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Abstract

Computing the minimal polyadic decomposition (also ofteferred to as canonical decompo-
sition, or sometimes Parafac) amounts to finding the globaimum of a coercive polynomial
in many variables. In the case of arrays with nonnegativaesntthe low-rank approximation
problem is well posed. In addition, due to the large dimemsitthe problem, the decomposition
can be rather efficiently calculated with the help of predtimaed nonlinear conjugate gradient
algorithms, as subsequently shown, if equipped with anbatdge calculation of the globally op-
timal stepsize in low dimension. Other algorithms are atsdisd (gradient and quasi-Newton
approaches) for comparisons. Two versions of each algodiie considered: the Enhanced Line
Search version (ELS), and the backtracking version alteravith ELS. Computer simulations
are provided and demonstrate the good behavior of theseithlgs dedicated to nonnegative
arrays, compared to others put forward in the literatur@aliyi, applications in the context of
data analysis illustrate various algorithms. The main athge of the suggested approach is to
explicitly take into account the nonnegative nature of daeling matrices in the problem param-
eterization, instead of enforcing positive entries by @ctpn. According to the experiments we
have run, such an approach also happens to be more robustesjitéct to possible modeling
errors.

Keywords: Data analysis; Nonlinear conjugate gradient; preconditigy Quasi-Newton;
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1. Introduction

The minimal polyadic decomposition of a tensor, sometineésrred to as “Canonical Polyadic”
(CP), is also called “CanDecomp”, “CanD”, or “Parafac”. $kliecomposition, whose definition
is recalled in Section 2, turns out to be very useful in a widegb of applications; see e.g.
[6, 7, 13, 27] and references therein. However, severatdiffes arise when the CP needs to be
computed. First, even if an exact fit exists with a known nunadféerms, the calculation of the
CP consists of finding the zeros of a polynomial of degree siarger, in a very large number
of variables. This problem is numerically very difficult tolge, even if the number of zeros
is finite. Second, if the model is subject to errors, an appnate fit is wished to be computed.
However, it is now well known that a best approximate may heags exist [23, 15, 7]. Third, in
several applications such as hyperspectral imaging or chetrics, the loading matrices need
to be constrained to be real and nonnegative [5, 27]. We sbiBBequently concentrate on this
framework. Fortunately, one advantage of the latter cairgtis that the approximation problem
becomes well posed [15]. Lastly, a recent book has been eddoaded to this particular problem
[5].

Numerical algorithms are provided in the present paper,aaatased on preconditioned non-
linear conjugate gradient, well matched to large dimerssioombined with a global search in a
one-dimensional subspace. The latter combination petmigscape from local minima. Other
algorithms are also studied (gradient and quasi-Newtonoagpes, for the purpose of compari-
son). Note that a nonlinear conjugate gradient optimipatchnigue has already been suggested
in [22] but with a simple version of preconditioning (by aglimal matrix).

The article is organized as follows. After a brief introdant Section 2 starts with some defini-
tions and properties of third order tensors. The problenh@fiolyadic decomposition of 3-way
arrays is then stated and existing standard algorithmsaingepl out. Section 3 is dedicated to
nonnegative 3-way array factorization. The cost functiasuggest to use is introduced, and
basic quantities such as gradient matrices are then ceddulén Section 4, the preconditioned
non-linear conjugate gradient approach is presented dsawéehree other approaches: gradi-
ent, quasi-Newton, and non-linear conjugate gradientagubres without preconditioning. With
regard to the choice of the step size, two different strategire studied: a global search via
Enhanced Line Searck(S) and backtracking alternating wittLS. Computer simulations are
provided to illustrate the effectiveness of the proposeprithms, and to compare them with
other algorithms, which are more standard in the literatir&ection 5, we show the usefulness
of these algorithms, and explain how they can be applied ta Baalysis. Finally, a conclusion
is drawn in Section 6.

2. Problem statement

2.1. Notation
The outer (tensor) product between two tenskrgs R/ 2x-xIn gndy e R/ x/2xxJm
is denoted byZ = X ®Y € RIxRx.xInxJixJ2x..xIa and defined by iy injrjo.jns =

Tivio..inYjijo..dar-



Denote by(-)” matrix transposition. As special cases, the outer prodetwéden two vectors
a € R andb € R’ yields a rank-one matriC = a®b = ab” € R’*’, The outer product
of three vectorsa € R’ andb € R’ andc € R yields a third order rank-one tens@r =
a®b®c e RIX/XK wherez;ji, = a;bjcy.

The Kronecker product between two matricAs= (a;;) = [a,as,...,ar] € R/ and
B = [by,by,...,bg] € R7*% is defined as:

CL11B CL12B e CLlJB

ang aQQB ce QQJB
A®B=

ale aIQB a[JB

The Khatri-Rao product between two matrices with the sammbaun of columns,A =
[a1,as,...,ap] € RI*F andB = [by,by,...,bp] € R/*F is defined as the column-wise
Kronecker productA ® B = [a; ® by, ay®bs, ... ap ® bp] € RIVXF,

2.2. Preliminaries

A tensor is an object defined on a product between linear sp&ugce the bases of these spaces
are fixed, a third order tensor can be represented by a thegeaway (a hypermatrix). The
order of a tensor hence corresponds to the number of indicd® @ssociated array. One also
talks about the number @faysor modeq27]. In this paper, due to the considered applications,
including fluorescence spectroscopy [2][27] or hypergpédimaging [30], we focus on real
positive 3-way arrays denoted B = (t;;;) € R/*/*K admitting the following trilinear
decomposition, also known as a triadic decomposition [11 o

