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Abstract. Addition chains are classical tools used to speed up expo-
nentiation in cryptographic algorithms. In this paper we proposed to use
a subset of addition chains, the Euclidean addition chains, in order to
define a new public key cryptosystem.

1 Introduction

The problem of minimizing the number of operations to compute xn has a long
history which involves al-Kashi and started at least in India, where the binary
representation of n was already considered 200 B.C .

It appeared that this problem is deeply connected to this of finding short
addition chains leading to n as explained in [6]. The name addition chain seems
to come from Sholz paper [11].

Definition 1. An addition chain of length s computing an integer k is a se-
quence u0, u1, . . . , us of positive integers such that :

1. u0 = 1 and us = k,
2. ∀i ∈ [1, s], ui = uj + ut with 0 ! j, t < i.

Example : (1, 2, 3, 6, 12, 15, 24, 39) is an addition chain of length 8 computing
the integer 39, since 2 = 1 + 1, 3 = 2 + 1, 6 = 3 + 3, 12 = 6 + 6, 15 = 12 + 3,
24 = 12 + 12, 39 = 24 + 15.

The problem of computing l(n), the shortest length s of such a sequence
computing n, is of importance and has given raise to numerous papers in the
last century. For example, one can quote the papers of Brauer [2] , Yao [13], and
the survey of Subbarao [12]. Two problems seem to have played the role of a red
thread. The first one is to give sharp upper bounds for l(n). As for example, it
is well known that

log n + log v(n) − 2.13 ! l(n) ! $log n% + v(n) − 1

where v(n) is the Hamming weight of n. The Sholz conjecture, namely ∀n ∈
N∗, l(2n − 1) ! n − 1 + l(n), also played an important role in the development
of the theory of addition chains.
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c© Springer-Verlag Berlin Heidelberg 2010



An EAC Based PKC 285

The second problem is to find efficient algorithms to compute short chains for
a given integer n. Both problems are still considered difficult. For recent results,
one can see [1].

There is one special class of addition chains which have been well studied :
the Brauer chains or star chains. This class is introduced in [2].

Definition 2. A star addition chain or Brauer chain is a particular addition
chain where ∀i ∈ [1, s], ui = ui−1 + uj with 0 ! j < i.

Example : (1, 2, 3, 5, 8, 13, 26, 39) is a star addition chain of length 8 computing
the integer 39.

These chains are well fitted for computations. Indeed at each step, to compute
ui, the last term ui−1 (already in the accumulator) is used. Recently, Meloni [8]
studied a subclass of star chains : the so called Euclidean addition chains.

Definition 3. An Euclidean addition chain (EAC) computing an integer k is
an addition chain which satisfies u1 = 1, u2 = 2, u3 = u2 + u1 and ∀ 3 ≤ i ≤ s−
1, if ui = ui−1+uj for some j < i−1, then ui+1 = ui+ui−1 (case 1) or ui+1 =
ui + uj (case 2).

As an EAC is a strictly increasing sequence, case 1 will be called big step (we
add the biggest of the two possible numbers to ui) and case 2 small step (we
add the smallest one).

Example : (1, 2, 3, 4, 7, 11, 18, 25, 32, 39) is an Euclidean addition chain of length
10 computing the integer 39.

In [8], Meloni showed how to use such a chain (with a specific point addition
algorithm) to compute nP where P is a point on an elliptic curve. Euclidean
addition chains are also used in [5].

Computing an EAC for an integer n is easy : choose an integer g < n such that
(g, n) = 1 and apply Euclidean algorithm to n and g (see §2). In this way, one
can find the ϕ(n) EAC computing n (where ϕ is the Euler’s totient function), but
very few is known about the length of the chains obtained. A general asymptotic
result due to Yao and Knuth [14] states that the average length of such a chain is

6π−2(ln n)2 + O(log n(log log n)2).

To find short EAC, Meloni suggests in [7] to choose g close to n
φ (where φ is the

golden ratio) adapting this way a heuristic proposed by Montgomery [9] in the
context of Lucas chains.

