
Two constrained formulations for deblurring poisson

noisy images

Mikael Carlavan, Laure Blanc-Féraud

To cite this version:
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ABSTRACT

Deblurring noisy Poisson images has recently been subject of an in-

creasingly amount of works in many areas such as astronomy or bi-

ological imaging. Several methods have promoted explicit prior on

the solution to regularize the ill-posed inverse problem and to im-

prove the quality of the image. In each of these methods, a regu-

larizing parameter is introduced to control the weight of the prior.

Unfortunately, this regularizing parameter has to be manually set

such that it gives the best qualitative results. To tackle this issue, we

present in this paper two constrained formulations for the Poisson

deconvolution problem, derived from recent advances in regulariz-

ing parameter estimation for Poisson noise. We first show how to

improve the accuracy of these estimators and how to link these esti-

mators to constrained formulations. We then propose an algorithm

to solve the resulting optimization problems and detail how to per-

form the projections on the constraints. Results on real and synthetic

data are presented.

Index Terms— Poisson deconvolution, discrepancy principle,

constrained convex optimization.

1. INTRODUCTION

Deblurring images corrupted by Poisson noise is a challenging pro-

cess which has devoted much research in many applications such as

astronomical or biological imaging. If we consider a discrete version

of a scene x ∈ R
n (n being the number of pixels of the image) ob-

served as an image y ∈ R
n through an optical system with a Point

Spread Function (PSF) h and corrupted by a Poisson noise process

P , then the image formation model can be written as:

y = P(Hx + b), (1)

where H : R
n → R

n stands for the matrix notation of the convo-

lution of the PSF h (we assume moreover Hx ≥ 0∀x ≥ 0) and

b ∈ R
n,b ≥ 0 is a known constant background.

Using a bayesian approach, we want to retrieve the image x which

maximizes the likelihood probability of (1). This probability can be

expressed as:

p(y|x) =

n−1
Y

i=0

„

[(Hx + b)y]i exp [− (Hx + b)]i
yi!

«

. (2)

Maximizing (2) with respect to x is equivalent to minimize

− log p(y|x) that is to minimize:

JL(x,y) = 1
T (Hx + b) − y

T log(Hx + b), (3)

This research work has been funded by the ANR DetecFine. The authors
gratefully acknowledge Pierre Weiss for several interesting discussions.

A part of this work has been submitted to IEEE Transactions on Image
Processing.

where 1 stands for a n-size vector whose components are all equal

to 1.

As discussed previously, many works promote the introduction of

explicit prior on the solution to regularize the ill-posed inverse prob-

lem. Maximizing the a posteriori probability p(x|y) = p(y|x) p(x)
p(y)

,

where p(x) is the prior model on the object given by p(x) =
α exp[−τJR(x)] (α is a normalization constant and JR is the regu-

larizing term), is equivalent to solve:

x
∗ = arg min J(x,y) := JL(x,y) + τJR(x)

subject to x ∈ R
n

, (4)

τ being the regularizing parameter. The regularizing term can often

be written as JR(x) = ‖Wx‖1, where W : R
n → R

p (p ≥ n)
is a linear transform which promotes the regularity of the image x

in some domain. Common transforms are gradient operator giving

Total Variation (TV) [1] and wavelet frame transforms ([2, 3] and

references therein). Therefore the problem of deblurring Poisson

noisy images can be written as:

x
∗ = arg min 1T (Hx + b) − yT log(Hx + b) + τ‖Wx‖1

subject to x ∈ R
n,x ≥ 0

.

(5)

The function to minimize is a closed convex function and strictly

convex if yi > 0 and if the intersection of the null spaces of JL and

JR is zero [4].