F
TZZ&f@bf@Cf, Q)

=1
where the three involved matrice% = (a;;) = [a1,as,...,ap] € R B = (by) =
[b1,by,...,br] € RXF C = (¢4f) = [c1,¢2,...,cp] € REXF are the so-calletbading

matrices whose columns are thHeading factors F' is an integer. Equivalently, we have the
relation between array entries:

F
tik = Zaifbjfckf Vi=1,...,] VYj=1,...,J Vk=1,...,K. 2)

f=1
The smallest integeF’ that can be found such that the equality above holds exactglied the
tensor rank[14]. For this value ofF’, the above decomposition is called the Canonical Polyadic
decomposition (CP) of tens@r. Note that this acronym may also stand for CanDecomp/Rarafa
if some readers prefer. Finally, it is sometimes conveniergssume that all vectors have unit
length, so that the modified model below is then used, inst&éb):

F
T:Z)\faf(%bf@cf (3)
F=1



where)\; are real positive scaling factors add= [Aq,. . ., Ar]T. The model (3) can be written
in a compact form using the Khatri-Rao productas

T = AA(CoB), (4)
T{;)’” =BA(Co A)T, ©)
Tg;” —CABoA)T, (6)

WhereTIiJK (resp.T‘é’fI andeg"H) is the matrix of sizd x JK (resp.J x K1 andK x JI)
obtaineé E)y unfolding the arrd¥ of sizel x J x K in the first mode (resp. the second mode
and the third mode)A is the F x F' diagonal matrix defined aA = diag{A} where operator
diag{-} returns a square diagonal matrix which contains in its diagthe elements of the vector
given in argument.

2.3. CP decomposition of 3-way tensors

Assuming thatf" is known (or overestimated), the problem of the polyadicodagosition of a
3-way tensofl € R/*/*K js to estimate the three loading matrickss R, B € R/>*¥ and

C e REXF (and eventuallyA € R*F if the model described in (3) is considered). A rather
classical way to solve such a problem consists of minimizirsgiitably designed cost function.
Typically, we minimize (with respect to the three loadingtritas), the cost function:

F(A,B,C) = |IT;/" - AA(CoB)"|[% (7)
= | T4 —BA(Co A" (8)
= | TG —CAB o A}, (9)

where|| - || » stands for the Frobenius norm. In the problem of polyadionamal decomposition
of tensorT, its rankF" has to be estimated too.

2.4. Standard approaches

In the tensor literature, there exist several standard wagslve this optimization problem (see
for example [29] for a survey and a comparison of some exjgttandard methods). The most
popular approach is to apply theLS technique [3, 4, 10, 12], its line search version [2] or
more recently its enhanced line search version [25]. In suchpproach, the cost function is
alternatively optimized with respect to one given loadingtmx, the two others being assumed
fixed and independent, which is clearly suboptimal. Theedéffitiald 7 of 7 has to be derived
and finally the gradient components (thex F' matrix Va F, the J x F matrix VgF and the
K x F matrix V¢ F) can be calculated.



We have:

VAF(A,B,C;A) = —T{ TK 4 AA(C @ B)T ] (CoB)A

= —T;"(CoB)A + AA(CTC) T (B"B)A, (10)
V@fmJ1QAy:—Tf“+BM0@A)M0@Am,

:;Tg“«maApx+BA«ﬂtn 0 (ATA)A (11)
VoF(A,B,C;A) = ~Tf" + CAB o A)” ] (B A)A

= -T( (B© A)A + CA(B"B) [ (ATA)A, (12)

where[] stands for the Hadamard (entry-wise) matrix product. Resolthe caseA = Iy,
wherel i is the identity matrix of sizé” x F, can be found in [5, 8].
By equating the gradient components to zero, a simple soligiobtained:

A=T1;"(ACcoB)")! (13)
B= T{g”(A(c ® A)Df (14)
C=T1y" (ABoA), (15)

where(-) stands for the pseudo-inverse (Moore-Penrose generalivecse).

In [7, 8], gradient approaches were mentioned. It was sugd&s [21, 28] to use Gauss-Newton
approaches, and the Levenberg-Marquardt method was irepltehin [7]. Lastly in [13], quasi-
Newton approaches have been reported.

However, the polyadic decomposition @f-way arrays may be an ill-posed problem and may
lead to unstable estimation of its components; one can orentie two-factor degeneracy
(2FDs) [23], which corresponds to the presence in the solutiorwofd@lmost collinear factors
with opposite signs, almost cancelling each other.

Moreover, as argued earlier, we concentrate on real notimegansors and their decomposition
with real nonnegative loading matrices [27, 30]. Hence @rthxt sections, we focus on a well-
posed problem [15],e. Nonnegative Tensor FactorizatioNTF).

3. Nonnegative 3-way array factorization

In this section, we discuss approaches in which the thredingamatricesA, B and C are
constrained to be nonnegative.

3.1. Existing approaches

A first approach developed in [21, 28, 29] has been to use sdrtieeexisting well-known
NonNegative Least SquaredNLS) methods to solve the following “vectorized” system:

vec{T(;/" — AA(COB)"} = 01k (16)



where thevec{-} operator applied to a given matrix stacks its columns intolaran vector and
0r7k,1 is a vector of sizd JK x 1 which contains only null elements.

