
Symbolic methods for developing new domain

decomposition algorithms

Thomas Cluzeau, Victorita Dolean, Frédéric Nataf, Alban Quadrat

To cite this version:

Thomas Cluzeau, Victorita Dolean, Frédéric Nataf, Alban Quadrat. Symbolic methods for
developing new domain decomposition algorithms. [Research Report] RR-7953, INRIA. 2012,
pp.71. <hal-00694468>

HAL Id: hal-00694468

https://hal.inria.fr/hal-00694468

Submitted on 4 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00694468


IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
9

5
3

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 7953
February 2012

Project-Team Disco

Symbolic methods for

developing new domain

decomposition algorithms

T. Cluzeau, V. Dolean, F. Nataf, A. Quadrat





RESEARCH CENTRE

SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université

4 rue Jacques Monod

91893 Orsay Cedex

Symbolic methods for developing new domain

decomposition algorithms

T. Cluzeau∗, V. Dolean†, F. Nataf‡, A. Quadrat§

Project-Team Disco

Research Report n° 7953 — February 2012 — 68 pages

Abstract: The purpose of this work is to show how algebraic and symbolic techniques such
as Smith normal forms and Gröbner basis techniques can be used to develop new Schwarz-like
algorithms and preconditioners for linear systems of partial differential equations.

Key-words: Systems of partial differential equations, domain decomposition methods, symbolic
computation, systems theory, algebraic analysis, decoupling methods, Gröbner basis techniques.

Work supported by the PEPS Maths-ST2I SADDLES - http://www-math.unice.fr/~dolean/saddles/

∗ Université de Limoges ; CNRS ; XLIM UMR 7252, DMI, Limoges, cluzeau@ensil.unilim.fr
† Université de Nice Sophia-Antipolis, Laboratoire J.-A. Dieudonné, Nice, dolean@unice.fr
‡ Laboratoire J.-L. Lions, Université Paris VI, nataf@ann.jussieu.fr
§ INRIA Saclay - Île-de-France, DISCO Project, L2S, Supélec, Gif-sur-Yvette, alban.quadrat@inria.fr

http://www-math.unice.fr/~dolean/saddles/


Méthodes symboliques pour le développement de

nouveaux algorithmes de décomposition de domaine

Résumé : L’objet de ce travail est de monter comment les techniques algébriques et symboliques
telles que les formes normales de Smith et les techniques de bases de Gröbner peuvent être
utilisées pour développer de nouveaux algorithmes de type Schwarz et des préconditionneurs
pour les systèmes linéaires d’équations aux dérivées partielles.

Mots-clés : Systèmes d’équations aux dérivées partielles, méthodes de décomposition de
domaine, calcul formel, théorie des systèmes, analyse algébrique, méthodes de découplage, tech-
niques de bases de Gröbner.



Symbolic methods for developing new domain decomposition algorithms 3

Contents

1 Introduction 4

2 Smith normal forms of linear systems of PDEs 6

2.1 Application to Cauchy-Navier equations . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Application to Oseen and Stokes equations . . . . . . . . . . . . . . . . . . . . . 9

3 Optimal domain decomposition algorithms for scalar equations 10

4 An approach by hand calculations 14

5 An algorithmic approach 16

5.1 A few results of module theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Computation of relevant Smith variables . . . . . . . . . . . . . . . . . . . . . . . 26

6 Reduction of interface conditions 30

7 Appendix: An introduction to Gröbner basis techniques 31

8 Appendix: Maple computations 40

8.1 Completion problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1.1 Elasticity 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1.2 Stokes 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.1.3 Stokes 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.1.4 Oseen 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.5 Oseen 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8.2 Reduction of interface conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2.1 Elasticity 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.2.2 Elasticity 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2.3 Stokes 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.4 Stokes 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2.5 Oseen 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.6 Oseen 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

RR n° 7953



4 Cluzeau & Dolean & Nataf & Quadrat

1 Introduction

Some algorithmic aspects of systems of PDEs based simulations can be better clarified by means
of symbolic computation techniques. Numerical simulations heavily rely on solving systems of
partial differential equations (PDEs), which can be linear or non-linear, time or space-dependent
or stationary. Non-linear problems are solved by fixed-point methods or Newton-type algorithms,
which themselves lead to solving linear systems of equations. For three (or higher) dimensional
problems, the direct numerical methods can be used to solve these systems only when the number
of unknowns is small. That is because they have important memory requirement and computa-
tional costs. Hence, for the large-scale problems we deal with in today’s standard applications,
it is necessary to rely on iterative Krylov methods that are scalable (i.e., weakly dependent of
the number of degrees of freedom and of the number of subdomains) and have limited memory
requirements. They are preconditioned by domain decomposition methods, incomplete factoriza-
tions, multigrid preconditioners, . . . These techniques are well understood and efficient for scalar
symmetric equations (e.g., Laplacian, biLaplacian) and to some extent for non-symmetric equa-
tions (e.g., convection-diffusion). But they have poor performances and lack robustness when
used for symmetric systems of PDEs, and even more so for non-symmetric complex systems (e.g.,
fluid mechanics, porous media). As a general rule, the study of iterative solvers for systems of
PDEs as opposed to scalar PDEs is an underdeveloped subject.

We aim at building new robust and efficient solvers, such as domain decomposition methods
and preconditioners for some linear and well-known systems of PDEs. In particular, we shall
concentrate on Neumann-Neumann and Finite Element Tearing and Interconnecting (FETI) type
algorithms which are very popular and well-known for scalar symmetric positive definite second
order problems. For instance, see [33, 26, 27, 17, 28], and to some point to different other prob-
lems, like the advection-diffusion equations [18, 1], plate and shell problems [34], or the Stokes
equations [30, 35]. This work is motivated by the fact that in some sense these methods applied
to systems of PDEs (such as Stokes, Oseen, linear elasticity) are less optimal than the domain
decomposition methods for scalar problems. Indeed, in the case of two subdomains consisting
of the two half planes, it is well-known that, for scalar equations like the Laplace problem, the
Neumann-Neumann preconditioner is an exact preconditioner for the Schur complement equa-
tion. We recall that a preconditioner is called exact if the preconditioned operator simplies to
the identity. Unfortunately, this does not hold in the vector case.

In order to achieve this goal, we use algebraic methods developed in constructive algebra,
D-modules (differential modules) theory, and symbolic computation such as the so-called Smith
or Jacobson normal forms and Gröbner basis techniques for transforming a linear system of
PDEs into a set of independent scalar PDEs. Decoupling linear partial differential (PD) systems
leads to the design of new numerical methods based on the efficient techniques dedicated to
scalar PDEs (e.g., Laplace equation, advection-diffusion equation). Moreover, these algebraic
and symbolic methods provide important intrinsic information about the linear system of PDEs
to solve which need to be taken into account in the design of new numerical methods which can
supersede the usual ones based on a direct extension of the classical scalar methods to the linear
systems.

This algebraic approach enables an intrinsic analysis of linear systems of PDEs. In particular,
we are interested in transforming the linear system of PDEs into a set of decoupled PDEs under
certain types of invertible transformations. The problem of decoupling the equations of linear
time-varying systems of ordinary differential equations (ODEs) or difference equations has been
an important issue in the symbolic computation community (e.g., methods based on the so-called
eigenring). For instance, the techniques based on the eigenring can be considered as a general-

Inria



Symbolic methods for developing new domain decomposition algorithms 5

ization for time-varying linear systems of ODEs of the classical diagonalization method used for
solving time-invariant first order linear system of ODEs with constant coefficients. Nowadays,
different algorithms and implementations in computer algebra systems use these techniques for
integrating time-varying linear systems of ODEs in closed forms. These results recently have
been extended in [8, 9] for linear systems of PDEs based on D-modules and Gröbner bases tech-
niques and implemented in the OreMorphisms package [10]. The invertible transformations
used in these methods are defined by unimodular matrices, namely, invertible matrices over the
(non-commutative) ring of PD operators.

An alternative way for decoupling a linear system of ODEs is to use the so-called Smith
normal form of the matrix of OD operators associated with the linear system. This normal
form was introduced by H. J. S. Smith (1826-1883) for matrices with integer entries (see, e.g.,
[23] or Theorem 1.4 of [36]). The Smith normal form has already been successfully applied to
open problems in the design of Perfectly Matched Layers (PML). The theory of PML for scalar
equations was well-developed and the usage of the Smith normal form allowed one to extend
these works to linear systems of PDEs. In [29], a general approach is proposed and applied to
the particular case of the compressible Euler equations that model aero-acoustic phenomena.

For domain decomposition methods, several preliminary results have been obtained for the
compressible Euler equations [13], Stokes and Oseen systems [14]. More precisely, it has been
shown that the Stokes system is equivalent to a biLaplacian in 2D and to a Laplacian and a
biLaplacian in 3D. Hence, the classical Neumann-Neumann algorithm for the Stokes system [35]
can be recast into an algorithm for biLaplacian and Laplacian. The resulting algorithms are
different from the classical algorithms for these scalar equations and are therefore not optimal.
To fix this problem, we first used optimal algorithms for the biLaplacian and the Laplacian,
and then via the Smith factorization, we back-transform them formally using only symbolic
computations (derivation, linear combination of different equations) into optimal algorithms for
the Stokes system. Interestingly enough, the classical algorithm for the Stokes system is based
on solving either stress imposed or displacement imposed problems in the subdomains. In the
new algorithm developed in [14], the tangential stress and the normal displacement problems
are solved in each subdomain. Preliminary tests show that the new algorithm can be twice as
fast as the classical one. Moreover, when solving time-dependent problems, the new algorithm
has an iteration count independent of the time step. This property is not true for the classical
algorithm. The approach is quite general and has already been applied to the Oseen (linearized
Navier-Stokes) equations and to the compressible Euler equations. For both equations, the new
algorithms are the first genuine extensions of the Neumann-Neumann or FETI algorithms.

This report is organized as follows: Section 2 recalls the notion of the Smith normal form
of a matrix over a principal ideal domain and states the problem we are considering in what
follows. We also introduce the examples that we are using to illustrate our results in the whole
paper, namely the linear elasticity and Oseen/Stokes systems. In Section 3, we give optimal
algorithms for the scalar operators that appears in the study of the latter linear elasticity or
Oseen/Stokes systems. Section 4 states one of the main problem studied in this paper: the
choice of Smith variables. We recall how this was done by hand calculations in previous studies
and ask whether symbolic computation techniques can give an automatic way for constructing
many possible Smith variables. Then, in Section 5, we recall useful notion of module theory
that are needed to understand the sequel. We show that the problem of choosing relevant Smith
variables can be reduced to a completion problem and give an algorithm for computing many
relevant Smith variables. Section 6 shows how symbolic computation techniques (e.g., Gröbner
or Janet basis computations) can also be useful to automatically reduce the interface conditions
that appear in the algorithm developed in Section 3, and thus to speed up the computations.

RR n° 7953



6 Cluzeau & Dolean & Nataf & Quadrat

In the first appendix (Section 7), we recall the important concept of Gröbner basis for ideals
and modules over commutative polynomial rings, which is the main computational tool used
in the study of linear systems of PDEs via module theory. Finally, Appendix 8 illustrates the
Maple implementation of our algorithms in the Schwarz package which computes relevant Smith
variables and reduces interface conditions. Finally, we illustrate this on the examples of the linear
elasticity (Cauchy-Navier equations) and Oseen/Stokes systems.