Nowadays, there are no known methods to find a chain of fixed length comput-
ing a prescribed integer n. The exhaustive method of listing the integers coprime
with n and applying Euclidean algorithm will be clearly inefficient for large n as
ϕ(n) will be large too.

We will introduce in this paper a subset M0
" of EAC of length 2$ such that

two distinct elements of M0
" will compute two different integers. Moreover, if

c ∈ M0
" computes an integer n, we will describe a simple and efficient method

to determine c from the knowledge of n.
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These remarks are our point of departure to propose a public key cryptosystem
based upon EAC. Using chains of the set M0

" induces a trapdoor in the problem
of finding a chain of fixed length computing a prescribed integer.

This paper is organized as follows. Section 2 deals with links between Eu-
clidean addition chains and the Euclidean algorithm. In section 3 we define the
set M0

" and give some of its properties. In section 4 we describe our cryptosys-
tem. Section 5 deals with its security. We detail the scrambling actions of the
cryptosystem, and show why they are important. We make links between dif-
ficult problems and the problem an intruder will have to solve to break the
cryptosystem. We also discuss the parameters of the cryptosystem. In section 6
we discuss the performances of the cryptosystem. Section 7 gives a useful toy
example which can help to better understand the cryptosystem. We conclude in
section 8.

2 Euclidean Algorithm and Euclidean Addition Chains

For the sequel of the paper, we will use an equivalent definition for EAC. This
way EAC can be in practice interpreted as binary sequences.

Definition 4. An Euclidean addition chain (EAC) of length s is a sequence
(ci)i=1...s with ci ∈ {0, 1}. The integer k computed from this sequence is obtained
from the sequence (vi, ui)i=0..s such that v0 = 1, u0 = 2 and ∀i " 1, (vi, ui) =
(vi−1, vi−1+ui−1) if ci = 1 (small step), or (vi, ui) = (ui−1, vi−1+ui−1) if ci = 0
(big step). The integer k associated to the sequence (ci)i=1...s is vs + us.

Example : From the EAC (1000111) one can compute the integer 39 as follows :
(1, 2) 1→ (1, 3) 0→ (3, 4) 0→ (4, 7) 0→ (7, 11) 1→ (7, 18) 1→ (7, 25) 1→ (7, 32), which
corresponds to the EAC 1, 2, 3, 4, 7, 11, 18, 25, 32, 39.

From now on, we will define the length of an EAC as the length of the corre-
sponding binary sequence (ci)i=1...s.

Let us observe the progress of the substractive Euclidean algorithm when ap-
plied to coprime integers (see algorithm 1) in order to stress the link with EAC.
The assertion {(v, u) = 1, v < u, u " 2, v " 1} is an invariant of Algorithm 1.
Moreover the variable u strictly decreases for each turn of the while loop. Hence
the algorithm ends with u = 2 and v = 1.

Algorithm 1. Substractive Euclidean algorithm applied to coprime integers
Require: (v, u) with (v, u) = 1, v < u and v " 1.
1: while u > 2 do
2: if u " 2v then
3: (v, u) ← (v, u − v)
4: else
5: (v, u) ← (u − v, v)
6: end if
7: end while
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Example : Starting from (5, 17) the algorithm successively computes (5, 12),
(5,7), (2, 5), (2,3) and (1, 2) where bold couples mean that u < 2v. Now, if we
read the sequence of the couples from the last one to the first one, notice that
at each step the couple (v, u) is replaced by (u, u + v) or by (v, u + v). That is
to say that reading the couples computing by Algorithm 1 from the last one to
the first one we obtain an addition chain (as defined in definition 4) which can
compute the initial input u.

Example : Starting from the previous example, we get (1, 2) 0→ (2,3) 1→ (2, 5)
0→ (5,7) 1→ (5, 12), we obtain this way the EAC 0101 which computes the integer
17.