A second approach consists of modifying the previous caosttion 7, by adding penalty terms
whose aim is to impose boundedness on the solution and/afaoce other specific properties
on the solution such as smoothness, sparsity or uncomekds. In [5], it is suggested among
other things to use one of the two following cost functions:

G(A,B,C;A) = F(A,B,C;A), +O‘AHAH% + O‘BHBH% + O‘C’HCH%7 (17a)
91(A,B,C;A) = F(A,B,C; A) + aalAllL + ap|Blly + aclCll1, (17b)

subject to nonnegativity constraints, wherg, ag andac are nonnegative regularization pa-
rameters. In (17a) the standard Tikhondrform) regularization is meant to enforce smooth-
ness of the solution and in (17b) thenorm regularization (A1 = >_, ;|a;;[) is meant to
enforce sparsity of the solution. The different variousoalthms already evoked in the previous
section can be applied to solve that optimization problerhe @radient components given in
(10), (11) and (12) are simply replaced by:

VAG() =VAF(:)+2a4A or VaG () =VaF()+ aal;p, (18)
VBQ(-) = VB]:(-) +2aB or VBgl(-) = VB]:(-) + 0431J7F, (19)
VcG() = VeF() +2acC or VeGi() = VeF() + aclk.r, (20)

wherelg r stands for thé< x F' matrix with ones everywhere. In [5], it was suggested to use
the ALS technique again. By equating the gradient components & #tex solutions in the case
of thels-norm penalization are found to be equal to:

A =T//"(CoB)A[ACOB)T)(COB)A +204lr]', (21)
B =T} (CoA)A[ACOAT)COA)A +2a515] (22)
C=T5" BoOAA[ABOA)T)BOAA + 200l (23)
whereas, in the case of thenorm penalization, they are:
A-— [T(Ii‘)]K(C ©B)A — aA1,,F} [A(CoB)T)(CoB)A]", (24)
B = [T} (Co AN~ aplyr| [A(CO A)T)(CoAA], (25)
C= [Tg;”(B ®A)A — 0@1“} [ABoA)T)BoAA]" (26)

Finally according to [5], a “projection operatof].. is applied, whose aim is to enforce positive
entries (since this property is obviously not guaranteedheypenalty terms that have been
added).

K(—[A} , ]§<—[]§} , 6%[6] . 27)

+ + +

where[M = (m;;)]4 returns a matrix of the same sizelsk whose(i, j) entry ismax{e, m;;}
if € is a small constant (typically0—19).



3.2. Suggested approach

3.2.1. Loading matrices parameterization

One obvious way to constraint the loading matrices to haveegative entries is to resort to a
proper parameterization without modifying the cost funeti This kind of parameterization has
been recently used in nonnegative matrix factorizatiorpfdplems. To consider that a matrix,
sayA’, possesses only nonnegative terms, we can simply assutradltiis entries are defined
aSagj = afj. Using the Hadamard entry-wise product, it implies tAdt= A [ A, for some
(non unigue) matrixA.. This suggests the following cost function:

#(A,B,C) = F(ALA,BEOB,CHC) (28)
— |TLK (AT AA[CEC) o BEB)T [} =6wlF  (29)
— |TE — BEB)A(CEC) 0 (ADA) I} = [5m%  (30)
— T~ (CHO)A[BEB) o (ADA) [ = |63 (1)

The differentialdH of H has to be derived, and then we will be able to calculate thdigmna
components (thé x F' matrix Vo H, theJ x F matrix VgH and theK x F' matrix V¢cH) and
eventually the Hessian matrices.

With this goal, define the Frobenius scalar prod(st B) = trace{A”B}. We also have:
(A,A) = ||A]|%2 = trace{ATA}. As a consequence, the cost functitfA, B, C) can be
rewritten — in the first mode for example — as:

<5(1), 5(1)> = trace {55)5(1)}
T
= trace { (Tf;)”( —~(ADA)A[(CEHC)6 (BO B)]T) .

(Tf;)”( _(ADAA[CEHC)6 (BE B)]T) } .

The calculation ofi# (A, B, C) is performed in Appendix A, and is equal to:
d#(A,B,C) = (4 [A[] ((—6(1)) [(CHOC)® (BEB)A)],dA)
+(4[BO ((—6(2)) [(CEHC)® (ATA)A)],dB)
+¢[CcO ((—6(3)) (BEB)® (ADA)A)],dC) (32)

3.2.2. Gradient matrices
Using (32), the three gradient componeWg #, Vg H andV c#H can be derived:

VAH(A,B,C) = W — AT (-6 [(CEOC)o (BOB)A), (33)
VsH(A,B,C) = % =4B 0 ((—02)[(CLC)® (AT A)A), (34)
VcH(A,B,C) = % =4C 0 ((=d3)[(BOB)® (AL A)A). (35)



We can then build either the following + .J + K) x F matricesG*) andX*) :

VAH(A(’“), B®), C(k)) A k)
G® = | vgH(A® B®) c®)y ], XK = [BK (36)
VC’H(A(’“),B(’“),C(’“)) C (k)

or the following(I + J + K)F x 1 vectors:

vec{VAH(A®) BF) Ck)} vec{A(®)}
g = | vec{VgH(A® B® c®) | x*) = | vec{B*)} (37)
el

vec{VcH(AF) BF) Ck))} vec{C*)}

4. Preconditioned nonlinear conjugate gradient algorithms

To estimate the three loading matricksB andC, the cost functiort{ given in (29), (30) or (31)
has to be minimized. To that aim, we suggest to optimize tis ftmction# simultaneously
with respect to all variables using a preconditioned n@amconjugate gradient method [26].
In the classical gradient approach, varialflegiven in (36) is updated at each iteratibr(k =
1,2,...) according to the following adaptation rule:

XD = x ) _ G o xk+D = x(B) _ (k) gk) (38)
whereG*) is the gradient matrix given in (36) using (33), (34) and (86) () the step size
(the problem of the choice of the stepsize is treated in 8eeti3). We notice that when the
nonnegativity constraint no more holds, (33), (34) and @%)simply respectively replaced by
(10), (11) and (12).

