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Abstract. Reverse engineering the variability of an existing system is
a challenging activity. The architect knowledge is essential to identify
variation points and explicit constraints between features, for instance
in feature models (FMs), but the manual creation of FMs is both time-
consuming and error-prone. On a large scale, it is very difficult for an
architect to guarantee that the resulting FM ensures a safe composition
of the architectural elements when some features are selected. In this
paper, we present a comprehensive, tool supported process for reverse
engineering architectural FMs. We develop automated techniques to ex-
tract and combine different variability descriptions of an architecture.
Then, alignment and reasoning techniques are applied to integrate the
architect knowledge and reinforce the extracted FM. We illustrate the
reverse engineering process when applied to a representative software
system, FraSCAti, and we report on our experience in this context.

1 Introduction

1.1 Problem

As a majority of software applications are now large-scale, business-critical, op-
erated 24/7, distributed and ubiquitous, their complexity is increasing at a rate
that outpaces all major software engineering advances. To tame it, Software
Product Line (SPL) engineering is one of the major trends of the last decade.
An SPL can be defined as "a set of software-intensive systems that share a com-
mon, managed set of features and that are developed from a common set of core
assets in a prescribed way" [9]. SPL engineering aims at generating tailor-made
variants for the needs of particular customers or environments and promotes the
systematic reuse of software artifacts. An SPL development starts with an anal-
ysis of the domain to identify commonalities and variabilities (i.e., differences)
between the members of the SPL. A common way is to describe variability of
an SPL in terms of features, which are domain abstractions relevant to stake-
holders. A Feature Model is used to compactly define all features in an SPL and
their valid combinations [6,20,11].
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When SPL engineering is conducted right from the start on a software ar-
chitecture, it is feasible to manage variability through one or more architectural
feature models and then associate them to the software architecture [19]. The
major architectural variations are then associated to some of the features and
allows for some safe compositions in the architecture when features are selected
to configure a software product from the line. One of the resulting properties of
crucial importance is the guarantee that the variability is not only preserved but
also kept consistent across all used artefacts [10,4,17].

But in many cases, legacy systems must be taken into account, or more often,
the software system is developed incrementally. It is not a SPL at the beginning,
but it becomes so complex, with many configuration and extension points, that
its variability must be handled with SPL engineering techniques. In this context,
the task of constructing feature models, which is intrinsically difficult, becomes
very arduous for software architects, especially if they are presented with unre-
lated documents from which to derive the architectural feature model. It is then
necessary to obtain a consistent feature model from the actual architecture. On
a large scale both automatic extraction from existing parts and the architect
knowledge should be ideally combined to achieve this goal.

1.2 FraSCAti: the Need for Handling Variability

In this paper, we illustrate our proposal and report on experiments with a case
study on the FraSCAti platform [13]. It is an open-source implementation of the
Service Component Architecture (SCA) standard [23], which allows for build-
ing hierarchical component architectures with the potential support of many
component and service technologies.

Started three years ago, the development of the FraSCAti platform begun
with a framework, first validated by a basic implementation of the standard, and
then incrementally enhanced. After four major releases, it now supports several
SCA specifications (Assembly Model, Transaction Policy, Java Common Annota-
tions and APIs, Java Component Implementation, Spring Component Implemen-
tation, BPEL Client and Implementation, Web Services Binding, JMS Binding),
and provides a set of extensions to the standard, including binding implementa-
tion types (Java RMI, SOAP, REST, JSON-RPC, JNA, UPnP, etc.), component
implementation types (Java, OSGi, Java supported scripting languages, Scala,
Fractal), interface description types (Java, C headers, WSDL, UPnP), runtime
API for assembly and component introspection/reconfiguration [21]. As its ca-
pabilities grew, FraSCAti has also been refactored and completely architected
itself with SCA components.

With all these capabilities, the platform has become highly (re-)configurable
in many parts of its own architecture. It notably exposes a larger number of
extensions that can be activated throughout the platform, creating numerous
variants of a FraSCAti deployment. For example, some variations consist in one
or more specific components bound to many other mandatory or optional parts
of the platform architecture. It then became obvious to FraSCAti technical leads
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that the variability 4 of the platform should be managed to pilot and control its
evolution as an SPL.

1.3 Feature Modeling

The management and modeling of variability is a central activity in SPL en-
gineering. We chose to rely on a particular kind of variability model, Feature
Models (FMs), based on their wide adoption, the existence of formal seman-
tics, reasoning techniques and tool support [6,20,11,7]. FMs compactly represent
product commonalities and variabilities in terms of features. FMs can be used to
describe software features at various levels of abstraction and thus can be used
throughout the software lifecycle on different artefacts [10,16,4].

