ≤ 0. This means that the
probability of (large) sequences behaves likeµψ

(

ω0
−n

)

∼
P0

k=−n
ψ(T kω)

exp (n+1)P (ψ) . The termP (ψ), called thetopological
pressure in this context is the formal analog of a thermo-
dynamic potential (free energy). It is a generating function
for the cumulants ofψ.

3 Numerical Estimation of Gibbs Distribu-
tions

P (ψ) andµψ can be found by a spectral approach, being
respectively the (unique) largest eigenvalue and related
left eigenfunction of the Ruelle-Perron-Frobenius operator
Lψf(ω) =

∑

ω′ :σω′=ω ψ(ω′)f(ω′), acting onC(X,R),
the set of continuous real functions onX.

Ruelle-Perron-Frobenius operator
The Ruelle-Perron-Frobenius (RPF) operator was intro-
duced by Ruelle in [11]. In the present case of range-R
potentials it acts on vectorsv in H as:

(Lψv)w =
∑

w′∈2NR

eψ
w′ vw′Gw′,w, (6)

where w = σw′, σ denoting again the time evolution.
Thus, hereLψ is a positive2NR × 2NR matrix (while it
acts on functional spaces in the infinite range case). We
noteLψ(w′, w) the entries ofLψ.

The matrixG is called thegrammar. It encodes the
essential fact that the underlying dynamics is not able to
produce all possible raster plots in its definition:

Gw′,w =

{

1, if the transitionw′ → w is admissible;
0, otherwise.

(7)
Note therefore thatLψ is sparse.

In the present paper we make the assumption that the
underlying (and hidden) dynamics is such that theLψ ma-
trix is primitive, i.e. ∃n > 0, s.t. ∀w,w′ Ln

ψ(w′, w) > 0.
This assumption holds for Integrate and Fire models with
noise and is likely to hold for more general neural networks
models where noise renders dynamics ergodic and mixing
[10].



ThenLψ obeys the Perron-Frobenius theorem1:

Theorem 1 Lψ has a unique maximal eigenvalue sψ =
eP [ψ] associated with a right eigenvector bψ〉 and a left
eigenvector b〈ψ such that Lψbψ〉 = sψbψ〉, and b〈ψLψ =
sψb〈ψ . Those vectors can be chosen such that b〈ψ.bψ〉 = 1
where . is the scalar product in H. The remaining part of
the spectrum is located in a disk in the complex plane, of
radius strictly lower than sψ . Moreover, for all v in H,

1

sn
ψ

Ln
ψv → bψ〉b〈ψ .v, (8)

The Gibbs distribution is

νψ = bψ〉b〈ψ, (9)

i.e. the probability of a spin block w of length R is

νψ(w) = bψ〉,wb〈ψ,w,

where bψ〉,w is the w-th component of bψ〉.

Computing averages
Sinceνψ[φl] =

∑

w νψ[w]φl(w) one obtains using (9):

νψ[φl] =
∑

w∈H

bψ〉,wφl(w)b〈ψ,w. (10)

This provides a fast way to computeνψ[φl] and will be
used to tune theλl’s so that the theoretical averagesνψ[φl]
matches the empirical averageCl according to eq. (16).

Entropy
An exact expression for the Kolmogorov-Sinai entropy can
be readily obtained from eq. (5) giving:

h [νψ] = log(sψ) −
∑

l

λ∗
l νψ [φl] . (11)

Comparing several Gibbs statistical models
The choice of a potential (4), i.e. the choice of a set of ob-
servables, fixes a statistical model for the statistics of spike
trains. Clearly, there are many choices of potentials and
one needs to propose a criterion to compare them.

The Kullback-Leibler divergence,

d(µ, ν) = lim sup
n→∞

1

n

∑

[ω]n−1
0

µ
(

[ω]
n−1
0

)

log





µ
(

[ω]
n−1
0

)

ν
(

[ω]
n−1
0

)



 ,

(12)
whereµ andν are two invariant probability measures, pro-
vides some notion of asymmetric “distance” betweenµ and
ν. Minimizing this divergence, i.e. the conditional entropy
h[µ|ν], corresponds to minimizing “what is not explained
in the empirical measureµ by the theoretical measureν”.

