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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract 

 

Growing evidences suggest that the multifunctional protein E4F1 is involved in 

signalling pathways that play essential roles during normal development and 

tumorigenesis. Here, we have generated E4F1 conditional knock-out mice to address 

E4F1 functions in vivo in newborn and adult skin. E4F1 inactivation in the entire skin or 

in the basal compartment of the epidermis induces skin homeostasis defects, as 

evidenced by transient hyperplasia in the interfollicular epithelium and alteration of 

keratinocyte differentiation, followed by loss of cellularity in the epidermis and severe 

skin ulcerations. E4F1 depletion alters Epidermal Stem Cells (ESC) clonogenic activity 

ex vivo and ends in exhaustion of the ESC pool in vivo, indicating that the lesions 

observed in the E4F1 mutant skin result, at least partly, from cell autonomous 

alterations in ESC maintenance. Clonogenic potential of E4F1 KO ESC is rescued by 

Bmi1 over-expression or by Ink4a/Arf or p53 depletion. Skin phenotype of E4F1 KO 

mice is also delayed in animals with Ink4a/Arf and E4F1 compound gene deficiencies. 

Our data identify a novel regulatory axis essential for ESC-dependent skin homeostasis 

implicating E4F1 and the Bmi1-Arf-p53 pathway. 

 

Abbreviations: 

ESC, Epidermal Stem Cells; HF, Hair Follicle; 4OHT, 4-Hydroxy Tamoxifen; IFE, 

Interfollicular Epithelium; K5, K6, K10, K14 and K15, Keratin-5, 6, 10, 14 and 15 

respectively; KO, Knock-Out; LRC, Label Retaining Cells; RERT , Cre-ERT2 knock-in mice; 

TAC, Transit Amplifying Compartment.  
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/body Introduction: 

E4F1 is an ubiquitously expressed transcription factor of the Gli-Kruppel family that 

was identified as a cellular target of the adenoviral oncoprotein E1A (1). While several 

cellular targets of E1A (E2F/pRB, CBP/p300, PCAF, CtBP, ATF/Creb etc…) have been 

extensively studied and recognized as central regulators of cell proliferation and survival, 

E4F1 biological functions remained poorly investigated. E4F1 is a multifunctional protein 

with transcriptional and atypical ubiquitin E3-ligase activities. E4F1-mediated ubiquitylation 

of p53 does not lead to proteasomal degradation but modulates p53 transcriptional activities 

involved in alternative cell fates: growth arrest or apoptosis (2). The notion that E4F1 plays an 

important role in the p53 pathway is reinforced by other reports showing that E4F1 not only 

directly interacts with p53 itself (2, 3) but also with regulators/effectors of this pathway, 

including p14ARF (4), the polycomb member Bmi1 (5), and the p53 target gene FHL2 (6). 

Nevertheless, E4F1 functions most likely extend beyond the regulation of p53. Thus, physical 

interactions between E4F1 and components of other oncogenic pathways have been reported, 

including RASSF1A (7), pRB (8), HMGA2 (9) and Smad4 (10).   

Using a gene targeting approach in mouse, we previously showed that E4F1 

constitutive inactivation results in embryonic lethality around the time of implantation. E4F1 

KO blastocysts in culture exhibit mitotic defects including lagging chromosomes, chronic 

activation of the mitotic checkpoint, and massive cell death (11). More recently, shRNA-

mediated partial depletion of E4F1 was also shown to rescue hematopoietic stem cell (HSC) 

exhaustion in mouse resulting from inactivation of the polycomb member Bmi1 (5), 

suggesting an important role for E4F1 in HSC homeostasis. 

To date, little information is currently available regarding the in vivo functions of 

E4F1 in adult tissues. Here, we generated several mouse strains to explore the roles of E4F1 

in skin homeostasis. 
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Constant renewal of the Interfollicular Epithelium (IFE) and of Hair Follicles (HF) 

relies on the recruitment of epidermal stem cells (ESC) located in the basal layer of the IFE 

and in the bulge region of HF, respectively. ESC fuel the highly proliferative transit 

amplifying compartments (TAC) in the basal layer of the IFE and in the bulb of the HF. TAC 

cells then embark on differentiation programs to generate the spinous, granular and cornified 

layers in the IFE or the different lineages of the mature HF (12-14). Several essential 

molecular circuitries that orchestrate epidermal stem cells maintenance have been previously 

described, including p63-, BMP-, TGF-ß-, Wnt/ß-catenin-, and Notch-initiated signalling 

cascades (12, 15, 16). 

Here, we show that inactivation of E4F1 in the entire skin or in the basal compartment 

of the epidermis results in severe epidermal defects both in neonates and in adult mice, 

revealing a yet unidentified regulatory axis essential for ESC-dependent skin homeostasis 

implicating E4F1 and the Bmi1-Ink4a/Arf-p53 pathway.  
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Results: 

 

Inactivation of E4F1 induces transient hyperplasia in the epidermis followed by 

permanent loss of epidermal cells and severe skin ulcerations. 

We first investigated E4F1 expression pattern in epidermis. Immunohistochemical 

analyses of murine and human skin sections showed nuclear expression of E4F1 in the basal 

and suprabasal layers of the interfollicular epithelium (IFE), as well as in the bulb and bulge 

regions of the hair follicle (HF) (Fig. 1A). 

To analyse the role of E4F1 in skin homeostasis, we generated two mouse models with 

homozygote deletion of the E4F1 gene in the entire skin or in the epidermis only, using 

conditional (Cre-ERT2) and tissue specific (K5-Cre) Cre/Lox-P systems, respectively. In short, 

we first generated E4F1-/flox mice harboring E4F1 conditional knock-out allele (Fig. S1) and 

inter-crossed them with Cre-ERT2 KI/KI mice (RERT) which express tamoxifen-inducible Cre 

recombinase-ERT2 fusion protein under the control of the ubiquitously active RNA polII 

promoter, i.e. in all tissues (17). As expected, topical applications of 4-hydroxy-tamoxifen 

(4OHT) on the tail skin or on a shaved area of the back skin of adult E4F1-/flox; RERT animals, 

resulted in efficient Cre-mediated recombination of the E4F1 locus in the skin, as monitored 

on genomic DNA, mRNA and protein samples prepared from the treated area (Fig. S1).  

Between 1 and 2 weeks after 4OHT-administration, E4F1-depleted back skin 

thickened, became wrinkled and ruffled. Those early lesions evolved 1 to 2 weeks later into 

severe skin ulcerative lesions (Fig. 1B). Strikingly, E4F1 inactivation in unshaved skin tail of 

E4F1-/flox; RERT animals resulted in complete alopecia 6 weeks after 4OHT applications (Fig. 

1C). Histological analyses revealed that skin thickening was the result of a massive 

hyperplasia of the epidermis with increased cellularity in the IFE and the infundibulum (Fig. 

1D). Consistent with the observed hyperplasia, an abnormal proportion of epidermal cells 
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were proliferating in E4F1 KO skin, as indicated by increased immunostaining of skin 

sections for the proliferation marker Ki67 (Fig. 1D), and anti-BrdU staining performed on 

skin sections harvested shortly after injection of animals with BrdU (Fig. S2). This phenotype 

was skin autonomous since similar hyperplasia was recapitulated upon engraftment of E4F1-

/flox; RERT p1 neonatal back skin onto nude mice (Fig. S3). At later time points (3 to 4 weeks 

after 4OHT administration), the initial hyperplasia of E4F1 KO; RERT skin was followed by 

broad disorganisation of the IFE and massive hyperkeratosis associated with partial or 

complete loss of cellularity in the IFE (Fig. 1D).  