FraSCAti

SCAParser

Java Compiler

JDK6 JDT

Optional

Mandatory

Alternative-

Group

Or-Group

Assembly Factory

resthttp

Binding

MMFrascati

Component Factory

Metamodel

MMTuscany

constraints

rest requires MMFrascati

http requires MMTuscany

FM1

(a) an excerpt of a possible architectural FM

φ1 = FraSCAti
∧ FraSCAti ⇔ AssemblyFactory
∧ FraSCAti ⇔ ComponentFactory
∧ FraSCAti ⇔ SCAParser
∧ SCAParser ⇔ Metamodel
∧ AssemblyFactory ⇔ Binding
∧ ComponentFactory ⇔ JavaCompiler
∧ JavaCompiler ⇒ JDK6 ∨ JDT
∧ ¬ JDK6 ∨ ¬JDT
∧ MMFrascati ⇒ Metamodel
∧ MMTuscany ⇒ Metamodel
∧ http ⇒ Binding
∧ rest ⇒ Binding
∧ Binding ⇒ rest ∨ http
∧ rest ⇒ MMFrascati
∧ http ⇒ MMTuscany

(b) propositional logic encoding

Fig. 1. Feature Model and Propositional Logic Encoding

FMs hierarchically structure application features into multiple levels of in-
creasing detail. Fig. 1(a) shows an example of an FM. This FM is an extract of a
architectural FM that is dedicated to the description of the FraSCAti platform,
whereas FM are also widely used to capture and structure requirements. It must
be noted that the FM that we discuss all along this paper are only architectural
ones. As in typical SPLs, not all combinations of features or configurations (see
Definition 1) are valid. Variability defines what the allowed configurations are.
When decomposing a feature into subfeatures, the subfeatures may be optional,
mandatory or may form Or or Alternative-groups (e.g., JDK6 and JDT form
an Alternative-group, http and rest form an Or-group). An additional mecha-
nism to specify variability is to add constraints (expressed in propositional logic),
which may cut across the feature hierarchy (e.g., rest requires MMFrascati).
The validity of a configuration is determined by the semantics of FMs, e.g. JDK6

4 We use here the term variability as in the definition from [24]: "software variability
is the ability of a software system or artefact to be efficiently extended, changed,
customized or configured for use in a particular context."
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and JDT are mutually exclusive and cannot be selected at the same time. A
valid configuration is obtained by selecting/deselecting features from parents to
children while following the rules imposed by the operators (e.g., exactly one
subfeature must be selected in an Alternative) and the constraints. For example,
{FraSCAti, SCAParser, AssemblyFactory, ComponentFactory, Metamodel,

MMFrascati, Binding, rest, JavaCompiler, JDT} is a valid configuration of the
FM shown in Fig. 1(a).

Definition 1 (SPL, Feature Model) A software product line SPLi is a set
of products described by a feature model FMi. The set of features of FMi is de-
noted FFMi

. Each product of SPLi is a combination of features and corresponds
to a valid configuration of FMi. A configuration c of FMi is defined as a set
of features selected, i.e., c = {f1, f2, . . . , fm} ⊆ FFMi

. JFMiK denotes the set
of valid configurations of the feature model FMi. We note φi the propositional
formula of FMi.

The set of configurations represented by an FM can be described by a propo-
sitional formula defined over a set of Boolean variables, where each variable cor-
responds to a feature [6,11]. Figure 1(b) also shows the mapping of the FM to a
propositional formula. The propositional formula can be used to automatically
reason about properties of an FM (e.g., see [7]). In particular, if an assignment
to its Boolean variables is satisfiable, then the selection/deselection of the cor-
responding features respects the rules evoked above.

1.4 Reverse Engineering FraSCAti as an SPL

In order to manage the FraSCAti platform as an SPL, we needed to capture
its variability from the existing architecture. Several software artefacts (SCA
composite files, Maven descriptors, unformal documents) describe FraSCAti ar-
chitecture, but variability, though, is not explicitly represented.As the FraSCAti
main software architect (SA) had an extensive expertise in the architecture and
in its evolution, it was decided to make him model the architecture he has in
mind with variation points (see left part of Fig. 2). As a domain expert, he
had the ability to elicitate the architectural variation points and explain ratio-
nale behind these decisions. To follow separation of concerns principles, it was
also decided to separate the variability description from the architectural model
itself. The principle is to model the variation points of the architecture, to rep-
resent them as features in an architectural FM, and finally to describe the links
between the features and the architectural elements. An important property is
then to ensure consistency between FM and architectures [17], even if not all
variability elements can be captured in an FM.

