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Abstract

Computing the minimal polyadic decomposition (also often referred to as canonical decompo-
sition, or sometimes Parafac) amounts to finding the global minimum of a coercive polynomial
in many variables. In the case of arrays with nonnegative entries, the low-rank approximation
problem is well posed. In addition, due to the large dimension of the problem, the decomposition
can be rather efficiently calculated with the help of preconditioned nonlinear conjugate gradient
algorithms, as subsequently shown, if equipped with an algebraic calculation of the globally op-
timal stepsize in low dimension. Other algorithms are also studied (gradient and quasi-Newton
approaches) for comparisons. Two versions of each algorithm are considered: the Enhanced Line
Search version (ELS), and the backtracking version alternating with ELS. Computer simulations
are provided and demonstrate the good behavior of these algorithms dedicated to nonnegative
arrays, compared to others put forward in the literature. Finally, applications in the context of
data analysis illustrate various algorithms. The main advantage of the suggested approach is to
explicitly take into account the nonnegative nature of the loading matrices in the problem param-
eterization, instead of enforcing positive entries by projection. According to the experiments we
have run, such an approach also happens to be more robust withrespect to possible modeling
errors.
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1. Introduction

The minimal polyadic decomposition of a tensor, sometimes referred to as “Canonical Polyadic”
(CP), is also called “CanDecomp”, “CanD”, or “Parafac”. This decomposition, whose definition
is recalled in Section 2, turns out to be very useful in a wide panel of applications; see e.g.
[6, 7, 13, 27] and references therein. However, several difficulties arise when the CP needs to be
computed. First, even if an exact fit exists with a known number of terms, the calculation of the
CP consists of finding the zeros of a polynomial of degree six or larger, in a very large number
of variables. This problem is numerically very difficult to solve, even if the number of zeros
is finite. Second, if the model is subject to errors, an approximate fit is wished to be computed.
However, it is now well known that a best approximate may not always exist [23, 15, 7]. Third, in
several applications such as hyperspectral imaging or chemometrics, the loading matrices need
to be constrained to be real and nonnegative [5, 27]. We shallsubsequently concentrate on this
framework. Fortunately, one advantage of the latter constraint is that the approximation problem
becomes well posed [15]. Lastly, a recent book has been even dedicated to this particular problem
[5].
Numerical algorithms are provided in the present paper, andare based on preconditioned non-
linear conjugate gradient, well matched to large dimensions, combined with a global search in a
one-dimensional subspace. The latter combination permitsto escape from local minima. Other
algorithms are also studied (gradient and quasi-Newton approaches, for the purpose of compari-
son). Note that a nonlinear conjugate gradient optimization technique has already been suggested
in [22] but with a simple version of preconditioning (by a diagonal matrix).

The article is organized as follows. After a brief introduction, Section 2 starts with some defini-
tions and properties of third order tensors. The problem of the polyadic decomposition of 3-way
arrays is then stated and existing standard algorithms are pointed out. Section 3 is dedicated to
nonnegative 3-way array factorization. The cost function we suggest to use is introduced, and
basic quantities such as gradient matrices are then calculated. In Section 4, the preconditioned
non-linear conjugate gradient approach is presented as well as three other approaches: gradi-
ent, quasi-Newton, and non-linear conjugate gradient approaches without preconditioning. With
regard to the choice of the step size, two different strategies are studied: a global search via
Enhanced Line Search (ELS) and backtracking alternating withELS. Computer simulations are
provided to illustrate the effectiveness of the proposed algorithms, and to compare them with
other algorithms, which are more standard in the literature. In Section 5, we show the usefulness
of these algorithms, and explain how they can be applied in Data Analysis. Finally, a conclusion
is drawn in Section 6.

2. Problem statement

2.1. Notation

The outer (tensor) product between two tensorsX ∈ R
I1×I2×...×IN andY ∈ R

J1×J2×...×JM

is denoted byZ = X⊛Y ∈ R
I1×I2×...×IN×J1×J2×...×JM and defined byzi1i2...iN j1j2...jM =

xi1i2...iN yj1j2...jM .
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Denote by(·)T matrix transposition. As special cases, the outer product between two vectors
a ∈ R

I andb ∈ R
J yields a rank-one matrixC = a⊛b = abT ∈ R

I×J . The outer product
of three vectorsa ∈ R

I andb ∈ R
J andc ∈ R

K yields a third order rank-one tensorZ =
a⊛b⊛ c ∈ R

I×J×K wherezijk = aibjck.
The Kronecker product between two matricesA = (aij) = [a1,a2, . . . ,aF ] ∈ R

I×F and
B = [b1,b2, . . . ,bG] ∈ R

J×G is defined as:

A⊗B =




a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
...

. . .
...

aI1B aI2B . . . aIJB




The Khatri-Rao product between two matrices with the same number of columns,A =
[a1,a2, . . . ,aF ] ∈ R

I×F andB = [b1,b2, . . . ,bF ] ∈ R
J×F , is defined as the column-wise

Kronecker product:A⊙B = [a1 ⊗ b1, a2 ⊗ b2, . . . aF ⊗ bF ] ∈ R
IJ×F .

2.2. Preliminaries
A tensor is an object defined on a product between linear spaces. Once the bases of these spaces
are fixed, a third order tensor can be represented by a three-way array (a hypermatrix). The
order of a tensor hence corresponds to the number of indices of the associated array. One also
talks about the number ofwaysor modes[27]. In this paper, due to the considered applications,
including fluorescence spectroscopy [2][27] or hyperspectral imaging [30], we focus on real
positive 3-way arrays denoted byT = (tijk) ∈ R

I×J×K, admitting the following trilinear
decomposition, also known as a triadic decomposition [11] of T

T =

F∑

f=1

af ⊛bf ⊛ cf , (1)

where the three involved matricesA = (aif ) = [a1,a2, . . . ,aF ] ∈ R
I×F , B = (bjf ) =

[b1,b2, . . . ,bF ] ∈ R
J×F , C = (ckf ) = [c1, c2, . . . , cF ] ∈ R

K×F are the so-calledloading
matrices, whose columns are theloading factors, F is an integer. Equivalently, we have the
relation between array entries:

tijk =
F∑

f=1

aif bjfckf ∀i = 1, . . . , I ∀j = 1, . . . , J ∀k = 1, . . . ,K. (2)