In most of the deconvolution methods proposed in the literature,

the regularizing parameter τ has to be chosen such that it gives the

best visual results. However, the interpretation of an image may

be difficult in biology for example, specially when one use priors

which could introduce artifacts. To overcome this problem, some

authors proposed estimators of the distance of the restored image to

the real unknown image x [2, 5, 6, 7]. For example, several meth-

ods based on Stein’s principle have been proposed to minimize (in

one instance) the Mean Square Error (MSE) in the case of Pois-

son noise [5]. However, these methods require the solution of the

restoration algorithm to be expressed in closed-form and consist,

most of the time, in a shrinkage of some wavelet coefficients. Con-

sequently, the deconvolution process is rarely included in these tech-

niques. Some authors have proposed non-linear algorithms as (5) to

solve the restoration problem and to select the regularizing parame-

ter using discrepancy principles which state that the distance of the

restored image to the observation should be equal to the amount of

noise [6, 7]. This implies however to run the restoration algorithm

several times to find a “good” value of the regularizing parameter τ
(that is, which verifies this principle). For this reason, we propose

in the next section to solve the problem of deblurring and denoising

Poisson noisy images using two new constrained formulations which

avoid the iterative computation of the solution for different values of

the regularizing parameter.



2. CONSTRAINED FORMULATIONS

2.1. Gaussian approximation revisited

To the best of our knowledge, constrained formulations for Poisson

noisy deblurring have been proposed only using a Gaussian approx-

imation. More precisely, the Poisson noise in (1) is often approxi-

mated as an additive Gaussian noise with mean 0 and multidimen-

sional variance y [8]. If we set [6]:

r = (Hx − (y − b)) /
√

y, (6)

then r is a Gaussian random variable with mean 0 and variance I (the

n-size identity matrix). In this case, a standard result gives ‖r‖2
2 ∼

χ2(n), where χ2(n) is the chi-square distribution with n degree of

freedom which has a mean equal to n. Therefore:

E
`

‖r‖2
2

´

= n. (7)

Then a restoration algorithm in its constrained formulation can be

written as:

x
∗ = arg min ‖Wx‖1

subject to ‖ (Hx − (y − b)) /
√

y‖2
2 ≤ n

x ∈ R
n,x ≥ 0

. (8)

However, a closer calculation of (7) can be made. As we deal with

Poisson data, we have that, with no background, the image formation

model writes y = P(Hx). Thus for every pixel xi inside a centered

window (of the size of the kernel of the PSF) containing only 0 val-

ued pixels, we can write that [P(Hx)]i = 0. Consequently, from

(6) (r)i is a Gaussian random variable with mean 0 but variance 0.

It seems thus more accurate to write that r is a Gaussian random

variable with mean 0 but variance Σ with:

Σ =

(

1 if yi > 0,

0 otherwise
. (9)

Then:

‖r‖2
2 ∼ χ2(m) with m = #{yi,yi > 0}, (10)

and (8) becomes:

x
∗ = arg min ‖Wx‖1

subject to ‖ (Hx − (y − b)) /
√

y‖2
2 ≤ m

x ∈ R
n,x ≥ 0

. (11)

2.2. Poisson constrained formulation

Even if the previous formulation avoids to manually select a regular-

izing parameter, it does not handle the Poisson noise statistics prop-

erly. For this reason, from (5) we propose the following constrained

formulation:

arg min ‖Wx‖1

subject to Υy(Hx + b) ≤ α
x ∈ R

n, x ≥ 0

, (12)

with:

Υy(x) = 1
T (x) − y

T log(x) + y
T log(y) − 1

T
y. (13)

In that case, the estimation of α comes from the recent advances of

[7] which introduced a discrepancy principle for Poisson data. The

work of [7] is based from [9] in which the authors proposed, for

their numerical simulations, to select the regularizing parameter by

means of a discrepancy principle, that is it should verify (using our

notations):

Υy(Hx
∗ + b) = Υy(Hx + b), (14)

where x∗ denotes a solution of (5) for a given τ and x is the true

object which verifies (1). However, in the case of real data Υy(Hx+
b) remains unknown. [7] showed that Υy(Hx+b) can be estimated

using the following technique. First, they considered the function:

f(Yλ) = 2 (λ − Yλ log(λ) + Yλ log(y) − Yλ) , (15)

where Yλ is a Poisson random variable with mean λ. They showed

that, for large λ:

E(f(Yλ)) = 1 + O

„

1

λ

«

. (16)

