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Abstract. Production exploitation of cardiac image analysis tools is hampered by

the lack of proper IT infrastructure in health institutions, the non trivial integration

of heterogeneous codes in coherent analysis procedures, and the need to achieve

complete automation of these methods. HealthGrids are promising technologies to

address these difficulties. This paper details how they can be complemented by high

level problem solving environments such as workflow managers to improve the

performance of applications both in terms of execution time and robustness of re-

sults. Two of the most important important cardiac image analysis tasks are consid-

ered, namely myocardium segmentation and motion estimation in a 4D sequence.

Results are shown on the corresponding pipelines, using two different execution

environments on the EGEE grid production infrastructure.

Keywords. Cardiac image analysis, workflow enactment, grid computing, production.

1. Production-level Cardiac Image Sequences Analysis

Cardiac diseases are one of the major causes of death in industrial countries. Cardiac di-

agnosis is increasingly relying on temporal sequences of 3D images acquired using fast

Magnetic Resonance Imaging (MRI) sequences. Such sequences, routinely acquired in

hospitals, represent wealth of imaging data which require processing to extract mean-

ingful quantitative parameters useful for diagnosis. Cardiac image analysis procedures

are applied to analyze the patient heart status, through e.g. studies of the heart shape

(myocardium segmentation) and heart motion (myocardial motion estimation).

Although analysis methods are actively developed and tested in research, image se-

quences are still often exploited manually in clinics, despite the extremely tedious work

involved, such as the delineation of the myocardial contours in complete time series of

MR slice stacks. Usage of analysis tools in production is hampered by several factors

including (F1) the integration of heterogeneous codes to conduct the analysis, (F2) the

need to fine-tune analysis parameters to adapt to the variability among images and (F3)
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the associated computing and data storage requirements when dealing with large image

databases.

HealthGrids are appealing to address those challenges. Concerning (F1), workflow

technology can be considered. Pipeline-based image processing tools with a visual pro-

gramming interface, such as the commercial Khoros and AVS tools, have been widely

used by non-expert end users. In the medical image analysis community, the ITK2 open

source library has become a de facto standard providing a pipeline design API. In our

work, we study workflow technology to provide similar functionality in a HealthGrid

production environment. Unlike Khoros or AVS, the workflow managers are intrinsically

parallel execution engines able to outsource computations on distributed units, as well as

exploiting local resources. In addition, the model adopted for pipelines description is a

loosely coupled workflow of application services. Unlike ITK, this does not require code

integration and compilation in a single unit. Heterogeneous application codes are em-

barked in the workflows, thus maximizing flexibility and providing easy reconfiguration

for pipeline prototyping and parameter sweep studies set up.

Regarding (F2), complete automation is a complex problem due to the difficulty to

automatically tune algorithms to adapt to various images and the need for expert valida-

tion. Parameter-sweeps can be considered to cope with this issue. In HealthGrids, they al-

ready have been used to perform validation (e.g, in [8] for functional MRI) or large-scale

population studies for instance in neuroimaging [10]. Such experiments are naturally ex-

pressed in workflow languages and executed in a distributed infrastructure with engines

like Taverna [7], MOTEUR [4] or Nimrod-G [15]. Wrapper tools such as GASW [3] or

Soaplab [14] facilitate the integration of tools in those environments.

Finally, (F3) can be addressed by leveraging the resources made available by pro-

duction grids like EGEE3 which provides a computational back-end that is often lack-

ing in clinical centers to support secured and data intensive applications. However, those

platforms also provide high latencies and low reliability as a downside of the comput-

ing power and storage capacity. For instance, [1] reports a 55% error ratio on a metage-

nomics application. In this context, exploiting local computing resources for part of the

experiment can yield better performance.

In this paper we study the ability of HealthGrids to support production-level car-

diac image analysis. First, pipelines implementing myocardium segmentation and car-

diac motion estimation are described. Then, parameter-sweep experiments are shown on

the segmentation pipeline to tune initialization and deformation parameters with the aim

to go towards an automatic method. Finally, a performance comparison of the motion

estimation pipeline running on EGEE versus local resources is presented, evaluating the

trade-off between grid and local execution.