The smallest integerF that can be found such that the equality above holds exactly is called the
tensor rank[14]. For this value ofF , the above decomposition is called the Canonical Polyadic
decomposition (CP) of tensorT. Note that this acronym may also stand for CanDecomp/Parafac,
if some readers prefer. Finally, it is sometimes convenientto assume that all vectors have unit
length, so that the modified model below is then used, insteadof (1):

T =

F∑

f=1

λf af ⊛bf ⊛ cf (3)
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whereλj are real positive scaling factors andλ = [λ1, . . . , λF ]
T . The model (3) can be written

in a compact form using the Khatri-Rao product⊙, as

TI,JK

(1) = AΛ(C⊙B)T , (4)

TJ,KI

(2)
= BΛ(C⊙A)T , (5)

TK,JI

(3) = CΛ(B⊙A)T , (6)

whereTI,JK

(1) (resp.TJ,KI

(2) andTK,JI

(3) ) is the matrix of sizeI×JK (resp.J ×KI andK×JI)
obtained by unfolding the arrayT of sizeI × J ×K in the first mode (resp. the second mode
and the third mode);Λ is theF × F diagonal matrix defined asΛ = diag{λ} where operator
diag{·} returns a square diagonal matrix which contains in its diagonal the elements of the vector
given in argument.

2.3. CP decomposition of 3-way tensors

Assuming thatF is known (or overestimated), the problem of the polyadic decomposition of a
3-way tensorT ∈ R

I×J×K is to estimate the three loading matricesA ∈ R
I×F , B ∈ R

J×F and
C ∈ R

K×F (and eventuallyΛ ∈ R
F×F if the model described in (3) is considered). A rather

classical way to solve such a problem consists of minimizinga suitably designed cost function.
Typically, we minimize (with respect to the three loading matrices), the cost function:

F(A,B,C) = ‖TI,JK

(1) −AΛ(C⊙B)T ‖2F (7)

= ‖TJ,KI

(2) −BΛ(C⊙A)T ‖2F (8)

= ‖TK,JI

(3) −CΛ(B⊙A)T ‖2F , (9)

where‖ · ‖F stands for the Frobenius norm. In the problem of polyadic canonical decomposition
of tensorT, its rankF has to be estimated too.

2.4. Standard approaches

In the tensor literature, there exist several standard waysto solve this optimization problem (see
for example [29] for a survey and a comparison of some existing standard methods). The most
popular approach is to apply theALS technique [3, 4, 10, 12], its line search version [2] or
more recently its enhanced line search version [25]. In suchan approach, the cost function is
alternatively optimized with respect to one given loading matrix, the two others being assumed
fixed and independent, which is clearly suboptimal. The differentialdF of F has to be derived
and finally the gradient components (theI × F matrix∇AF , theJ × F matrix∇BF and the
K × F matrix∇CF) can be calculated.
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We have:

∇AF(A,B,C;Λ) =
[
−TI,JK

(1) +AΛ(C⊙B)T
]
(C⊙B)Λ

= −TI,JK

(1) (C⊙B)Λ+AΛ(CTC)⊡ (BTB)Λ, (10)

∇BF(A,B,C;Λ) =
[
−TJ,KI

(2) +BΛ(C⊙A)T
]
(C⊙A)Λ,

= −TJ,KI

(2) (C⊙A)Λ+BΛ(CTC)⊡ (ATA)Λ (11)

∇CF(A,B,C;Λ) =
[
−TK,JI

(3) +CΛ(B⊙A)T
]
(B⊙A)Λ

= −TK,JI

(3) (B⊙A)Λ+CΛ(BTB)⊡ (ATA)Λ, (12)

where⊡ stands for the Hadamard (entry-wise) matrix product. Results in the caseΛ = IF ,
whereIF is the identity matrix of sizeF × F , can be found in [5, 8].
By equating the gradient components to zero, a simple solution is obtained:

Â = TI,JK

(1) (Λ(C⊙B)T )† (13)

B̂ = TJ,KI

(2) (Λ(C⊙A)T )† (14)

Ĉ = TK,JI

(3)
(Λ(B⊙A)T )†, (15)

where(·)† stands for the pseudo-inverse (Moore-Penrose generalizedinverse).
In [7, 8], gradient approaches were mentioned. It was suggested in [21, 28] to use Gauss-Newton
approaches, and the Levenberg-Marquardt method was implemented in [7]. Lastly in [13], quasi-
Newton approaches have been reported.
However, the polyadic decomposition ofn−way arrays may be an ill-posed problem and may
lead to unstable estimation of its components; one can mention the two-factor degeneracy
(2FDs) [23], which corresponds to the presence in the solution of two almost collinear factors
with opposite signs, almost cancelling each other.
Moreover, as argued earlier, we concentrate on real nonnegative tensors and their decomposition
with real nonnegative loading matrices [27, 30]. Hence in the next sections, we focus on a well-
posed problem [15],i.e. Nonnegative Tensor Factorization (NTF).

3. Nonnegative 3-way array factorization

In this section, we discuss approaches in which the three loading matricesA, B andC are
constrained to be nonnegative.

3.1. Existing approaches

A first approach developed in [21, 28, 29] has been to use some of the existing well-known
NonNegative Least Squares (NNLS) methods to solve the following “vectorized” system:

vec{TI,JK

(1) −AΛ(C⊙B)T } = 0IJK,1 (16)
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where thevec{·} operator applied to a given matrix stacks its columns into a column vector and
0IJK,1 is a vector of sizeIJK × 1 which contains only null elements.
A second approach consists of modifying the previous cost functionF , by adding penalty terms
whose aim is to impose boundedness on the solution and/or to enforce other specific properties
on the solution such as smoothness, sparsity or uncorrelatedness. In [5], it is suggested among
other things to use one of the two following cost functions:

G(A,B,C;Λ) = F(A,B,C;Λ),+αA‖A‖
2
F + αB‖B‖

2
F + αC‖C‖

2
F (17a)

G1(A,B,C;Λ) = F(A,B,C;Λ) + αA‖A‖1 + αB‖B‖1 + αC‖C‖1, (17b)

subject to nonnegativity constraints, whereαA, αB andαC are nonnegative regularization pa-
rameters. In (17a) the standard Tikhonov (l2-norm) regularization is meant to enforce smooth-
ness of the solution and in (17b) thel1-norm regularization (‖A‖1 =

∑
i,j |aij |) is meant to

enforce sparsity of the solution. The different various algorithms already evoked in the previous
section can be applied to solve that optimization problem. The gradient components given in
(10), (11) and (12) are simply replaced by:

∇AG(·) = ∇AF(·) + 2αAA or ∇AG1(·) = ∇AF(·) + αA1I,F , (18)

∇BG(·) = ∇BF(·) + 2αBB or ∇BG1(·) = ∇BF(·) + αB1J,F , (19)

∇CG(·) = ∇CF(·) + 2αCC or ∇CG1(·) = ∇CF(·) + αC1K,F , (20)

where1K,F stands for theK × F matrix with ones everywhere. In [5], it was suggested to use
theALS technique again. By equating the gradient components to zero, the solutions in the case
of the l2-norm penalization are found to be equal to:

Â = TI,JK

(1) (C⊙B)Λ
[
Λ(C⊙B)T )(C ⊙B)Λ+ 2αAIF

]†
, (21)

B̂ = TJ,KI

(2) (C⊙A)Λ
[
Λ(C⊙A)T )(C⊙A)Λ+ 2αBIF

]†
, (22)

Ĉ = TK,JI

(3) (B⊙A)Λ
[
Λ(B⊙A)T )(B⊙A)Λ+ 2αCIF

]†
. (23)

whereas, in the case of thel1-norm penalization, they are:

Â =
[
TI,JK

(1) (C⊙B)Λ − αA1I,F

] [
Λ(C⊙B)T )(C⊙B)Λ

]†
, (24)

B̂ =
[
TJ,KI

(2) (C⊙A)Λ− αB1J,F

] [
Λ(C⊙A)T )(C ⊙A)Λ

]†
, (25)

Ĉ =
[
TK,JI

(3) (B⊙A)Λ− αC1K,F

] [
Λ(B⊙A)T )(B⊙A)Λ

]†
. (26)

Finally according to [5], a “projection operator”[·]+ is applied, whose aim is to enforce positive
entries (since this property is obviously not guaranteed bythe penalty terms that have been
added).

Â←
[
Â
]
+
, B̂←

[
B̂
]
+
, Ĉ←

[
Ĉ
]
+
. (27)

where[M = (mij)]+ returns a matrix of the same size asM, whose(i, j) entry ismax{ǫ,mij}
if ǫ is a small constant (typically10−16).

6



3.2. Suggested approach

3.2.1. Loading matrices parameterization
One obvious way to constraint the loading matrices to have nonnegative entries is to resort to a
proper parameterization without modifying the cost function. This kind of parameterization has
been recently used in nonnegative matrix factorization [5]problems. To consider that a matrix,
sayA′, possesses only nonnegative terms, we can simply assume that all its entries are defined
asa′ij = a2ij . Using the Hadamard entry-wise product, it implies thatA′ = A ⊡ A, for some
(non unique) matrixA. This suggests the following cost function:

H(A,B,C) = F(A⊡A,B⊡B,C⊡C) (28)

= ‖TI,JK

(1) − (A⊡A)Λ [(C⊡C)⊙ (B⊡B)]T ‖2F = ‖δ(1)‖
2
F (29)

= ‖TJ,KI

(2) − (B⊡B)Λ [(C⊡C)⊙ (A⊡A)]T ‖2F = ‖δ(2)‖
2
F (30)

= ‖TK,JI

(3) − (C⊡C)Λ [(B⊡B)⊙ (A⊡A)]T ‖2F = ‖δ(3)‖
2
F , (31)

The differentialdH of H has to be derived, and then we will be able to calculate the gradient
components (theI ×F matrix∇AH, theJ ×F matrix∇BH and theK ×F matrix∇CH) and
eventually the Hessian matrices.
With this goal, define the Frobenius scalar product〈A,B〉 = trace{ATB}. We also have:
〈A,A〉 = ‖A‖2F = trace{ATA}. As a consequence, the cost functionH(A,B,C) can be
rewritten – in the first mode for example – as:

〈δ(1), δ(1)〉 = trace
{
δ
T
(1)δ(1)

}

= trace

{(
TI,JK

(1) − (A⊡A)Λ[(C⊡C)⊙ (B⊡B)]T
)T

·

(
TI,JK

(1) − (A⊡A)Λ[(C ⊡C)⊙ (B⊡B)]T
)}

.

The calculation ofdH(A,B,C) is performed in Appendix A, and is equal to:

dH(A,B,C) = 〈4
[
A⊡

(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]Λ

)]
, dA〉

+ 〈4
[
B⊡

(
(−δ(2)) [(C⊡C)⊙ (A⊡A)]Λ

)]
, dB〉

+ 〈4
[
C⊡

(
(−δ(3)) [(B⊡B)⊙ (A⊡A)]Λ

)]
, dC〉 (32)

3.2.2. Gradient matrices
Using (32), the three gradient components∇AH,∇BH and∇CH can be derived:

∇AH(A,B,C) =
∂H(A,B,C)

∂A
= 4A⊡

(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]Λ

)
, (33)

∇BH(A,B,C) =
∂H(A,B,C)

∂B
= 4B⊡

(
(−δ(2))[(C ⊡C)⊙ (A⊡A)]Λ

)
, (34)

∇CH(A,B,C) =
∂H(A,B,C)

∂C
= 4C⊡

(
(−δ(3))[(B⊡B)⊙ (A⊡A)]Λ

)
. (35)
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We can then build either the following(I + J +K)× F matricesG(k) andX(k) :

G(k) =



∇AH(A

(k),B(k),C(k))

∇BH(A
(k),B(k),C(k))

∇CH(A
(k),B(k),C(k))


 , X(k) =



A(k)

B(k)

C(k)


 (36)

or the following(I + J +K)F × 1 vectors:

g(k) =



vec{∇AH(A

(k),B(k),C(k))}

vec{∇BH(A
(k),B(k),C(k))}

vec{∇CH(A
(k),B(k),C(k))}


 , x(k) =



vec{A(k)}

vec{B(k)}

vec{C(k)}


 (37)

4. Preconditioned nonlinear conjugate gradient algorithms

To estimate the three loading matricesA,B andC, the cost functionH given in (29), (30) or (31)
has to be minimized. To that aim, we suggest to optimize the cost functionH simultaneously
with respect to all variables using a preconditioned nonlinear conjugate gradient method [26].
In the classical gradient approach, variableX given in (36) is updated at each iterationk (k =
1, 2, . . .) according to the following adaptation rule:

X(k+1) = X(k) − µ(k)G(k) or x(k+1) = x(k) − µ(k)g(k), (38)

whereG(k) is the gradient matrix given in (36) using (33), (34) and (35)andµ(k) the step size
(the problem of the choice of the stepsize is treated in Section 4.3). We notice that when the
nonnegativity constraint no more holds, (33), (34) and (35)are simply respectively replaced by
(10), (11) and (12).
In the preconditioned conjugate gradient approach, the descent direction is initialized using
d(1) = −g(1) and updated at each iterationk according to the following adaptation rule:

{
x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −(M(k+1))−1g(k+1) + β(k)d(k) (39)

The (I + J + K)F × 1 vectord(k) contains the search directions and the square(I + J +
K)F × (I + J + K)F matrix M stands for the preconditioner. As noticed in [24][26], the
nonlinear conjugate gradient method can be preconditionedby choosing a preconditionerM
that approximates the Hessian matrix or at least its diagonal. In the nonlinear conjugate gradient,
two expressions for the value ofβ are classically used: the Fletcher-Reeves (βFR) and the Polak-
Ribière (βPR) formulas [24]:

β
(k+1)
FR =

g(k+1)Tg(k+1)

g(k)T ,g(k)
(40)

β
(k+1)
PR

=
g(k+1)T (g(k+1) − g(k))

g(k)Tg(k)
. (41)
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Finally, as noticed in [24] (p. 102), if we reinitialize a conjugate gradient method by setting
d(i) = −g(i), from time to time, we might get better performance than by constructingd(i) by
one of the standard formulas (i.e. combining (39) and (40) or (39) and (41)) at each iteration. In
our case, we have chosen to perform this “restart” every(I + J +K)F iterations.

4.1. Particular cases

4.1.1. Nonlinear conjugate gradient algorithm
Considering thatM = I(I+J+K)F in (39), we simply obtain the nonlinear conjugate gradient
method: {

x(k+1) = x(k) + µ(k)d(k)

d(k+1) = −g(k+1) + β(k)d(k) (42)

which can be equivalently written in the ensuing matrix form:

{
X(k+1) = X(k) + µ(k)D(k)

D(k+1) = −G(k+1) + β(k)D(k) (43)

with

D(k) =



D

(k)
A

D
(k)
B

D
(k)
C


 , d(k) =



vec{D

(k)
A }

vec{D
(k)
B }

vec{D
(k)
C }


 =



d
(k)
A

d
(k)
B

d
(k)
C


 (44)

The two expressions for the value ofβ that are classically used remain the Fletcher-Reeves (βFR)
and the Polak-Ribière (βPR) formulas (now written using matrices instead of vectors) [24]:

β
(k+1)
FR

=
〈G(k+1),G(k+1)〉

〈G(k),G(k)〉
=
‖G(k+1)‖2F
‖G(k)‖2F

, (45)

β
(k+1)
PR =

〈G(k+1),G(k+1) −G(k)〉

〈G(k),G(k)〉
=
〈G(k+1),G(k+1) −G(k)〉

‖G(k)‖2F
. (46)

And again, this algorithm is initialized by usingD(1) = −G(1) and restarted after a given
number, say(I + J + K)F of iterations, withD(i) = −G(i) as initial guess, to speed up the
convergence.

4.1.2. Quasi Newton approaches (BFGS andDFP algorithms)
In (39), by settingβ = 0 and considering that the preconditionerM is a(I + J +K)F × (I +
J +K)F approximation of the Hessian matrix given by (47):

M(k+1) = M(k) +
∆g(k)(∆g(k))T

〈∆g(k),∆x(k)〉
−

(M(k)∆x(k))(M(k)∆x(k))T

〈M(k)∆x(k),∆x(k)〉
, (47)
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we obtain the following adaptation rule as in the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm:





x(k+1) = x(k) − µ(k)(M(k))−1g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

M(k+1) = M(k) + ∆g(k)(∆g(k))T

〈∆g(k),∆x(k)〉
− (M(k)∆x(k))(M(k)∆x(k))T

〈M(k)∆x(k),∆x(k)〉

(48)

Using the inversion lemma and denoting byρ = 1
(∆g(k))T∆x(k) , the inverse of the approximate

Hessian matrixM(k) can be estimated. The algorithm in (48) can be rewritten:





x(k+1) = x(k) − µ(k)(M(k))−1g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

(M(k+1))−1 = (M(k))−1 + ρ
[
1 + ρ(∆g(k))T (M(k))−1∆g(k)

]
∆x(k)(∆x(k))T

−ρ∆x(k)(∆g(k))T (M(k))−1 − ρ(M(k))−1∆g(k)(∆x(k))T

(49)

On the other hand, settingβ = 0 in (39), and considering that the preconditionerM is a (I +
J +K)F × (I + J +K)F approximation of the inverse of the Hessian matrix as:

M(k+1) = M(k) +
∆x(k)(∆x(k))T

〈∆g(k),∆x(k)〉
−

(M(k)∆g(k))(M(k)∆g(k))T

〈∆g(k),M(k)∆g(k)〉
(50)

we obtain the following adaption rule as in the Davidon-Fletcher-Powell algorithm (DFP):




x(k+1) = x(k) − µ(k)M(k)g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

M(k+1) = M(k) + ∆x(k)(∆x(k))T

〈∆g(k),∆x(k)〉
− (M(k)∆g(k))(M(k)∆g(k))T

〈∆g(k),M(k)∆g(k)〉

(51)

In the two cases, the algorithm is initialized using forM(1) (or (M(1))−1), a symmetric,(I +
J +K)F × (I + J +K)F positive-definite matrix.

4.1.3. Levenberg-Marquardt algorithm
When the preconditionerM tends to loose its “hereditary positive-definiteness” property through
the iterations, and hence may fail to construct descent directions, it is better to stabilize it using
trust region techniques that modifyM by adding a multiple of the identity matrix as in the
Levenberg-Marquardt approach [17]:





x(k+1) = x(k) − µ(k)(M(k) + αI(I+J+K)F )
−1g(k)

∆x(k) = x(k+1) − x(k)

∆g(k) = g(k+1) − g(k)

M(k+1) = M(k) + ∆g(k)(∆g(k))T

〈∆g(k),∆x(k)〉
− (M(k)∆x(k))(M(k)∆x(k))T

〈M(k)∆x(k),∆x(k)〉

(52)
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whereα is a relaxation coefficient. We notice that by settingα = 0 in (52), the quasi-Newton
algorithm (48) is recovered. On the other hand, by settingM = I(I+J+K)F in (52), or by taking
α large enough, the gradient algorithm in (38) is obtained.