To further show that the observed phenotypes resulted from epidermis specific 

defects, we crossed E4F1-/flox mice with Keratin 5-Cre (K5-Cre) transgenic mice expressing 

Cre in the epidermal basal cell layer, from E15.5 onwards (18). E4F1-/flox; K5-Cre neonates 

exhibited efficient E4F1 gene inactivation in the epidermis as shown by 

immunohistochemical staining and western-blot analyses with anti-E4F1 antibodies (Fig. 1E 

and S1). 3 to 4 days after birth, these animals exhibited epidermal hyperplasia, and died with 

acute symptoms of dehydration (Fig. 1F). As in E4F-/flox; RERT animals, this hyperplasia was 

associated with hyperproliferation of epidermal cells, as shown by increased Ki67 staining 

(Fig. 1G). Consistent with increased proliferation, E4F1 KO epidermis also exhibited higher 

mitotic index, as illustrated by increased number of phospho histone H3 (Ser10, PHH3) 

positive basal cells (Fig. S5). Of note, we previously showed that E4F1 KO blastocysts also 

exhibited PHH3-positive cells (11), but in this case, cells were blocked in mitosis with 

abnormal mitotic figures. We did not observe abnormal mitotic figures in E4F1 KO epidermal 

basal cells, indicating that the increased mitotic index likely reflects over-proliferation of 

basal cells, rather than mitotic progression defects. 

In order to bypass neonatal lethality of E4F1 KO; K5-Cre animals and investigate later 

phenotypes, we engrafted E4F-/flox; K5-Cre or control skins onto nude mice. 2 weeks after 
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engraftment, E4F1 KO; K5-Cre skins failed to regenerate a normal epidermis. Similarly to the 

late phenotype of E4F-/flox; RERT animals, E4F1 KO, K5-Cre engrafted skins exhibited 

marked hypocellularity in the epidermis, hyperkeratosis and severe ulcerative lesions (Fig. 

1H). Of note, hair follicles were also lacking in E4F1 KO, K5-Cre engrafted skins. 

Collectively, our data indicate that E4F1 inactivation results in transient hyperplasia but 

ultimately leads to permanent loss of epidermal cells in the IFE and HFs.  

 

E4F1 inactivation results in expansion of the basal cells compartment of the 

epidermis and in abnormal keratinocyte differentiation in vivo. 

We next assessed which epidermal cell populations were present in these hyperplasic 

lesions. In both 4OHT-treated E4F1-/flox; RERT and E4F1-/flox; K5-Cre epidermis, cells of the 

hyperplasic IFE stained positive for the basal cell-specific keratin-14, integrin-α6, markers 

(Fig. 2A and S4). Expression of these markers extended to upper cellular layers, in contrast to 

normal IFE of control animals where their expression was restricted to the basal cell layer. In 

addition, E4F1-floxed IFE massively expressed keratin-6 (Fig. 2B and S4), which expression 

is normally restricted to sweat glands and HF in normal skin but can be expressed in the IFE 

undergoing abnormal proliferation or wound healing (19). Collectively, these analyses 

indicated that E4F1 inactivation in the IFE first resulted in massive expansion of 

keratinocytes with basal/TAC properties.  

In addition to this massive expansion of basal cells, we noticed the absence of the 

suprabasal and granular layers as illustrated by the lack of expression of early (keratins 1 and 

10), as well as late differentiation markers (involucrin, loricrin, filaggrin) in E4F1 KO 

epidermis in both E4F1flox; K5-Cre and E4F1flox; RERT models (Fig. 2B, S4). No significant 

cell death was observed among highly proliferative cells of the IFE during the development of 

hyperplasia, as revealed by immunostaining of skin sections for the presence of activated 
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caspase 3- or TUNEL-positive cells. Therefore, it is likely that hyperproliferative 

keratinocytes present in hyperplasic lesions had finally undergone an abnormal differentiation 

program of stratification, rather than apoptosis, leading to the observed hyperkeratosis. These 

data indicate that E4F1 inactivation strongly perturbates both the proliferation and 

differentiation of epidermal lineages in vivo leading to a strong alteration of skin homeostasis. 

 

E4F1 inactivation induces epidermal stem cell defects. 

We next investigated the mechanisms by which E4F1 inactivation in the IFE led to a 

massive but transient expansion of the basal/TAC compartment, followed by its exhaustion. 

Several scenarios could explain this sequence of events. First this could reflect an increase in 

the intrinsic capacity of basal/TAC keratinocytes to proliferate. However, this is unlikely, 

since E4F1 depletion in freshly isolated populations of primary keratinocytes in culture did 

not recapitulate the massive over-proliferation observed in skin sections, as illustrated by 

FACScan analyses of BrdU/Propidium Iodide- (PI) or PHH3/PI-labelled keratinocytes 

isolated from E4F1-/flox; RERT or control p1 neonates (Fig. S5). Similar conclusions were 

obtained in primary human keratinocytes upon shRNA-mediated depletion of endogenous 

human E4F1 (Fig. S5). These observations, together with the withering and transient aspect of 

the hypertrophy phenotypes led us to investigate an alternative hypothesis involving 

perturbations of the resident stem cells (ESC). Several aspects of E4F1 KO phenotypes are 

reminiscent of skin lesions observed in KO animals exhibiting stem cell defects. Hence, 

conditional perturbation in the epidermis of several key signalling molecules, including the 

small GTPase Rac1, Myc, Smad4, NFATC1, leads ESC to exit their normal 

microenvironment (“niche”) to enter into the TAC where they become transiently 

proliferating keratinocytes upon exposition to natural pro-mitogenic signals present in this 

amplification compartment (20-24). This results in transient hyperplasia followed by a 
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permanent exhaustion of the epidermal stem cell pool and loss of renewal capacity of the 

epithelium. 

To address this scenario, we first performed standard in vitro clonogenic assays on 

feeder layers with total primary keratinocytes isolated from in vivo recombined hyperplasic 

regions of E4F1-/flox; RERT adult mice, as well as from E4F1-/flox; K5-Cre p1 neonates or 

control littermates. After 10 to 15 days in culture, typical holoclones, corresponding to the 

long-term clonal outgrowth of epidermal cells with stem cell properties (25, 26) were detected 

in controls but not in E4F1 KO conditions in both models (Fig. 3A). Importantly, similar 

results were recapitulated when E4F1 inactivation was induced ex vivo by adding 4OHT in 

the culture medium of E4F1-/flox; RERT cells (Fig. 3A), showing that these defects were stem 

cell autonomous. Similarly, clonogenic assays performed with primary human keratinocytes 

transduced ex vivo with E4F1 shRNA constructs showed that partial E4F1 depletion resulted 

in a 3 fold reduction in the number of holoclones (Fig. 3B). 

We next investigated whether E4F1 inactivation also resulted in exhaustion of the 

stem cell pool in vivo by analysing expression of various ESC markers. FACscan analyses of 

dissociated epidermis revealed that E4F1-/flox; K5-Cre neonatal epidermis contained fewer 

ESC co-expressing the CD34 surface marker and high levels of α6-integrin (CD34+/α6high) 

than control epidermis (8% +/- 2 vs 1,5% +/- 1, n=3) (Fig. 3C). Similarly, immunostainings 

performed on back skin sections or on whole mount of tail epidermis harvested from adult 

E4F1-/flox; RERT animals 4 to 6 weeks following E4F1 inactivation, showed loss of 

expression of the HF bulge markers CD34 and keratin-15 (Fig. 3D and S6). 