Notations. If R is a ring, then Rp×q is the set of p× q matrices with entries in R. Moreover,
the general linear group of index p of R, denoted by GLp(R), is the group of invertible matrices
of Rp×p, namely:

GLp(R) = {E ∈ Rp×p | ∃ F ∈ Rp×p : E F = F E = Ip}.

An element of GLp(R) is called an unimodular matrix. A diagonal matrix with elements di’s on
the diagonal will simply be denoted by diag(d1, . . . , dp). If k is a field (e.g., k = Q, R, C), then
k[x] is the commutative polynomial ring in x with coefficients in k. In particular, an element

r ∈ k[x] has the form r =
∑d

i=0 ai x
i, where the ai’s belong to k and d ∈ N = {0, 1, . . . , }. More

generally, if k is a field, then k[x1, . . . , xn] is the commutative ring of polynomials in x1, . . . , xn

with coefficients in k. In what follows, k(x1, . . . , xn) will denote the field of rational functions
in x1, . . . , xn with coefficients in k. Finally, if r, r′ ∈ R, then the notation r′ | r means that r′

divides r, i.e., that there exists r′′ ∈ R such that r = r′′ r′.

2 Smith normal forms of linear systems of PDEs

We first introduce the concept of Smith normal form of a matrix with polynomial entries (see,
e.g., [23], [36], Theorem 1.4). This concept will play an important role in what follows.

Theorem 1. Let k be a field, R = k[s], p a positive integer, and A ∈ Rp×p. Then, there exist
two matrices E ∈ GLp(R) and F ∈ GLp(R) such that

A = EDF,

where D = diag(d1, . . . , dp) and the di’s are elements of R satisfying d1 | d2 | · · · | dp.
In particular, we can take di = mi/mi−1, where mi is the greatest common divisor of all the

i× i-minors of A (i.e., the determinants of all i× i-submatrices of A), with the convention that
m0 = 1.

The matrix D = diag(d1, . . . , dp) ∈ R
p×p is called a Smith normal form of A and the diagonal

elements di’s are the invariants factors of A.

Remark 1. We note that for R = k[s], E ∈ GLp(R) is equivalent to det(E) is an invertible
polynomial, i.e., a nonzero element of k. The invariants factors of A are uniquely defined by A up
to multiplication by nonzero elements of k. In particular, in what follows, we shall assume that
the di’s are monic polynomials, i.e., their leading coefficients are 1, which will allow us to call
the matrix D = diag(d1, . . . , dp) the Smith normal form of A. Finally, the relation A = EDF
shows that the matrix E (resp., F ) operates on the columns (resp., rows) of D.

The Smith normal form is a mathematical concept which is classically used in the literature
of symbolic computation, ordinary differential systems and control theory (see, e.g., [23]). Since
its use in scientific computing is rather new, we give here a few comments:

Inria



Symbolic methods for developing new domain decomposition algorithms 7

• Smith was an English mathematician of the end of the 19th century. He worked in number
theory and considered the problem of factorizing matrices with integer entries. We gave
here the polynomial version of his theorem in the special case where the matrix A is square
but the result is more general and applies as well when the matrix A is rectangular with
entries in a principal ideal domain (e.g., Euclidean domain such as Z, k[x], where k is a
field). For more details, see [11, 15, 23].

• As stated in Remark 1, the invariants factors di’s of A are uniquely defined by A up to
nonzero elements of k. Hence, if the di’s are chosen to be monic polynomials, then the
Smith normal form D = diag(d1, . . . , dp) of A is unique. But, this result does not hold for
the matrices E and F , i.e., they are not uniquely defined by A.

• One of the main interests of Theorem 1 is the following. If det(A) 6= 0, then by Cramer’s
formula, A−1 ∈ k(s)p×p, i.e., the inverse of A is generally a matrix with rational function
entries. Since det(E) and det(F ) are nonzero elements of the field k, the inverse of E and F
are matrices with polynomial entries in s, i.e., E−1, F−1 ∈ Rp×p. Using the Smith normal
form of A, we get A−1 = F−1D−1E−1, which shows that the rational part of the inverse
of A only appears in the intrinsic diagonal matrix D−1.

• The proof of Theorem 1 is constructive and gives an algorithm for computing the matrix
D and matrices E and F such that A = EDF . The computation of Smith normal forms
is available in many computer algebra systems such as Maple, Mathematica, Magma, . . .

Consider now the following model problem in Rd with d = 2, 3:

Ld(w) = g in Rd, (1)

|w(x)| → 0 for |x| → ∞. (2)

For instance, Ld(w) = 0 can represent the Stokes/Oseen/linear elasticity equations in dimension
d. Moreover, if we suppose that the inhomogeneous linear system of PDEs (1) has constant
coefficients, then (1) can be rewritten as

Ad w = g, (3)

where Ad ∈ R
q×p, R = k[∂x, ∂y] if d = 2, or R = k[∂x, ∂y, ∂z] if d = 3, and k is a field.

In what follows, we shall study the domain decomposition problem in which Rd is divided into
subdomains and the case Ad ∈ R

p×p. The direction normal to the interface of the subdomains
is particularized and denoted by ∂x. If S = k(∂y)[∂x] for d = 2 or S = k(∂y, ∂z)[∂x] for d = 3,
then computing the Smith normal form of the matrix Ad ∈ S

p×p, we get Ad = EDF , where
D ∈ Sp×p, E ∈ GLp(S) and F ∈ GLp(S). In particular, the entries of the matrices E, D, F are
polynomials in ∂x, and E and F are unimodular matrices, i.e., det(E), det(F ) ∈ k(∂y) \ {0} if
d = 2, or det(E), det(F ) ∈ k(∂y, ∂z) \ {0} if d = 3. We recall that the matrices E and F are not
unique contrary to D. Then, using the Smith normal form of Ad, we have:

Ad w = g ⇔

{

ws := F w,

Dws = E−1 g.
(4)

In other words, (3) is equivalent to the following uncoupled linear PD system:

Dws = E−1 g. (5)

RR n° 7953



8 Cluzeau & Dolean & Nataf & Quadrat

Since E ∈ GLp(S) and F ∈ GLp(S), the entries of their inverses are still polynomial in
∂x. Thus, applying E−1 to the right-hand side g amounts to taking linear combinations of
derivatives of g with respect to x. If Rd is split into two subdomains R−×Rd−1 and R+×Rd−1,
where R− := {x ∈ R | x < 0} and R+ := {x ∈ R | x > 0}, then the application of E−1 and
F−1 to vectors can be done for each subdomain independently. No communication between the
subdomains is necessary.

In conclusion, it is enough to find a domain decomposition algorithm for the uncoupled system
(5) and then transform it back to the original one (3) by means of the matrix F . This technique
can be applied to any linear system of PDEs once it is rewritten in a polynomial form. Moreover,
the uncoupled system acts on the variables ws, which we shall further call Smith variables since
they are issued from the Smith normal form.

Remark 2. Since the matrix F is used to transform (5) to (3) (see the first equation of the
right-hand side of (4)) and the matrix F is not unique, we need to find a matrix F as simple as
possible (e.g., F has minimal degree in ∂x) so that to obtain a final algorithm that can be used
for practical computations.

2.1 Application to Cauchy-Navier equations

Consider the two or three dimensional elasticity operator Ed(u) := −µ∆ u − (λ + µ)∇ divu,
where λ, µ are the two Lamé constants.

We first study the two-dimensional case. Let us consider the commutative polynomial rings
R = Q(λ, µ)[∂x, ∂y] and S = Q(λ, µ)(∂y)[∂x] = Q(λ, µ, ∂y)[∂x], ∆ = ∂2

x + ∂2
y , and

A2 =

(

(λ+ 2µ) ∂2
x + µ∂2

y (λ+ µ) ∂x ∂y

(λ+ µ) ∂x ∂y µ∂2
x + (λ+ 2µ) ∂2

y

)

∈ R2×2

the matrix of PD operators associated with E2, i.e., E2(u) = A2 u. Then, the Smith normal form
of A2 ∈ S

2×2 is defined by:

DA2
=

(

1 0

0 ∆2

)

. (6)

In particular, the matrices E, F ∈ GL2(S) can be chosen as follows:

E =

(

(λ+ µ) ∂x ∂y µ∂−2
y

µ∂x + (λ+ 2µ) ∂2
y µ2 (λ+ µ)−1 ∂x ∂

−3
y

)

, F =

(

(λ+ µ)−1 (λ− µ) ∂−3
y ∂x 1

1 0

)

.

The particular form of DA2
shows that the system of equations for the linear elasticity in R2

is algebraically equivalent over S to a biharmonic equation ∆2 v = 0.

We now study the three-dimensional case. Let us consider the commutative polynomial rings
R = Q(λ, µ)[∂x, ∂y, ∂z] and S = Q(λ, µ)(∂y, ∂z)[∂x] = Q(λ, µ, ∂y, ∂z)[∂x], ∆ = ∂2

x + ∂2
y + ∂2

z , and

A3 =







−(λ+ µ) ∂2
x − µ∆ −(λ+ µ) ∂x ∂y −(λ+ µ) ∂x ∂z

−(λ+ µ) ∂x ∂y −(λ+ µ) ∂2
y − µ∆ −(λ+ µ) ∂y ∂z

−(λ+ µ) ∂x ∂z −(λ+ µ) ∂y ∂z −(λ+ µ) ∂2
z − µ∆






∈ R3×3 (7)

Inria



Symbolic methods for developing new domain decomposition algorithms 9

the matrix of PD operators associated with E3, i.e., E3(u) = A3 u. Then, the Smith normal form
of A3 ∈ S

3×3 is:

DA3
=







1 0 0

0 ∆ 0

0 0 ∆2






. (8)

The particular form of DA3
shows that the system of equations for the linear elasticity in R3 is

algebraically equivalent over S to the uncoupled system formed by the Laplace equation ∆ v = 0
and the biharmonic equation ∆2 w = 0.

2.2 Application to Oseen and Stokes equations

Consider the two or three dimensional Oseen operator

Od(w) = Od(v, q) := (cv − ν∆v + b · ∇v +∇q,∇ · v),

where b = (bj)1≤j≤d is the convection velocity, c the reaction coefficient, and ν the viscosity. If
b = 0, then we obtain the Stokes operator Sd(w) = Sd(v, q) := (cv − ν∆v +∇q,∇ · v).

We start with the two-dimensional case. The spatial variables are denoted by x and y.
If we consider R = Q(b1, b2, c, ν)[∂x, ∂y] and S = Q(b1, b2, c, ν)(∂y)[∂x] = Q(b1, b2, c, ν, ∂y)[∂x],
∆ = ∂2

x + ∂2
y , and

O2 =







−ν∆ + b1 ∂x + b2 ∂y + c 0 ∂x

0 −ν∆ + b1 ∂x + b2 ∂y + c ∂y

∂x ∂y 0







the matrix of PD operators associated with O2, i.e., O2(w) = O2 w, then the Smith normal form
of O2 ∈ S

3×3 is defined by

DO2
=







1 0 0

0 1 0

0 0 ∆L2






, (9)

where L2 = c− ν∆ + b1 ∂x + b2 ∂y. The matrices E, F ∈ GL3(S) can be chosen as follows:

E =







∂x −∂−1
y ∂x L2 −ν ∂−2

y

∂y 0 0

0 ∂y 0






, F =







0 −∂−1
y L2 1

∂−1
y ∂x 1 0

1 0 0






.