4.2. Algorithmic complexity

Regarding the algorithmic complexity of theALS algorithm, the calculation has been done in [7].
It amounts toO(7F 2(JK+KI+IJ)+3FIJK). For the gradient algorithm, the computational
cost per iterationk approximately amounts toO(6IFJK), since for each of the three gradient
components, we have four operations: 2 matrices products1 + 1 Khatri-Rao product2 + 1 addition.
This computational cost is thus governed by the calculationof the matrixG. The total number
of arithmetic operations isO(6IFJKNit) if Nit stands for the total number of iterations to
reach convergence. For the gradient algorithm with nonnegativity constraint, the algorithmic
complexity is nearly the samei.e. O(6IFJK) and the total number of arithmetic operations is
O(6IFJKNit) too.
For the nonlinear conjugate gradient method (in both casesi.e. with or without the nonnegativity
constraint), the algorithmic complexity approximativelyamounts toO(6FIJK + 2(I + J +
K)F 2), since the calculation ofβ adds two matrices multiplications.
For theBFGS method (Newton-Raphson approach, in both casesi.e. with or without the non-
negativity constraint) the algorithmic complexity per iteration amounts toO(6IFJK + 4(I +
J +K)2F 2 +(I + J +K)3F 3) since 4 matrices multiplications and one linear system solving3

have been added. Finally the computational cost per iteration ≈ O((I + J + K)3F 3) which
implies that it is mainly governed by the linear system solving.
If the PC latter is avoided, using (49) instead of (48), the computational cost is reduced to≈
O(4(I + J +K)2F 2).
For theDFP method, (in both casesi.e. with or without the nonnegativity constraint) the al-
gorithmic complexity per iteration amounts to:O(4(I + J + K)2F 2). Finally, for the precon-
ditioned linear conjugate gradient method (in both casesi.e. with or without the nonnegativity
constraint), the algorithmic complexity per iteration amounts to≈ O((I+J+K)3F 3) too, since
the overhead due to the calculation ofβ is negligible. These results are summarized in Table 1.

4.3. How to chooseµ(k) ?

4.3.1. Enhanced line search(ELS)
TheELS enhancement is applicable to any iterative algorithm, provided the optimization crite-
rion is a polynomial or a rational function. It searches for the best stepsizeµopt that corresponds
to theglobal minimumof (28), (29), (30) or (31). It requires the algebraic minimization of the

1The cost for multiplying theN ×M matrixB by theM × P matrixA is assumedO(NMP ).
2The cost for calculating the Khatri-Rao product between theN×M matrixB by theP×M matrixA is assumed

O(NMP ).
3The cost for inverting theN × N matrixB is assumedO(N3) (Gauss-Jordan elimination). This cost could be

reduced using another algorithm.
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following quantity w.r.t.µ:

H(A(k+1),B(k+1),C(k+1)) = H
[
(A(k) + µDA

(k))⊡ (A(k) + µDA
(k)),

(B(k) + µDB
(k))⊡ (B(k) + µDB

(k)), (C(k) + µDC
(k))⊡ (C(k) + µDC

(k))
]
. (53)

As shown in Appendix B, this quantity is a 12th-degree polynomial, whose expression is given
by (we opt to omit the dependency upon the parameters ofH to simplify the various expressions):

H(.) =
12∑

i=0

aiµ
i, (54a)

dH(.) =

11∑

i=0

(i+ 1)ai+1µ
i, (54b)

where the thirteen coefficientsai, for i = 0, . . . , 12 are given by (see Appendix B to get the
definition ofK(i), wherei varies from1 to 6):

a0 = trace
[
K0K0

T
]

(55a)

a1 = trace
[
2K1K0

T
]

(55b)

a2 = trace
[
2K2K0

T +K1K1
T
]

(55c)

a3 = trace
[
2
(
K3K0

T +K2K1
T
)]

(55d)

a4 = trace
[
2
(
K4K0

T +K3K1
T
)
+K2K2

T
]

(55e)

a5 = trace
[
2
(
K5K0

T +K4K1
T +K3K2

T +K3K2
T
)]

(55f)

a6 = trace
[
2
(
K6K0

T +K5K1
T +K4K2

T
)
+K3K3

T
]

(55g)

a7 = trace
[
2
(
K6K1

T +K5K2
T +K4K3

T
)]

(55h)

a8 = trace
[
2
(
K6K2

T +K5K3
T
)
+K4K4

]
(55i)

a9 = trace
[
2
(
K6K3

T +K5K4
T
)]

(55j)

a10 = trace
[
2K6K4

T +K5K5
T
]

(55k)

a11 = trace
[
2K6K5

T
]

(55l)

a12 = trace
[
K6K6

T
]

(55m)

By differentiating the expression ofH with respect toµ, we obtain the polynomial of degree11
given in (54b). The optimal stepsizeµopt then corresponds to the real and positive root of the
11-order polynomial defined in (54b) leading to the global minimum of criterion (54a).
Concerning the algorithmic complexity, the cost is now ruled by the calculation of the 13 coef-
ficients of the 12th-degree polynomial given in (54a). The obtained results are summarized in
Table 2.
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4.3.2. Backtracking
The main problem with the enhanced line search is its computational cost. As already noticed, the
cost in theELS version of the algorithms is dominated by the calculation ofthe 13 coefficients
of the polynomial we intend to minimize. An alternative approach, consists of computing the lo-
cally optimal step size (called backtracking) and to alternate it withELS every 10 or 20 iterations
for example. The main advantage of such an approach is its lowcomputational cost. Backtrack-
ing is a standard technique, which attempts to determine a sufficiently long step size while still
producing some amount of decrease in the cost function. As a consequence, the method implies
to start with a stepµ large enough (for example a unit step size) and to decrease ititeratively by a
factorβ i.e. µ = βµ (with β commonly chosen between0.1 and0.8) until the Armijo condition
[1][18] given in (56) is fulfilled. The resultingµ is the stepsizeµ(k) used in the updating rule
of the optimization algorithm. We still assume the same costfunctionH given by (29). During
the updating stage of the considered algorithm, it becomesH(A+µDA,B+µDB,C+µDC)
given in (53). Thus, with our notations, the Armijo condition reads:

H(A+ µDA,B+ µDB,C+ µDC) < H(A,B,C) + α µ gTd (56)

whereα is a constant parameter often chosen within[10−4, 10−1], d is the descent direction
given in (44) andg is the gradient given in (37). Sinced is a descent direction, we havegTd < 0
(in the specific case of the gradient algorithm,d = −g, whereasd = −M−1g for quasi-Newton
algorithms).
It is also possible to combine the backtracking method together with a search by adjustment
method, whose advantage is to include a “memory” of the previous steps. For example, if the
stepsizeµ found during the backtracking stage is lower than the initial step calledµ0, µ0 is
decreased (this new value will be used for the next backtracking stages) by a factorβ. On the
opposite, if it is higher thanµ0, µ0 is increased by another factorα > 1.