To confirm these HF ESC defects in vivo, we crossed E4F1-/flox; RERT animals with 

Keratin15-EGFP (K15-GFP) transgenic mice expressing the GFP reporter under the control 

of the keratin-15 promoter (27). In 7 to 12-week-old K15-GFP; E4F1+/flox; RERT control 

animals, GFP expression was restricted to the bulge region of unsynchronized HF. In contrast, 
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complete loss of GFP-positive cells was observed 4 to 6 weeks after E4F1 inactivation in 

E4F1 KO; RERT animals, confirming the exhaustion of the HF ESC (Fig. 3E). Finally, we 

tracked HF bulge/ESC as BrdU Long Term Retaining Cells (LRC) using an in vivo labelling 

protocol that marks self-renewing and multi-potent epidermal cells (26, 28). E4F1-/flox; RERT 

and E4F1+/flox; RERT neonates were injected with BrdU and after a chase period of three 

months, the poorly proliferative adult ESC were identified on whole mounts of tail epidermis, 

as BrdU-positive LRC. 2 to 3 weeks after E4F1 inactivation the LRC zone extended and an 

increased numbers of LRCs were co-labeled with Ki67 in E4F1 KO HF as compared to 

control HF (Fig. 3F early and S7), suggesting that E4F1 inactivation induced HF ESC to 

transiently proliferate. At later time points (6 weeks after 4OHT), whereas LRCs were still 

restricted to the bulge of control HF, BrdU staining finally disappeared in the E4F1 KO HF 

(Fig. 3F late), supporting the notion that the end result of E4F1 inactivation was an 

exhaustion of the ESC pool. Finally, consistent with the role of ESC in regenerating the 

various epithelial cell types of hairy skin after injury (26), we also observed that wound 

healing was strongly altered in E4F1 KO skin (figure S8). Altogether, these data indicate that 

E4F1 is essential for ESC maintenance in vivo and ex vivo, and strongly suggest that the 

hyperplasia and following loss of cellularity of E4F1 KO epidermis, are primarily due to cell 

autonomous perturbations of the ESC pool that aliments TAC compartments. 

 

Down regulation of the Bmi1-Ink4a/Arf-p53 axis partly rescues ESC-clonogenic 

potential and skin lesions of E4F1 KO. 

We next addressed the molecular pathway by which E4F1 could regulate ESC 

maintenance. E4F1 associates with the polycomb member Bmi1 and the tumor suppressors 

Arf, p53 and pRb (2-5, 8). Although there are evidences that these factors have independent 

functions, they define a well established functional cascade with Bmi1 triggering the 
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repression of the Ink4a/Arf locus whose products, p19Arf and p16Ink4a, act as potent inhibitors 

of the p53- and pRb-dependent activities, respectively (29). Several reports suggest that the 

negative regulation of Ink4a/Arf expression may be a central event in stem cell renewal in 

several tissues (30-33) including epidermis (34). Strikingly, we observed that E4F1 KO 

primary keratinocytes exhibited enhanced Ink4a and Arf mRNA levels compared to control 

cells (Fig. 4A), suggesting that the deregulation of the Ink4a/Arf locus might be involved in 

E4F1 KO phenotype. Consistent with this hypothesis, clonogenic assays performed with 

primary keratinocytes isolated from E4F1-/flox; RERT; Ink4a/Arf-/- compound mice showed 

that Ink4a/Arf inactivation partly restored long-term outgrowth of E4F1 KO ESC ex-vivo (Fig. 

4B, C). The number of viable clones growing in this condition was similar to that obtained 

from control skin. 

Importantly, the in vivo skin phenotype of E4F1 KO mice was also delayed in animals 

with Ink4a/Arf and E4F1 compound gene deficiencies. Hence, the initial epidermal 

hyperplasia of 4OHT-treated E4F1-/flox; RERT; Ink4a/Arf-/- animals was almost undetectable at 

early time points following E4F1 inactivation (Fig. 4D, early), compared to control 

littermates with E4F1 KO only. Nevertheless, at later time points, these animals ended up to 

develop a moderate hyperplasia and hyperkeratosis (Fig. 4D, late).  

To provide further evidence for a role of the Ink4a/Arf–pRb/p53 cascades in E4F1 KO 

phenotype, we next tried to rescue the clonogenic potential of E4F1 KO ESC by targeting 

Bmi1, one of the main upstream regulator of the Ink4a/Arf locus. Transduction of 

keratinocytes by retroviruses expressing Bmi1 rescued long-term outgrowth and clonogenic 

potential of E4F1 KO cells (4OHT-treated E4F-/flox; RERT keratinocytes) (Fig. 5A and 5C). 

To assess which Ink4a/Arf downstream targets might be involved, clonogenic assays 

were also performed upon shRNA-mediated (lentiviral vectors) depletion of either murine 

RB1 or p53 in E4F1 KO keratinocytes. p53 (Fig. 5B and 5C) but not pRb depletion restored 
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clonal outgrowth of E4F1 KO keratinocytes, highlighting the role of the Bmi-Arf-p53 axis 

rather than the Bmi-p16-pRb axis in E4F1 KO skin phenotypes. Of note, E4F1 KO rescued 

clones that developed upon inactivation of Ink4a/Arf, depletion of p53 or overexpression of 

Bmi1, all remained significantly smaller in size, compared to those growing from control cells 

(Fig. 4B-C, 5A-B), suggesting that E4F1 might also impinge on other molecular circuitries 

that orchestrate ESC maintenance. 

Altogether, our data provide the first evidence that E4F1 is essential for ESC-

dependent skin homeostasis and identify a novel regulatory axis involved in this process 

implicating Bmi1 and the Arf-p53 pathway. 
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Discussion 

 

In vivo functions of E4F1 remain poorly documented. Here, we created E4F1 

conditional KO mice and reported that E4F1 inactivation in the epidermis led to neonatal 

lethality that resulted from skin homeostasis defects. We found that E4F1 depletion in E4F1 

KO; K5-Cre neonates first led to a rapid thickening of the IFE associated with increased 

numbers of highly proliferative keratinocytes in the basal cell layers (TAC compartment) of 

the IFE. Comparable results were obtained upon E4F1 inactivation in adult skin obtained by 

topical applications of 4OHT on the back skin of E4F1-/flox; RERT mice. In both E4F1 KO 

models, hyperplasia was transient and followed by a severe disorganization and almost 

complete loss of viable epithelial cell layers in the IFE and HF. In addition, perturbations of 

epidermal differentiation were observed in E4F1 depleted epidermis, in both models.   