In the preconditioned conjugate gradient approach, theemesdirection is initialized using

d® = —g() and updated at each iteratigraccording to the following adaptation rule:
X0+ = x®) 4 (0 g(0)
{ A0 = (MUY LD 4 g g(h) (39)

The (I + J + K)F x 1 vectord®) contains the search directions and the squdre J +
K)F x (I + J + K)F matrix M stands for the preconditioner. As noticed in [24][26], the
nonlinear conjugate gradient method can be preconditidoyedhoosing a preconditionévl
that approximates the Hessian matrix or at least its didgém¢he nonlinear conjugate gradient,
two expressions for the value gfare classically used: the Fletcher-Reevas) and the Polak-
Ribiere (3pr) formulas [24]:

T

(k1)) gkt )T gkt1)

FR = T (40)
gk’ glk)
k+ )T (k1) _ (k)

et _ 8 (8 g") @1)

g®) T g(k)



Flnally, as noticed in [24] (p. 102), if we reinitialize a gogate gradient method by setting
d® = —g() from time to time, we might get better performance than hystaictingd® by
one of the standard formulasd, combining (39) and (40) or (39) and (41)) at each iteration. |
our case, we have chosen to perform this “restart” eyéry J + K)F iterations.

4.1. Particular cases

4.1.1. Nonlinear conjugate gradient algorithm
Considering thalM = 17, ;, x)r in (39), we simply obtain the nonlinear conjugate gradient

method:
xEFD = x(k) 4 (g k)
{ A0+ gD 4 g q(h) (42)
which can be equivalently written in the ensuing matrix form
Xk = x®) 4 (FD k)
{ DEFD = gkt | gp®) (43)
with
Dgf) vec{DEf)} dff)
D® = Dg) ; d®) = vec{Dg)} = dg) (44)
p® veep®} ) \a®

The two expressions for the value®that are classically used remain the Fletcher-Ree%gg (
and the Polak-Ribiérespr) formulas (now written using matrices instead of vecto?g))|

(1) (GUHD GOy G 12

FR ™ <G(k),G(k)> - HG(k)H% ) (45)

ki (GETD gD _ gy (GgHt) G+ — glk) 3

PR (GW), G(R) = TEGIE (46)
And again, this algorithm is initialized by usin@®) = —G(!) and restarted after a given

number, say(! + J + K)F of iterations, withD() = —G(® as initial guess, to speed up the
convergence.

4.1.2. Quasi Newton approacheBHGS and DFP algorithms)
In (39), by settings = 0 and considering that the preconditiofekis a(/ + J + K)F x (I +
J + K)F approximation of the Hessian matrix given by (47):

M) — M) Ag(k)(Ag(k‘))T (M(k)AX(k))(M(k‘)AX(k))T
N (Ag®), Ax(k)) B (M®E) AxF) Ax®)) 7

(47)



we obtain the following adaptation rule as in the Broydeet¢ter-Goldfarb-ShanndBEGS)
algorithm:

Ax(k) _ X(k+1) _ X(k)

Agh) = gktl) _ g(k) e
Ag® (AgtN)T  (ME) AxE))(ME) Ax(k))T

M(kJrl) = M(k) + <§g(k’(),Agx(k’))> - : <M(k)A3(((k)’Ax(k)> )

Using the inversion lemma and denoting by= (Ag(k)l the inverse of the approximate

)TAx(k) ’
Hessian matri®MI(%) can be estimated. The algorithm in (48) can be rewritten:

Ax(®) — (k1) _ (k)
Ag®) = glk+1) _ g(k) (49)

(MDY= = (M) =1+ p [1 4 p(Ag™)T (ME) 7T AgH) ] AxB) (AxE)T
—pAxF) (AgEN)T(ME)) =1 — p(MFE)) =1 Ag) (AxENT

On the other hand, setting = 0 in (39), and considering that the preconditioddris a (I +
J+ K)F x (I +J+ K)F approximation of the inverse of the Hessian matrix as:

M) _ g AP AXOT (MO AgH) (MG Ag®)T (50)
we obtain the following adaption rule as in the Davidon-Ehetr-Powell algorithmFP):

X1 = ) RNk k)

Agh) = gktD) _ g(k) (51)
k+1) wa(k) . AxE(AxENT  (MF) AgR)) (M) Ag(R))T
MY =M (Ag),AxF)) <Ag<gk),M<k>Ag<kg>>

In the two cases, the algorithm is initialized using ") (or (M(1))~1), a symmetric,(I +
J+ K)F x (I +J+ K)F positive-definite matrix.