Taking into account this remark, we can easily define an algorithm computing
an EAC for an integer k :

Algorithm 2. ComputeEACfor(k)
Require: k " 4.
1: Randomly computes an integer g, such that g > k/2 and (g, k) = 1.
2: (v, u) ← (k − g, g)
3: while u > 2 do
4: if u " 2v then
5: (v, u) ← (v, u − v)
6: Output 1
7: else
8: (v, u) ← (u − v, v)
9: Output 0

10: end if
11: end while

Remark 1. Notice that in Algorithm 2, we choose g > k/2. Indeed suppose that
g ! k/2 , then the first step of Algorithm 1 will compute the couple (g, k − g)
from (g, k). Now using the same algorithm with input (g′, k) where g′ = k − g,
we will obtain after the first step the couple (k − g′, g′) = (g, k − g) because
k − g " k/2. Hence algorithm 2 applied to (g, k) or (g′, k) will lead to the same
EAC.

Notice also that, since g > k/2, the initialization (v, u) ← (k − g, g) corre-
sponds to the first execution of the While loop of Algorithm 1.

Remark 2. This algorithm outputs the mirror image of the EAC computing k
when starting from an integer g (i.e. the sequence read from right to left). We
will see in next section, that an EAC and its mirror image computes the same
integer k.

3 Notations and Properties

We give in this section some notations and important results for the sequel of
this paper.
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Definition 5. Let n > 0, we define :

. M as the set of EAC,

. Mn as the set of EAC of length n > 0,

. χ the map from M to N, such that for m ∈ M, χ(m) be the integer computed
from the EAC m,

. ψ the map from M to N × N, such that for m ∈ M, ψ(m) = (vs, us) if
m ∈ Ms,

. S0 the matrix
(

0 1
1 1

)
corresponding to a big step iteration,

. S1 the matrix
(

1 1
0 1

)
corresponding to a small step iteration.

With these notations, for m = (m1, . . . , ms) ∈ Ms, we have :

ψ(m) = (1, 2)
s∏

i=1

Smi and χ(m) = 〈(1, 2)
s∏

i=1

Smi ,(1, 1)〉.

Let r and s be two integers, we will denote by mm′ the element of Mr+s obtained
from the concatenation of m ∈ Mr and m′ ∈ Ms. This way, for n > 0, mn is a
word of Mnr if m ∈ Mr.

Proposition 1. Let n > 0, Fi be the ith Fibonacci number (defined by F0 = 0,
F1 = 1 and Fn+1 = Fn + Fn−1) :

. ψ(0n) = (Fn+2, Fn+3), ψ(1n) = (1, n + 2), χ(0n) = Fn+4, χ(1n) = n + 3,

. ∀m ∈ Mn, χ(1n) ! χ(m) ! χ(0n),

. Sn
0 =

(
Fn−1 Fn

Fn Fn+1

)
, Sn

1 =
(

1 n
0 1

)
.

Proof. All these properties can easily be proved by induction.

Proposition 2. Let n > 0 and m = (m1, . . . , mn) ∈ Mn, then :

. χ(m1, . . . , mn) = χ(mn, . . . , m1),

. the map ψ is injective.

Proof. We refer to [6] for standard link between EAC, Euclidean algorithm and
continued fractions, which explains the first point. It is also explained that if
ψ(m) = (v, u) then (u, v) = 1 and the only chain which leads to (v, u) is obtained
using the substractive version of Euclidean algorithm. ,-

From proposition 2 the restriction of χ to Mn is not injective because of the
mirror symmetry property.

Proposition 3. Let M0
n be the subset of M2n whose elements are EAC begin-

ning with n zeros. The restriction of χ to M0
n is injective.
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Proof. Let x and y be two words of M0
n such that χ(x) = χ(y), and m0n,

m′0n, be the words obtained when reading x and y from right to left. Using
the symmetry property, we have χ(m0n) = χ(m′0n). Let (v, u) = ψ(m) and
(v′, u′) = ψ(m′), then

χ(m0n) = χ(m′0n)
⇔ Fnu + Fn−1v + Fn+1u + Fnv = Fnu′ + Fn−1v′ + Fn+1u′ + Fnv′

⇔ Fn+2(u − u′) = Fn+1(v′ − v) .