This task resulted in a manually created FM and it was clearly daunting,
time-consuming and error-prone, requiring substantial effort from the SA. In
this case as in all large scale architectures, it is very difficult to guarantee that
the resulting FM ensures a safe composition of the architectural elements when
some features are selected. Another approach thus relies on an automated ex-
traction, so that an architectural FM that represents variability of the architec-
ture is automatically extracted from the appropriate artefacts (see right part
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Software 

Artefacts

Variability 

Modeling

Automatic 

Extraction

Software 

Architect View

?
Fig. 2. Variability Modeling from Software Artefacts

of Fig. 2).This operation clearly saves time and reduces accidental complexity,
but the accuracy of the results directly depends on the quality of the available
documents and of the extraction procedure. This approach is notably followed in
recent reverse engineering work which is doing large scale variability extraction
from the Linux kernel [22].

The main challenge is then to reconcile these two architectural FMs into a
final FM being compatible with both the SA view and the actual architecture.
It must also be noted that we could have tried to somehow integrate the SA
knowledge in the extraction process or to let him edit an extracted FM, but we
argue that keeping the first two activities separated was better. It lets a highly
experienced SA focus on its own variability scoping, and compare it afterwards to
the extracted version. Moreover, this allows for explicitly separating the required
variability of the SA from the supported variability of the actual software system,
as advocated in [18].

In this paper, we present a comprehensive, tool supported process for reverse
engineering architectural FMs. We develop automated techniques to extract and
combine different variability descriptions of an architecture. Then, alignment
and reasoning techniques are applied to integrate the architect knowledge and
reinforce the extracted FM. In the remainder of this paper we describe the auto-
mated extraction process that we have applied to FraSCAti FM(Section 2). We
then show how the process is completed by refinement steps that enables the
architect to compare and integrate his/her knowledge, so that a consistent ar-
chitectural FM is obtained (Section 3). This process is validated by experiments
on the FraSCAti architecture and some lessons learned are briefly discussed.
Related work are studied in Section 4 while Section 5 concludes the paper.

2 Automatic Extraction of Architectural Feature Model

Overview. Fig. 3 summarizes the steps needed to realize the process. First,
a raw architectural feature model, noted FMArch150

, is extracted from a 150%
architecture of the system (see ➀). The latter consists of the composition of the
architecture fragments of all the system plugins. We call it a 150% architecture
because it is not likely that the system may contain them all. Consequently,
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FMArch150
does include all the features provided by the system, but it still con-

stitutes an over approximation of the set of valid combinations of features of
the system family. Indeed, some features may actually require or exclude other
features, which is not always detectable in the architecture. Hence the need for
considering an additional source of information. We therefore also analyze the
specification of the system plugins and the dependencies declared between them,
with the ultimate goal of deriving inter-feature constraints from inter-plugin con-
straints. To this end, we extract a plugin feature model FMPlug, that represents
the system plugins and their dependencies (see ➁). Then, we automatically re-
construct the bidirectional mapping that holds between the features of FMPlug

and those of FMArch150
(see ➂). Finally, we exploit this mapping as a basis to

derive a richer architectural FM, noted FMArch, where additional feature con-
straints have been added. As compared to FMArch150

, FMArch represents much
more accurately the architectural variability provided by the system.

1 2

Plugin Dependencies

<<requires>>

Mapping

Aggregation

Software 

Artefacts

3

<<requires>>

150% Architectural FM

Enforced 

Architectural FM

FMArch150
FMPlugin

FMFull

Projection (Π)

FMArch

Fig. 3. Process for Extracting FMArch

2.1 Extracting FMArch150

The architectural FM extraction process starts from a set of n system plugins
(or modules), each defining an architecture fragment. In order to extract an ar-
chitectural FM representing the entire product family, we need to consider all
the system plugins at the same time. We therefore produce a 150% architecture
of the system, noted Arch150. It consists of a hierarchy of components. In the
SCA vocabulary, each component may be a composite, itself further decomposed
into other components. Each component may provide a set of services, and may
specify a set of references to other services. Services and references having com-
patible interfaces may be bound together via wires. Each wire has a reference
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as source and a service as target. Each reference r has a multiplicity, specifying
the minimal and maximal number of services that can be bound to r via wires.
A reference having a 0..1 or 0..N multiplicity is called optional.

Note that Arch150 may not correspond to the architecture of a legal product
in the system family. For instance, several components may exclude each other
because they all define a service matching the same 0..1 reference r. In this case,
the architecture composition algorithm binds only one component service to r,
while the other ones are left unbound in the architecture.

Since the extracted architectural FM should represent the variability of the
system of interest, we focus on its extension points, that are typically materialized
by optional references in Arch150. Algorithm 1 summarizes the behavior of the
FM extractor. The root feature of the extracted FM (froot) corresponds to the

Algorithm 1 ExtractArchitecturalFM150(Arch150)
Require: A 150% architecture of the plugin-based system (Arch150).
Ensure: A feature model approximating the system family (FMArch150

).