From the form of DO2
we can deduce that the two-dimensional Oseen equations can be mainly

characterized by the scalar fourth order PD operator ∆L2 = ∆ (c − ν∆ + b · ∇). This is not
surprising since the stream function formulation of the Oseen problem gives the same PDE for
the stream function in the two-dimensional case (see, e.g., [19]).

In the three-dimensional case, the spatial variables are now denoted by x, y and z. Let us
consider R = Q(b1, b2, c, ν)[∂x, ∂y, ∂z], S = Q(b1, b2, c, ν)(∂y, ∂z)[∂x] = Q(b1, b2, c, ν, ∂y, ∂z)[∂x],
∆ = ∂2

x + ∂2
y + ∂2

z , and

O3 =









−ν ∆ + b1 ∂x + b2 ∂y + c 0 0 ∂x

0 −ν ∆ + b1 ∂x + b2 ∂y + c 0 ∂y

0 0 −ν ∆ + b1 ∂x + b2 ∂y + c ∂z

∂x ∂y ∂z 0









(10)

RR n° 7953



10 Cluzeau & Dolean & Nataf & Quadrat

the matrix of PD operators defining O3(v, q), then the Smith normal form of O3 is

DO3
=











1 0 0 0

0 1 0 0

0 0 L3 0

0 0 0 ∆L3











, (11)

where:

L3 = c− ν∆ + b1 ∂x + b2 ∂y + b3 ∂z = c− ν∆ + b · ∇. (12)

Analogously to the two-dimensional case, we see that the Oseen operator O3 is determined by
the diagonal matrix DO3

. Therefore, it can be represented by the fourth order PD operator ∆L3

and the second order PD operator L3.

Remark 3. The above applications of the Smith normal forms suggest the following conclusion:
one should design an optimal domain decomposition method for

• the biharmonic operator (resp., L2 ∆) in the case of linear elasticity (resp., for the Os-
een/Stokes equations) for the two-dimensional case,

• the system formed by the Laplace and biharmonic operators (resp., L3 and L3 ∆) in the
case of linear elasticity (resp., for the Oseen/Stokes equations) in the three-dimensional
case,

and then back-transform it to the original system.

3 Optimal domain decomposition algorithms for scalar equa-

tions

The Neumann-Neumann or FETI methods are well-known for some symmetric scalar equations
such as Laplace equations (see [33, 26, 27, 17, 28]). We can give an example of such a method
in its iterative version. Consider a decomposition of the domain Ω = R2 into two half planes
Ω1 = R− × R and Ω2 = R+ × R. Let the interface {0} × R be denoted by Γ and (ni)i=1,2 the
outward normal of (Ωi)i=1,2. We consider the following problem: Find u : R2 → R such that

{

−∆u = g in R2,

|u(x)| → 0 for |x| → ∞,
(13)

where g is a given right-hand side.

The following algorithm is optimal in the sense that converges in two iterations.

Algorithm 1. Let un
i be the local solution in the domain Ωi at iteration n. We choose the initial

values u0
1 and u0

2 such that u0
1 = u0

2 on Γ. We obtain (un+1
i )i=1,2 from (un

i )i=1,2 by the following
iterative procedure:

Correction step. We compute the corrections
(

ũn+1
i

)

i=1,2
as solutions of the following homo-

geneous local problems

Inria



Symbolic methods for developing new domain decomposition algorithms 11























−∆ ũn+1
1 = 0 in Ω1,

lim
|x|→∞

|ũn+1
1 | = 0,

∂ ũn+1
1

∂ n1
= γn on Γ,























−∆ ũn+1
2 = 0 in Ω2,

lim
|x|→∞

|ũn+1
2 | = 0,

∂ ũn+1
2

∂ n2
= γn on Γ,

(14)

where γn = −
1

2

(

∂ un
1

∂ n1
+
∂ un

2

∂ n2

)

.

Updating step. We update (un+1
i )i=1,2 by solving the following local problems















−∆un+1
1 = g in Ω1,

lim
|x|→∞

|un+1
1 | = 0,

un+1
1 = un

1 + δn+1 on Γ,















−∆un+1
2 = g in Ω2,

lim
|x|→∞

|un+1
2 | = 0,

un+1
2 = un

2 + δn+1 on Γ,

(15)

where δn+1 =
1

2

(

ũn+1
1 + ũn+1

2

)

.

Since the biharmonic operator (or its very similar form ∆ (c − ν∆)) seems to play a key
role in the design of a new algorithm for both Stokes and elasticity problem, inspired by the
Neumann-Neumann algorithm for the Laplace equation (see Algorithm 1), we need to build an
optimal algorithm (converging in two iterations) for it.

For the sake of simplicity, we only illustrate the example of the ∆2 operator, the conclusions
for ∆ (c− ν∆) being identical. We consider the following problem: Find φ : R2 → R such that

{

∆2φ = g in R2,

|φ(x)| → 0 for |x| → ∞,
(16)

where g is a given right-hand side.

The domain Ω is decomposed into two half planes Ω1 = R− × R and Ω2 = R+ × R. Let the
interface {0}×R be denoted by Γ and (ni)i=1,2 the outward normal of (Ωi)i=1,2. The algorithm
we propose is given as follows:

Algorithm 2. We choose the initial values φ0
1 and φ0

2 such that φ0
1 = φ0

2, ∆φ0
1 = ∆φ0

2, on Γ.
We obtain (φn+1

i )i=1,2 from (φn
i )i=1,2 by the following iterative procedure:

Correction step. We compute the corrections
(

φ̃n+1
i

)

i=1,2
as solutions of the following homo-

geneous local problems











































∆2 φ̃n+1
1 = 0 in Ω1,

lim
|x|→∞

|φ̃n+1
1 | = 0,

∂ φ̃n+1
1

∂ n1
= γn

1 on Γ,

∂∆ φ̃n+1
1

∂ n1
= γn

2 on Γ,











































∆2 φ̃n+1
2 = 0 in Ω2,

lim
|x|→∞

|φ̃n+1
2 | = 0,

∂ φ̃n+1
2

∂ n2
= γn

1 on Γ,

∂∆ φ̃n+1
2

∂ n2
= γn

2 on Γ,

(17)

RR n° 7953



12 Cluzeau & Dolean & Nataf & Quadrat

where γn
1 = −

1

2

(

∂ φn
1

∂ n1
+
∂ φn

2

∂ n2

)

and γn
2 = −

1

2

(

∂∆φn
1

∂ n1
+
∂∆φn

2

∂ n2

)

.

Updating step. We update (φn+1
i )i=1,2 by solving the following local problems























∆2φn+1
1 = g in Ω1,

lim
|x|→∞

|φn+1
1 | = 0,

φn+1
1 = φn

1 + δn+1
1 on Γ,

∆φn+1
1 = ∆φn

1 + δn+1
2 on Γ,























∆2φn+1
2 = g in Ω2,

lim
|x|→∞

|φn+1
2 | = 0,

φn+1
2 = φn

2 + δn+1
1 on Γ,

∆φn+1
2 = ∆φn

2 + δn+1
2 on Γ,

(18)

where δn+1
1 =

1

2

(

φ̃n+1
1 + φ̃n+1

2

)

and δn+1
2 =

1

2

(

∆ φ̃n+1
1 + ∆ φ̃n+1

2

)

.

This algorithm has a remarkable property: it is optimal in the sense that converges in two
iterations. The proof of its optimality can be easily done by Fourier transform techniques (see
[14]).

This is a generalization of the Neumann-Neumann algorithm for the ∆ operator acting on a
Smith variable. For instance, in the case of the two dimensional linear elasticity, φ represents the
second component of the vector of Smith variables, that is, φ = (ws)2 = (Fu)2, where u = (u, v)
is the displacement field. We now need to replace φ with (Fu)2 into Algorithm 2 and then
simplify it using algebraically admissible operations. Thus, one can obtain an optimal algorithm
for the Stokes (resp., Cauchy-Navier) equations. But this depends on the form of F .

In the three dimensional case, we should rather consider the Laplace/biharmonic system. We
thus need to study the following problem: Find φ : R3 → R and ψ : R3 → R such that

{

∆(ψ) = h in R3, |ψ(x)| → 0 for |x| → ∞,

∆2(φ) = g in R3, |φ(x)| → 0 for |x| → ∞,
(19)

where g and h are given right-hand sides. The domain Ω is decomposed into two half spaces
Ω1 = R−×R2 and Ω2 = R+×R2. Let the interface {0}×R2 be denoted by Γ and (ni)i=1,2 the
outward normal of (Ωi)i=1,2. We have the following optimal algorithm:

Algorithm 3. We choose the initial values φ0
1, φ

0
2, ψ

0
1, ψ

0
2 such that φ0

1 = φ0
2, ψ

0
1 = ψ0

2 and
∆φ0

1 = ∆φ0
2 on Γ. We obtain (φn+1

i )i=1,2 and (ψn+1
i )i=1,2 from (φn

i )i=1,2 and (ψn
i )i=1,2 by the

following iterative procedure:

Correction step. We compute the corrections
(

φ̃n+1
i

)

i=1,2
and

(

ψ̃n+1
i

)

i=1,2
as solutions of the

following homogeneous local problems

Inria



Symbolic methods for developing new domain decomposition algorithms 13



















































































∆ ψ̃n+1
1 = 0 in Ω1,

∆2 φ̃n+1
1 = 0 in Ω1,

lim
|x|→∞

|ψ̃n+1
1 | = 0,

lim
|x|→∞

|φ̃n+1
1 | = 0,

∂ ψ̃n+1
1

∂ n1
= δn on Γ,

∂ φ̃n+1
1

∂ n1
= γn

1 on Γ,

∂∆ φ̃n+1
1

∂ n1
= γn

2 on Γ,



















































































∆ ψ̃n+1
2 = 0 in Ω2,

∆2 φ̃n+1
2 = 0 in Ω2,

lim
|x|→∞

|ψ̃n+1
2 | = 0,

lim
|x|→∞

|φ̃n+1
2 | = 0,

∂ ψ̃n+1
2

∂ n2
= γn on Γ,

∂ φ̃n+1
2

∂ n2
= γn

1 on Γ,

∂∆ φ̃n+1
1

∂ n1
= γn

2 on Γ,

(20)

where:

γn = −
1

2

(

∂ ψn
1

∂ n1
+
∂ ψn

2

∂ n2

)

, γn
1 = −

1

2

(

∂ φn
1

∂ n1
+
∂ φn

2

∂ n2

)

, γn
2 = −

1

2

(

∂∆φn
1

∂ n1
+
∂∆φn

2

∂ n2

)

.