2. Cardiac Image Sequence Analysis Pipelines

Two cardiac analysis pipelines developed in the context of the GWENDIA4 project are

considered for experimentation (see figure 1). The myocardium segmentation pipeline is

2Insight ToolKit, http://www.kitware.com/
3Enabling Grids for E-sciencE, http://www.eu-egee.org
4Grid Workflows Enactment of Data Intensive Applications project, http://gwendia.polytech.

unice.fr
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Figure 1. Myocardium segmentation (left) and motion estimation (right) pipelines.

an elastic template-based left and right myocardium extraction procedure. Segmentation

is a process sensitive to initial conditions and which needs to be tuned to take into account

the patient specific image properties. The heart Motion Estimation pipeline is a multi-

step workflow extracting a dense vector field for each time instant of the sequence which

estimates the heart structure motion between successive image pairs. This pipeline fea-

tures a computer intensive algorithm and is used for performance tuning. Both pipelines

are designed to process the same multislice and multiphase Cine MRI databases.

2.1. Myocardial Segmentation

To achieve automated batch processing of patient data, the segmentation pipeline steps

should require as little human intervention as possible. Segmentation traditionally in-

volves manual steps for initialization and results checking. Grid technology can help by

providing workflows management tools to perform sweeps on application parameters as

exemplified in [11] for brain segmentation.

In this study, we consider the myocardium segmentation pipeline represented in fig-

ure 1 (left), composed of three steps:

• mhd2qc is a conversion step working on 3D volumes produced by the interpola-

tion step;

• InitModel is the initialization, during which an a priori heart model is posi-

tioned close to the heart using affine transform;

• det3D4 is the segmentation step itself, which deforms the model to fit the my-

ocardial borders.



The two last steps usually require human intervention: initialization is performed under

user control by interactively positioning the model in the 3D space close to the heart. The

correctness of the segmentation is visually checked and validated by a physician.

In addition to the data itself (3D images), this workflow requires a volumetric prior

template mesh model representing the geometry of the heart interfaces and cavities. This

template also carries mechanical properties of the heart tissues. It is first placed within

the image close to the structure to be extracted. To achieve an automated procedure for

initialization, a random search was implemented. A transformation space (i.e. min/max

values for the 7 parameters describing translation and rotation in 3D as well as isotropic

scaling) is randomly browsed, computing a closeness measure (energy) between the

model and the myocardium for each candidate transformation. Parameters leading to the

best energy are kept to initialize the template model for the segmentation step.

The segmentation algorithm is based on a Deformable Elastic Template [12,13]. The

template mesh is deformed iteratively by applying a force field so that its edges stick to

the borders of the targeted structure. Gradient and edge information is first extracted from

the 3D images composing the cardiac image sequence. Edge maps are derived into Gra-

dient Vector Fields that guide the deformation process through a classical energy mini-

mization procedure. The force field is weighted w.r.t the template prior with a parameter

coined force factor: the higher the force factor, the higher influence the data has during

the deformation process. To improve convergence speed and accuracy, a multi-resolution

approach is implemented for both the model and the image.

2.2. Cardiac Motion Estimation

The Motion Estimation pipeline is graphically represented in Figure 1 (right). The first

step is a cropping applied to a series of DICOM slices identified by a patient ID. A

Region Of Interest (ROI) is used to crop all the images around the heart region. Next,

3D images are assembled and the data set is isotropically interpolated. To speed-up and

improve robustness of the Motion Estimation process, the isotropic images are under-

sampled into a multi-resolution pyramid. Gradient and edges are then extracted at each

resolution level. Finally, the motion inside the region of interest is estimated through-

out the sequence based on non rigid registrations between consecutive image pairs (free

form deformations with the sum of squared difference as similarity measure) [2]. Motion

estimation is a compute intensive process which execution time is unacceptable when

dealing with large data sets.

2.3. Workflow Managers

Workflows presented above can be executed by MOTEUR and Taverna. In these frame-

works, a workflow is described as a collection of processors connected by data links,

which establish a dependency between the output(s) of a processor and the input(s) of

a subsequent one. The engine orchestrates the execution of the processors in a way that

is consistent with the dependencies. It manages the flow of data through the processors.

The execution is driven by a push model: a processor’s execution is started as soon as all

of its inputs are available. It is important to note that the pipelines pictured in figure 1 are

designed for processing multiple patient image databases. Computation tasks are gener-

ated for all processing steps and all images considered in the experiments. The execu-



tion of the workflows is optimized by exploiting coarse level parallelism: independent

computing tasks and independent data sets can be processed concurrently.