1: root←MainComposite(Arch150)
2: froot ← CreateFeature(root)
3: FMArch150

← SetRootFeature(FMArch150
, froot)

4: for all c ∈ FirstLevelComponents(root) do

5: fc ← CreateFeature(c)
6: FMArch150

← AddMandatoryChildFeature(FMArch150
, froot, fc)

7: FMArch150
← AddChildFeatures(FMArch150

, c, fc, Arch150)

8: end for

main composite (root) of Arch150. The child features of froot are the first-level
components of root, the latter being considered as the main system features. The
lower levels of child features are produced by the AddChildFeatures function
(Algorithm 2). This recursive function looks for all the optional references r of
component c and, for each of them, creates an optional child feature fr, itself
further decomposed through a XOR or an OR group (depending on the multi-
plicity of r). The child features fcs

of the group correspond to all components
cs providing a service compatible with r.

2.2 Extracting FMP lug

The extraction of the plugin feature model FMPlug starts from the set of plugins
P = {p1, p2, . . . , pn} composing the system. This extraction is straightforward:
each plugin pi becomes a feature fpi

of FMPlug. If a plugin pi is part of the
system core, fpi

is a mandatory feature, otherwise it is an optional feature.
Each dependency of the form pi depends on pj is translated as an inter-feature
dependency fpi

requiresfpj
. Similarly, each pi excludes pj constraint is rewritten

as an excludes dependency between fpi
and fpj

.

2.3 Mapping FMArch150
and FMP lug

When producing Arch150, we keep track of the relationship between the input
plugins and the architectural elements they define, and vice versa. On this ba-
sis, we specify a bidirectional mapping between the features of FMArch150

and
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Algorithm 2 AddChildFeatures(FM, c, fp, Arch150)

Require: A feature model (FM), a component (c), a parent feature (fp), a 150% architecture
(Arch150).

Ensure: FM enriched with the child features of fp, if any.
1: for all r ∈ OptionalReferences(c) do

2: MC ← FindMatchingComponents(Arch150, r)
3: if MC 6= ∅ then

4: fr ← CreateFeature(r)
5: FM ← AddOptionalChildFeature(FM, fp, fr)
6: if Multiplicy(r) = 0..1 then

7: g ← CreateXORGroup()
8: else if Multiplicy(r) = 0..N then

9: g ← CreateORGroup()
10: end if

11: FM ← AddGroup(FM, fr, g)
12: for all cs ∈MC do

13: fcs ← CreateFeature(cs)
14: FM ← AddChildFeatureOfGroup(FM, g, fcs )
15: FM ← AddChildFeatures(FM, cs, fcs , Arch150)
16: end for

17: end if

18: end for

those of FMPlug by means of requires constraints. This mapping allows us to
determine (1) which plugin provides a given architectural feature, and (2) which
architectural features are provided by a given plugin.

2.4 Deriving FMArch

Semantics and Example. We now illustrate how we can derive FMArch using
FMArch150

, FMPlug, the mapping between FMPlug and FMArch150
, and an

operation called projection using the example of Fig. 4.
First FMPlug and FMArch150

are aggregated under a synthetic root FtAggregation
so that root features of input FMs are child-mandatory features of FtAggregation.
The aggregation operation produces a new FM, called FMFull (see Fig. 4). The
propositional constraints that relate features of FMPlug to features of FMArch150

are also added to FMFull.

Definition 1 (Projection) The projection is a unary operation on FM written
as Πft1,ft2,...,ftn

(FMi) where ft1, ft2, ..., ftn is a set of features. The result of a
projection applied to an FM, FMi, is a new FM, FMproj, such that: JFMprojK =
{ x ∈ JFMiK | x ∩ {ft1, ft2, ..., ftn} }

Second, we compute the projection (see Definition 1) of FMFull onto the set of
features of FMArch150

(i.e., FFMArch150
= {Arch, Ar1, . . . , Ar6}). The projec-

tion produces a new FM, called FMArch (see Fig. 4). Formally:

ΠFF MArch150

(FMFull) = FMArch

In the example of Fig. 4, the relationship between JFMFullK and JFMArchK
truly holds. We can notice that one configuration of the original FMArch150

has
been removed, i.e., JFMArch150

K \ JFMArchK = {Ar1, Ar2, Ar3, Ar6, Arch}.
The reason is that the projected FMArch contains an additional constraint
Ar3 ⇒ Ar5, not originally present in FMArch150

. Similarly, the constraint Ar4 ⇒
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Ar6 (grey tint in Fig. 4) can been deduced but is redundant with Ar3 ⇒ Ar5. As
we will see in the experiments (next Section), such deductions can dramatically
reduce the set of configurations of FMArch150

.