Updating step. We update (φn+1
i )i=1,2 and (ψn+1

i )i=1,2 by solving the following local problems:



























































∆ψn+1
1 = h in Ω1,

∆2 φn+1
1 = g in Ω1,

lim
|x|→∞

|ψn+1
1 | = 0,

lim
|x|→∞

|φn+1
1 | = 0,

ψn+1
1 = ψn

1 + δn+1 on Γ,

φn+1
1 = φn

1 + δn+1
1 on Γ,

∆φn+1
1 = ∆φn

1 + δn+1
2 on Γ,



























































∆ψn+1
2 = h in Ω2,

∆2 φn+1
2 = g in Ω2,

lim
|x|→∞

|ψn+1
2 | = 0,

lim
|x|→∞

|φn+1
2 | = 0,

ψn+1
2 = ψn

2 + δn+1 on Γ,

φn+1
2 = φn

2 + δn+1
1 on Γ,

∆φn+1
2 = ∆φn

2 + δn+1
2 on Γ,

(21)
where:

δn+1 =
1

2

(

ψ̃n+1
1 + ψ̃n+1

2

)

, δn+1
1 =

1

2

(

φ̃n+1
1 + φ̃n+1

2

)

, δn+1
2 =

1

2

(

∆ φ̃n+1
1 + ∆ φ̃n+1

2

)

.

In this case, (φ, ψ) = (ws)2,3 = (Fu)2,3, where u = (u, v, w) is the displacement field in R3

and (V )2,3 denotes the second and third entries of a vector V .

The same question arises both for the two and three dimensional cases: Is there a simple
optimal domain decomposition algorithm for the Stokes (resp., Cauchy-Navier) equations? If
so, compute the corresponding F . Therefore, we need to properly choose a matrix F from the
Smith normal form in order to obtain a “good” algorithm for those systems of PDEs based on the
optimal ones for the biharmonic operator and for the Laplace/biharmonic operator. In [13, 14],
that is for Euler and Stokes/Oseen equations, the computation of the Smith normal form was
done by hand or using the computer algebra system Maple. Surprisingly, the computed F has
provided a good algorithm for the Stokes system even if the approach was entirely heuristic.

RR n° 7953



14 Cluzeau & Dolean & Nataf & Quadrat

4 An approach by hand calculations

In this section, we shall show how to choose F in the case of the two dimensional elasticity
problem even if the construction is not yet entirely automatic. Very similar reasoning can be
carried out for the Stokes systems and for the three-dimensional problems.

To begin with, we first show some properties of the system which will guide us in the choice
of the variables.

Lemma 1. Consider the two-dimensional linear elasticity system:

E2u :=

{

−µ∆u− (λ+ µ) ∂x div(u) = fu

−µ∆ v − (λ+ µ) ∂y div(u) = fv

, u = (u, v). (22)

1. The quantities ∂y u− ∂x v and div(u) are “annihilated” by the operator ∆, i.e., they verify
an equation of the type −∆w = g, where g is a linear PD combination of fu and fv. The
same property remains true for any linear PD combination of ∂y u− ∂x v and div(u).

2. The variables u and v are “annihilated” by the operator ∆2, as well as any linear PD
combination of them.

The biharmonic operator annihilates the components of u (i.e., the displacements for the
linear elasticity). Furthermore, as part of the Smith normal form, it acts on a Smith variable.
A natural question is then to find an F such that the second component of the corresponding
Smith variables F u is exactly u or v. This leads to a simple and natural form of the algorithm.

We distinguish here two cases. In both cases, one needs to reduce the boundary conditions
given in (17) and (18) by rewritting them in terms of physical variables in order to obtain
well-posed local problems. The authorized operations are:

• linear combinations between the interface equations (using only PD operators in the y-
direction),

• the equations inside the domain (in this case all the polynomial operations with respect to
∂x are authorized).

In the following, we introduce the stress tensor in order to write the algorithm in a more
intrinsic form:

σ(u) =





(2µ+ λ) ∂u
∂x

+ λ ∂v
∂y

µ
(

∂u
∂y

+ ∂v
∂x

)

µ
(

∂v
∂x

+ ∂u
∂y

)

(2µ+ λ) ∂v
∂y

+ λ ∂u
∂x



 , u = (u, v). (23)

For any vector u, its normal (resp., tangential) component on the interface is uni
= u ·ni (resp.,

uτ i
= u · τi). We denote by σi

ni
:= (σi(ui) ·ni) ·ni (resp., σi

τ i
:= (σi(ui) ·ni) · τ i) the normal

(resp., tangential) part of the normal stress tensor σi(ui) · ni.

Case 1. u is one of the Smith variables. Using the fact that F must be polynomial in ∂x and
unimodular, one can easily obtain by direct computations that:

F =

(

−(λ+ µ)−1 ∂−3
y ∂x (µ∂2

x − λ∂
2
y) 1

1 0

)

.

Inria



Symbolic methods for developing new domain decomposition algorithms 15

Correction step. One needs to rewrite the interface conditions given in (17). The first one is
equivalent to ∂x u which cannot be simplified. The second interface condition can be reduced by
using (22) as follows:

∂x (∆u) = ∂3
x u+ ∂x ∂

2
y u,

= − µ
λ+2 µ

∂x ∂
2
y u−

λ+µ
λ+2 µ

∂2
x ∂y v + ∂x ∂

2
y u,

= λ+µ
λ+2 µ

∂y(∂x ∂y u− ∂
2
x v),

= λ+µ
λ+2 µ

∂y

(

λ+2 µ
µ

∂y (∂y v + ∂x u)
)

,

= λ+µ
µ

∂2
y(∂y v + ∂x u).

(24)

Integrating twice along the interface (which means removing ∂2
y in the last equality of (24)), we

get ∂y v+∂x u. Taking a linear combination with the first interface condition ∂x u and integrating
again along the interface, we finally obtain that the second interface condition can be reduced
to v. Therefore, the two quantities to be imposed along the interface can be chosen as v and
σ11(u). Since, in this particular case, the normal vector at the interface is n = (1, 0), this is
equivalent to imposing uτ = u · τ and σn = (σ(u) · n) · n.

Update step. The first interface condition given by (18) is equivalent to imposing u = u ·n, and
the second one can be further simplified using formally the first equation of (22) as follows:

∆u = ∂2
x u+ ∂2

y u = − µ
λ+2 µ

∂2
y u−

λ+µ
λ+2 µ

+ ∂2
y u = λ+µ

λ+2 µ
∂y (∂y u− ∂x v). (25)

Proceeding as in the Correction step above, the two interface conditions are equivalent to impos-
ing un = u · n and στ = (σ(u) · n) · τ .

Case 2. v is one of the Smith variables. Using the fact that F must be polynomial in ∂x and
unimodular, one can easily obtain by direct computations that:

F =

(

1 −(λ+ µ) ∂−3
y ∂x ((3µ+ 2λ) ∂2

y + (2µ+ λ) ∂2
x)

0 1

)

.

Performing similar calculations as in Case 1, we obtain the following conclusion: for the Correc-
tion step, the two interface conditions are equivalent to imposing un = u·n and στ = (σ(u)·n)·τ .
For the Update step, the two interface conditions are equivalent to imposing uτ = u · τ and
σn = (σ(u) · n) · n.

In conclusion, depending on the choice of F , one obtains two different algorithms for the two
dimensional linear elasticity system.

Algorithm 4. (Case 1) Starting with an initial guess (u0
i )

N
i=0 satisfying u0

i,ni
= u0

j,nj
and

σi
τ i

(u0
i ) = σj

τ j
(u0

j ) on Γij, ∀ i, j, i 6= j, the correction step is expressed as follows:

1 ≤ i ≤ N,























E2(ũ
n+1
i ) = 0 in Ωi,

ũn+1
i,τ i

= −
1

2
(un

i,τ i
+ un

j,τ j
) on Γij ,

σi
ni

(ũn+1
i ) = −

1

2
(σi

ni
(un

i ) + σj
nj

(un
j )) on Γij ,

(26)

RR n° 7953



16 Cluzeau & Dolean & Nataf & Quadrat

followed by an updating step:

1 ≤ i ≤ N,



































E2(u
n+1
i ) = g in Ωi,

un+1
i,ni

= un
i,ni

+
1

2
(ũn+1

i,ni
+ ũn+1

j,nj
) on Γij ,

σi
τ i

(un+1
i ) = σi

τ i
(un

i )

+
1

2
(σi

τ i
(ũn+1

i ) + σj
τ j

(ũn+1
j )) on Γij .

(27)

The boundary conditions in the update step involve the normal velocity and the tangential
stress, whereas in the correction step the tangential velocity and the normal stress are involved.

Algorithm 5. (Case 2) Starting with an initial guess (u0
i )

N
i=0 satisfying u0

i,τ i
= u0

j,τ j
and

σi
ni

(u0
i ) = σj

nj
(u0

j ) on Γij, ∀ i, j, i 6= j, the correction step is expressed as follows:

1 ≤ i ≤ N,























E2(ũ
n+1
i ) = 0 in Ωi,

ũn+1
i,ni

= −
1

2
(un

i,ni
+ un

j,nj
) on Γij ,

σi
τ i

(ũn+1
i ) = −

1

2
(σi

τ i
(un

i ) + σj
τ j

(un
j )) on Γij ,

(28)

followed by an updating step:

1 ≤ i ≤ N,



































E2(u
n+1
i ) = g in Ωi

un+1
i,τ i

= un
i,τ i

+
1

2
(ũn+1

i,τ i
+ ũn+1

j,τ j
) on Γij ,

σi
ni

(un+1
i ) = σi

ni
(un

i )

+
1

2
(σi

ni
(ũn+1

i ) + σj
nj

(ũn+1
j )) on Γij .

(29)

The boundary conditions in the correction step involve the normal velocity and the tangen-
tial stress, whereas in the updating step the tangential velocity and the normal stress are involved.

These two algorithms are completely symmetric with the same numerical complexity and
the coupling interface conditions have a physical meaning. The above results thus lead to the
following question: Are those algorithms the only ones? If not, study the dependency of the
algorithms with respect to F .

5 An algorithmic approach

As we have seen in the above sections, the efficiency of our algorithms heavily relies on the
simplicity of the Smith variables, that is of the rows of the matrix F already defined. In this
section, within a constructive algebraic analysis approach (see [5, 8, 32]), we develop a method
for constructing many possible Smith variables. Taking into account physical aspects, the user
can then choose the simplest ones among them.

Let A ∈ Rp×p be a matrix with entries in the ring R = k[∂1, . . . , ∂d] of PD operators with
coefficients in a field k. An element P ∈ R has the form P =

∑

0≤|µ|≤r aµ ∂
µ, where aµ ∈ k,

Inria



Symbolic methods for developing new domain decomposition algorithms 17

µ = (µ1 . . . µn) ∈ N1×n, ∂µ = ∂µ1

1 . . . ∂µn
n , ∂i = ∂

∂xi
, i = 1, . . . , n, and |µ| = µ1 + · · · + µn.

Moreover, let us introduce the following commutative polynomial rings:










R1 = k(∂2, . . . , ∂d)[∂1],

Ri = k(∂1, . . . , ∂i−1, ∂i+1, . . . , ∂d)[∂i], i = 2, . . . , d− 1,

Rd = k(∂1, . . . , ∂d−1)[∂d].

(30)

We recall that the Smith normal form of A with respect to the direction xi is the diagonal
matrix D = diag(d1, . . . , dp) formed by monic polynomials di of Ri satisfying d1 | d2 | · · · | dp

and A = EDF , for certain matrices E, F ∈ GLp(Ri). In particular, there exists 0 ≤ r ≤ p,
such that the diagonal matrix D can be written as:

D =

(

Ir 0

0 D2

)

, D2 = diag(dr+1, . . . , dp) ∈ R
(p−r)×(p−r)
i , dr+1 6= 1.