Since (Fn+1, Fn+2) = 1, then Fn+2 divides v′ − v. Now from proposition 1, since
v and v′ are less or equal than Fn+2 and nonzero, then |v′−v| < Fn+2. It implies
that v = v′ and so u = u′. Hence ψ(m) = ψ(m′), so m = m′.

Proposition 4. Let cg,k be the EAC computing the integer k from the integer
g using Algorithm 2 then, cg,k ends with n zeros if and only if the nth couple
computed by Algorithm 2 is equal to (kFn+1 − gFn+2, gFn+1 − kFn) if n is even
or (gFn+2 − kFn+1, kFn − gFn+1) if n is odd.

Proof. Let us suppose that cg,k ends with n zeros. It means that the nth couple
computed by Algorithm 2 is equal to (k − g, g)S−n

0 . Now since Fn−1Fn+1 −

F 2
n = (−1)n (Cassini’s identity), then S−n

0 = (−1)n

(
Fn+1 −Fn

−Fn Fn−1

)
. Hence (k −

g, g)S−n
0 = ((−1)n(kFn+1 − gFn+2), (−1)n(gFn+1 − kFn)).

The converse can be easily proved by induction. ,-

Corollary 1. Let cg,k be the EAC computing the integer k from the integer g
using Algorithm 2. The chain cg,k ends with n zeros if and only if :

– k Fn+2
Fn+3

< g < k Fn+1
Fn+2

, if n is even.

– k Fn+1
Fn+2

< g < k Fn+2
Fn+3

, if n is odd.

Proof. Let us suppose that cg,k ends with n zeros. From the preceding propo-
sition, the nth couple computed by Algorithm 2 is ((−1)n(kFn+1 − gFn+2),
(−1)n(gFn+1−kFn)) and satisfies (−1)n(kFn+1−gFn+2) < (−1)n(gFn+1−kFn).
Thus (−1)nk Fn+2

Fn+3
< (−1)ng. Now taking into account only the n− 1 first steps,

we also must have (−1)n−1k Fn+1
Fn+2

< (−1)n−1g.
An easy induction proves the converse. ,-

The previous result means that to find an EAC (ending with n zeros) which
computes an integer k, algorithm 2 has to be run with an integer g lying in
a specific interval I. Let k ∈ χ(Mn

0 ) and ck be the element of Mn
0 such that

χ(ck) = k. Let c̃k be the mirror of ck, then c̃k ends with n zeros. The size S of
the interval I is |k Fn+1

Fn+2
− k Fn+2

Fn+3
| which is equal to k

Fn+2Fn+3
. If k < Fn+2Fn+3

then S < 1, hence at most one integer lies in I. Now since k has been computed
from a chain beginning with n zeros, then there is exactly one element g in I
which can compute c̃k from k using algorithm 3.
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Algorithm 3. InverseChi(k, n) for k ∈ χ(Mn
0 )

1: if n is even then
2: g ← #k Fn+1

Fn+2
$

3: else
4: g ← #k Fn+2

Fn+3
$

5: end if
6: (v, u) ← (k − g, g)
7: while u > 2 do
8: if u " 2v then
9: (v, u) ← (v, u − v)

10: Output 1
11: else
12: (v, u) ← (u − v, v)
13: Output 0
14: end if
15: end while

Remark 3. Since c̃k ends with n zeros, we can begin the preceding algorithm
with :

0: Output n zeros

and (using proposition 4) modify the line 6 as follows :

6: (v, u) ← ((−1)n(kFn+1 − gFn+2), (−1)n(gFn+1 − kFn)).

Remark 4. Let 0ny be a chain computing the integer k. The algorithm was
designed to compute the chain ỹ0n where ỹ is the mirror of y. But because of
the progress of the algorithm the chain is sent back from the left to the right.
Hence the last n bits returned are exactly the word y.