Ar3 => Pl1

Pl2 => Ar5

FtAggregation

Ar2

Ar5 Ar6

Ar1

Ar3 Ar4

Arch

FMArch

FMFull

Projection (Π) onto Arch, Ar1, …, Ar6

Ar2

Ar5 Ar6

Ar1

Ar3 Ar4

Arch

FMArch

Ar3 => Ar5

Ar4 => Ar6

Pl3Pl2Pl1

Plugin

Pl1 => Pl2

FMPlugin150

Optional

Mandatory

Alternative

-Group

Or-Group

Fig. 4. Enforcing architectural FM using aggregation and projection.

Implementation of the projection. Our previous experience in the com-
position of FMs has shown that syntactical strategies have severe limitations to
accurately represent the set of configurations expected, especially in the presence
of cross-tree constraints [1]. The same observation applies for the projection op-
eration so that reasoning directly at the semantic level is required. The key ideas
of our implementation are to i) compute the propositional formula representing
the projected set of configurations and then ii) reuse the reasoning techniques
proposed in [11] to construct an FM from the propositional formula.

Formula Computation. For a projection FMproj = Πft1,ft2,...,ftn
(FMi), the

propositional formula corresponding to FMproj is defined as follows5:

φproj ≡ ∃ ftx1, ftx2, . . . ftxm′ φi

where ftx1, ftx2, . . . ftxm′ ∈ (FFMi
\ {ft1, ft2, . . . ftm}) = Fremoved.

The propositional formula φproj is obtained from φi by existentially quanti-
fying out variables in Fremoved. Intuitively, all occurrences of features that are
not present in any configuration of FMproj are removed by existential quantifi-
cation in φi. The projection can be seen as a safe removal of a set of features
(i.e., existential quantification removes a variable from a propositional formula
without affecting its satisfiability).

We rely on Binary Decision Diagrams (BDDs) to compute φproj [8]. A BDD
can be seen as a compact representation of a propositional formula. Our choice
to use BDDs was driven by several elements: i) computing the existential quan-
tification of BDDs and several logical operations can be performed in at most

5 Let v be a Boolean variable occurring in φ. Then φ|v (resp. φ|v̄ ) is φ where variable
v is assigned the value True (resp. False). Existential quantification is then defined
as ∃v φ =def φ|v ∨ φ|v̄ .
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polynomial time with respect to the sizes of the BDDs involved [8]; ii) efficient
optimized implementations of these operations are provided by off-the-shelf BDD
libraries (e.g., we use the JavaBDD library [14]); iii) the techniques described
in [11] (see below) also relies on a BDD-based implementation and iv) polyno-
mial algorithms are available for computing valid domains or the counting of the
number of products (see [7]).

From Formula to FM. We use the algorithm presented in [11] to transform
φproj into an FM. More precisely, the algorithm builds a tree with additional
nodes for feature groups that can be translated into a basic feature diagram. Im-
portantly, the algorithm indicates parent-child relationships (i.e., mandatory or
optional features) and Alternative- or Or-groups. The feature diagram, however,
is an over approximation of the original formula in the sense that if we translate
the synthesized feature diagram to a propositional formula, noted φprojdiagram

,
then some valid assignments of φprojdiagram

may be invalid in φproj (but any
valid assignment of φproj is also valid in φprojdiagram

). We thus need to further
constrain the feature diagram (as we did for the example of Fig. 4). We propose
to decompose the FM FMproj as a feature diagram, a set of require constraints
and a set of other propositional constraints (that cut across the hierarchy of
the diagram). We compute the set of require constraints by first computing the
implication graph, noted Iproj , of the formula φproj over ft1, ft2, ..., ftn. Iproj

is a directed graph G = (V,E) formally defined as:

V = {ft1, ft2, ..., ftn} E = {(fi, fj) | φproj ∧ fi ⇒ fj}

Then, the set of require constraints can be deduced by removing edges from
Iproj being already expressed in the feature diagram (e.g., parent-child rela-
tions). Finally, if the feature diagram plus the require constraints are still an
over approximation of φproj (it is not the case in Fig. 4), an additional formula
φprojother

can be obtained so that φproj = φprojdiagram
∧ φprojrequires

∧φprojother

(φprojrequires
being the logical conjunction of all require constraints of Iproj).

3 Refining the Architectural Feature Model: Experiments

We conduct an experiment to i) determine if the architectural FM designed
by the SA6, noted FMSA, is consistent with the extracted FM FMArch (and
vice-versa) ; ii) step-wise refine FMSA based on the previous observations. We
describe the techniques developed for the experiment and analyze the results.