MOTEUR. MOTEUR5 is a data-intensive workflow manager interfaced to EGEE

through a Grid Application Service Wrapper (GASW). It was designed for maximal per-

formance and it exploits three levels of parallelism that are implicitly expressed in the

workflow and its data sets. First, MOTEUR concurrently enacts independent branches

of the workflow. Second, it performs pipelining: the workflow stages are pipelined with

different data items to be processed. Third, MOTEUR exploits data parallelism: a same

stage is concurrently enacted for all independent data items to be processed.

Taverna. Taverna6 version 2, is a dataflow manager developed by the myGrid consor-

tium. It includes a GUI-based rich-client workbench for workflow design and a workflow

enactment engine. The default enactment mode of Taverna 2 is pipelining. In addition

Taverna 2 provides a so called "super-pipelining" execution mode that corresponds to

MOTEUR’s data parallelism. Taverna 2 supports various processor types invocation, in-

cluding local execution and Web Services. The core of Taverna 2 was extended through

an EGEE plugin that automates grid jobs submissions and data transfers to the grid nodes.

2.4. Data

A set of 10 MRI examinations on patients has been collected for this study. Cardiac cine

MR images were acquired with a 1.5 T magnetic resonance Sonata scanner (Siemens, Er-

langen) at the Cardiology Hospital of Lyon, France. An ECG-gated True-Fisp sequence

was used to acquire 5 to 11 short-axis cine slices covering the heart with 208-240×256

pixel matrix, 5-7 mm slice thickness, 10-12 mm slice-spacing. Each sequence was com-

posed of 11 to 30 frames over the cardiac cycle.

3. Parameter-sweeps for Segmentation Automation

3.1. Infrastructure setup

Experiments described in this section were performed using the MOTEUR workflow

manager for execution [4] and the VBrowser interface for data management [9]. The

EGEE Logical File Catalog (LFC) was used for data management, all the files being

stored on a single Storage Element (SE). To ease prototyping for those early experiments,

jobs were submitted on a local server featuring an Intel Xeon 5410 (2.33 GHz quad core)

that also hosted the workflow manager. We dedicated 3 of the 4 cores to computing jobs

and 1 to the workflow manager. The server ran an SL4 EGEE User Interface with no

pre-installed software (dependencies were all downloaded from the SE). Jobs were thus

running in similar conditions than on EGEE. Scaling those experiments to the grid just

requires to switch a flag in the setup configuration.

5MOTEUR workflow manager: http://modalis.i3s.unice.fr/softwares/moteur/start
6Taverna workflow manager: http://taverna.sf.net

http://modalis.i3s.unice.fr/softwares/moteur/start
http://taverna.sf.net
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Figure 2. Parameter sweep on initialization parameters. (a) 75 parameter have been tested ; (b),(c) and (d)

initialization results kept for segmentation. Parameter values for Txmin / Txmax / Rzmax / Smin are shown.

Image slices are in an xy plane.

3.2. Experiments and results

Using this setup, two parameter-sweep experiments have been conducted to study au-

tomatic segmentation of the database. First, the bounds of the transformation space to

use for initialization were investigated. Second the influence of the force factor in the

deformation process was looked into.

Experiment #1. Bounds of the transformation space are defined by 14 parameters,

namely the minimal and maximal values of the translation vector coordinates, the rota-

tion angles and the scaling factor. Early tests showed that the bounds of the translation

along x (Txmin and Txmax), the maximal rotation angle w.r.t z-axis (Rzmax) and the

min of the scaling factor (Smin) had significant importance on the quality of the result-

ing initialization. Consequently, in this experiment, Txmin was varied among 3 values,

Txmax and Rzmax among 2 and Smin among 6 for one volume of a patient, leading

to 72 initializations. Figure 2-(a) shows in blue the 72 computed initializations. Among

those, a couple only could be considered correct from a visual check. We kept the red,

green and yellow results shown in (b), (c) and (d) for the segmentation step. Execution

time statistics are reported in table 1 for the InitModel workflow processor.