As it was previously pointed out, the matrices E and F are not unique. Computer algebra
systems such as Maple provide a pair of matrices (E,F ). The goal of this section is to explain
how to provide many distinct F ’s so that the results of Section 4 can be applied on the simplest
F ’s or on the F ’s leading to Smith variables having a physical meaning. This way, the procedure
described in Section 4 will be made automatic. To do that, we first need to recall a few definitions
on module theory and state useful material. For more details on a module-theoretic approach to
mathematical systems theory, see [32] and references therein.

5.1 A few results of module theory

If R is a commutative ring, then a R-module M is an abelian group (M,+) (see, e.g., [4]) equipped
with a scalar multiplication

R×M −→ M
(r, m) 7−→ rm,

which satisfies the following properties:

1. r1 (m1 +m2) = r1m1 + r1m2,

2. (r1 + r2)m1 = r1m1 + r2m1,

3. r2 (r1m1) = (r2 r1)m1,

4. 1m1 = m1,

for all r1, r2 ∈ R and for all m1, m2 ∈M . Hence, the definition of a R-module M is similar to
the one of a vector space but where the scalars are taken in a ring R and not in a field (e.g., Q,
R, C) as for vector spaces. For instance, an abelian group is a Z-module and an ideal of R is a
R-submodule of R.

If M and N are two R-modules, then a R-homomorphism f : M −→ N is a R-linear map
from M to N , namely:

∀ r1, r2 ∈ R, ∀ m1, m2 ∈M, f(r1m1 + r2m2) = r1 f(m1) + r2 f(m2).

We denote by homR(M,N) the abelian group formed by the R-homomorphisms from M to N .
Since R is a commutative ring, homR(M,N) inherits a R-module structure:

∀ f ∈ homR(M,N), ∀ r ∈ R, ∀ m ∈M, (r f)(m) = f(rm).

RR n° 7953



18 Cluzeau & Dolean & Nataf & Quadrat

Now, f ∈ homR(M,N) is called an isomorphism if f is a bijective (i.e., an injective and
surjective) homomorphism. If there exists an isomorphism from M to N , then M and N are
said to be isomorphic, which is denoted by M ∼= N .

If A ∈ Rq×p, then we can consider the following R-homomorphism:

.A : R1×q −→ R1×p

r = (r1 . . . rq) 7−→ rA.

The kernel of the R-homomorphism .A is the R-module defined by:

kerR(.A) = {r ∈ R1×q | rA = 0}.

The matrix A is said to have full row rank if kerR(.A) = 0, i.e., if the rows of A are R-linearly
independent. The image imR(.A) of .A, simply denoted by R1×q A, is the R-module defined by
all the R-linear combinations of the rows of A. Moreover, the cokernel cokerR(.A) of .A is the
factor R-module defined by cokerR(.A) := R1×p/(R1×q A). To simplify the notation, we shall
denote this module by M , i.e., M = R1×p/(R1×q A). Two vectors r, r′ ∈ R1×p are said to be
equivalent, denoted by r ∼ r′, if there exists s ∈ R1×q such that r = r′ + sA. We can easily
check that ∼ is an equivalence class. The residue class of r ∈ R1×p for this equivalence relation
∼ is denoted π(r), i.e., π(r) = π(r′) if there exists s ∈ R1×q such that r = r′ + sA. The
R-module structure of M is defined by:

∀ r, r′ ∈ R1×p, ∀ r ∈ R, π(r) + π(r′) := π(r + r′), r π(r) := π(r r). (31)

We can easily check that the above operations are well-defined, i.e., they do not depend on the
choice of the representative r and r′ of the elements π(r) and π(r′) of M . Indeed, if t, t′ ∈ R1×p

are such that π(r) = π(t) and π(r′) = π(t′), then there exist s, s′ ∈ R1×q such that r = t + sA
and r′ = t′ + s′A, which yields:

π(r + r′) = π(t + t′ + (s + s′)A) = π(t + t′), π(r r) = π(r t + (r s)A) = π(r t).

Since the R-module M = R1×p/(R1×q A) plays a fundamental role in what follows, we de-
scribe it in terms of generators and relations. Let fj be the jth vector of the standard basis
{fj}j=1,...,p of R1×p, namely, fj is the row vector of length p defined by 1 at the jth position and
0 elsewhere. Moreover, let π : R1×p −→ M = R1×p/(R1×q A) be the R-homomorphism sending
r ∈ R1×p to its residue class π(r) in M (see (31)). We claim that {mj = π(fj)}j=1,...,p is a family
of generators of the R-module M . Indeed, for any m ∈ M , there exists r = (r1 . . . rp) ∈ R

1×p

such that:

m = π(r) = π





p
∑

j=1

rj fj



 =

p
∑

j=1

rj π(fj) =

p
∑

j=1

rj mj .

Now, since fiA is the ith row of the matrix A, π(fiA) = 0, which yields:

∀ i = 1, . . . , q, π(fiA) = π





p
∑

j=1

Aij fj



 =

p
∑

j=1

Aij π(fj) =

p
∑

j=1

Aij mj = 0. (32)

Thus, the family of generators {mj}j=1,...,p of M satisfies the relations
∑p

j=1Aij mj = 0 for all

i = 1, . . . , q. The R-module M is then said to be finitely presented by A ∈ Rq×p and the matrix
A is a presentation matrix of M . Note that the above remarks do not assume the commutativity

Inria



Symbolic methods for developing new domain decomposition algorithms 19

of the ring R. For more details, see [5, 32] and the references therein. Module theory and
homological algebra study properties of the R-module M which do not depend on the particular
presentation M = R1×p/(R1×q A) of M (up to isomorphism, the R-module M can be presented
by different matrices of different sizes).

Example 1. The finitely presented R-module M = R1×p/(R1×q A) is classically used in number
theory and in algebraic geometry. For instance, Cauchy’s definition of the field of complex
numbers is C = R[x]/(R[x] (x2 + 1)). In this case, we can take R = R[x], A = (x2 + 1), and
p = q = 1. Similarly, the ring of Gaussian numbers Z[i] := {a + b i | a, b ∈ Z, i2 = −1} can
be written as Z[i] = Z[x]/(x2 + 1), i.e., R = Z[x], A = (x2 + 1), and p = q = 1. Now, if
R = k[x1, . . . , xd] is a commutative ring of polynomials in x1, . . . , xd with coefficients in a field
k, and I is an ideal of R generated by the polynomials P1, . . . , Pq, i.e.,

I =

q
∑

i=1

RPi =

{

q
∑

i=1

ri Pi | ri ∈ R, i = 1, . . . , q

}

,

then an important concept in algebraic geometry is the affine coordinate ring R/I associated
with the affine algebraic variety V (I) = {(x1, . . . , xd) ∈ k

d | ∀ i = 1, . . . , q, Pi(x1, . . . , xd) = 0}
defined by the common zeros of the polynomials P1, . . . , Pq in kd. In this case, R = k[x1, . . . , xd],
A = (P1 . . . Pq)

T ∈ Rq×1, i.e., p = 1, and R1×q A =
∑q

i=1RPi = I.

Let us now state one interest of the use of the R-moduleM = R1×p/(R1×q A) in mathematical
systems theory. If F is a R-module, then a result due to Malgrange ([25]) asserts that:

kerF (A.) := {η ∈ Fp | Aη = 0} ∼= homR(M,F). (33)

Let us explain (33). If {mj = π(fj)}j=1,...,p is the family of generators of the R-module
M = R1×p/(R1×q A) defined above, then φ ∈ homR(M,F) is defined by φ(mj) = ηj ∈ F for
j = 1, . . . , p. Moreover, since by definition of a homomorphism, φ(0) = 0, using (32), we get

∀ i = 1, . . . , q,

p
∑

j=1

Aij ηj =

p
∑

j=1

Aij φ(mj) = φ





p
∑

j=1

Aij mj



 = φ(0) = 0,

which shows that Aη = 0, where η = (η1 . . . ηp)
T ∈ Fp, and thus η ∈ kerF (A.). Conversely, if

η ∈ kerF (A.), i.e., Aη = 0, then we can consider the map φη : M −→ F defined by φη(π(r)) = r η
for all r ∈ R1×p. Indeed, this map is well-defined since if π(r) = π(r′), then there exists s ∈ R1×q

such that r = r′ + sA, which yields r η = r′ η + sAη = r′ η and shows that φη(π(r)) = r η
depends only on π(r) and not on any representative r ∈ R1×p of π(r). Moreover,

∀ i = 1, . . . , q, φη

(

p
∑

i=1

Aij mj

)

=

p
∑

i=1

Aij φη(mj) =

p
∑

i=1

Aij ηj = 0,

which shows that φη ∈ homR(M,F) and proves the isomorphism since for every η ∈ kerF (A.),
φη(mj) = ηj for all j = 1, . . . , p, and for all φ ∈ homR(M,F), φ = φ(φ(m1) ... φ(mp))T .

Example 2. If R = Q[∂1, ∂2] is the commutative polynomial ring of PD operators with rational
constant coefficients, ∆ = ∂2

1 + ∂2
2 ∈ R, M = R/(R∆), and F = C∞(Ω) (resp., D′(Ω), S ′(Ω))

the R-module of smooth functions (resp., distributions, temperate distributions) on Ω, where Ω
is an open subset of R2, then the isomorphism (33) yields:

kerF (∆.) = {η ∈ F | ∆ η = 0} ∼= homR(M,F).

RR n° 7953



20 Cluzeau & Dolean & Nataf & Quadrat

Let us give a module-theoretic interpretation of the differential operators appearing in the
Smith normal form of the presentation matrix A of the R-module M (see Section 2).

If M is a R-module, then the annihilator annR(m) of m ∈ M is the ideal of R defined by
annR(m) = {r ∈ R | r m = 0}. More generally, the annihilator annR(M) of the R-module M is
the ideal of R defined by:

annR(M) := {r ∈ R | ∀ m ∈M : rm = 0} =
⋂

m∈M

annR(m). (34)

Let M = R1×p/(R1×q A) be the R-module finitely presented by A ∈ Rq×p. Let us compute
the annihilator of M . If r ∈ annR(M), then rm = 0 for all m ∈ M . In particular, we get
rmj = 0 for all j = 1, . . . , p, where {mj = π(fj)}j=1,...,p is a set of generators of M . Conversely,
if r ∈ R is such that rmj = 0 for all j = 1, . . . , p, then rm = 0 for all m ∈ M since R is a
commutative ring and every element m ∈M has the form of m =

∑p
j=1 rj mj for certain rj ∈ R

for j = 1, . . . , p. Now, for j = 1, . . . , p, π(r fj) = r π(fj) = rmj = 0, and thus there exists
Bj ∈ R

1×q such that r fj = Bj A, i.e., r Ip = BA, where B = (BT
1 . . . BT

p )T ∈ Rp×q, and thus:

annR(M) = {r ∈ R | ∃ B ∈ Rp×q : r Ip = BA}.