3.1 Tool Support

For the experiment, we rely on FAMILIAR (FeAture Model scrIpt Language for
manIpulation and Automatic Reasoning) [12,2], a domain-specific language ded-
icated to the management of FMs. FAMILIAR is an executable, textual language
that supports manipulating and reasoning about FMs and is integrated in a
comprehensive Eclipse-based environment (including graphical editors). We use
FAMILIAR for two main purposes. Firstly, the extraction procedure generates FA-

MILIAR code to compute FMArch. Secondly, FAMILIAR provides the SA with a
dedicated approach for easily manipulating FMs during the refinement process.

6 Philippe Merle, co-author of this paper and principal developer of FraSCAti, plays
the role of software architect (SA) in the experiment.
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3.2 Experimental Results

Automatic Extraction. The FMArch150
produced by the extraction proce-

dure7 contains 50 features while the FMPlug contains 41 features. The aggre-
gated FM, FMFull, resulting from FMArch150

, FMPlug and the bidirectional
mapping contains 92 features and 158 cross-tree constraints.

We first verify some properties of FMFull. By construction, we know that the
projection of FMFull onto FFMArch150

is either a refactoring or a specialization8

of FMArch150
(see Definition 2).

Definition 2 (Specialization, Refactoring, Generalization, Arbitrary Edit)
Let f and g be two feature models. f is a specialization of g if JfK ⊂ JgK f is a
generalization of g if JgK ⊂ JfK f is a refactoring of g if JgK = JfK f is an arbitrary
edit of g if f is neither a specialization, a generalization nor a refactoring of g.

Our experiments reveal that FMArch is a specialization of FMArch150
. More

precisely, FMArch150
admits 13958643712 possible configurations (≈ 1011), while

FMArch represents 936576 distinct products (≈ 106). As expected, the projec-
tion technique significantly reduces the over approximation of FMArch150

.
To improve the understanding of the difference between two FMs, we use

a diff operator, denoted as FM1 ⊕\ FM2 = FMr. The following defines the
semantics of this operator.

JFM1K \ JFM2K = {x ∈ JFM1K |x /∈ JFM2K} = JFMrK

The formula φr of FMr is used to reason about properties of FMr (e.g.,
satisfiability) and is computed as follows:

φr = (φFM1
∧ not(FFM2

\ FFM1
)) ∧ ¬(φFM2

∧ not(FFM1
\ FFM2

))

For example, determining the kind of relationship between two FMs (see Defi-
nition 2) can be done by reusing the algorithm presented in [25] or by using the
diff operator (see Definition 3).

Definition 3 (Diff and Specialization/Refactoring) Let f and g be FMs. f
is a specialization or a refactoring of g if (f ⊕\ g) has no valid configurations
since JfK ⊆ JgK is equivalent to JfK \ JgK = ∅.

Moreover, the diff operator can compute the difference (if any) between two
FMs in terms of set of configurations. In particular, we can compute the car-
dinality of this set. For example, we correctly check the following relationship9

using the tool support: |FMArch150
| -

∣

∣FMArch150
⊕\ FMArch

∣

∣ = |FMArch|.
Techniques for Refining Architectural FM. The goal of the reverse

engineering process is to elaborate an FM which accurately represents the valid
combinations of features of the SPL architecture. The absence of a ground truth
FM (i.e., an FM for which we are certain that each combination of features is

7 material, details and results of the experiments are accessible at https://nyx.

unice.fr/projects/familiar/wiki/ArchFm
8 We rely on the terminology used in [25].
9 where |FMi| denotes the number of configurations of FMi, i.e., |FMi| = |JFMiK|

https://nyx.unice.fr/projects/familiar/wiki/ArchFm
https://nyx.unice.fr/projects/familiar/wiki/ArchFm


12 Acher et al.

supported by the SPL architecture) makes uncertain the accuracy of variability
specification expressed in FMArch as well as in FMSA. It is the role of the SA
to determine if the variability choices in FMSA (resp. FMArch) are coherent
regarding FMArch (resp. FMSA). In case variability choices are conflicting, the
SA can refine the architectural FM.

We now report the problems encountered when reasoning about the relation-
ship between FMArch and FMSA. We also describe the advanced techniques we
developed to assist the SA.