Strikingly, E4F1 depletion in vitro, in freshly isolated populations of murine or human 

primary keratinocytes in culture, did not recapitulate the over-proliferation observed in skin 

sections, ruling out the possibility that the hyperplasia originates from an intrinsic increase in 

the proliferation capacity of E4F1 KO TAC keratinocytes. As described for other gene 

deficiencies in epidermis (20, 22), our data rather suggest that E4F1 KO phenotypes resulted 

from cell autonomous perturbations in resident stem cells. Indeed, E4F1 depletion in vivo or 

ex vivo turned out to dramatically impair the clonogenic potential of both murine and human 

epidermal cell populations. In addition, a strong reduction in the expression of various ESC 

markers was observed in vivo in E4F1 KO skins. Finally, BrdU labelling of LRC suggested 

that E4F1 KO HF stem cells first exited their normal location in the bulge region of the HFs 

to enter in a transient phase of proliferation, before disappearing. As predicted by this stem 

cell-oriented scenario, exhaustion of the resident stem cell pool in E4F1 KO skin ultimately 

led to a complete loss of cellularity in the IFE and alteration of wound healing.  
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 Seeking for the pathway by which E4F1 could regulate ESC maintenance, we found 

that the clonogenic potential of E4F1 KO ESC was restored upon targeting of the Bmi1-

Ink4a/Arf-p53 axis but not by pRb depletion, highlighting the role of the Bmi-Arf-p53 axis 

rather than the Bmi-p16-pRb axis in E4F1 KO skin phenotypes. Consistently, E4F1 

inactivation correlated with increased Ink4a/ARF expression and our in vivo data showed that 

the development of hyperplasia was delayed and reduced in animals with Ink4a/Arf and E4F1 

compound gene deficiencies. It remains unclear how this protein network impinges on ESC 

homeostasis and ultimately raises the question about the physiological functions of this Bmi1-

Ink4a/Arf-p53 axis in ESC. Although poorly documented, it has been suggested that it might 

play its usual "gate-keeper" function in these cells, notably in response to genotoxic or 

developmental stresses, as illustrated in mice with dysfunctional telomeres (35, 36) or in p63 

KO mice (34, 37). As described in other tissues, it is also formally possible that the Bmi1-

ARF-p53 protein network plays a role in the normal program of ESC self-renewal and 

maintenance. Hence, in absence of acute genotoxic stress, inactivation of p53 or Ink4a/Arf has 

been shown to impact on the self-renewal capacity of hematopoietic multipotent progenitors 

(38) and neural stem cells (39). Even more intriguing is the recent finding that p53 KO 

favours symmetric divisions and self-renewal capacity of mammary gland progenitor cells 

(40). The latter observation raises questions about similar roles of p53, and indirectly E4F1, in 

the epidermis where proper columnar stratification and tissue organization are driven, at least 

in part, by oriented, asymmetric cell divisions (41, 42). 

Our data also highlight the complexity of E4F1 connections with the polycomb family 

member Bmi1. Indeed, others have shown that shRNA-mediated depletion of E4F1 can 

rescue premature senescence of Bmi1 KO hematopoietic stem cells and restore the viability of 

animals transplanted with those rescued cells, in a Ink4a/Arf- and p53-independent manner 

(5). Our data indicate that the genetic links between E4F1 and Bmi1 in stem cell maintenance 
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are complex and might differ from one tissue to the other since in epidermis, we clearly 

observed that Bmi1 ectopic overexpression partly rescued stem cell defects of E4F1 KO ESC. 

Of note, we currently do not rule out that E4F1 might also exert yet unidentified additional 

cellular functions independent from Bmi1 and the Arf-p53 axis. Supporting this notion, we 

found that targeting the Bmi1-Arf-p53 axis did not fully restore ESC clonal outgrowth and 

normal skin phenotype. Animals with Ink4a/Arf and E4F1 compound gene deficiencies ended 

up to develop a moderate hyperplasia and hyperkeratosis at late time points. Likewise, in 

clonogenic assays, E4F1 KO rescued clones that developed upon depletion of p53 or 

Ink4a/Arf, or upon over-expression of Bmi1, all remained significantly smaller in size, 

compared to those growing from control cells. Therefore, in addition to its connection with 

the Bmi1-Arf-p53 cascade, one could hypothesize that E4F1 might also impinge on other 

hitherto described molecular circuitries that orchestrate epidermal stem cells maintenance, 

including TGFß-, Wnt/ß-catenin-, or Notch-initiated signalling cascades (12-14). 

Interestingly, a physical interaction of E4F1 with Smad4 has recently been shown in BMP-

mediated regulation of myogenic differentiation (10). Further studies will be required to 

evaluate whether this interaction is also implicated in epidermal homeostasis. 

In conclusion, the roadblock to developing an E4F1 conditional KO mouse has been 

overcome and provides the first evidence, that E4F1, through its connection with the Bmi1 

and the Ink4a/Arf-p53 axis, is an important player of stem cells-dependent skin homeostasis. 

This finding, together with previous reports showing that E4F1 is targeted by several 

oncoproteins and tumor suppressors, also raise an interesting question about E4F1 potential 

implication in the development/maintenance of cancer stem cells which presence is suspected 

in several cutaneous malignancies, including skin carcinoma and malignant melanoma. 
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Material and Methods: 

 

Ethics Statement 

All experiments involving mice were approved by Montpellier's ethic committee for animal 

warefare. 

Generation of E4F1-/flox mice and experimental treatment of mice 

Generation of the E4F1flox allele and of E4F1-/flox mice are detailed in supplementary 

informations (SI). E4F1-/flox mice were crossed with Cre-ERT2 knock-in mice (RERT) (17) or 

Keratin5-Cre transgenic mice (18) to obtain E4F1-/flox; RERTKI/KI animals, and E4F1-/flox; K5-

Cre animals, respectively. E4F1flox; RERT mice were also crossed with homozygous 

Keratin15-EGFP transgenic mice (Jackson lab) (27) to generate E4F1flox; RERTKI/KI; K15-

GFP animals and with Ink4a/Arf -/- mice (43) to generate E4F1flox; RERTKI/KI; Ink4a/Arf -/- 

animals. E4F1 recombination in adult E4F1flox; RERT skin was induced by topical 

applications of 4-hydroxy Tamoxifen (4OHT) (Sigma) (2mg dissolved in ethanol 

per application per day, 4 applications total), on the shaved back skin or the tail. For skin 

grafting experiments, dorsal skin from E4F1flox; RERT or E4F1flox; K5-Cre neonate donors 

were transplanted onto athymic nude recipient mice (Charles River), as previously described 

(44). For visualisation of BrdU-label-retaining cells (LRC), ten days old mice were injected 

with BrdU (50mg/kg of body weight, Sigma) every 12 hours for a total of four injections. To 

achieve short-term labeling of cells undergoing DNA synthesis in vivo (for IHC experiments), 

BrdU (50mg/kg of body weight) was injected intra-peritoneally, 4 hours prior to euthanasia.  

Histochemistry, immunolabelling of skin sections and whole mounts 

Immunohistochemistry of skin sections was performed as described in SI with the following 

primary antibodies: anti -E4F1 (B-21 rabbit polyclonal) generated by our laboratory, -Ki67 

(#SP6, Neomarkers), -keratin 6 (#SPM269, Abcam), -keratin10 (#PRB-159P, Covance), -
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involucrin (#Sc15230, Santa Cruz), -CD34 (RAM34, BD Pharmingen), and -keratin 15 

(#LHK15, Vector Laboratories). Immunohistofluorescence stainings with anti-α6-integrin 

(#GoH3, BD Biosciences) and anti-keratin 14 (#AF64, Covance) were performed on 10μm 

cryosections fixed for 10 minutes in 100% acetone. BrdU-positive cells were detected using 

anti-BrdU antibody (BD Biosciences). Whole mounts of tail epidermis and detection of LRC 

were prepared as described previously (28) and pictures were generated using a Zeiss 510 

confocal microscope and presented as Z-stack projections after deconvolution with Imaris 

software. 

Culture of primary keratinocytes and clonogenic assays 

Murine primary keratinocytes were isolated from newborn skin after overnight treatment with 

dispase (5 mg/mL, Roche) or from adult back skin after trypsin-EDTA overnight treatment, 

and grown in calcium-free EMEM medium (Biowhittaker, Lonza), containing 10% calcium-

free FCS (Sigma) and 10 µg/ml murine EGF (Roche). Cre-mediated recombination of E4F1 

flox alleles were achieved by adding 4OHT (1 µM, Sigma) in the culture medium. Human 

primary keratinocytes were isolated from skin biopsies obtained after medical surgery and 

cultured in Green medium containing 1,2 mM calcium as previously described (45) and 

according to Helsinki Declaration. Clonogenic assays were perfomed as described in SI. 