4 The Cryptosystem

The cryptosystem is composed of three algorithms :

– Genparam which takes as input two integers n and t (n > t) and returns the
public key pk and the secret key sk of the system,

– Encrypt which takes as input a binary sequence of size n − t, the public key
pk and returns the cryptogram c,

– Decrypt which takes as input the cryptogram c, the secret key sk and return
the plaintext m.

Let us give some details on the decryption procedure. To this end, we will denote
by χα,β(m) the integer computed from the EAC m when starting from the couple
(α,β) instead of (1, 2).

Let M be the matrix equal to
∏n−t

i=1 Smi so that χα,β(m) = α(M11 + M12) +
β(M21 + M22). First notice that if d is the gcd of (α,β) then χα/d,β/d(m) =
χα,β(m)/d, hence we will only consider the case where gcd(α,β)=1.
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Algorithm 4. Genparam(n, t)
1: Randomly computes a prime p > F2n+4

2: Randomly choose λ ∈ [1, p − 1]
3: Randomly choose x ∈ {0, 1}t

4: (δ1, δ2) ← ψ(0nx) = ψ(Fn+2,Fn+3)(x)
5: (a, b) ← (λδ1 mod p,λδ2 mod p)
6: d ← gcd(a, b)
7: pk ← (a/d, b/d)
8: sk ← (d, p,λ−1 mod p, x)
9: return (pk, sk)

Algorithm 5. Encrypt(pk, m : binary seq. of length n − t)
1: c ← χpk(m)
2: return c

Algorithm 6. Decrypt(sk, c)
1: y ← λ−1dc mod p
2: cy ← InverseChi(y, n)
3: m ← last n − t bits of cy (see Remark 4.).
4: return m

Let us notice in the same way ψα,β(m) the last couple obtained from the EAC
m when starting from (α,β). Let m1 and m2 be any two EAC, then

– ψα,β(m1m2) = ψψα,β(m1)(m2),
– χα,β(m1m2) = χψα,β(m1)(m2).

Taking into account these results, we have the following equalities for the cryp-
tosystem :

χ(0nxm) = χ1,2(0nxm) = χFn+2,Fn+3(xm) = χδ1,δ2(m).

Now, since c = χa/d,b/d(m) = χa,b(m)/d = a(M11+M12)+b(M21+M22)
d , then

λ−1cd ≡ δ1(M11 + M12) + δ2(M21 + M22) mod p .

But,
δ1(M11 + M12) + δ2(M21 + M22) = χδ1,δ2(m)

= χFn+2,Fn+3(xm)

and since χFn+2,Fn+3(xm) ! χFn+2,Fn+3(0n) = F2n+4 (from property 2), then

λ−1cd mod p = χFn+2,Fn+3(xm) = χ(0nxm) ,

because p > F2n+4. Using Algorithm 3, we can find back the sequence xm and
deduce the plaintext m. Indeed, from a practical point of view, for the values n
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suggested in section 6, χ(0nxm) < Fn+2Fn+3 as soon as the Hamming weight
of x is greater or equal than 4. Another way to guarantee this last property is
to consider only plaintext of length n − 1. With such a condition, χ(0nxm) !
F2n+3 < Fn+2Fn+3 for n > 0 and the map χ still remains injective. See section
7 for a toy example.

5 Security

First let us explain the meaning of the integer λ and the vector x. The integer
λ is used in order to scramble the value of the couple (δ1, δ2). Indeed, if the
cryptogram were computed as χδ1,δ2(m), then since χδ1,δ2(m) = χ(0nxm), any
intruder could use Algorithm 3 to find back the cleartext m.