Reconciling FMArch and FMSA. A first obstacle concerned the need to
reconcile FMArch and FMSA (see Fig. 5). Both FMs come from difference
sources and a preliminary work is needed before reasoning about their relation-
ship. Firstly, the vocabulary (i.e., names of features) used differs in both FMs and
should be aligned consequently. To resolve this issue, we rely on string match-
ing techniques (i.e., Levenshtein distance) to automatically identify features of
FMArch that correspond to features of FMSA. Then a renaming is applied on all
corresponding features in FMArch. As an example, "MMFraSCAti” of FMSA has
been identified to correspond to "sca_metamodel_frascati” of FMArch and after
the renaming FMArch contains the feature "MMFraSCAti”. We automatically
detect 32 features. The SA manually specifies the correspondence for 5 features
in which the automated detection does not succeed (e.g., "MembraneFactory"
corresponding to "fractal_bootstrap_class_providers"). Secondly, granularity
details differ, (i.e., some features in one FM are not present in the other FM):
FMSA only contains 39 features whereas FMArch contains 50 features.

In FMSA but not in FMArch. Two exclusive features Felix and Equinox
are present in FMSA but not in FMArch. We also observed that the two fea-
tures are present in FMPlug but not in FMArch150

(and hence not in FMArch). A
discussion with the SA reveals that these two plugins do not explicitly define ar-
chitecture fragments in SCA. As a consequence, this variability point can simply
not be identified in the architecture by the automatic extraction procedure.

In FMArch but not in FMSA. We identified 13 features that are present
in FMArch but not in FMSA. Among others, two Metamodels used by the
SCA parser, three Bindings, two SCA properties, two Implementations and one
Interface were missing. Given the complexity of the FraSCAti project, this is
not surprising that the SA forgets some features. Hence, for most of the fea-
tures, the SA considers the missing features as relevant and thus adds them in
FMSA. For one of the missing feature, "sca_interface_java", the SA reveals
that he intentionally ignored it in FMSA, arguing that it is a mandatory fea-
ture (i.e., every FraSCAti configuration has a Java interface) and that his focus
was on variability rather than commonality. We indeed verify the mandatory
nature of "sca_interface_java" in FMArch. Nevertheless, the SA decides to add
"sca_interface_java" in FMSA. Similarly, two first-level mandatory features,
"binding_factory” and "services", were missing in FMSA. The SA intentionally
did not include the two features since they do not convey any further variation
points, but he decides to edit FMSA by adding those features. Another example
concerns a feature of FMArch, "juliac", that adds unnecessary details (so that



Reverse Engineering Architectural Feature Models 13

Software 

Architect View

Reconciling 

Feature Models
(e.g., vocabulary and 

granularity alignment)

Comparison

renaming,

projection, 

removal

Aligned 

Software Architect View

Enforced 

Architectural FM

Aligned 

Architectural FM

renaming,

projection, 

removal

More 

refinement

Refined 

Archiectural FM

FMSA

FMSA’
FMArch’

FMArch

Fig. 5. Process for Refining FMArch

the way features are organized in FMSA and FMArch slightly differ). Here the
SA decides to remove "juliac" by projection.

Reasoning about FMArch and FMSA. At this step, we can compare
FMArch and FMSA. A first comparison is to determine the kind of relation-
ship between FMArch and FMSA (see Definition 2). We obtain an arbitrary
edit, that is, some configurations of FMArch are not valid in FMSA (and vice-
versa). To go further, we use the diff operator (see Definition 3) and the merge
in intersection mode (see [1]). We enumerate and count the unique configura-
tions of FMArch and FMSA as well as the common configurations of FMArch

and FMSA. Nevertheless, the techniques appear to be insufficient to really un-
derstand the difference between the two FMs. Intuitively, we need to identify
more local differences. A first technique is to compare the variability associated
to features of FMArch and FMSA that have the same name. In particular, we
detect that i) four features are optional in FMArch but mandatory in FMSA and
ii) three sets of features belong to Or-groups in FMArch whereas in FMSA, the
features are all optional. A second technique is to compute the intersection and
the difference of the sets of require constraints in FMArch and FMSA (based on
their implication graphs, see page 10).

Step-wise Refinement of FMSA. The comparison techniques have been
reiterated until having a satisfying architectural FM. Based on the comparison
results, the SA have had several attitudes. Firstly, he used FMArch to verify the
coherence of his original variability specification in FMSA. Secondly, he consid-
ered that some variability decisions in FMSA are correct despite their differences
with FMArch. The SA imposed five variability decisions not identified by the
extraction procedure. Thirdly, he edits FMSA, for example, by adding some
constraints only present in FMArch or by setting optional a feature originally
mandatory. The extracted FM notably identifies nine "obvious" constraints not
expressed in FMSA and allows the SA to incrementally correct FMArch.
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3.3 Lessons Learned

The FraSCAti experiment provide us with interesting insights into the reverse
engineering of architectural FMs. First, the gap between FMSA and FMArch ap-
pears to be manageable, due to an important similarity between the two FMs.
However, it remains helpful to assist the SA with automated support, in partic-
ular, to establish correspondences between features of the two FMs. The most
time-consuming task was to reconcile the granularity levels of both FMs. For this
specific activity, tool supported, advanced techniques, such as the safe removal
of a feature by projection, are not desirable but mandatory (i.e., basic manual
edits of FMs are not sufficient).