Experiment #2. The force factor was varied from 0.1 to 0.5 by steps of 0.1. For each

initialization, 5 segmentations were thus performed. Due to issues with workflow iter-

ation strategies, this experiment had to be performed independently from the previous

one, running the workflow once for each initialization selected for segmentation. Fig-

ure 3 shows segmentation results obtained from selected initialization results. Colors de-

note the force factor value. Table 1 shows the corresponding execution statistics for the

det3D4 workflow processor.

3.3. Discussion

Experiment #1. Figure 2 demonstrates a significant influence of the swept parameters

on the initialization results. As shown on part (a) of the figure (blue edge lines), the set

of initialization results is quite widely spread. Among those, a couple of results can be

considered as correct initializations. The selected ones for this study ((b), (c) and (d) part

of the figure) have subtle but visually noticeable differences. Execution times reported

on table 1 show a significant importance of data transfers, representing more than 50%



#jobs workflow step Elapsed CPU Download Upload

(see Fig. 1) (total ; µ ± σ) (total ; µ ± σ) (total ; µ ± σ)

Exp.#1 72 InitModel 2h19’ 3h53’ ; 3’14”±59” 1h53’ ; 1’34”±29” 37’42” ; 31”±4”

Exp.#2 - (b) 5 det3D4 39’16” 32’2” ; 6’24” ±5” 2’50” ; 34”± 1” 59” ; 12” ± 1”

- (c) 5 det3D4 59’5” 32’21” ; 6’28” ± 4” 2’48” ; 33” ± 1” 58” ; 12” ± 1”

- (d) 5 det3D4 16’41” 32’41” ; 6’32”±13” 2’57” ; 35”±2” 59” ; 12”±1”

Table 1. Execution statistics for the segmentation experiments. Mean (resp. standard-deviation) is denoted by

µ (resp. σ). Data transfers are performed between our local server and an EGEE Storage Element. Italicized

elapsed time values have been measured in shared conditions.

of the CPU time. Still, a fair speed-up of about 2 (on 3 processors) is obtained comparing

the elapsed time to the total CPU time. In the future, data transfer optimizations specific

to parameter sweeps could be envisaged since most of the jobs share the same set of

input files.

Experiment #2. Although differences among initializations (b), (c) and (d) are quite

subtle, segmentation results significantly differ, (d) being the only acceptable result from

a visual point of view (see figure 3). Segmentation of the left ventricle is acceptable on

(b) but the right ventricle is overestimated (see white arrow). Result (c) clearly under-

estimates the myocardium, both in left and right ventricles. The force factor also has a

strong influence on the quality of the results. On (d), a high force factor (red edge) better

segment the left ventricle (leftmost arrows) whereas a small one (blue edge) better fits

the right ventricle contours (rightmost arrows). On this slice, a force factor of 0.2 (cyan

edges) seems to be the optimal. Execution times reported on table 1 show a better trade-

off between CPU and transfer times, the latter representing an eighth of the former. Job

times are still short though compared to usual latency values on EGEE. To execute this

workflow on EGEE, latency reduction solutions such as pilot-jobs [6] will be considered.

(b) (c) (d)

Figure 3. Parameter sweep on segmentation parameters. Five force factors have been tested for each initial-

ization, as denoted by the color scale (blue: 0.1 ; cyan: 0.2 ; green: 0.3 ; yellow: 0.4 ; red: 0.5). Letters refer to

figure 2.



Figure 4. Cardiac Motion Estimation Results. Left: makespan when processing an increasing number of data.

Right: average grid profile of each pipeline stage.

4. Performance Study for Motion Estimation

4.1. Infrastructure setup

Experiments presented in this section have been executed on EGEE, using Taverna 2

to orchestrate the workflow execution. EGEE is a premiere grid infrastructure federat-

ing 250 computing centers and dedicated to scientific production. Our experiments ex-

ploit the significant share of the infrastructure (≈ 20000 CPU cores) accessible to the

"biomed" Virtual Organization. In the context of our experiments, EGEE provides the

computing resources that are usually not available for processing inside clinical centers.

However, the grid is a batch infrastructure that introduces submission overheads in the

tasks execution time. The tasks submitted and the data they depend on have to be trans-

ported to remote grid nodes. In addition, tasks are queued in multi-user queues and may

experience unbounded delay, depending on the uncontrollable workload experienced by

the infrastructure at the time of submission.