4.1.3. Levenberg-Marquardt algorithm

When the preconditionévl tends to loose its “hereditary positive-definiteness” propthrough
the iterations, and hence may fail to construct descenttibres, it is better to stabilize it using
trust region techniques that modityl by adding a multiple of the identity matrix as in the
Levenberg-Marquardt approach [17]:

«(k+1) — xk) _ ,U'(k)(M(k) + aI(I—}—J—}—K)F)ilg(k)

Axk) = xB+1) _ (k)

Agh) = gktl) _ g(k) .
Ag® (Ag)T (M) AxF)(MP) Ax(R)T

M(k+1) = M(k) + <Agg(k’()7Agx(k’))> B ( (M(k)A))(((k)’Ax(k)> )

10



whereq is a relaxation coefficient. We notice that by setting= 0 in (52), the quasi-Newton
algorithm (48) is recovered. On the other hand, by sefihg- I, ;. x)r in (52), or by taking
« large enough, the gradient algorithm in (38) is obtained.

4.2. Algorithmic complexity

Regarding the algorithmic complexity of tih&. S algorithm, the calculation has been done in [7].
It amounts taD(7F?(JK +KI+1J)+3FIJK). For the gradient algorithm, the computational
cost per iteratiork approximately amounts t0 (61 F'JK ), since for each of the three gradient
components, we have four operations: 2 matrices protittccts<hatri-Rao produét+ 1 addition.
This computational cost is thus governed by the calculatioine matrixG. The total number
of arithmetic operations i§(6/F.JK N;;) if N; stands for the total number of iterations to
reach convergence. For the gradient algorithm with northétyaconstraint, the algorithmic
complexity is nearly the samee. O(61FJK) and the total number of arithmetic operations is
O(61FJK Ny) too.

For the nonlinear conjugate gradient method (in both cesewith or without the nonnegativity
constraint), the algorithmic complexity approximativelynounts tcO(6FIJK + 2(1 + J +
K)F?), since the calculation of adds two matrices multiplications.

For theBFGS method (Newton-Raphson approach, in both casesvith or without the non-
negativity constraint) the algorithmic complexity perréton amounts t@ (61 FJK + 4(1 +
J+ K)?F? + (I 4+ J + K)?F3) since 4 matrices multiplications and one linear systemisgtv
have been added. Finally the computational cost per iterati O((I + J + K)3F3) which
implies that it is mainly governed by the linear system suvi

If the PC latter is avoided, using (49) instead of (48), theypatational cost is reduced to
O4(I +J + K)2F?).

For theDFP method, (in both casese. with or without the nonnegativity constraint) the al-
gorithmic complexity per iteration amounts t6:(4(I + .J + K)2F?). Finally, for the precon-
ditioned linear conjugate gradient method (in both caseswith or without the nonnegativity
constraint), the algorithmic complexity per iteration amts to~ O((1+.J + K)2F3) too, since
the overhead due to the calculationfis negligible. These results are summarized in Table 1.

4.3. How to choosg(¥) ?

4.3.1. Enhanced line sear¢gLS)

The ELS enhancement is applicable to any iterative algorithm, iglexi the optimization crite-
rion is a polynomial or a rational function. It searches fu best stepsizg,,: that corresponds
to theglobal minimumof (28), (29), (30) or (31). It requires the algebraic miration of the

'The cost for multiplying theV x M matrix B by the M x P matrix A is assumed (N M P).

2The cost for calculating the Khatri-Rao product betweenhe M/ matrix B by the P x M matrix A is assumed
O(NMP).

3The cost for inverting theV x N matrix B is assumed (N?) (Gauss-Jordan elimination). This cost could be
reduced using another algorithm.
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following quantity w.r.t.u:
AR+ B+ kD) — 9 [( A® L DAY E (AR 4 DA®),
B® + D™ 5 (B® + uD®), (C® + D) (C® + chUf))] . (53)

As shown in Appendix B, this quantity is a 12th-degree poigred, whose expression is given
by (we opt to omit the dependency upon the parametekstofsimplify the various expressions):

12
= Z ainui’ (54a)
i=0
11
dH() =D (i + Daipapd', (54b)
=0

where the thirteen coefficients, for i = 0,...,12 are given by (see Appendix B to get the
definition of K ;), wherei varies froml to 6):

agp = trace [KOKO ] (55a)
ay = trace [2K1K0 ] (55b)
as = trace [2K2Ko” + K1K; ] (55¢)
az = trace [2 (K3Ko” + K2K17)] (55d)
as = trace [2 (K4Ko" + K3K1") + KoK, (55€)
as = trace [2 (KsKo” + K4K17 + K3K2”" + K3Ka")] (55f)
ag = trace [2 (KeKo” + KsK1” + K4K2") + K3K3' | (550)
a7 = trace [2 (K6K1 + KsKo" + K4Kj3 )] (55h)
as = trace [2 (K6K2 +KsK3 ) + KKy (55i)
ag = trace [2 (KeKs” + KsKa')] (55j)
a1 = trace [2KeK4" + K5K5” | (55k)
a1 = trace [2K6K5T} (550
a1p = trace [KSKGT] (55m)

By differentiating the expression 6{ with respect tq., we obtain the polynomial of degrdé
given in (54b). The optimal stepsiz&,,: then corresponds to the real and positive root of the
11-order polynomial defined in (54b) leading to the globahimium of criterion (54a).
Concerning the algorithmic complexity, the cost is now dulbg the calculation of the 13 coef-
ficients of the 12th-degree polynomial given in (54a). Theawied results are summarized in
Table 2.
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4.3.2. Backtracking