Colonies were fixed with 4% PFA and stained with 1% Rhodamine B (Sigma). Quantitative 

analysis of the total number and size of clones was performed with ImageJ. 

Retroviral and lentiviral particles productions and infections 

Viral particles were produced as described in SI, with the following constructs: pMSCV-

Bmi1 (29), pMKO vector encoding either control or anti human E4F1 shRNAs (sequences 

available upon request); pLKO1 encoding shRNAs directed against murine RB1 or p53 

(Sigma mission shRNA clones, NM_011640.1-625s1c1), or control irrelevant sequence.  

Western blotting 
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Total cell extracts were prepared in 50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 5 mM EDTA, 

0,5% NP40, supplemented with protease inhibitors (Complete, Roche). Immunoblots were 

probed with primary antibodies directed against E4F1 (8), p53 (1C12, Cell signalling), Bmi1 

(#F6, Millipore), β-actin (Sigma) 

FACScan analyses 

Freshly isolated cell suspensions were incubated with FITC-conjugated anti-CD34 (RAM34, 

BD Biosciences) and PE-Cy5-conjugated anti-α6-integrin primary antibodies for 30 minutes 

at 4°C. For cell cycle analyses, formalin-fixed cells were incubated with anti-BrdU or anti-

phospho-serine 10 histone H3 (6G3 #9706, Cell Signalling) and PI (Sigma) as previously 

described (2). Cells were analysed on a FACS Calibur (Becton Dickinson) and data were 

processed with Flowjo software (Treestar). 



 19

Acknowledgments 

We are grateful to all members of the LLC and CS laboratories for helpful discussions and 

critical readings of the manuscript, to C. Jacquet, E. Jouffre and P. Cavelier for technical help 

in mouse handling and histological analyses. We thank the “Clinique de la souris, Strasbourg” 

for injection of E4F1 flox ES cells into blastocysts. We thank C. Blanpain and M. Van 

Lohuizen for reagents and advices, as well as, J. Jorcano, A. Ramirez, A. Gandarillas, M. 

Barbacid and M. Serrano for providing us with K5-Cre transgenic, RERT knock-in and 

ink4a/Arf-/- mice. Microscopy imaging and histological analyses were performed on the MRI 

imaging core facility (Montpellier) and RHEM histology (Montpellier) facility, respectively. 

CS and JC are supported by the Agence Nationale pour la Recherche (ANR blanche), by the 

AICR foundation, by la Fondation pour la Recherche Médicale (Equipe labellisée 2007) and 

by institutional supports from CNRS. LLC is supported by the INSERM Avenir Program and 

the Association pour la Recherche contre le Cancer. ML and EH are supported by fellowships 

from ARC.  



 20

References: 
 
 
1. Raychaudhuri P, Rooney R, & Nevins JR (1987) Identification of an E1A-inducible 

cellular factor that interacts with regulatory sequences within the adenovirus E4 
promoter. Embo J 6(13):4073-4081. 

2. Le Cam L, et al. (2006) E4F1 is an atypical ubiquitin ligase that modulates p53 
effector functions independently of degradation. Cell. 127(4):775-788. 

3. Sandy P, et al. (2000) p53 is involved in the p120E4F-mediated growth arrest. 
Oncogene 19(2):188-199. 

4. Rizos H, et al. (2003) Association of p14ARF with the p120E4F transcriptional 
repressor enhances cell cycle inhibition. J Biol Chem 278(7):4981-4989. 

5. Chagraoui J, et al. (2006) E4F1: a novel candidate factor for mediating BMI1 function 
in primitive hematopoietic cells. Genes Dev. 20(15):2110-2120. 

6. Paul C, et al. (2006) The LIM-only protein FHL2 is a negative regulator of E4F1. 
Oncogene. 25(40):5475-5484. Epub 2006 May 5471. 

7. Fenton SL, et al. (2004) Identification of the E1A-regulated transcription factor p120 
E4F as an interacting partner of the RASSF1A candidate tumor suppressor gene. 
Cancer Res 64(1):102-107. 

8. Fajas L, et al. (2000) pRB binds to and modulates the transrepressing activity of the 
E1A-regulated transcription factor p120E4F. Proc Natl Acad Sci U S A 97(14):7738-
7743. 

9. Tessari MA, et al. (2003) Transcriptional activation of the cyclin A gene by the 
architectural transcription factor HMGA2. Mol Cell Biol 23(24):9104-9116. 

10. Nojima J, et al. Dual roles of smad proteins in the conversion from myoblasts to 
osteoblastic cells by bone morphogenetic proteins. J Biol Chem 285(20):15577-15586. 

11. Le Cam L, Lacroix M, Ciemerych MA, Sardet C, & Sicinski P (2004) The E4F 
protein is required for mitotic progression during embryonic cell cycles. Mol Cell Biol 
24(14):6467-6475. 

12. Blanpain C & Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in 
the skin. Nat Rev Mol Cell Biol 10(3):207-217. 

13. Cotsarelis G (2006) Epithelial stem cells: a folliculocentric view. J Invest Dermatol 
126(7):1459-1468. 

14. Brouard M & Barrandon Y (2003) Controlling skin morphogenesis: hope and despair. 
Curr Opin Biotechnol 14(5):520-525. 

15. Dotto GP (2008) Notch tumor suppressor function. Oncogene 27(38):5115-5123. 
16. Candi E, et al. (2008) p63 in epithelial development. Cell Mol Life Sci. 65(20):3126-

3133. 
17. Guerra C, et al. (2003) Tumor induction by an endogenous K-ras oncogene is highly 

dependent on cellular context. Cancer Cell. 4(2):111-120. 
18. Ramirez A, et al. (2004) A keratin K5Cre transgenic line appropriate for tissue-

specific or generalized Cre-mediated recombination. Genesis. 39(1):52-57. 
19. Weiss RA, Eichner R, & Sun TT (1984) Monoclonal antibody analysis of keratin 

expression in epidermal diseases: a 48- and 56-kdalton keratin as molecular markers 
for hyperproliferative keratinocytes. J Cell Biol 98(4):1397-1406. 

20. Benitah SA, Frye M, Glogauer M, & Watt FM (2005) Stem cell depletion through 
epidermal deletion of Rac1. Science. 309(5736):933-935. 

21. Horsley V, Aliprantis AO, Polak L, Glimcher LH, & Fuchs E (2008) NFATc1 
balances quiescence and proliferation of skin stem cells. Cell 132(2):299-310. 

22. Yang L, Wang L, & Yang X (2009) Disruption of Smad4 in mouse epidermis leads to 



 21

depletion of follicle stem cells. Mol Biol Cell 20(3):882-890. 
23. Waikel RL, Kawachi Y, Waikel PA, Wang XJ, & Roop DR (2001) Deregulated 

expression of c-Myc depletes epidermal stem cells. Nat Genet 28(2):165-168. 
24. Arnold I & Watt FM (2001) c-Myc activation in transgenic mouse epidermis results in 

mobilization of stem cells and differentiation of their progeny. Curr Biol 11(8):558-
568. 

25. Barrandon Y & Green H (1987) Three clonal types of keratinocyte with different 
capacities for multiplication. Proc Natl Acad Sci U S A 84(8):2302-2306. 

26. Blanpain C, Lowry WE, Geoghegan A, Polak L, & Fuchs E (2004) Self-renewal, 
multipotency, and the existence of two cell populations within an epithelial stem cell 
niche. Cell 118(5):635-648. 