The computation ofd(µ, ν) is numerically delicate
but, in the present context, the following holds. Forµ an

1This theorem has been generalized by Ruelle to infinite rangepoten-
tials under some regularity conditions [12, 13].

invariant measure andνψ a Gibbs measure with a potential
ψ, both defined on the same set of sequencesΣ, one has
[14, 15]:

d (µ, νψ) = P [ψ] − µ(ψ) − h(µ).

This suggests us2 to use this relation to compare dif-
ferent statistical models (corresponding to different poten-
tials) by choosing the one which minimizes the quantity:

d(π(T )
ω , νψ) = P [ψ] − π(T )

ω (ψ) − h(π(T )
ω ). (13)

The advantage is that this quantity can be numerically
estimated, since the topological pressure is known from
the Ruelle-Perron-Frobenius theorem, whileπ

(T )
ω (ψ) is di-

rectly computable. Sinceπ(T )
ω is fixed by the experimental

raster plot,h(π
(T )
ω ) is fixed independently of the statisti-

cal model. Thus, comparing two statistical models cor-
responding to2 potentialsψ1,ψ2 amounts to comparing
P [ψ1] − π

(T )
ω (ψ1) andP [ψ2] − π

(T )
ω (ψ2).

Introducing

h̃ [ψ] = P [ψ] − π(T )
ω (ψ) = P [ψ] −

∑

l

λl π
(T )
ω (φl),

(14)
the comparison of two statistical models, i.e. knowing if
ψ2 is significantly “better” thatψ1, reduces to verify:

h̃ [ψ2] ≪ h̃ [ψ1] , (15)

easily computable at the implementation level, as devel-
oped below. Note that̃h has the dimension of entropy.
Since we compare entropies, which units are bits of
information, defined in base 2, the previous comparison
units is well-defined.

Estimating the potential parameters
The final step of the estimation procedure is to find the pa-
rametersλ such that the Gibbs measure fits at best with
the empirical measure. We have discussed why mini-
mizing (13) seems the best choice in this context. Since
h(π

(T )
ω ) is a constant with respect toλ, it is equivalent to

minimizeh̃ [ψλ] eq. (14) while

∂h̃

∂λl

=
∂P [ψλ]

∂λl

− π(T )
ω (φl) = νψ(φl) − π(T )

ω (φl), (16)

where νψ(φl) is given by (10). Equivalently, we are

looking for a Gibbs distributionνψ such that∂P [ψ
λ
]

∂λl

=

π
(T )
ω (φl) which expresses thatπ(T )

ω is tangent toP at ψλ

[14].

4 Applications

This analysis opens up the possibility of developing effi-
cients algorithms to estimate at best the statistic of spike

2Although π
(T )
ω is not invariant. This approximation becomes exact

asT → +∞.



trains from experimental data, using several guess potential
and selecting the one which minimizes the KL divergence
[1]. The idea is to start from a parametric form of poten-
tial (Ψ), of rangeR, and to compute the empirical average
of all monomialsφl from data (say, an experimental raster
ω(exp)). Then, one adjust the parametersλl by minimizing
the KL divergence between the Gibbs measureµ

ψ
(R)
λ

and

the empirical measure attached to the experimental raster
ω(exp).

The complete computational strategy and the de-
scription of the implemented numerical algorithms is
described in [1] and is freely available as a C++ source at
http://enas.gforge.inria.fr.

Preliminary data analysis
As a first step, we observe the outlook of the correlation
in these different data types. To do so, we estimate the
correlation between a couple of neurons for several various
raster length.
The correlation between two neuron is then:

Ci,j = |µ(ωi(t)ωj(t)) − µ(ωi(t))µ(ωj(t))| (17)

Thus,Ci,j is equal to how many time the two neuronsi
andj fired together minus the product of their firing rate.

The computed correlation between non-correlated
data e.g between two neurons whose raster plots follow a
Bernoulli distribution decreases to zero exponentially with
a decay constant∼ 1/

√
T as described by large deviations

theory. Figure1 using data obtained from virtual retina
software ([2]) shows the same behavior as in randomly gen-
erated data (Bernoulli distribution, figure not shown) as in-
dependently of distance between cells.

Figure 1. Correlation of spiking activity vs the sample size,
computed from data obtained from Virtual Retina ([2]) for
several couples of neurons situated at different distances.
The distance is measured in pixel and the virtual retina is
configured such with 1 neuron/pixel.