The main problem with the enhanced line search is its contipnt cost. As already noticed, the
cost in theELS version of the algorithms is dominated by the calculatiothef13 coefficients
of the polynomial we intend to minimize. An alternative apgch, consists of computing the lo-
cally optimal step size (called backtracking) and to aksrit withELS every 10 or 20 iterations
for example. The main advantage of such an approach is itsdomputational cost. Backtrack-
ing is a standard technique, which attempts to determindfigisatly long step size while still
producing some amount of decrease in the cost function. Asisetjuence, the method implies
to start with a step large enough (for example a unit step size) and to decredseaifively by a
factorg i.e. u = S (with 5 commonly chosen betweénl and0.8) until the Armijo condition
[1][18] given in (56) is fulfilled. The resulting: is the stepsizg:.(*) used in the updating rule
of the optimization algorithm. We still assume the same @wsttion # given by (29). During
the updating stage of the considered algorithm, it becokes + yDa, B + uDp, C + uDc)
given in (53). Thus, with our notations, the Armijo conditiceads:

H(A + puDa,B + pDg,C + uD¢) < H(A,B,C)+ apgld (56)

wherea is a constant parameter often chosen withior 4, 10~!], d is the descent direction
given in (44) andz is the gradient given in (37). Sinekis a descent direction, we hagéd < 0
(in the specific case of the gradient algorithin= —g, whereasl = —M~!g for quasi-Newton
algorithms).

It is also possible to combine the backtracking method togetvith a search by adjustment
method, whose advantage is to include a “memory” of the prevsteps. For example, if the
stepsizen, found during the backtracking stage is lower than the ingtap called;.g, o is
decreased (this new value will be used for the next backingcstages) by a factgs. On the
opposite, if it is higher thap, 1 is increased by another factar> 1.

5. Computer simulations

Simulations are now provided to illustrate the behavior #redperformances of the proposed
NTF algorithms. With this goal, we address the problem of fluoease analysis. If a solution
is excited by an optical excitation, several effects may toelpced: Rayleigh scatter , Raman
scatter and Fluorescence. At low concentrations, the Bambert law can be linearized so that
the fluorescence intensity rather accurately follows the@hbelow [27, 16]:

I(Ap, Ay k) = Ioy(Ap) €(Ae) ¢

wheree denotes absorbance spectrum (sometimes called emissotnsp), )\ is the fluores-
cence emission wavelength, the excitation wavelengthy the fluorescence emission spectrum
andcy, is the concentration of the fluorescent component in samypieberk. Provided it can
be separated from diffusion phenomena, the fluorescenceoptenon allows to determine the
concentration of a diluted (fluorescent) chemical compgraemd possibly to recognize it, thanks
to its fluorescent spectrum.
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A difficulty appears when the solution contains more thanfar@escent solute. In such a case,
the overall fluorescence intensity is an unknown linear doatlon of component fluorescence
intensities:

I(Af, Aes k) = 1o Z’Y@()\f) €r(Ae) Cr g (57)
¢

ck,¢ Stands for the concentration of theh fluorescent solute in sample It is then necessary to
separate each component contribution. Assuming that a fininber of excitation and emission
frequencies are measured, so that the measurements a@ ist@ finite array of order 3 and
finite dimensions, say x J x K, t;j, = I(A¢(i), Ae(j), k). Itis clear, by comparing equations
(57) and (2), that thanks to uniqueness of the CP decompsine can identifyy, (A ¢ (7)) with

aif, €(Ae(j)) With b;r and ¢, , with ¢;y. Hence, the computation of the CP decomposition
yields emission spectra of each component as well as the@ecdration. There is no need to
know in advance what are the components expected to be piegba solution.

Two tensorsl; andT, have been simulated, usidg= 4 components whosgl x 47 emission-

excitation matricesgib?, Vi = 1,...,4) were very similar to the ones displayed in Fig. 4.

i
These images [20] were provided by the PROTEE-EA 3819 Labigrat the South Toulon Var
University, France. Two random positive matric€shave been used () x 4 matrix and a
128 x 4 matrix). The first tensd'; is 71 x 47 x 10, and the second tens@l, is 71 x 47 x 128.

To establish a comparison between the different algorithmesneed an error index. We have
chosen to usefl = | T — 'T‘H% or Eqz = 10log,o(E), with T = Zle ar ®Bf ®cy anda, b
andc the estimated factors. The best results are obtained wiegrtbr index® is found to be
close to O in linear scale{oc in logarithmic scale).

In the left column of Fig. 1, we have compared the resultsinbthwithELS versions of various
algorithms {.e. ELS is executed at each iteration, except for the so-cale8-Cichocki and
NTF-HALS algorithms, in which there is n&ELS enhancement) versus iterations, while the
results are represented versus the number of arithmeti@atipes in the right column of the
Fig. 1. For Figures 1, 2 and 3, all the algorithms were init&d using Bro'sDTLD algorithm
[27]. For theALS-Cichocki algorithm with eitherl;-norm orl,-norm regularization, we have
chosenay = ap = ac = 1079 (it is the reason why the performances are bounded). For
the NTF-HALS algorithm, we have implemented the algorithm describedp.& [5] . We can
observe that both quasi-Newton algorithrB&GS andDFP) have nearly the same behavior. The
conjugate gradient and gradient algorithms require mone to reach convergence. However,
the conjugate gradient algorithm offers a good comprometevéen speed and performances
and contrary to quasi-Newton algorithms, it does not regtlie estimation of th¢/ + J +
K)F x (I 4+ J+ K)F Hessian matrices (or their approximation) and as a conseguiecan be
applied to very large tensors. Even though ME--ALS andNTF-HALS algorithms are often
the fastest algorithms during the first iterations , we caseole in the bottom of Fig. 5, that the
reconstructed emission-excitation matrices are not saciés good (even if the reconstruction
error was weak; the estimated emission-excitation matiase to be compared with the true
emission-excitation matrices that were perfectly estadan the Fig. 4 when there is an error
in the model (heref’ = 5 was assumed whereas four components were effectivelyntrese
the mixture). In the chosen example (where all the algorsthvere initialized using the same
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random initialization), the algorithms we propose seem g&nsitive to this kind of model error
as observed in the top of the Fig. 5. Finally, a good way to wiishi the global computational
time consists of alternating betweBhS (say, everyl0 or 20 iterations) and backtracking, as it
can be observed in the Fig. 2 and 3.