27. Morris RJ, et al. (2004) Capturing and profiling adult hair follicle stem cells. Nat 
Biotechnol 22(4):411-417. 

28. Braun KM, et al. (2003) Manipulation of stem cell proliferation and lineage 
commitment: visualisation of label-retaining cells in wholemounts of mouse 
epidermis. Development 130(21):5241-5255. 

29. Jacobs JJ, Kieboom K, Marino S, DePinho RA, & van Lohuizen M (1999) The 
oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence 
through the ink4a locus. Nature 397(6715):164-168. 

30. Janzen V, et al. (2006) Stem-cell ageing modified by the cyclin-dependent kinase 
inhibitor p16INK4a. Nature 443(7110):421-426. 

31. Krishnamurthy J, et al. (2006) p16INK4a induces an age-dependent decline in islet 
regenerative potential. Nature 443(7110):453-457. 

32. Molofsky AV, et al. (2006) Increasing p16INK4a expression decreases forebrain 
progenitors and neurogenesis during ageing. Nature 443(7110):448-452. 

33. Signer RA, Montecino-Rodriguez E, Witte ON, & Dorshkind K (2008) Aging and 
cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a 
and Arf. Genes Dev 22(22):3115-3120. 

34. Su X, et al. (2009) Rescue of key features of the p63-null epithelial phenotype by 
inactivation of Ink4a and Arf. EMBO J 28(13):1904-1915. 

35. Martinez P, et al. (2009) Increased telomere fragility and fusions resulting from TRF1 
deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 
23(17):2060-2075. 

36. Flores I & Blasco MA (2009) A p53-dependent response limits epidermal stem cell 
functionality and organismal size in mice with short telomeres. PLoS One 4(3):e4934. 

37. Su X, et al. (2009) TAp63 prevents premature aging by promoting adult stem cell 
maintenance. Cell Stem Cell 5(1):64-75. 

38. Akala OO, et al. (2008) Long-term haematopoietic reconstitution by Trp53-/-
p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature 453(7192):228-232. 

39. Armesilla-Diaz A, et al. (2009) p53 regulates the self-renewal and differentiation of 
neural precursors. Neuroscience 158(4):1378-1389. 

40. Cicalese A, et al. (2009) The tumor suppressor p53 regulates polarity of self-renewing 
divisions in mammary stem cells. Cell 138(6):1083-1095. 

41. Clayton E, et al. (2007) A single type of progenitor cell maintains normal epidermis. 
Nature 446(7132):185-189. 

42. Lechler T & Fuchs E (2005) Asymmetric cell divisions promote stratification and 
differentiation of mammalian skin. Nature 437(7056):275-280. 

43. Serrano M, et al. (1996) Role of the INK4a locus in tumor suppression and cell 
mortality. Cell. 85(1):27-37. 

44. Barrandon Y, Li V, & Green H (1988) New techniques for the grafting of cultured 



 22

human epidermal cells onto athymic animals. J Invest Dermatol 91(4):315-318. 
45. Bitoun E, et al. (2003) LEKTI proteolytic processing in human primary keratinocytes, 

tissue distribution and defective expression in Netherton syndrome. Hum Mol Genet 
12(19):2417-2430. 

 
 



 23

Figure legends:  

 

Figure 1. E4F1 inactivation triggers transient hyperplasia of the epidermis followed by 

permanent loss of epidermal cells and severe skin ulcerations. (A) Immunohistochemical 

(IHC) analysis of E4F1 expression in human skin or murine back skin and hair follicle (HF). 

Scale bar = 40µm. The dotted line indicates the dermis-epidermis junction. d: dermis. (B) 

Macroscopic alterations of back skin of adult E4F1-/flox; RERT mice 7 (early) or 15 days (late) 

after Cre-mediated E4F1 inactivation. (C) Representative picture of E4F1flox; RERT tails at 

late time points (6 weeks) after 4OHT applications. (D) Hematoxylin and eosin (H/E) staining 

(upper panels) and Ki67 IHC analysis (lower panels) of dorsal skin sections prepared from 

4OHT-treated E4F1-/flox; RERT adult mice at early and late time points. Left panels show 

similar analyses performed on 4OHT-treated E4F1+/flox; RERT control animals.  Scale bar = 

20µm. (E) IHC analysis of dorsal skin sections from E4F1+/flox and E4F1-/flox; K5-Cre 

neonates using anti-E4F1 antibody. Scale bar = 40µm. (G) Photograph of representative 

E4F1+/flox and E4F1-/flox; K5-Cre neonates (P4) showing acute symptoms of dehydration. (F) 

H/E staining (upper panels) and Ki67 IHC analysis (lower panels) of dorsal skin sections 

prepared from E4F1flox; K5-Cre P4 neonates. Scale bar = 20µm. (G) Back skin from 

E4F1+/flox; K5 or E4F1-/flox; K5 P1 neonates engrafted onto recipient nude mice. Photographs 

of representative engrafted skin, 2 weeks after engrafment and H/E stained sections. Scale bar 

= 40µm. 

 

Figure 2. E4F1 inactivation results in expansion of the basal cells compartment of the 

epidermis and in abnormal keratinocyte differentiation in vivo. (A) E4F1 inactivation 

results in hyperproliferation of keratin14- and α6-integrin-positive basal/TAC cells. 

Immunostainings of dorsal skin sections from E4F1+/flox and E4F1-/flox; K5-Cre neonates with 
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anti-keratin 14 (K14) and anti-α6 integrin (α6) antibodies. (B) Immunohistochemical analysis 

of dorsal skin sections from E4F1+/flox and E4F1-/flox; K5-Cre neonates with anti-Keratin6 

(K6), anti-Keratin10 (K10) or anti-involucrin (invol) antibodies. Scale bar = 40µm. 

 

Figure 3. E4F1 inactivation results in epidermal stem cells exhaustion in vivo and ex 

vivo. (A) Clonogenic assays performed with primary murine keratinocytes prepared from 

back skin of E4F1flox; RERT adult mice 6 days after 4OHT applications (in vivo), or from 

E4F1flox; RERT neonatal skins and treated with 4OHT in culture medium, 24 hours after 

plating (ex vivo). Assays were also performed with primary keratinocytes isolated from 

E4F1flox; K5-Cre neonates (P1). Rhodamine B staining was performed after 15 days of 

culture. Data shown are representative of experiments performed in duplicates and repeated at 

least 3 times. Scale bar = 1cm. (B) Clonogenic assays (left panel) performed with human 

primary keratinocytes transduced with retroviral vectors expressing shRNAs targeting either 

human E4F1 (shE4F1) or non relevant sequence (shCtrl). Quantification (right panel) of total 

number and size (diameter, in mm) of clones from 3 independent experiments. (C) 

Multiparameter FACScan analyses of primary keratinocytes isolated from E4F1flox; K5-Cre 

P3 neonates after α6-integrin and CD34 immunostainings. The percentage of α6high/CD34+ 

epidermal stem cells is indicated (Average of 3 independent experiments +/-SD). (D) 

Immunohistochemical analyses of back skin sections from E4F1flox; RERT adult mice, 3 

weeks after 4OHT applications with antibodies directed against the stem/bulge specific 

markers CD34 (upper panels) and keratin-15 (K15, lower panels). Arrows indicate K15- or 

CD34-positive stem cells located in the bulge region of hair follicles. Scale bar = 80µm. (E) 

Whole mounts of tail epidermis prepared from E4F1flox; RERT; Keratin15-GFP mice 4 weeks 

after 4OHT applications. White arrows point K15-GFP+ ESC that locate in the bulge region 

of HF in control animals (E4F1+/flox) treated with 4OHT (left panels). DAPI staining was 
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performed to show HF morphology. Scale bar = 80 µm. (F) Analyses of Long term BrdU-

Retaining Cells (LRC) in whole mounts of tail epidermis prepared from E4F1flox; RERT 16-

week old mice at different time points after 4OHT applications. Anti-BrdU (green) and anti-

Ki67 (Red) immunostainings of control and E4F1 -/flox; RERT HF 3 (early) or 6 (late) weeks 

after E4F1 inactivation showing transient hyperproliferation followed by loss of LRC (white 

arrows). LRC locate in the bulge region of HF from control skin treated with 4OHT for 6 

weeks (E4F1+/flox, left panels). Scale bar = 80µm.  