Let us now focus on full row rank square matrices, a class which will be considered for
applications in what follows. Hence, let A ∈ Rp×p have full row rank, i.e., det(A) 6= 0. Similarly
to what happens in linear algebra, we can check that AAdj(A) = Adj(A)A = det(A) Ip hold,
where Adj(A) ∈ Rp×p is the adjugate matrix of A, namely the transpose of the matrix of cofactors
of A (see, e.g., [15]). We recall that the matrix of cofactors of A is the matrix whose (i, j) entry is
(−1)i+j

mij , where mij is the minor for entry Aij , namely the determinant of the (p−1)×(p−1)-
submatrix of A obtained by removing the ith row and the jth column of A. If r ∈ annR(M),
i.e., r Ip = BA for a certain matrix B ∈ Rp×p, then rAdj(A) = BAAdj(A) = B det(A), i.e.,
rAdj(A)ij = Bij det(A) for i, j = 1, . . . , p, which yields (the converse implication holds since
det(A) is a non-zero divisor of R):

r ∈ annR(M) ⇔ ∀ i, j = 1, . . . , p, rmij ∈ R det(A) := {s det(A) | s ∈ R}. (35)

Let us now introduce the important concept of Fitting’s ideals in module theory ([4, 15]).

Definition 1. Let R be a commutative ring, A ∈ Rq×p, and M = R1×p/(R1×q A). Then, the
ideal of R generated by the (p − i) × (p − i)-minors of A is denoted Fitti(M) and is called the
ith Fitting ideal of the R-module M . By convention, Fitti(M) = 0 if p − i > q, i.e., i < p − q,
and Fitti(M) = R for i ≥ p.

It can be proved that the Fitting ideals depend only on M and not on the matrix A which
presents M (see, e.g., [15]), a fact explaining the notation Fitti(M).

Since every i× i-minor of A is a R-linear relation of (i− 1)× (i− 1)-minors of A, we get:

0 ⊆ Fitt0(M) ⊆ Fitt1(M) ⊆ Fitt2(M) ⊆ · · · ⊆ Fitti(M) ⊆ Fitti+1(M) ⊆ · · · ⊆ R. (36)

Let A ∈ Rp×p have full row rank, i.e., det(A) 6= 0, and M = R1×p/(R1×pA). Then:

Fitt0(M) = R det(A), Fitt1(M) =

p
∑

i,j=1

Rmij .

Inria



Symbolic methods for developing new domain decomposition algorithms 21

If I and J are two ideals of R such that I ⊆ J , then I : J = {r ∈ R | r J ⊆ I} is the conductor
of J into I, where r J := {r j | j ∈ J} is the principal ideal of R generated by r. We note that
I : J = annR(J/I).

Then, (35) shows that:

annR(M) = {r ∈ R | ∀ i, j = 1, . . . , p, rmij ∈ R det(A)}

= {r ∈ R | rFitt1(M) ⊆ Fitt0(M)}

= Fitt0(M) : Fitt1(M).

(37)

Let us now explain how to explicitly compute the annihilator annR(M) of M when R is
a commutative polynomial ring with coefficients in a computational field (e.g., k = Q). If

Fitt1(M) =
∑p2

i=1Rri (i.e., ri is one of the mjk’s) and L = (r1 . . . rp2) ∈ R1×p2

, then using (37)
and the commutativity of R, we get that r ∈ annR(M) iff there exist si ∈ R for i = 1, . . . , p2

such that r ri = si det(A), i.e., iff:

Lr = (s1 . . . sp2) det(A) ⇔ (r − s1 . . . − sp2)

(

L

det(A) Ip2

)

= 0.

Using Gröbner basis techniques (see Algorithm 9 of Section 7), we can compute W ∈ Rs×(1+p2)

such that kerR(.(LT det(A) IT
p2)T ) = Rs×(1+p2)W , and thus we get:

annR(M) =

s
∑

k=1

RWk1.

Remark 4. Using (37), we get Fitt0(M) ⊆ annR(M). More generally, we can prove (see [15])

∀ j ≥ 1, annR(M) Fittj(M) ⊆ Fittj−1(M), (38)

where the product I J of two ideals I and J of R is defined by:

I J =

{

t
∑

i=1

ai bi | t ∈ N, ai ∈ I, bi ∈ J

}

.

If the R-module M can be generated by r elements, then there exists a matrix B ∈ Rs×r such
that M ∼= R1×r/(R1×sB), which shows that Fittr(M) = R since the ideal generated by the
0×0-minors of the matrix B is R and the Fitting ideals do not depend on the presentation of M
(see [15]). Moreover, (38) yields annR(M)r Fittr(M) ⊆ Fitt0(M), i.e., annR(M)r ⊆ Fitt0(M).
In particular, if M is a cyclic R-module, namely, M can be generated by one generator, i.e.,
r = 1, then annR(M) = Fitt0(M).

An important application of the characterization of the annihilator annR(M) of the R-module
M = R1×p/(R1×pA) is the computation of the so-called characteristic variety charR(M) of M .

Definition 2. Let R = R[∂1, . . . , ∂d] be the commutative polynomial ring of PD operators with
coefficients in R, A ∈ Rp×p, and M = R1×p/(R1×pA). Then, the characteristic ideal of the
R-module M is defined by:

I(M) =
√

annR(M) := {r ∈ R | ∀ m ∈M, ∃ l ∈ N : rlm = 0}.

The characteristic variety of M is the complex affine algebraic variety defined by I(M), i.e.:

charR(M) = {χ = (χ1, . . . , χd) ∈ Cd | ∀ r ∈ I(M) : r(χ) = 0}.

RR n° 7953



22 Cluzeau & Dolean & Nataf & Quadrat

Now, if M is a R-module and d ∈ R, then the annihilator annM (d) is the R-submodule of
M defined by annM (d) = {m ∈ M | dm = 0}. If M = R1×p/(R1×pA) and m ∈ annM (d), then
there exists r ∈ R1×p such that m = π(r), which yields:

π(d r) = d π(r) = dm = 0 ⇔ ∃ s ∈ R1×p : d r = sA.

Since R is a commutative ring, d r = sA is equivalent to:

(r − s)

(

d Ip

A

)

= 0.

If R is a commutative polynomial ring with coefficients in a computable field k, then we can find
a family of generators of the R-module kerR(.(d IT

p AT )T ), i.e., there exists a matrix S ∈ Rq×2 p

such that kerR(.(d IT
p AT )T ) = R1×q S (see Algorithm 9 of Section 7). If S = (U V ), where

U ∈ Rq×p and V ∈ Rq×p, then annM (d) =
∑q

k=1Rπ(Uk•), where Uk• is the kth row of the
matrix U . Computing the normal forms of the vectors Uk•’s with respect to a Gröbner basis of
the R-module R1×pA for a certain monomial order (for more details, see Section 7), we obtain
uk ∈ R

1×p satisfying annM (d) =
∑q

k=1Rπ(uk). All these computations can be handled with
the OreModules package [6].

Let us now show that the Fitting ideals Fitti(M)’s of the R-module M = R1×p/(R1×pA)
are finer invariants than the invariant factors di’s of the Smith normal form of A ∈ Rp×p defined
over the principal ideal domain Ri. If Rj ⊗R M denotes the Rj-module finitely presented by
A ∈ Rp×p, namely,

Rj ⊗R M := R1×p
j /(R1×p

j A), (39)

then we can easily check (see, e.g., [15]) that:

Fitti(Rj ⊗R M) = Rj Fitti(M) :=

{

t
∑

k=1

rk sk | t ∈ N, rk ∈ Rj , sk ∈ Fitti(M)

}

. (40)

An important property of the ring Rj is that it is a principal ideal domain, namely, a ring
for which every ideal is principal, i.e., can be generated by one element (see, e.g., [4]). For
instance, if I = Rj r1 + · · · + Rj rm = {

∑m
k=1 sk rk | sk ∈ Rj} is an ideal of Rj generated by

the elements r1, . . . , rm of Rj , then I = Rj t, where t is the greatest common divisor of the
ri’s. The element t can be computed by means of the Euclidean algorithm. In particular, the
ideals Fittp−i(Rj ⊗R M) are principal, i.e., Fittp−i(Rj ⊗R M) = Rj mi, where mi is the greatest
common divisor of the i × i-minors of A over the principal ideal domain Rj . Hence, each ideal
in the chain (36) is principal and Fittp−i(Rj ⊗R M) = Rj mi ⊆ Fittp−i+1(Rj ⊗R M) = Rj mi−1

yields that mi−1 divides mi. According to Theorem 1, we obtain that the invariant factors of
A ∈ Rp×p

j over Rj are exactly the generators of the following Ri-modules:

∀ i = 1, . . . , p, Fittp−i(Rj ⊗M)/Fittp−i+1(Rj ⊗M) = Rj (mi/mi−1) = Rj di.

Let us illustrate the above results on the Cauchy-Navier and Oseen equations.

Example 3. Let R = Q(λ, µ)[∂x, ∂y, ∂z] be the commutative polynomial ring in ∂x, ∂y and
∂z with coefficients in the field Q(λ, µ), the matrix A = A3 ∈ R3×3 defined by (7), and the
finitely presented R-module M = R1×3/(R1×3A). If {fj}j=1,2,3 is the standard basis of R1×3

and π : R1×3 −→ M the canonical projection onto M , then {mj = π(fj)}j=1,2,3 is a family of

Inria



Symbolic methods for developing new domain decomposition algorithms 23

generators of M which satisfies the relations
∑3

i=1Aij mj = 0 for all i = 1, 2, 3. We can easily
check that:


















Fitt0(M) = R∆3,

Fitt1(M) = (R∆)(R∂x ∂y +R∂x ∂z +R∂y ∂z +R (µ∂2
x + (λ+ 2µ) (∂2

y + ∂2
z ))

+R ((λ+ 2µ) (∂2
x + ∂2

z ) + µ∂2
y)) +R ((λ+ 2µ) (∂2

x + ∂2
y) + µ∂2

z ))),

Fitt2(M) = R.

(41)

Then, annR(M) = Fitt0(M) : Fitt1(M) = R∆2, i.e., every element m of M is annihilated by
∆2, i.e., ∆2m = 0, which shows that:

charR(M) = {(χx, χy, χz) ∈ C3 | χ2
x + χ2

y + χ2
z = 0}.

Let us now characterize the elements of M which are annihilated by ∆, i.e., let us compute
annM (∆). Using Gröbner basis techniques, we get that kerR(.(∆ IT

3 AT )T ) = R1×4 S, where
S = (U V ) and:

U =











−µ∂z 0 µ∂x

−µ∂y µ∂x 0

0 −µ∂z µ∂y

(λ+ 2µ) ∂x (λ+ 2µ) ∂y (λ+ 2µ) ∂z











, V =











−∂z 0 ∂x

−∂y ∂x 0

0 −∂z ∂y

∂x ∂y ∂z











.

Thus, we obtain:

annM (∆) =R (−∂z m1 + ∂xm3) +R (−∂y m1 + ∂xm2) +R (−∂z m2 + ∂y m3)

+R (∂xm1 + ∂y m2 + ∂z m3).

Similarly, we can easily check again that annM (∆2) = Rm1 +Rm2 +Rm3 = M .