Remember that using x such that its Hamming weight be greater or equal than
4 guarantees that the value of χ(0nxm) for any plaintext m is always strictly
less than Fn+2Fn+3 (for the practical parameters given in section 6), which is an
essential condition for the decryption process. Let us suppose however that we
don’t use the vector x, here is a possible attack to find back the secret parameters
λ and p. Without x, (δ1, δ2) would be equal to (Fn+2, Fn+3). Now, if a and b are
coprime, then pk will be equal to (a, b) in Algorithm 4. Hence, we will have

a = λFn+2 mod p
b = λFn+3 mod p

i.e, there exist two integers ja, jb such that a = λFn+2−jap and b = λFn+3−jbp.
Now, let ε0 = b, ε1 = a and consider the sequence εi = εi−2 − εi−1, a simple
induction shows that εi = λFn+3−i + (−1)i(jaFi − jbFi−1)p, for i " 2. Hence
εn+3 = (−1)n+3(jaFn+3 − jbFn+2)p is a multiple of p. Since Fk | F"k we can
obtain a set of integers which are all multiples of p. As an example since F4 = 3F2

and F10 = 11F5, then εn−1 − 3εn+1 ≡ 0 mod p and εn−2 − 11εn−7 ≡ 0 mod p.
Computing the gcd of these integers will give us the value of p. Now, since
εn+1 ≡ λ mod p and λ < p, the value of εn+1 modulo p gives us λ.

Using a vector x discards the possibility to easily obtain a set of multiples of
p from the public key (a, b).

A way to find back the cleartext is to try to solve the following computational
problem, which we will denote by GEAC for Generalized Euclidean Addition
Chain Problem :

Name : GEAC
Input : Four integers a, b, α and $ such that (a, b) = 1 and α = χa,b(c)
Question : Compute c ∈ {0, 1}".

Suppose that an efficient algorithm could be designed to solve GEAC. If it is
fast enough , it could then be used to compute minimal length EAC. As a con-
sequence, using the method described in [8], this will lead to an efficient point
multiplication algorithm for elliptic curves resistant to side channel attacks. From
all the works done over addition chains, we did not find any references about
the GEAC problem. Most of the papers on this topic deal with classical addition
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chains starting with (1,2). It is thus of importance to classify this problem. We
can associate a decision problem to GEAC :

Name : D-GEAC
Input : Four integers a, b, α and $ such that (a, b) = 1.
Question : Does there exist an euclidean addition chain c of length $ such

that α = χa,b(c) ?
We cannot state if this problem is NP-complete (it is clearly in NP). However,
we would like to point out a related problem which is NP-complete, as we will
prove it.

Name : G-AS
Input : A sequence n1, . . . , nr, a, b of positive integers such that gcd(a, b) = 1,

a positive integer L.
Question : Does there exist an addition chain of length ! L starting with (a, b)

which contains all the n′
is ?

This problem is a generalization of the following one :

Name : AS
Input : A sequence n1, . . . , nr of positive integers and a positive integer L.
Question : Does there exist an addition chain of length ! L which contains all

the n′
is ?

From [4] this problem is NP-complete.

Proposition 5. G-AS is NP-complete

Proof. The proof given in [4] shows how to reduce AS to the well known problem
of Vertex Cover in a graph G. To this end, the author constructs the sequence
∆G = {1, 2, 22, . . . , 2σn} ∪ {1 + 2σu + 2σv} where n is the number of vertices of
G and (u, v) describes the set of edges. He shows then how to build a vertex
cover of size at most K from an addition chain of size at most σn+1+#E +K
which contains the sequence ∆G. Now, let us consider the sequence ∆Ga,b =
{b, 2b, 22b, . . . , 2σnb} ∪ {a + b2σu + b2σv} rather than ∆G. Then we can read
exactly the same proof to establish that G-AS is NP-complete. ,-

For a first approach of the security of the scheme, we must define parameters n
and t in order to avoid classical attacks. The parameter t must be chosen so that
an intruder cannot retrieve the chain x using an exhaustive search. We suggest
to choose t = 80.

Since the size of the cleartext is n−t, we have to choose n such that n−t > 80,
which leads to take n > 160.

The prime p must be chosen so that p > F2n+4. We suggest to randomly select
p in the range ]F2n+4, F2n+5]. For n > 160, there are at least 2215 such primes.