Furthermore, such a large scale infrastructure exhibits low reliability and job fre-

quently fail due to network, system or middleware faults. During workflow execution,

the frequency of job failures are magnified with the increased number of tasks, lowering

the probability to succeed in executing a complete workflow. The following faut recovery

measures were implemented in Taverna’s EGEE plugin in order to increase its robust-

ness: (i) a job resubmission policy (after a certain waiting time the jobs are resubmitted

[5]), (ii) a Round-Robin selection policy for EGEE Workload Manager Services, and (iii)

resubmitting the data transfer requests in case of failures.

4.2. Results

The left graph of figure 4 presents the scalability results for the Motion Estimation

pipeline executed on the EGEE grid through the Taverna 2 plugin. The blue "local" curve

corresponds to a sequential execution on a mono-processor local machine, used as a

baseline. The entire workflow is submitted for an increasing number of patients (hence

an increasing number of image sequences) and the makespan of the application is mea-

sured. It can be seen that the sequential execution scales with the number of patients.

The application behavior is not completely linear though. The optimization algorithm

used for motion estimation has a non-guaranteed execution time (the number of iterations

depends on the data content), and therefore each patient processing time differs slightly.



The green "pipeline" curve reports the grid execution makespan using a Taverna reg-

ular pipelined execution. Unexpectedly, grid execution does not improve performance in

this case, even when processing the complete data base. This result is expected when pro-

cessing few data: a production grid overhead is non negligible as illustrated in the right

graph of figure 4 which shows the average grid profile of main processes involved in the

workflow. The tasks execution time Tx is impacted by the additional overhead composed

of Td, the data transfer time from grid storage to the computing units, and Tq, the time

spent inside the job queue after the job has been submitted and before the start of its

execution. However, the overhead is expected to be compensated by parallel execution

for a sufficiently large database processing. This does not happen in pipelined execution

for this experiment because of the unbalanced computation time of the pipelines stages:

the motion estimation execution time (Tx) largely dominates in this workflow and it is

worsen by a high data transfer time (Td) which owes to the growth of data through the

pipeline (around 0.5 GB from around 1 MB on an average). In pipelined mode, the multi-

ple instances of motion estimation (one per patient) are not parallelized. The parallel gain

is limited by the concurrent execution of motion estimation and other pipeline stages,

thus leading to a high makespan.

Finally, the "super pipeline" curve shows the performance when enabling Taverna

2 "superscalar" pipeline submission.The concurrent execution of all workflow processes

significantly increases overall application performance. The application performance is

then mostly impacted by grid overhead. As soon as two or more patient datasets are pro-

cessed, performance improves as compared to regular pipelining. Finally it beats the lo-

cal execution after the 8th patient is processed. After this "cut-off" stage the performance

dramatically improves as the concurrently executing processes start returning results al-

most simultaneously.

5. Conclusions

Production-level cardiac sequences analysis is made difficult by the lack of proper IT

infrastructure in health institutions, the non trivial integration of heterogeneous compo-

nents in tools analysis procedures, and the need to achieve complete automation. To-

day, HealhGrids provide a production stable environment serving as a foundation for

tackling the higher level difficulties. In this paper we complement the grid infrastructure

with high level workflow enactment tools that help to interface heterogeneous codes and

benefit from grid performances. Alternative solutions exists such as MOTEUR and Tav-

erna workflow managers, both interfaced to the EGEE infrastructures. Care should be

taken in the parameterization of such tools though, as can be seen through the inefficient

performance of the motion estimation experiment in simple pipelined mode.

Parameter sweep appears to be a good way to improve the robustness of the seg-

mentation pipeline, for the initialization step as well as for the deformation. A few other

parameters of the segmentation algorithm could be similarly be considered for sweeping.

Using grids to support this kind of experiment is promising to go towards an automation

of the segmentation pipeline required for mass image processing. From a performance

point of view, pilot-job frameworks will be exploited in this pipeline since segmentation

tasks are still short w.r.t the average grid latency. Data transfer optimisation strategies

will also be considered since many jobs have the same set of input files in this kind of

parameter-sweep experiment.



Grid computing power and flexible pipelines management capability are a promising

combination to reach production-level cardiac image analysis with HealthGrids.
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