In the case of deconvolution, we have y = P(Hx + b) and thus y

is a Poisson random variable with mean Hx + b. Therefore:

E(Υy(Hx + b)) ≃ n

2
. (17)

So, from this statement [7] proposed to select the regularizing pa-

rameter τ such that the solution x∗ of the optimization problem (5)

verifies:

Υy(Hx
∗ + b) ≃ n

2
. (18)

Thus, we propose to write our restoration algorithm as:

x
∗ = arg min ‖Wx‖1

subject to Υy(Hx + b) ≤ n
2

x ∈ R
n, x ≥ 0

. (19)

Using the same remark as previously, we also propose a slight modi-

fication of this constrained formulation. Back to (15), if we consider

that 0 log(0) = 0, then f(yλ) = 0 for λ = 0. In consequence, the

proposed constrained formulation of (5) writes:

x
∗ = arg min ‖Wx‖1

subject to Υy(Hx + b) ≤ m
2

x ∈ R
n, x ≥ 0

, (20)

where m is given by (10). Solving problems (11) and (20) is not

trivial and we propose an algorithm in the next section to solve them.

3. ALTERNATING DIRECTION METHOD

The algorithm we propose to use to solve (11) and (20) is based

on the Alternating Direction Method (ADM). The idea of the ADM

method is to split the original variable x into several variables and

then to minimize the augmented Lagrangian following each splitted

variable. The ADM method has been recently proposed to solve the

unconstrained formulation (5) in [4]. Its presentation is however be-

yond the scope of this paper, and we refer the interested reader to [4]

(and references therein). But this technique can also be used to solve

our constrained Poissonian deconvolution problem, and we will di-

rectly give the resulting algorithm.

The functions (11) and (20) to minimize in R
n are coercive, lower

semi-continuous and the constraint sets are non-empty closed convex

sets. Then, for each problem, a solution x∗ exists and an estimate of

this solution can be computed by the algorithm 1. This algorithm in-

troduces a relaxation parameter γ, which has to belong to ]0,
√

5+1
2

[



to ensure the convergence of the algorithm [10], and β which is the

parameter which controls the constraint. Theoritically, the algorithm

converges for any β > 0, but the speed of convergence strongly de-

pends on this parameter. For our expriments, we will set β = 10 and

γ = 1. Finally, ΠK is the orthogonal projection on the convex set

K defined by:

K =
˘

w ∈ R
n, wi > 0, ‖(w − y)/

√
y‖2

2 ≤ m
¯

. (21)

for the problem (11) and :

K =
n

w ∈ R
n, wi > 0, Υy(w) ≤ m

2

o

. (22)

for the problem (20). The orthogonal projection (21) can be seen

as a projection on a weighted l2-ball and can be found in [11] for

example. So we do not detail any further the computation of this

projection. We focus instead on the orthogonal projection (22) which

is not obvious. Even if we can not give a closed-form solution of this

projection, we propose an iterative scheme to solve it. We recall that

the orthogonal projection problem is to find:

w
∗ = ΠK(w0) = arg min 1

2
‖w − w0‖2

2

subject to Υy(w) ≤ m
2

w ∈ R
n

. (23)

First notice that if Υy(w0) ≤ m
2

then w∗ = w0. Otherwise, there

exists δ ∈ ]0, +∞[ such that:

w
∗ = arg min 1

2
‖w − w0‖2

2 + δΥy(w)
subject to w ∈ R

n
. (24)

From [12], we get that:

w
∗ =

1

2

»

w0 − δ +

q

(w0 − δ)2 + 4δy

–

= Φ(δ). (25)

The problem is thus to find δ such that Υy(Φ(δ)) ≤ m
2

. Let us

define:

f(δ) := Υy(Φ(δ)) − m

2
. (26)

It can be shown that f is a convex and decreasing function with

respect to δ. In order to find the root of the function f , we propose

to use a Newton method and we only need to find f
′

(δ). Simply

remark that from the composition of functions, we have:

f
′

(δ) =
1T

2

( "

δ − x0 + 2y
p

(x0 − δ)2 + 4δy
− 1

#

"

1 − 2y

x0 − δ +
p

(x0 − δ)2 + 4δy

# )

. (27)

The resulting algorithm is then given in the algorithm 2. In all our

simulations, we checked that 20 iterations of this scheme are more

than enough to get a machine precision.