 

Figure 4. Deletion of the Ink4a/Arf locus partially rescues E4F1 KO skin defects in vivo 

and ex vivo. (A) Quantitative analyses of Ink4a and Arf mRNA levels in E4F1flox; K5-Cre 

freshly isolated primary keratinocytes. (B) Clonogenic assays performed with E4F1flox; 

RERT; Ink4a/Arf-/- or E4F1flox; RERT; Ink4a/Arf+/+ primary keratinocytes in presence of 

4OHT. One representative experiment of 3 independent experiments performed in duplicates. 

Quantitative analyses of the number and size (diameter, in mm) of clones was performed after 

15 days in culture. (C) High magnification photograph of representative clones. Scale bar = 

0,5 mm. (D) H&E stainings of dorsal skin sections prepared from 4OHT-treated E4F1flox; 

RERT; Ink4a/Arf+/+ 12-week old mice (upper panels) or E4F1flox; RERT; Ink4a/Arf-/- mice 

(lower panels). The early epidermal hyperplasia of 4OHT-treated E4F1-/flox; RERT; 

INK4a/ARF-/- animals was reproducibly less severe and delayed compared to animals lacking 

E4F1 only (E4F1-/flox; RERT; INK4a/ARF+/+). 

 

Figure 5. Down-regulation of the Bmi1-Arf-p53 axis rescues E4F1 KO ESC defects. (A) 

Primary keratinocytes isolated from E4F1flox; RERT neonates were transduced with control 

(pMSCV) or Bmi1 encoding retroviruses (Bmi1) and used for clonogenic assays in presence 

of 4OHT. (B) Clonogenic assays performed with E4F1flox; RERT primary keratinocytes 
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transduced with control (shCtrl) or p53 (shp53) shRNAs encoding lentiviruses in presence of 

4OHT. In A-B, photographs (upper panels) and quantifications (lower panels) of one 

representative experiment. 3 independent experiments were performed in duplicates. 

Quantitative analyses of the number and size (diameter, in mm) of clones were performed 

after 10 days. (C) Western blot analyses showing ectopic overexpression of Bmi1 (left panels) 

in rescued E4F1 KO clones, or efficient shRNA-mediated depletion of p53 (center panels) in 

rescued E4F1 KO clones (right panels).  
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Supplementary informations: Lacroix M, Caramel J et al.  

 

Supplementary Materials & methods 

 

Generation of E4F1-/flox mice  

The E4F1 targeting construct was generated by cloning 129/SvJ murine genomic E4F1 

sequences (11) into the pDT915 targeting vector. Lox-P sites were introduced before exon 4 

and after exon 14 as indicated in supplemental figure S1. A hygromycin-TK cassette flanked 

by two FRT sequences was also added after the polyA signal of the E4F1 gene. The targeting 

vector was linearized by NotI and electroporated in J1 ES cells (129/SvJ). The later were 

selected with hygromycin B (130μg/ml, Calbiochem) for a week before clonal amplification. 

Correct targeting of the E4F1 locus was assessed on genomic DNA prepared from 

hygromycin-resistant ES clones by southern blotting using probes corresponding to 5’ 

(400bp) and 3’ (360bp) flanking sequences of the E4F1 gene (Figure S1). Targeted ES cells 

were electroporated with a Flipase expressing vector (gift of Dr. Dymecki S.) and selected 

using Ganciclovir (4μM) to enrich for clones in which the hygromycin-TK cassette was 

deleted. Several E4F1+/flox ES clones displaying a normal karyotype, were subsequently 

injected into C57Bl/6 blastocysts. Chimeric mice were mated with C57Bl/6 mice for germline 

transmission of the E4F1 flox allele. Heterozygous mutant mice E4F1+/flox and E4F1+/- were 

interbred to generate E4F1-/flox animals. E4F1 recombination was assessed by immunoblotting 

or by quantitative PCR analysis on skin genomic DNA using primers specific for the E4F1 

locus, as described in Supplemental Fig. S1C-E (primer A: 5’-GGCTGCTGCGTGGATTTC, 

B: 5’-GCTAGGTAGGGTAGGAGGCTGTCT, C: 5’-ACCGGCGTGTTCACTCAGAC, D: 

5’-GCAGAACTGGCACACGTGG, E: 5’-TTCGGTATAGTGTTGAGG, F: 5’-

AGGGGCTGGGCTACAATGG). 



Genotyping 

E4F1flox; RERT mice were genotyped by PCR on tail genomic DNA using the following 

primers: i) E4F1 wild type (E4F1+) and conditional knock-out Flox alleles (E4F1flox): 5’-

CCTTGAGCACGGAGGAGAGC-3’ and 5’-GCCCTAGCCTGCTC-TGCCATC-3’. ii) E4F1 

constitutive knock-out allele (E4F1-): 5’-CACTGCCTTGGAGGACTTTG-3’ and 5’-

CCTCTGTTCCACA-TACACTTCATTC-3’. iii) wild type and knock-in RERT alleles: 5’-

GTCAGTACACATACAGACTT-3’, 5’-TGAGCGAACAGGGCGAA-3’ and 5’-

TCCATGGAGCACCCAGTGAA-3’. iv) keratin5-Cre transgene: 5‘-

AACATGCTTCATCGTCGG-3’ and 5‘-TTCGGATCATCAGCTACACC-3’.  v) keratin15-

GFP transgene: 5’-CTACGGCGTGCAGTGCTTCAGC-3’ and 5’-

GGCGAGCTGCACGCTGCGTCCTC-3’. vi) Ink4a/Arf alleles: wild type 5’-

ATGATGATGGGCAACGTTC-3’ and 5’-CAAATATCGCACGATGTC-3’; knock-out: 5’-

CTATCAGGACATAGCGTTGG-3’ and 5’-AGTGAGAGTTTGGGGACAGAG-3’. 

Histochemistry, immunolabelling of skin sections and whole mounts 

Skin biopsies were either fixed in 4% neutral-buffered formalin (24h) and paraffin embedded, 

or frozen in Tissue-Tek OCT (Sakura) for cryosections. Paraffin-embedded tissues were 

sectioned and processed for immunohistochemistry (IHC) or hematoxylin and eosin (H/E) 

stainings. IHC was performed on 4μm sections using appropriate primary antibodies and the 

corresponding biotinylated secondary antibody coupled to streptavidin-peroxidase complex 

(ABC Vectastain kit, Vector Laboratories). Revelation was performed using the peroxidase 

substrate DAB (Vector Laboratories). All secondary antibodies were diluted at 1/200 for 

immunohistochemistry (DAKO) and 1/1000 for immunohistofluorescence (Alexa-

Invitrogen). Apoptotic cells were detected using TUNEL staining kits (Roche) or by IHC with 

anti-caspase 3 antibody. 