Second, our extraction procedure (Section 2) yields very promising results.
It recovers most of the variability expressed in FMSA and encourages the SA
to correct his initial model. A manual checking of the five variability decisions
imposed by the SA shows that the extraction is not faulty. It correctly reproduces
the information as described in the software artefacts of the project.

Third, the SA knowledge is required i) to scope the SPL architecture (e.g.,
by restricting the set of configurations of the extracted FM), especially when
software artefacts do not correctly document the variability of the system and
ii) to control the accuracy of the automated procedure. An open issue is then to
provide a mechanism and a systematic process to reuse the SA knowledge, for
example, for another version of the architectural FM of FraSCAti.

4 Related Work

Despite the importance of variability management in software engineering in
general, and in software architectures in particular [5], the problem of reverse
engineering the variability of existing systems has definitely not received suffi-
cient attention from the research community. While our work takes an archi-
tectural perspective, the other existing approaches in the field consider different
input artifacts including legacy system documentation [15] or textual require-
ments [3,26]. In their recent work, She et al. [22] propose a reverse engineering
approach combining two distinct sources of information: textual feature descrip-
tions and feature dependencies. Our approach also benefits from the combination
of two (other) sources of information, namely plugin dependencies and archi-
tecture fragments. They mostly focus on the retrieval of the feature diagram
(heuristics for identifying the most likely parent feature candidates of each fea-
ture, group detection, etc.) and assume that the set of valid configurations is
correctly restituted, which is clearly not the case in our work. We also support
the identification of feature groups (based on architectural extension points), of
the right parent feature of each feature (based on architectural hierarchy) and
of inter-feature dependencies (through projection of plugin dependencies).

The FM analysis and reasoning techniques used in this paper reuse and ex-
tend previous work in SPL and requirement engineering [7]. Metzger et al. [18]
propose an approach to cross-checking product-line variability and software vari-
ability models, thus assuming that such models (or views) are available. Our
approach is complementary since it allows to recover the actually supported vari-
ability of a software system, and since it involves the cross-analysis of architec-
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tural and plugin FM. One of the key component and original contribution of
our work is the projection operator we have defined and realized (see Section 2).
Lopez and Eyged [16] address a related problem in the context of safe composi-
tion by checking the consistency of multi-view variability models. In particular,
they check whether an FM developed by a domain expert is a specialization or
a refactoring of an FM representing the variability of multiple models. Thüm
et al. [25] reason on the nature of FM edits, and provide a classification that
we rely on when comparing the extracted FM with the software architect view.
The diff operator provides a compact representation of all added and removed
configurations and is an extension of their work. As we have shown, reasoning
about the relationship of two FMs is inappropriate until FMs are not reconciled,
i.e., pre-directives (e.g., safe removal of unnecessary details) have to be applied
before. The comparison operator developed in [25] considers only the concrete
features (i.e., leaves) but our experience shows that it is important to consider
all features of the two FMs (e.g., a non leaf feature can be concrete). Benavides
et al. compared the performance of CSP, SAT solvers and BDD solvers for some
reasoning operations on FMs [7]. As future work, we will investigate the use of
SAT or CSP solvers to realize the diff/projection operators. A comparison with
BDD-based implementations is planned to determine the most scalable solution.
Another research direction is to consider feature attributes [7], for example, to
model quality attributes of the FraSCAti architecture.

5 Conclusion

Variability management is of crucial importance in the management of large
families of software systems. While feature models have long been recognized as
expressive means to compactly represent software variability from different per-
spectives, building one of them for a large system is a complex, time-consuming
and error-prone activity. In this paper, we presented a tool-supported approach
to reverse engineer software variability from an architectural perspective. The
reverse engineering process involves the automatically supported extraction, ag-
gregation, alignment and projection of architectural feature models. It has the
merit of combining several sources of information, namely software architecture,
plugin dependencies and software architect knowledge. We successfully evaluated
the proposed approach when applied to FraSCAti, a large and highly configurable
plugin-based system. We showed that our automated procedures allow for pro-
ducing both correct and useful results, thereby significantly reducing manual ef-
fort. We learned, however, that fully automating the process is not realistic nor
desirable, since the intervention of the software architect remains highly benefi-
cial. The ongoing evolution of the FraSCAti project will bring us an opportunity
to study how to reuse the accumulated knowledge of the software architect and
provide a validated, systematic process for extracting architectural variability
models.
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