We perform the same analysis for real data acquired

with and MEA chip (60 channels) on retinal ganglion cell
with no stimuli (spontaneous regime). Figure2 shows re-
sults for correlation between several couples of neurons,
at different distances proving the presence of effective (i.e.
non-zero asymptotically) correlations

Figure 2. Correlation between ganglion cells in real MEA
measurements. The figure shows the correlation for three
couples of neurons, at several distances. The time scale
corresponds to the first 30 sec. of the measured neurons .

Detailed Results for data
We expect to provide detailed results in time for the con-
ference. In particular, MEA recordings obtained by Adrien
Palacios are currently analyzed within this approach.

5 Discussion

In this paper we have addressed the question of character-
izing the spike train statistics of a group of neurons in the
stationary case, thanks to the framework of thermodynamic
formalism in ergodic theory (see [16] for the related the-
ory). We have shown that the Jaynes method, based on
an a priori choice of a “guess” potential, with finite range,
amounts to approximate the exact probability distribution
by the Gibbs distribution of a Markov chain. The degree of
approximation can be controlled by the Kullback-Leibler
divergence. We will show detailed results on different type
of data, in time for the conference

With respect to the state of the art, this method allows
us to consider either more neurons with non-trivial statis-
tics (e.g. beyond rate models and even models with corre-
lation), thus targeting models with complex spike pattern.
This method is in a sense the next step after Ising models,
known as being able to represent a large but limited part
of the encoded information (e.g. [5, 17]). Another very
important difference with respect to other current methods
is that we perform the explicit variational optimization of
a well defined quantity, i.e., the KL-divergence between
the observed and estimated distributions. The method pro-
posed here does not rely on Monte Carlo Markov Chain
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methods but on a spectral computation based on the RPF
operator, providing exact formula, while the spectral char-
acteristics are easily obtained from standard numerical
methods.

A step further, the non-trivial but very precious virtue
of the method is that it allows us to efficiently compare
models. We thus not only estimate the optimal parameters
of a model, but can also determine among a set of mod-
els which model is the most pertinent. This means for in-
stance that we can determine if either only rates, or rates
and correlations matters, for a given piece of data. Another
example is to detect if a given spike pattern is significant,
with respect to a model not taking this pattern into account.
These elements push the state of the art regarding statistical
analysis of spike train a step further.

One weakness of the present work is that it only con-
siders stationary dynamics, where e.g. the external current
Ii is independent of time. However, real neural systems are
submitted to non static stimuli, and transients play a crucial
role, but considering non stationary requires to handle time
dependent Gibbs measures. In the realm of ergodic the-
ory applied to non equilibrium statistical physics, Ruelle
has introduced the notion of time-dependent SRB measure
[18]. A similar approach could be used here, at least for-
mally.
Acknowledgment:.

References

[1] J.C. Vasquez, B. Cessac, and T. Vieville. Entropy-basedparametric
estimation of spike train statistics.Journal of Computational Neu-
roscience, 2010. submitted.

[2] Adrien Wohrer and Pierre Kornprobst. Virtual retina: a biological
retina model and simulator, with contrast gain control.Journal of
Computational Neuroscience, 26(2):219–249, 2009.

[3] F. Rieke, D. Warland, Rob de Ruyter van Steveninck, and William
Bialek. Spikes, Exploring the Neural Code. The M.I.T. Press, 1996.

[4] Alexandre Pouget and Gregory C DeAngelis. Paying attention to
correlated neural activity.Nature Neuroscience, 11(12):1371–1372,
December 2008.

[5] E. Schneidman, M.J. Berry, R. Segev, and W. Bialek. Weak pair-
wise correlations imply string correlated network states ina neural
population.Nature, 440:1007– 1012, 2006.

[6] Jonathon Shlens, Greg D. Field, Jeffrey L. Gauthier, Matthew I.
Grivich, Dumitru Petrusca, Alexander Sher, Alan M. Litke, and E. J.
Chichilnisky. The structure of multi-neuron firing patternsin pri-
mate retina.The Journal of Neuroscience, 26(32):8254–8266, Au-
gust 2006.

[7] Jonathon Shlens, Greg D. Field, Jeffrey L. Gauthier, Martin
Greschner, Alexander Sher, Alan M. Litke, and E. J. Chichilnisky.
The structure of large-scale synchronized firing in primate retina.
The Journal of Neuroscience, 29(15):5022–5031, April 2009.

[8] Olivier Marre, Sami El Boustani, Yves Frégnac, and Alain Des-
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