4. RESULTS

We compared the results obtained using the Poisson constrained for-

mulation (20) and the ones obtained using the weighted Gaussian

constrained formulation (11) with the TV regularization. Results on

synthetic image are given on figure 1. On this image, the blur H

is a 7 × 7 Gaussian kernel. For low intensity images like the im-

age (a) on the figure 1, the weighted Gaussan approximation is not

efficient, and the results given by the Poisson formulation (20) are

Algorithm 1: ADM to solve (11) and (20)

Data: Number of iterations N ;

Starting points x0 = y, λ0
1 = 0, λ0

2 = 0, λ0
3 = 0;

Value of the parameters γ > 0 and β > 0;

Result: xN an estimated of the solution of (11) and (20).

begin

1. s0 = Hx0 + b

2. t0 = Wx0

for k from 0 to N − 1 do

3. xk+1 = max
“

xk +
λk

1

β
, 0

”

4. uk+1 = ΠK

“

sk +
λk

2

β

”

5.

vk+1 = sign
“

tk +
λk

3

β

”

max
“

˛

˛

˛

tk +
λk

3

β

˛

˛

˛

− 1
β
, 0

”

6. zk+1 = xk+1 − λk

1

β
+

H∗
“

uk+1 − b − λk

2

β

”

+ W∗
“

vk+1 − λk

3

β

”

7. xk+1 = (H∗H + W∗W + I)−1zk+1

8. sk+1 = Hxk+1 + b

9. tk+1 = Wxk+1

10. λk+1
1 = λk

1 + βγxk+1

11. λk+1
2 = λk

2 + βγsk+1

12. λk+1
3 = λk

3 + βγtk+1

end

end

Algorithm 2: Newton method to solve (23)

Data: Number of iterations N ;

A starting point δ0 = 0;

Result: w∗ an estimated of the solution of (23).

begin

for k from 0 to N − 1 do

Step 1. δk+1 = δk − f(δk)

f
′
(δk)

end

w∗ = 1
2

»

w0 − δN +
q

(w0 − δN )2 + 4δNy

–

end

clearly better (the image (d) on the figure 1 shows an improvement

of 2.5 dB). The Poisson formulation (20) may however be slightly

outperformed by the the weighted Gaussian constrained formulation

(11) on high intensity images for which the Poisson distribution is

well approximated by a weighted Gaussian distribution (not shown

here). Results on a real image are given on the figure 2. On this

image, H is a confocal microscope PSF whose model is described

in [1]. The image retrieved with the proposed formulation (image

(d) on the figure 2) is less smoothed than the one retrieved with the

weighted Gaussian approximation. We can distinguish more easily

the details of the cells of the object.

5. CONCLUSION

We have studied the problem of deconvolution of images corrupted

by blur and Poisson noise and have proposed two new constrained

formulations derived from recent regularizing estimation techniques.

We have shown that the accuracy of these estimators can be im-



(a) (b)

(c) (d)

Fig. 1. Results of constrained formulations (11) and (20) on a low

synthetic intensity image. (a) is the original image, (b) is the blur and

noisy observation (PSNR = 23.9 dB), (c) is the result with the

weighted Gaussian constrained formulation (11) (PSNR = 28.0
dB) and (d) is the result with the Poisson constrained formulation

(20) (PSNR = 30.5 dB). The original Gaussian constrained for-

mulation (8) and the original Poisson constrained formulation (19)

respectively give PSNR = 22.8 dB and PSNR = 23.4 dB (im-

ages not included here)

proved by taking into account the properties of the Poisson statistics

of the noise, and that these estimators can also be used to write con-

straint formulations which avoid the computational burden required

by the regularizing parameter estimation in the unconstrained form.

Finally, we have proposed an algorithm to solve the resulting opti-

mization problems and their respective projections. A comparison

of both formulations has been presented on synthetic and real data

showing that the Poisson formulation is actually very promising for

images with low intensity.
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