Notice that since the cryptogram has been computed using the algorithm of
definition 4 starting from v0 = a and u0 = b with (a, b) = 1 then all the couples
(v, u) generated satisfy (v, u) = 1. Hence one could try to choose an integer g < c
coprime with c and apply algorithm 2 until the current couple (v, u) be equal to
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(a, b). Now, there are about ϕ(c)/2 candidates and ϕ(c) > c/ ln c. Since c is of
the order of p, selecting randomly g without any strategy will fail.

This cryptosystem is deterministic, and hence is not semantically secure, thus
we do not resist to any of the IND-xxx attack. For this first approach of a cryp-
tosystem based upon EAC, we do not investigate the formal model of provable
security.

6 Performances

Let us first consider the transmission rate of this system. The size of the cleartext
m is n − t. The cryptogram is obtained by the computation of

〈(a, b)
n−t∏

i=1

Smi ,(1, 1)〉 .

If we consider the mi’s as n − t independent Bernoulli random variables, it can
be proved that the mean value of a cryptogram is (3/2)n−t(a + b). Since a and
b are of the order of p, and since p is of the order of F2n+4, this mean value is
about 2(3/2)n−tF2n+4. Taking into account that log2 Fk is about 0.694k, then
the average size of the cryptogram is 1.97n−0.58t+3.7. Hence the transmission
rate of the cryptosystem is on average

n − t

1.97n− 0.58t + 3.7
.

Since we fixed t = 80, and n > 160 , this is an increasing sequence which tends
to 1/1.96 1 0.5. Notice that the worst transmission rate is obtained when the
cryptogram is computed from the cleartext 0n−t. In this case the cryptogram is
equal to aFn−t+1 + bFn−t+2 whose size is about 2.08n− 0.69t + 4.16.

The public and the private datas (except for x) are all of the order of p,
which is close to F2n+4. Using this estimation, table 1 sums up for t = 80
the characteristics of the system and give some numerical results for n = 592,
n = 1104, n = 2128 and n = 336 (this last one is only given for illustrative
purpose). The value I denotes the ratio between the size of the cleartext and
the size of the cryptogram.The value IW denotes the worst transmission rate.

Table 1. Characteristics of the scheme

n size of cleartext (bits) size of pk (bits) size of sk (bits) I IW

n − 80 2.8n + 5.6 4.2n + 88.4 n−80
1.97n−42.83

n−80
2.08n−51.36

336 256 947 1500 0.41 0.39
592 512 1664 2575 0.45 0.43
1104 1024 3097 4726 0.48 0.46
2128 2048 5965 9026 0.49 0.47
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The encryption process only involves n− t additions over integers. The size of
these integers grows from 1.4n (the size of a and b) to 2.08n in the worst case.
We can speed up this process by using the following remark :

χpk(m) = (a, b)
n−t∏

i=1

Smi(1, 1)t = (1, 1)
1∏

i=n−t

St
mi

(a, b)t .

Hence to cipher a cleartext m, the user can first compute n−t additions between
integers whose size grows from 1 to 0.69(n− t + 2) in the worst case (the size of
Fn−t+2). Then, he has to compute the products between integers of size about
1.4n and 0.7n (au and bv) and the sum au + bv.

The decryption process involves :

– step 1 of algorithm 6 : a modular multiplication between integers whose size
is about 1.4n , if we suppose that λ−1d has already been computed,

– step 2 or 4 of algorithm 3 : a multiplication between integers of size 1.4n and
0.694n,

– step 2 or 4 of algorithm 3 : a division between an integer of size 2.1n and an
integer of size 0.694n,

– last steps of algorithm 3 : n − t subtractions between integers whose size
decreases from 1.4n to 1.

From an asymptotic point of view, both processes are in O(n2) while the same
procedures for the classical RSA cryptosystem are in O(n3) if n is the size of
the modulus. Table 2 gives some numerical results obtained when ciphering and
deciphering 20000 cleartext with our cryptosystem and the classical RSA cryp-
tosystem. Since in RSA the ciphering and deciphering procedure are identical we
only mention in table 2 the time of ciphering procedure for a random exponent
e. The column EAC∗ corresponds to the optimization of the encryption process
above mentioned. Tests have been carried out on a Quadcore 2.33Ghz processor
using GnuMP library.