6. Conclusion

In this article, we have described several algorithms ableompute the minimal polyadic de-
composition of nonnegative three-way arrays. The calanradf gradient matrices has been
performed, allowing to implement preconditioned nonlineanjugate gradient, gradient and
quasi-Newton approaches. Two versions of each algorithra been studied: the enhanced line
search ELS) version, and a backtracking version alternating VittS. The algorithmic com-
plexity has been provided too. Finally, computer simulagibave been performed in the context
of data analysis, in order to demonstrate both the good lmhafthe algorithms we proposed,
compared to others put forward in the literature, and the#fuiness in data mining applications.
As demonstrated in Section 5, the judgement of an algorithoulsl not solely rely on the re-
construction error and on computational complexity, butLsth also take into account the error
in the loading matrices obtained.

Appendix

Appendix A. Calculation afH (A, B, C)

We use similar properties regarding the trace as thosedgiresed in [9]. Considering three
M x M square matrice®, D, andDj3 and four rectangular matricdd,, D5, Dg and D~
(resp.M x N, N x M, M x N andM x N), we have the following properties [19]:

Py. (D4D5)T = DIDL.

P;. trace {D1} = trace {D7 }.

Py. trace {D; + D2} = trace {D;} + trace {D2}.

P3. trace {D1D2D3} = trace {D3D1D2} = trace {D2D3D1}
= trace {D1Dy} = trace {DyD; }.

Py. trace {D4D5} = trace {D5D,}.

Ps. d(DT) = (dD,)".

Pg. d(Dng) =dD;Dy + D1dDs.

P;. d(D, + Dy) = dD; + dD».

Pg. d(trace {D;}) = trace {dD; }.

Py. d(D; I D,) = dD; I D, + D, BdD, = d(D; B D;) = 2D, B dD;.

Pip. D, Dg = Dg LDy,
P;. (D40 Dg)T =D O DE.
Pyy. trace{DI(Dg 1 D7)} = trace{(D} I D{)D7}.
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Like in [8], our aim is to obtain:

OH(A,B,C)

dH(A,B,C) = (=

JdA) +

{

OH(A,B,C)

0B

,dB) +

OH(A,B,C)

¢ 99

(58)

whereaa—A means the partial derivative with respect to the matix

Or, using circular permutations and the aforementioneggnesP; — Py , we have:

dH(A,B,C) = trace {d(é(Tl))é(l)} + trace {d(Tl)dd(l)}

= 2trace {5a)d5(1)} = 2trace {6g)d6(2)} = 2trace {ég)dé@}

— Atrace {—5{1)(A HdA)A[(CEC) o (BOB) -

—6(3)(CEdC)A [(BEB)

@(ADA)]T}

= trace {4 <A (CHC)e(BO B)]T (—5(1))T

-+ trace {4

+ trace

(AllcTC) @ (ADA)" (-50)"

1(A(BOB)® (ADA) (~6)"

)
)
)

(ABdA)}
(B DdB)}
(ela dC)}

Using propertyP 1o — P12 ([19], p. 53) and the fact that = A7 sinceA is diagonal , we have:

dH(A,B,C) = trace{ [

/N

Al(CEC)o BEB)T (—5(1))T) o AT] dA}

+trace {4 | (A[(CEC) 0 (AT A)T (-5,)") OB | dB}
+trace {4[(A[BOB) o (AT A)" (~43)") B CT| dC}
—trace {4[A T (~6(1) [(CTIC) © (BIB)A)]" dA}
+trace{4[BD (COC)e (AT A)A)] dB}
+trace{ [CB ) [(BEB)o (ADA)A)]" dC}
(4[AE(-6¢ CDC) (BEOB)JA)],dA)
(4[BE (- 5( (CTC)®(AGIA)A)],dB)
(4[CE (=43 (BOB)© (AT A)A)],dC)
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By identification with (58), it is finally found that:

VAaH(A,B,C) = w =4A 0 ((-6p)) [(CEC)® (BEB)A),  (59)
VeH(A,B,C) = % = 4B ((—02)[(CLC)® (AT A)A), (60)
VGH(A,B,C) = % —4CE ((-65)(BEB) & (ADA)A).  (61)

Appendix B. Enhanced line search
We intend to minimize the following expression with respeci:

H() = [ T5/5~[(A + uDa) B (A + uDa)JA
[((C + uD¢) 3 (C + uDg)) © ((B + uDg) E (B + uDg))]" ||?