5. Computer simulations

Simulations are now provided to illustrate the behavior andthe performances of the proposed
NTF algorithms. With this goal, we address the problem of fluorescence analysis. If a solution
is excited by an optical excitation, several effects may be produced: Rayleigh scatter , Raman
scatter and Fluorescence. At low concentrations, the Beer-Lambert law can be linearized so that
the fluorescence intensity rather accurately follows the model below [27, 16]:

I(λf , λe, k) = Io γ(λf ) ǫ(λe) ck

whereǫ denotes absorbance spectrum (sometimes called emission spectrum),λf is the fluores-
cence emission wavelength,λe the excitation wavelength,γ the fluorescence emission spectrum
andck is the concentration of the fluorescent component in sample numberk. Provided it can
be separated from diffusion phenomena, the fluorescence phenomenon allows to determine the
concentration of a diluted (fluorescent) chemical component, and possibly to recognize it, thanks
to its fluorescent spectrum.
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A difficulty appears when the solution contains more than onefluorescent solute. In such a case,
the overall fluorescence intensity is an unknown linear combination of component fluorescence
intensities:

I(λf , λe, k) = Io
∑

ℓ

γℓ(λf ) ǫℓ(λe) ck,ℓ (57)

ck,ℓ stands for the concentration of theℓ-th fluorescent solute in samplek. It is then necessary to
separate each component contribution. Assuming that a finite number of excitation and emission
frequencies are measured, so that the measurements are stored in a finite array of order 3 and
finite dimensions, sayI × J ×K, tijk = I(λf (i), λe(j), k). It is clear, by comparing equations
(57) and (2), that thanks to uniqueness of the CP decomposition, one can identifyγℓ(λf (i)) with
aif , ǫℓ(λe(j)) with bjf and ck,ℓ with ckf . Hence, the computation of the CP decomposition
yields emission spectra of each component as well as their concentration. There is no need to
know in advance what are the components expected to be present in the solution.
Two tensorsT1 andT2 have been simulated, usingF = 4 components whose71× 47 emission-
excitation matrices (aibT

i , ∀i = 1, . . . , 4) were very similar to the ones displayed in Fig. 4.
These images [20] were provided by the PROTEE-EA 3819 Laboratory at the South Toulon Var
University, France. Two random positive matricesC have been used (a10 × 4 matrix and a
128× 4 matrix). The first tensorT1 is 71× 47× 10, and the second tensorT2 is 71× 47× 128.
To establish a comparison between the different algorithms, we need an error index. We have
chosen to use:E = ‖T − T̂‖2F or EdB = 10 log10(E), with T̂ =

∑F
f=1 âf ⊛ b̂f ⊛ ĉf andâ, b̂

andĉ the estimated factors. The best results are obtained when the error indexE is found to be
close to 0 in linear scale (−∞ in logarithmic scale).
In the left column of Fig. 1, we have compared the results obtained withELS versions of various
algorithms (i.e. ELS is executed at each iteration, except for the so-calledALS-Cichocki and
NTF-HALS algorithms, in which there is noELS enhancement) versus iterations, while the
results are represented versus the number of arithmetic operations in the right column of the
Fig. 1. For Figures 1, 2 and 3, all the algorithms were initialized using Bro’sDTLD algorithm
[27]. For theALS-Cichocki algorithm with eitherl1-norm or l2-norm regularization, we have
chosenαA = αB = αC = 10−6 (it is the reason why the performances are bounded). For
theNTF-HALS algorithm, we have implemented the algorithm described p. 357 of [5] . We can
observe that both quasi-Newton algorithms (BFGS andDFP) have nearly the same behavior. The
conjugate gradient and gradient algorithms require more time to reach convergence. However,
the conjugate gradient algorithm offers a good compromise between speed and performances
and contrary to quasi-Newton algorithms, it does not require the estimation of the(I + J +
K)F × (I + J +K)F Hessian matrices (or their approximation) and as a consequence it can be
applied to very large tensors. Even though theNTF-ALS andNTF-HALS algorithms are often
the fastest algorithms during the first iterations , we can observe in the bottom of Fig. 5, that the
reconstructed emission-excitation matrices are not necessarily good (even if the reconstruction
error was weak; the estimated emission-excitation matrices have to be compared with the true
emission-excitation matrices that were perfectly estimated in the Fig. 4 when there is an error
in the model (here,F = 5 was assumed whereas four components were effectively present in
the mixture). In the chosen example (where all the algorithms were initialized using the same
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random initialization), the algorithms we propose seem less sensitive to this kind of model error
as observed in the top of the Fig. 5. Finally, a good way to diminish the global computational
time consists of alternating betweenELS (say, every10 or 20 iterations) and backtracking, as it
can be observed in the Fig. 2 and 3 .

6. Conclusion

In this article, we have described several algorithms able to compute the minimal polyadic de-
composition of nonnegative three-way arrays. The calculation of gradient matrices has been
performed, allowing to implement preconditioned nonlinear conjugate gradient, gradient and
quasi-Newton approaches. Two versions of each algorithm have been studied: the enhanced line
search (ELS) version, and a backtracking version alternating withELS. The algorithmic com-
plexity has been provided too. Finally, computer simulations have been performed in the context
of data analysis, in order to demonstrate both the good behavior of the algorithms we proposed,
compared to others put forward in the literature, and their usefulness in data mining applications.
As demonstrated in Section 5, the judgement of an algorithm should not solely rely on the re-
construction error and on computational complexity, but should also take into account the error
in the loading matrices obtained.