If we now consider the ring R1 = Q(λ, µ)(∂y, ∂z)[∂x] = Q(λ, µ, ∂y, ∂z)[∂x] of OD operators in
∂x with coefficients in the field Q(λ, µ, ∂y, ∂z) and R1 ⊗R M = R1×3

1 /(R1×3
1 A), then (40) and

(41) give










Fitt0(R1 ⊗R M) = R1 ∆3,

Fitt1(R1 ⊗R M) = R1 ∆,

Fitt2(R1 ⊗R M) = R1,

since the element ∂y ∂z appearing in Fitt1(M) (see (41)) is an invertible element of R1, and thus,
annR1

(R1 ⊗R M) = (∆3 : ∆) = R1 ∆2. Finally, we can check again that the generators of the
following principal ideals











Fitt2(R1 ⊗R M) = R1,

Fitt1(R1 ⊗R M)/Fitt2(R1 ⊗R M) = R1 ∆,

Fitt0(R1 ⊗R M)/Fitt1(R1 ⊗R M) = R1 ∆2,

are exactly the invariants factors of the matrix A (see (8)).

Now, we consider R = Q(b1, b2, c, ν)[∂x, ∂y, ∂z], the matrix A = O3 ∈ R
4×4 defined by (10),

and the R-module M = R1×4/(R1×4A) finitely presented by O3. If {fj}j=1,...,4 is the standard
basis of R1×4 and π : R1×4 −→ M the canonical projection onto M , then {mj = π(fj)}j=1,...,4

is a family of generators of M satisfying the relations
∑4

i=1Aij mj = 0 for i = 1, . . . , 4. We can
check that

Fitt0(M) = R det(A) = R (∆L2
3), annR(M) = R (∆L3),

RR n° 7953



24 Cluzeau & Dolean & Nataf & Quadrat

where L3 is the PD operator defined by (12), and:

charR(M) ={(χx, χy, χz) ∈ C3 | χ2
x + χ2

y + χ2
z = 0}

∪ {(χx, χy, χz) ∈ C3 | c− ν (χ2
x + χ2

y + χ2
z) + b1 χx + b2 χy + b3 χz = 0}.

Finally, we have:

annM (∆) = Rm4,

annM (L3) = R (−∂z m1 + ∂xm3) +R (−∂y m1 + ∂xm2) +R (−∂z m2 + ∂y m3)

+R (∂z (b1m1 + b2m2 + b3m3 +m4) + cm3)

+R (b1 ∂y m1 + (−ν ∂2
z + b2 ∂y + b3 ∂z + c)m2 + ν ∂y ∂z m3 + ∂y m4).

In this particular example, the computation of annR(M) allows us to obtain in an intrinsic way
the PD operators with their multiplicities appearing in the Smith normal form of the presentation
matrix A of M . See Section 2.

Finally, since Fitt0(M) ( annR(M), Remark 4 shows that Cauchy-Navier equations and
Oseen equations do not define cyclic R-modules, and thus they are not equivalent to a linear
system of PDEs with constant coefficients in only one unknown.

Definition 3. A R-module M is said to be free if M admits a basis, namely, an independent
family of generators of M . If M is a finitely generated R-module, then it means that M is
isomorphic to Rl for a certain l ∈ N. Then, l is called the rank of M and it is denoted by
rankR(M).

Theorem 2 ([16]). Let R be a commutative integral domain, A ∈ Rq×p a full row rank matrix,
i.e., kerR(.A) = 0, and M = R1×p/(R1×q A) the R-module finitely presented by A.

1. M is a free R-module iff there exist three matrices B ∈ Rp×q, C ∈ R(p−q)×p, D ∈ Rp×(p−q)

such that the following two Bézout identities hold:

(

A

C

)

(B D) = Ip, (B D)

(

A

C

)

= Ip. (42)

If π : R1×p −→M is the canonical projection onto M , then {π(Ci•)}i=1,...,p−q is a basis of
the free R-module M of rank p− q.

2. If k is a field and R = k[∂1, . . . , ∂d] a commutative polynomial ring with coefficients in k,
then M is a free R-module of rank p − q iff the matrix A admits a right inverse, namely,
iff there exists a matrix B ∈ Rp×q such that AB = Iq (Quillen-Suslin theorem).

We first note that (42) is equivalent to the following identities:

AB = Iq, AD = 0, C B = 0, C D = Ip−q, B A+DC = Ip. (43)

The first part of Theorem 2 shows that the R-module M = R1×p/(R1×q A), finitely presented
by a full row rank matrix A, is free of rank p− q iff A can be completed to a square unimodular
matrix, namely, iff there exists C ∈ R(p−q)×p such that:

(

A

C

)

∈ GLp(R). (44)

Inria



Symbolic methods for developing new domain decomposition algorithms 25

The problem of completing the matrix A to a unimodular matrix is called a completion problem.

The second part of Theorem 2 states that every full row rank matrix A with entries in a
commutative polynomial ring D = k[∂1, . . . , ∂d] over a field k, which admits a right inverse can
be completed to a unimodular matrix, i.e., there exists C ∈ R(p−q)×p such that (44) holds.
Despite of the simplicity of the formulation of the Quillen-Suslin theorem, this result, first raised
by Serre in 1955, was only proved in 1976. The computation of such a matrix C (i.e., of a basis
{π(Ci•)}i=1,...,p−q of the free D-module M of rank p − q) is generally a difficult issue which
requires a constructive proof of the Quillen-Suslin theorem (see [16] and the references therein).

The only simple case is d = 1, i.e., R = k[∂1], where the computation of the Smith normal
form of A gives a matrix C satisfying the completion problem (see [16, 32]). Let us recall this
result. Let R be a principal left ideal domain and A ∈ Rq×p a matrix admitting a right inverse
B ∈ Rp×q. Then, A has necessarily full row rank since:

λA = 0 ⇒ λ = λ (AB) = 0.

Computing a Smith normal form of A over R, we get F ∈ GLq(R) and G ∈ GLp(R) satisfying
A = F DG, where D = (D1 0) ∈ Rq×p, D1 = diag(d1, . . . , dq) and di ∈ R for i = 1, . . . , q.
Since A has full row rank, so is D1, i.e., di 6= 0 for i = 1, . . . , q. Now, (F DG)B = AB = Iq,
and thus D (GB) = F−1, i.e., D (GB F ) = Iq, which proves that D admits the right inverse
E = GB F = (ET

1 ET
2 )T , where E1 ∈ R

q×q and E2 ∈ R
(p−q)×q. Thus, we get D1E1 = Iq,

which shows that D1 ∈ GLq(R), and thus all the di’s are invertible elements of R, which can be
assumed without loss of generality to be equal to 1. Hence, we can assume that D1 = Iq and:

A = F (Iq 0)G.

If r = p− q, G = (GT
1 GT

2 )T ∈ GLp(R), where G1 ∈ R
q×p, G2 ∈ R

r×p, and G−1 = (H1 H2),
where H1 ∈ R

p×q, H2 ∈ R
p×r, then we obtain A = F G1, i.e., G1 = F−1A, and

(

F−1A

G2

)

G−1 = Ip ⇒

(

F−1 0

0 Ir

) (

A

G2

)

G−1 = Ip,

⇒

(

A

G2

)

G−1

(

F−1 0

0 Ir

)

= Ip ⇒

(

A

G2

)

(H1 F
−1 H2) = Ip,

which shows that we can take C = G2 and (B D) = (H1 F
−1 H2) ∈ GLp(R). Hence, if R is

principal ideal domain (e.g., R = k[∂1], where k is a field, or if R = Ri defined by (30)), then
the completion problem can be solved by means of a Smith normal form computation.

Example 4. Let us consider the underdetermined linear PD equation ∆ f − g = 0 in the two
unknowns f and g. The R = k[∂x, ∂y, ∂z]-module M = R1×2/(R (∆ − 1)) is defined by the
two generators m1 = π(f1) and m2 = π(f2), where {f1,f2} is the standard basis of R1×2 and
π : R1×2 −→ M is the canonical projection onto M , and one R-linear relation ∆m1 −m2 = 0.
By 1 of Theorem 2, the R-module is free of rank 1 since:

(

∆ −1

1 0

)

∈ GL2(R).

In particular, the residue class m1 of (1 0) in M is a basis of M , i.e., M = Rm1.

RR n° 7953



26 Cluzeau & Dolean & Nataf & Quadrat

A more complicated example is given by the R = k[∂x, ∂y, ∂z]-module M = R1×3/(RA),
where A = (∂x ∂y − 1 ∂2

x ∂2
y). We can check that







∂x ∂y − 1 ∂2
x ∂2

y

∂2
y ∂x ∂y + 1 0

0 0 1






∈ GL3(R),

which shows that the R-module M defined by the generators {mj}j=1,2,3 satisfying the R-linear
relation (∂x ∂y − 1)m1 + ∂2

xm2 + ∂2
y m3 = 0 is free of rank 2 and a basis of M is defined by

p1 = ∂2
y m1 + (∂x ∂y + 1)m2 and p2 = m3, i.e., M = Rp1 +Rp2. Indeed, computing the matrix

D defined in (42), we then obtain:











m1 = ∂2
x p1 + (∂x ∂y + 1) ∂2

y p2,

m2 = −(∂x ∂y − 1) p1 − ∂
4
y p2,

m3 = p2.

5.2 Computation of relevant Smith variables

We shall now show that the problem of finding Smith variables can be reduced to a particular
completion problem.

Let M = R1×p/(R1×pA) be the R = k[∂1, . . . , ∂d]-module finitely presented by the matrix of
PD operators A ∈ Rp×p. With the notation (30), computing the Smith normal form D ∈ Rp×p

i

of the matrix A over the principal ideal domain Ri, we obtain two matrices E ∈ GLp(Ri) and
F ∈ GLp(Ri) such that A = EDF . Now, if d1 = · · · = dr = 1, dr+1 6= 1 and

D2 = diag(dr+1, . . . , dp) ∈ R
(p−r)×(p−r)
i , F =

(

F1

F2

)

, E−1 =

(

G1

G2

)

,

where F1 ∈ R
r×p
i , F2 ∈ R

(p−r)×p
i , G1 ∈ R

r×p
i and G2 ∈ R

(p−r)×p
i , then:

A = EDF ⇔

{

F1 = G1A,

D2 F2 = G2A.
(45)

Lemma 2. With the above notations, if Ri ⊗R annM (dj) denotes the Ri-module generated by
the elements of annM (dj), then we have Ri ⊗R annM (dj) = annRi⊗RM (dj).

Proof. The first inclusion Ri⊗R annM (dj) ⊆ annRi⊗RM (dj/1) is clear since for m ∈M , dj m = 0
implies (dj m)/1 = 0, i.e., (dj/1) (m/1) = 0, and thusm/1 belongs to annRi⊗RM (dj). Conversely,
if m/1 belongs to annRi⊗M (dj/1), this means that (dj/1) (m/1) = (dj m)/1 = 0, and then
it exists s ∈ k[∂1, . . . , ∂j−1, ∂j+1, . . . , ∂n] \ {0} such that s dj m = 0 in M (see [4]). Then,
dj (sm) = 0 and sm ∈ annM (dj). Thus, (1/s) (sm) = m/1 holds in Ri ⊗R annM (dj), i.e.,
m/1 ∈ Ri ⊗R annM (dj) which leads to the second inclusion and ends the proof.