Table 2. Ciphering and deciphering rate in kilobytes per second

size of the cleartext (bits) EAC-cipher EAC∗-cipher EAC decipher RSA
1024 1106 kb/sec 2551 kb/sec 1208 kb/sec 103 kb/sec
2048 693 kb/sec 2024 kb/sec 963 kb/sec 28.46 kb/sec

The transmission rate of our system is a drawback of our system as compared
to RSA. But since the design of this latter, very few new asymmetric cryp-
tosystems have been proposed. For example, one could compare our parameters
with those of another cryptosystem which didn’t use an RSA-like mechanism :
the Naccache-Stern knapsack cryptosystem [10] presented at Eurocrypt’97. We
choose this cryptosystem since its parameters have been recently improved in
2008 [3]. Moreover, while the system lacks provable security, it still has not been
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broken to this date. Since the encryption process involves modular multiplica-
tions and the decryption process is equivalent to an RSA signature, we will only
discuss the transmission rate and the size of the public-key. In NS cryptosys-
tem, there is a trade-off to establish between these two parameters. A good one
corresponds to a transmission rate of 0.38 for a 512 kilobytes public key. If one
wants to improve the transmission rate to 0.5, public key will grow up to 14564
kilobytes. On the other hand, for the smallest possible size of the public key
(59 kilobytes), the transmission rate drops to 0.11. With our cryptosystem, for
a transmission rate between 0.4 and 0.5, the public key is less than 1 kilobyte.
Notice also that the proposed cryptosystem has a natural integrity property,
since the cleartext computed from the cryptogram must be well formatted : the
first n + t bits should be equal to 0nx.

7 A Toy Example

We illustrate the mechanism for n = 6 and t = 2.

• Key generation
p = 991 > F16, λ = 230, x = (10)
(δ1, δ2) = (55, 76) = ψ(00000010) ((1, 2) 0→ (2, 3) 0→ (3, 5) 0→ (5, 8) 0→ (8, 13) 0→
(13, 21) 0→ (21, 34) 1→ (21, 55) 0→ (55, 76))
(a, b) = (758, 633), d =gcd(a, b) = 1
pk = (758, 633), sk = (1, 991, 642, (10)) (642 = 230−1 mod 991).

• Encryption
Let m = (1101) the message to encrypt, the following steps lead us to the com-
putation of χpk(m) :
(758, 633) 1→ (758, 1391) 1→ (758, 2149) 0→ (2149, 2907) 1→ (2149, 5056)
The cryptogram is 7205.

• Decryption
y = λ−1c mod p = 7205 × 642 mod 991 = 613 < F8F9 = 714
g = $613F7

F8
% = 379

Using the trick for the line 6 of algorithm 3, we initialize the couple (v, u) to
(613F7 − 379F8, 379F7 − 613F6) = (10, 23). Then the algorithm computes the
following couples :
(10, 13) 1→ (3, 10) 0→ (3, 7) 1→ (3, 4) 1→ (1, 3) 0→ (1, 2) 1→ end of algorithm. Last
four bits are the cleartext m.

8 Conclusion

In this note we proposed to use Euclidean addition chains to define a public key
cryptosystem. To this end, we used properties of a subset of Euclidean addition
chains. It enabled us to design a polynomial time algorithm for the problem of



An EAC Based PKC 297

finding an EAC of fixed length computing a prescribed integer (GEAC). Even
if we described difficult problems linked to GEAC, we do not know its level of
difficulty. However, as we obtained good performances and as it is of interest to
propose new public keys mechanisms, we think it is worth presenting this one.
As it is usual in cryptography, we welcome readers for attacks and suggestions
on this system. Although there exists a lot of efficient point multiplication algo-
rithms for elliptic curves, few of them have been designed to intrisically resist to
side channel attacks. Looking for an efficient cryptanalysis of GEAC may bring
out new ideas in the theory of Euclidean addition chains. These ideas may have
nice applications in the field of point multiplication algorithms resistant to side
channel attacks.
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