Culture of primary keratinocytes and clonogenic assays 



For cell cycle analyses, BrdU (10 mM, Sigma) was added in the culture medium for 24 hours. 

For clonogenic assays, 2000-10000 total primary keratinocytes per well were plated on a 

confluent feeder layer of inactivated J2-3T3 fibroblasts (3 hour-treatment with mitomycin C 

at 4µg/ml, Sigma) grown on collagen-I-coated 6-well plates, at 32°C, 8% CO2 (mouse 

keratinocytes) or at 37°C, 10% CO2 (human keratinocytes). Clonogenic assays were 

performed in calcium-free DMEM-HamF12 (3:1) (Invitrogen), containing 10% calcium-free 

FCS (Sigma), 4mM L-Glutamine, 110mg/l Na Pyruvate, 8 ng/ml Choleratoxine, 0.4 µg/ml 

Hydrocortisone, 5 µg/ml Insulin (Sigma), 10 µg/ml murine EGF.  

Retroviral and lentiviral particles productions and infections 

Retroviral and lentiviral particles were produced in 293T cells by transient transfection using 

Jet-PEI reagent (Ozyme) of gag/pol, env-VSV-G, and indicated viral constructs. 48 hrs after 

transfection, viral supernatants were harvested and added on primary keratinocytes overnight 

with polybrene at 8μg/ml (Sigma). Antibiotic selection of transduced primary murine 

keratinocytes was performed 48 hours later with puromycin (1,25 µg/mL, pLKO1), or 

blasticidin (5µg/mL, pMSCV). 

 



Legends of Supplementary figures.  

Figure S1. Generation and validation of E4F1 conditional knock-out mice. (A) Schematic 

representation of the unmodified (upper), the targeting vector (middle), and recombined E4F1 

flox allele (lower). (B) Homologous recombination was verified on both ends by southern 

blotting using 5' (left panel) and 3' (right panel) external probes. (C) The hygromycin-

thymidine Kinase (Hygro-TK) resistance cassette was removed in vitro after a second round 

of electroporation of homologous recombinant ES clones using the Flpe recombinase (upper 

panel). Schematic representation of the floxed E4F1 allele after Cre-mediated recombination 

(lower panel). (D) Cre-mediated recombination of the E4F1flox allele in skin. Quantitative (left 

panel) or semi-quantitative (right panel) PCR analyses were performed on genomic DNA 

extracted from back skin of E4F1+/- or E4F1-/flox; RERT adult mice after topical application of 

4OHT, or from back skin of E4F1+/- or  E4F1-/flox; K5-Cre P1 neonates. The primer pairs used 

for PCR amplifications are indicated by arrows in (C). Note that primers pair A/B generates a 

PCR amplicon only after Cre-mediated recombination. Normalisation for equal amount of 

genomic DNA in those assays was controlled with primers (E/F) located in the non-

recombined region of the E4F1 locus. (E) Immunoblots showing E4F1 expression after Cre-

mediated recombination in primary keratinocytes isolated from E4F1flox; RERT, and treated 

with 4OHT, or from E4F1flox; K5 neonatal epidermis (right panel). ns: non-specific signal. 

 

Figure S2. E4F1 inactivation results in hyperproliferation of epidermal cells. 

Immunofluorescent images of dorsal skin sections prepared from 4OHT-treated E4F1flox; 

RERT adult mice injected with BrdU (4h), immunostained with anti-BrdU (red) antibody and 

co-stained with DAPI (blue). The dashed line indicates the basal membrane and interface 

between epidermis (top) and dermis (bottom). Scale bar = 50 µm. Genotype of the analysed 

mice is indicated. Histogram shows the quantification of the percentage of BrdU-positive 



cells in a representative experiment.  

 

Figure S3. E4F1 inactivation results in skin autonomous effects in the RERT model. 

Back skin from E4F1+/flox; RERT or E4F1-/flox; RERT P1 neonates was engrafted onto 

recipient nude mice and treated with 4OHT. Photographs at low (left panels) or higher 

(middle panels) magnification of representative engrafted skin, 2 weeks after E4F1 

inactivation. H/E stained sections of engrafted skins showing hyperplasia of E4F1 depleted 

epidermis (right panels). Scale bar = 40µm. 

 

Figure S4. E4F1 inactivation results in expansion of the basal cells compartment of the 

epidermis and in abnormal keratinocyte differentiation. (A) E4F1 inactivation results in 

hyperproliferation of keratin14- and α6-integrin-positive basal/TAC cells. Immunostainings 

of dorsal skin cryosections from E4F1+/flox and E4F1-/flox; RERT mice with anti-keratin 14 

(K14) and anti-α6 integrin (α6) antibodies. Scale bar = 40µm. (B) Immunohistochemical 

analysis of dorsal skin sections from E4F1+/flox and E4F1-/flox; RERT mice with anti-Keratin6 

(K6), anti-Keratin10 (K10) or anti-involucrin (invol) antibodies. Scale bar = 40µm. 

 

Figure S5. E4F1 inactivation does not enhance the short term proliferation of primary 

keratinocytes in culture. (A) E4F1 inactivation in vitro does not result in murine 

keratinocyte hyperproliferation. Cell cycle profiles of murine E4F1+/flox or E4F1-/flox; RERT 

primary keratinocytes after 5 days of culture in presence of 4OHT. The percentage of cells in 

each phase of the cell cycle was determined by FACS scan analyses after Propidium Iodide 

(PI)/BrdU co-staining. (B) E4F1-depletion in vitro does not result in human keratinocyte 

hyperproliferation. PI/BrdU co-staining profiles of human primary keratinocytes transduced 

with retroviral vectors expressing either a shRNA targeting human E4F1 (shE4F1) or a 



control shRNA (shCtrl). Western blot analysis (right panels) of total protein extracts showing 

efficient E4F1 depletion. (C) Anti-Phospho Histone H3 / PI labelling and FACScan analyses 

of murine E4F1+/flox or E4F1-/flox; RERT primary keratinocytes after 5 days of culture in 

presence of 4OHT. Nocodazole treated cells (Noco, 10µM) were used as positive control. (D) 

Immunohistochemical analysis of dorsal skin sections from E4F1+/flox or E4F1-/flox; K5-Cre P1 

neonates with anti-Phospho Histone H3 antibody. The number of PPH3 positive cells per field 

is indicated. 

 

Figure S6. E4F1 inactivation results in loss of Keratin15 stem cell marker expression. 

Immunostaining of HF with anti-keratin15 (K15, red) in whole mounts of tail epidermis 

prepared from E4F1-/flox; RERT and control mice 6 weeks after 4OHT applications. Small 

inset represents the same HFs after anti-integrinα6 (α6, green) and DAPI costaining (blue) to 

show general morphology. HF K15+ bulge region is indicated by a white bracket. Scale bar = 

50 µm. 

 

Figure S7. E4F1 inactivation triggers hyperproliferation of LRC. Analysis of BrdU-

labelled LRC cells (green) and of proliferative cells (Ki67, Red) in whole mounts of tail 

epidermis prepared from E4F1-/flox; RERT mice 2 weeks after 4OHT applications. Lower 

magnification image of the same HF after DAPI staining (blue) to show general morphology. 

BrdU and Ki67 double positive HF LRC stem cells are indicated by white arrows. Scale bar = 

50 µm. 

 

Figure S8. E4F1 inactivation alters wound healing. A punch was made on the back skin 

of E4F1+/flox and E4F1-/flox; RERT mice treated with 4OHT and its closure observed at the 

indicated times.   
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