First, to clarify the expressions, we define some intermedjaantities:

Eq— ADA
Ei =ACDA+DAA=2ADy
Es =DaA DA
Fo = (CEC) o (BLUB)
F1=(CUDc)o(BLB)+ (DcC)o (BLB)
+(CEC) o (BEDg) + (CEC) o (D [ B)
=2[(CHDc)®(BEB)+(CHC)o (BUDg)
F; = (CHDc)® (BHUDg) + (CHDc)® (DplIB) + (DcC)® (BHDsg)
4+ (DcEC) o (D EB) + (DeEDe)® (BAB) + (CHC)® (D £ Dg)
— 4[(CEDe)® (BEDg)] + (DeEDe) @ (BEIB) + (CEHC) ® (Dg £ Dg)
F3 = (CEHDg) ® (Dg B Dg) + (D¢ I C) ® (D [ Dg)
+ (DcEDe) ® (BEDg) + (Do EDe) ® (D [ B)
—2[(CEDe)® (Dp EDg) + (Dc EDc) ® (BEDg)]
F4 = (DcEDg) ® (Dg [ Dg)

By developing, it leads to:
H() = 1T = [Eo + Eip + Eop’JA[Fap® + Fap® + Fapr® + Frpu + Fol ||
= |(~E2AF )b + (=B AF,T — EoAF3T))°
+ (~EoAF 4T — E1AF3T — ExAF )t + (“EgAF3T — E1AF,T — EoAF T3
+ (~EoAF" —EjAF,T — ExAFT)p? + (“EoAF T — EqAF )i

+ Ty — EoAFo" |
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Again, we define intermediate variables:

Koszi{K — EoAFo” K4=—FEoAF,T — E1AF;7 — EoAF,T
Ki=—EoAF;T — E1AFT Ks=—E,AF," — E;AF3T
K2:—E0AF2T — ElAFlT — E2AF0T KGZ—EzAF4T

K3=—EoAF3" — E;AF,” — EoAF, T

H(.) = trace { (Keu® + Ksp” + Kap' + Kap® + Kap® + Kap+ Ko)
(Kep® + Ksp® + Kap* + Kap® + Kop? + Kqp + KO)T}
= trace { (K¢Kg' )u'?

+ K3Ko? + KoK 7 + K1 Ko + KoK3T)p?
+ (K2Ko” + K1K1 7 + KoKa ) u?

+ (K1Ko” + KoK17)u

+K0K0T}

The thirteen coefficientsy, . . . , a1 are finally obtained by identification.
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Method Cost per iteration
General case | Casel =J =K
ALS (without positivity constraint) TJK+KI+1J)F?+3IJKF | 21(IF)? + 3FI3
ALS-Cichocki 3IJKF 3FI3
Gradient 6lJKF 6F1°
Nonlinear conjugate gradient 6IJKEF +2(1+J+ K)F? 6F 13+ 61F?
Gauss-NewtonRFGS) (I+J+K)3F3 2713 F3
BFGS using (49) 41+ J + K)*F? 3612 F?
Gauss-Newton§FP) 41+ J + K)*F? 3612 F?
Levenberg-Marquardt (I+J+K)3F3 273 F3
Preconditioned nonlinear conjugate gradignt (I+J+K)3F3 2713 3

Table 1: Algorithmic complexity of various algorithms

M ethod

Cost per iteration

General case

| Casel=J=K

ALS without positivity constraint

7(JK + KI+1J)F*+ 111JKF +91JK

20I%2F? + 11I°F + 913

Gradient

9K JI? +13IJKF

491* +131°F

Nonlinear conjugate gradient

2(I +J + K)F? + 49K JI? + 13IJKF

6IF?% +491* + 1313 F

Gauss-NewtonBFGS)

(I+J+K)3F?+49KJI? + 13IJKF

2713 F3 + 491* + 13I3F

Gauss-NewtonBFGS with (49))

A1+ J+K)?F?+49KJI? + 131JKF

36I1%2F2 + 491* + 13I3F

Gauss-NewtonjFP)

41+ J+ K)?F?+49KJI? + 131JKF

36I2F2% 4+ 491* + 13I°F

Levenberg-Marquardt

(I+J+KP3F+49KJI? +13IJKF

2TI3F3 4+ 491* + 13I°F

Preconditioned conjugate gradie

nt (1 +J+ K)3F3+49KJI% + 13IJKF

2TI3F3 4+ 491* + 13I°F

Table 2: Algorithmic complexity for th&LS version of the different algorithms
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Figure 1: Reconstruction error (dB) versus the number odiitens (left) using a nonnegatié@ x 47 x 10 tensor (top
left), a nonnegativgl x 47 x 128 tensor (bottom left). Reconstruction error (dB) versusrtbmber of arithmetic
operations (right) using a nonnegative x 47 x 10 tensor (top right), a nonnegativ@ x 47 x 128 tensor (bottom
right). The same legend is used for the 4 charts. We shouldatiaption to the fact that a small reconstruction
error does not mean that loading matrices are correctlynagtid; in fact, the number of components should also be
correctly detected (cf. Figs. 4-5).
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Figure 4: Casd factors, assuming’ = 4, the 4 estimated emission-excitation images that peyféicthe emission-
excitation images of the 4 considered fluorophores.
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Figure 5: Casd factors, assuming’ = 5, the 5 estimated emission-excitation images using theugatg¢ gradient
algorithm with positivity constraint (top) and tHeLS algorithm with positivity constraint projection based ttoon).