Appendix

Appendix A. Calculation ofdH(A,B,C)

We use similar properties regarding the trace as those already used in [9]. Considering three
M ×M square matricesD1, D2 andD3 and four rectangular matricesD4, D5, D6 andD7

(resp.M ×N , N ×M , M ×N andM ×N ), we have the following properties [19]:

P0. (D4D5)
T = DT

5 D
T
4 .

P1. trace {D1} = trace
{
DT

1

}
.

P2. trace {D1 +D2} = trace {D1}+ trace {D2}.
P3. trace {D1D2D3} = trace {D3D1D2} = trace {D2D3D1}

⇒ trace {D1D2} = trace {D2D1}.
P4. trace {D4D5} = trace {D5D4}.
P5. d(DT

1 ) = (dD1)
T .

P6. d(D1D2) = dD1D2 +D1dD2.
P7. d(D1 +D2) = dD1 + dD2.
P8. d(trace {D1}) = trace {dD1}.
P9. d(D1 ⊡D2) = dD1 ⊡D2 +D1 ⊡ dD2 ⇒ d(D1 ⊡D1) = 2D1 ⊡ dD1.
P10. D4 ⊡D6 = D6 ⊡D4.
P11. (D4 ⊡D6)

T = DT
4 ⊡DT

6 .
P12. trace{DT

4 (D6 ⊡D7)} = trace{(DT
4 ⊡DT

6 )D7}.
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Like in [8], our aim is to obtain:

dH(A,B,C) = 〈
∂H(A,B,C)

∂A
, dA〉+ 〈

∂H(A,B,C)

∂B
, dB〉+ 〈

∂H(A,B,C)

∂C
, dC〉, (58)

where ∂·
∂A

means the partial derivative with respect to the matrixA.

Or, using circular permutations and the aforementioned propertiesP1 −P9 , we have:

dH(A,B,C) = trace
{
d(δT(1))δ(1)

}
+ trace

{
δ
T
(1)dδ(1)

}

= 2trace
{
δ
T
(1)dδ(1)

}
= 2trace

{
δ
T
(2)dδ(2)

}
= 2trace

{
δ
T
(3)dδ(3)

}

= 4trace
{
−δT(1)(A⊡ dA)Λ [(C⊡C)⊙ (B⊡B)]T − δ

T
(2)(B⊡ dB)Λ [(C⊡C)⊙ (A⊡A)]T

−δT(3)(C⊡ dC)Λ [(B⊡B)⊙ (A⊡A)]T
}

= trace
{
4
(
Λ [(C⊡C)⊙ (B⊡B)]T (−δ(1))

T
)
(A⊡ dA)

}

+ trace
{
4
(
Λ [(C⊡C)⊙ (A⊡A)]T (−δ(2))

T
)
(B⊡ dB)

}

+ trace
{
4
(
Λ [(B⊡B)⊙ (A⊡A)]T (−δ(3))

T
)
(C⊡ dC)

}

Using propertyP10 −P12 ([19], p. 53) and the fact thatΛ = ΛT sinceΛ is diagonal , we have:

dH(A,B,C) = trace
{
4
[(

Λ [(C⊡C)⊙ (B⊡B)]T (−δ(1))
T
)
⊡AT

]
dA

}

+ trace
{
4
[(

Λ [(C⊡C)⊙ (A⊡A)]T (−δ(2))
T
)
⊡BT

]
dB

}

+ trace
{
4
[(

Λ [(B⊡B)⊙ (A⊡A)]T (−δ(3))
T
)
⊡CT

]
dC

}

= trace
{
4
[
A⊡

(
−δ(1) [(C⊡C)⊙ (B⊡B)]Λ

)]T
dA

}

+ trace
{
4
[
B⊡

(
−δ(2) [(C⊡C)⊙ (A⊡A)]Λ

)]T
dB

}

+ trace
{
4
[
C⊡

(
−δ(3) [(B⊡B)⊙ (A⊡A)]Λ

)]T
dC

}

= 〈4
[
A⊡

(
−δ(1) [(C⊡C)⊙ (B⊡B)]Λ

)]
, dA〉

+ 〈4
[
B⊡

(
−δ(2) [(C⊡C)⊙ (A⊡A)]Λ

)]
, dB〉

+ 〈4
[
C⊡

(
−δ(3) [(B⊡B)⊙ (A⊡A)]Λ

)]
, dC〉
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By identification with (58), it is finally found that:

∇AH(A,B,C) =
∂H(A,B,C)

∂A
= 4A⊡

(
(−δ(1)) [(C⊡C)⊙ (B⊡B)]Λ

)
, (59)

∇BH(A,B,C) =
∂H(A,B,C)

∂B
= 4B⊡

(
(−δ(2))[(C ⊡C)⊙ (A⊡A)]Λ

)
, (60)

∇CH(A,B,C) =
∂H(A,B,C)

∂C
= 4C⊡

(
(−δ(3))[(B⊡B)⊙ (A⊡A)]Λ

)
. (61)

Appendix B. Enhanced line search

We intend to minimize the following expression with respectto µ:

H(.) = ‖TI,JK

(1) −[(A+ µDA)⊡ (A+ µDA)]Λ

[((C + µDC)⊡ (C+ µDC))⊙ ((B+ µDB)⊡ (B+ µDB))]
T ‖2

First, to clarify the expressions, we define some intermediate quantities:

E0 = A⊡A

E1 = A⊡DA +DA ⊡A = 2A⊡DA

E2 = DA ⊡DA

F0 = (C⊡C)⊙ (B⊡B)

F1 = (C⊡DC)⊙ (B⊡B) + (DC ⊡C)⊙ (B⊡B)

+ (C⊡C)⊙ (B⊡DB) + (C⊡C)⊙ (DB ⊡B)

= 2 [(C⊡DC)⊙ (B⊡B) + (C⊡C)⊙ (B⊡DB)]

F2 = (C⊡DC)⊙ (B⊡DB) + (C⊡DC)⊙ (DB ⊡B) + (DC ⊡C)⊙ (B⊡DB)

+ (DC ⊡C)⊙ (DB ⊡B) + (DC ⊡DC)⊙ (B⊡B) + (C⊡C)⊙ (DB ⊡DB)

= 4 [(C⊡DC)⊙ (B⊡DB)] + (DC ⊡DC)⊙ (B⊡B) + (C ⊡C)⊙ (DB ⊡DB)

F3 = (C⊡DC)⊙ (DB ⊡DB) + (DC ⊡C)⊙ (DB ⊡DB)

+ (DC ⊡DC)⊙ (B⊡DB) + (DC ⊡DC)⊙ (DB ⊡B)

= 2[(C⊡DC)⊙ (DB ⊡DB) + (DC ⊡DC)⊙ (B⊡DB)]

F4 = (DC ⊡DC)⊙ (DB ⊡DB)

By developing, it leads to:

H(.) = ‖TI,JK

(1) − [E0 +E1µ+E2µ
2]Λ[F4µ

4 + F3µ
3 + F2µ

2 +F1µ+ F0]
T ‖2

= ‖(−E2ΛF4
T )µ6 + (−E1ΛF4

T −E2ΛF3
T )µ5

+ (−E0ΛF4
T −E1ΛF3

T −E2ΛF2
T )µ4 + (−E0ΛF3

T −E1ΛF2
T −E2ΛF1

T )µ3

+ (−E0ΛF2
T −E1ΛF1

T −E2ΛF0
T )µ2 + (−E0ΛF1

T −E1ΛF0
T )µ

+TI,JK

(1) −E0ΛF0
T ‖2
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Again, we define intermediate variables:
K0=TI,JK

(1) −E0ΛF0
T K4=−E0ΛF4

T −E1ΛF3
T −E2ΛF2

T

K1=−E0ΛF1
T −E1ΛF0

T K5=−E1ΛF4
T −E2ΛF3

T

K2=−E0ΛF2
T −E1ΛF1

T −E2ΛF0
T K6=−E2ΛF4

T

K3=−E0ΛF3
T −E1ΛF2

T −E2ΛF1
T

H(.) = trace
{
(K6µ

6 +K5µ
5 +K4µ

4 +K3µ
3 +K2µ

2 +K1µ+K0)
(
K6µ

6 +K5µ
5 +K4µ

4 +K3µ
3 +K2µ

2 +K1µ+K0

)T}

= trace
{
(K6K6

T )µ12

+ (K6K5
T +K5K6

T )µ11

+ (K6K4
T +K5K5

T +K4K6
T )µ10

+ (K6K3
T +K5K4

T +K4K5
T +K3K6

T )µ9

+ (K6K2
T +K5K3

T +K4K4
T +K3K5

T +K2K6
T )µ8

+ (K6K1
T +K5K2

T +K4K3
T +K3K4

T +K2K5
T +K1K6

T )µ7

+ (K6K0
T +K5K1

T +K4K2
T +K3K3

T +K2K4
T +K1K5

T +K0K6
T )µ6

+ (K5K0
T +K4K1

T +K3K2
T +K2K3

T +K1K4
T +K0K5

T )µ5

+ (K4K0
T +K3K1

T +K2K2
T +K1K3

T +K0K4
T )µ4

+K3K0
T +K2K1

T +K1K2
T +K0K3

T )µ3

+ (K2K0
T +K1K1

T +K0K2
T )µ2

+ (K1K0
T +K0K1

T )µ

+K0K0
T
}

The thirteen coefficientsa0, . . . , a12 are finally obtained by identification.
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Method Cost per iteration
General case CaseI = J = K

ALS (without positivity constraint) 7(JK +KI + IJ)F 2 + 3IJKF 21(IF )2 + 3FI3

ALS-Cichocki 3IJKF 3FI3

Gradient 6IJKF 6FI3

Nonlinear conjugate gradient 6IJKF + 2(I + J +K)F 2 6FI3 + 6IF 2

Gauss-Newton (BFGS) (I + J +K)3F 3 27I3F 3

BFGS using (49) 4(I + J +K)2F 2 36I2F 2

Gauss-Newton (DFP) 4(I + J +K)2F 2 36I2F 2

Levenberg-Marquardt (I + J +K)3F 3 27I3F 3

Preconditioned nonlinear conjugate gradient (I + J +K)3F 3 27I3F 3

Table 1: Algorithmic complexity of various algorithms

Method Cost per iteration
General case CaseI = J = K

ALS without positivity constraint 7(JK +KI + IJ)F 2 + 11IJKF + 9IJK 21I2F 2 + 11I3F + 9I3

Gradient 49KJI2 + 13IJKF 49I4 + 13I3F

Nonlinear conjugate gradient 2(I + J +K)F 2 + 49KJI2 + 13IJKF 6IF 2 + 49I4 + 13I3F

Gauss-Newton (BFGS) (I + J +K)3F 3 + 49KJI2 + 13IJKF 27I3F 3 + 49I4 + 13I3F

Gauss-Newton (BFGS with (49)) 4(I + J +K)2F 2 + 49KJI2 + 13IJKF 36I2F 2 + 49I4 + 13I3F

Gauss-Newton (DFP) 4(I + J +K)2F 2 + 49KJI2 + 13IJKF 36I2F 2 + 49I4 + 13I3F

Levenberg-Marquardt (I + J +K)3F 3 + 49KJI2 + 13IJKF 27I3F 3 + 49I4 + 13I3F

Preconditioned conjugate gradient (I + J +K)3F 3 + 49KJI2 + 13IJKF 27I3F 3 + 49I4 + 13I3F

Table 2: Algorithmic complexity for theELS version of the different algorithms
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Figure 1: Reconstruction error (dB) versus the number of iterations (left) using a nonnegative71×47×10 tensor (top
left), a nonnegative71 × 47 × 128 tensor (bottom left). Reconstruction error (dB) versus thenumber of arithmetic
operations (right) using a nonnegative71 × 47× 10 tensor (top right), a nonnegative71 × 47× 128 tensor (bottom
right). The same legend is used for the 4 charts. We should payattention to the fact that a small reconstruction
error does not mean that loading matrices are correctly estimated; in fact, the number of components should also be
correctly detected (cf. Figs. 4-5).
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Figure 2: ComparisonBFGS with backtracking (ELS every 10 iterations) andBFGS with ELS at each iteration:
reconstruction error as a function of the number of arithmetic operations.
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Figure 3: ComparisonBFGS with backtracking (ELS every 10 iterations) andBFGS with ELS at each iteration:
reconstruction error as a function of complexity
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Figure 4: Case4 factors, assumingF = 4, the 4 estimated emission-excitation images that perfectly fit the emission-
excitation images of the 4 considered fluorophores.
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Figure 5: Case4 factors, assumingF = 5, the 5 estimated emission-excitation images using the conjugate gradient
algorithm with positivity constraint (top) and theALS algorithm with positivity constraint projection based (bottom).