The last equality of (45) implies that the residue class nj of the jth row of the matrix F2 in
Ri ⊗R M must be annihilated by the PD operator dj ∈ Ri \ {1}. Thus, using Lemma 2, every

row of the submatrix F2 ∈ R
(p−r)×p
i of F ∈ GLp(Ri) satisfying A = EDF , where D is the

Smith normal form of A and E ∈ GLp(Ri), is a Ri-linear combination of the representatives of
the generators of annM (dj) for j = r + 1, . . . , p. The computation of the annM (dj)’s provides

Inria



Symbolic methods for developing new domain decomposition algorithms 27

Smith variables with a physical meaning contrary to the direct computation of annRi⊗RM (dj)
by means of Smith normal forms.

Then, a natural problem is to seek for matrices F = (FT
1 FT

2 )T ∈ GLp(Ri) − where the
residue classes of the rows of F2 in Ri ⊗M (see (39)) correspond to the chosen Smith variables
nj ’s (e.g., ones having a physical meaning) which satisfy dj nj = 0 for j = r + 1, . . . , p − such
that A = EDF for a certain E ∈ GLp(Ri), where D = diag(1, . . . , 1, dr+1, . . . , dp) is the Smith
normal form of A. In other words, given a matrix F2 ∈ R

(p−r)×p such that the residue class nj

of the jth row of F2 in Ri ⊗R M is annihilated by the PD operator dj ∈ Ri \ {1}, we search
for matrices F1 ∈ R

r×p
i such that F = (FT

1 FT
2 )T ∈ GLp(Ri) and A = EDF . From (45), the

matrices F1’s are necessarily of the form F1 = ΛA for certain matrices Λ ∈ Rr×p
i . Moreover,

using (43), we can easily check that a necessary condition for F2 ∈ R
(p−r)×p
i to be completed

to a unimodular matrix F is that F2 admits a right inverse S2 ∈ R
p×(p−r)
i , i.e., F2 S2 = Ip−r.

In particular, it yields that kerRi
(.F2) = 0 since λF2 = 0 then implies λ = λF2 S2 = 0, i.e.,

the rows of F2 are Ri-linearly independent, in other words, F2 has full row rank. Since Ri is a
commutative polynomial ring over a field, 2 of Theorem 2 proves that this necessary condition

is also sufficient. Therefore, our problem can be restated as follows: Given F2 ∈ R
(p−r)×p
i which

admits a right inverse over Ri and such that the residue class nj of the jth row of F2 in Ri⊗RM
is annihilated by the PD operator dj ∈ Ri \ {1}, does it exist a matrix Λ ∈ Rr×p

i such that:

{

F = ((ΛA)T FT
2 )T ∈ GLp(Ri),

A = EDF.
(46)

If so, compute matrices Λ’s satisfying (46).

Since the matrix F2 ∈ R
(p−r)×p
i admits a right inverse over the commutative polynomial ring

Ri with coefficients in a field, by 2 of Theorem 2, the Ri-module N = R1×p
i /(R

1×(p−r)
i F2) is free

of rank r. Thus, by 1 of Theorem 2, there exist T ∈ Rr×p
i , Q ∈ Rp×r

i , S ∈ R
p×(p−r)
i such that:

(

T

F2

)

(Q S) =

(

Ir 0

0 Ip−r

)

= Ip, QT + S F2 = Ip. (47)

As explained in 1 of Theorem 2, the residue classes of the rows of the matrix T in N define a
basis of the free Ri-module N . It is clear that the matrix T is not uniquely defined since the

matrix T ′ = T +Z F2 will also defines the same basis of N for all Z ∈ R
r×(p−r)
i . Hence, we have

to find (when they exist) two matrices Z ∈ R
r×(p−r)
i and Λ ∈ Rr×p

i such that:

T = (Λ − Z)

(

A

F2

)

.

This means that the rows of T must belong to the Ri-module R1×p
i A + R

1×(p−r)
i F2, a fact

which can be constructively checked by means of Gröbner basis techniques (see Algorithm 10

of Section 7). If such a factorization exists, then we get a matrix Z ∈ R
r×(p−r)
i , and thus the

matrix F1 = T + Z F2 = ΛA satisfies (46).

Example 5. Let us consider the elastostatic equations or Navier-Cauchy equations in R3, i.e.,

A =







−(λ+ µ) ∂2
x − µ∆ −(λ+ µ) ∂x ∂y −(λ+ µ) ∂x ∂z

−(λ+ µ) ∂x ∂y −(λ+ µ) ∂2
y − µ∆ −(λ+ µ) ∂y ∂z

−(λ+ µ) ∂x ∂z −(λ+ µ) ∂y ∂z −(λ+ µ) ∂2
z − µ∆






,

RR n° 7953



28 Cluzeau & Dolean & Nataf & Quadrat

where ∆ = ∂2
x + ∂2

y + ∂2
z , and the R = Q(λ, µ)[∂x, ∂y, ∂z]-module M = R1×3/(R1×3A). The

Smith normal form of the matrix A over R1 = Q(λ, µ)(∂y, ∂z)[∂x] is defined by:

D =







1 0 0

0 ∆ 0

0 0 ∆2






.

With the above notation, it means that r = 1 and D2 = diag(∆,∆2) ∈ R2×2. If we write
F = (FT

1 FT
2 )T , where F1 ∈ R

1×3
1 and F2 ∈ R

2×3
1 , then the explanations above imply that the

residue class of the first (resp., second) row of F2 must be an element of the R1-module R1⊗RM
annihilated by ∆ ∈ R (resp., ∆2 ∈ R). Using Example 3, we find that families of generators of
annM (∆) and annM (∆2) are respectively given by the residue classes in R1⊗RM of the rows of
the matrices A∆ = U and A∆2 = I3, where the matrix U is defined in Example 3.

Now, the first (resp., second) row of F2 must be a R1-linear combination of the rows of A∆

(resp., A∆2). We thus have several choices and for each of them, we are reduced to a completion
problem. For instance, choosing the 4th row of A∆ (resp., the 3rd row of A∆2) as first (resp.,
second) row of F2, we obtain the following matrix

F2 =

(

0 −∂z ∂y

0 0 1

)

,

which trivially admits a right inverse with entries in R1. To solve (46), we have to find if it exists
a row vector Λ ∈ R1×3

1 such that F = ((ΛA)T FT
2 )T ∈ GL3(R1). If we can find such a row

vector F1 = ΛA, then the corresponding matrix F provides a choice of relevant Smith variables.

Let us now state the main results of this section.

Theorem 3. Let L = R1×p/(R1×q B) be a free R-module of rank r, Q ∈ Rp×r and Q′ ∈ Rp×r

two injective parametrizations of L, i.e., kerR(.Q) = R1×pB, T Q = Ir, kerR(.Q′) = R1×pB and
T ′Q′ = Ir, for some matrices T, T ′ ∈ Rr×p. Then, there exist two matrices V ∈ GLr(R) and
Z ∈ Rr×q such that:

{

Q′ = QV,

T ′ = V −1 T + Z B.
(48)

Proof. Let κ : R1×p −→ L be the canonical projection onto L. Then, the map φ : L −→ R1×r,
defined by φ(κ(r)) = rQ for all r ∈ R1×p, is well-defined: if κ(r) = κ(s), then κ(r − s) = 0,
i.e., there exists t ∈ R1×q such that r = s + tB, which yields φ(κ(r)) = (s + tB)Q = sQ =
φ(κ(s)). Hence, φ is a R-homomorphism from L to R1×r. Since kerR(.Q) = R1×q B, we get
kerφ = {κ(r) | rQ = 0} = {κ(r) = κ(u B) | u ∈ R1×q} = 0, i.e., φ is an injective R-
homomorphism. Now, let ϕ : R1×r −→ L be the R-homomorphism defined by ϕ(u) = κ(uT )
for all u ∈ R1×r. Then, (φ ◦ ϕ)(u) = φ(κ(uT )) = (uT )Q = u for all u ∈ R1×r, which shows
that φ ◦ ϕ = idR1×r , and proves that φ is surjective. Thus, φ is an R-isomorphism from L to
R1×r and ϕ = φ−1. We note that if {hk}k=1,...,r is the standard basis of the free R-module
R1×r, then {κ(hk T ) = κ(Tk•)}k=1,...,r is a basis of the free R-module L of rank r.

Similarly, the R-homomorphism ψ : L −→ R1×r, defined by ψ(κ(r)) = rQ′ for all r ∈ R1×p,
is an R-isomorphism, and ψ−1 : R1×r −→ L is defined by ψ−1(u) = κ(uT ′) for all u ∈ R1×r.

The R-isomorphism ψ ◦ φ−1 : R1×r −→ R1×r is defined by (ψ ◦ φ−1)(u) = u (T Q′) for all
u ∈ R1×r. Since ψ ◦ φ−1 is surjective, then for every vector hk of the standard basis of R1×r,

Inria



Symbolic methods for developing new domain decomposition algorithms 29

there exists Uk ∈ R
1×r such that hk = Uk (T Q′), which shows that U = (U1

T . . . Ur
T ) ∈ Rr×r

satisfies U (T Q′) = Ir. Thus, det(U) det(T Q′) = 1, which shows that det(T Q′) is a unit of R,
and thus T Q′ ∈ GLr(R). Hence, if we note V = T Q′ ∈ GLr(R) and if α : R1×r −→ R1×r is the
R-automorphism of R1×r defined by α(v) = v V for all v ∈ R1×r, then ψ = α ◦ φ, i.e.:

∀ r ∈ R1×p, ψ(κ(r)) = α(rQ) = rQV.

Since by definition, ψ(κ(r)) = rQ′ for all r ∈ R1×p, we then get that Q′ = QV . Finally, we
have ψ−1 = φ−1 ◦ α−1, which yields κ(uT ′) = φ−1(uV −1) = κ(uV −1 T ) for all u ∈ R1×r, i.e.,
κ(u (T ′ − V −1 T )) = 0 for all u ∈ R1×r, which proves the existence of a matrix Z ∈ Rr×q such
that T ′ − V −1 T = Z B, i.e., T ′ = V −1 T + Z B, and finally proves (48).

We now obtain the following useful corollary of Theorem 3.

Corollary 1. Let A ∈ Rp×p, L = R1×p/(R1×q B) be a free R-module of rank r, Q ∈ Rp×r and
Q′ ∈ Rp×r two injective parametrizations of L, i.e., kerR(.Q) = R1×pB, T Q = Ir, kerR(.Q′) =
R1×pB and T ′Q′ = Ir, for some T, T ′ ∈ Rr×p. Then, the following assertions are equivalent:

1. There exist two matrices X ∈ Rr×q and Y ∈ Rr×p satisfying T +X B = Y A.

2. There exist two matrices X ′ ∈ Rr×q and Y ′ ∈ Rr×p satisfying T ′ +X ′B = Y ′A.

Hence, T can be left factorized by (BT AT )T iff T ′ can be left factorized by (BT AT )T .

Proof. Using (48), there exist V ∈ GLr(R) and Z ∈ Rr×q such that T ′ = V −1 T + Z B. Let us
suppose that 1 holds. Then, using the identity T = V T ′ + (−V Z)B, we get:

T +X B = Y A ⇔ T ′ + (V −1X − Z)B = (V −1 Y )A.

Similarly, if 2 holds, then we obtain:

T ′ +X ′B = Y ′A ⇔ T + (V (X ′ + Z))B = (V Y ′)A.

Using Corollary 1, we deduce an algorithm that given a matrix A ∈ Rp×p and a matrix
F2 ∈ R

(p−r)×p such that the residue class of the ith row of F2 in Ri ⊗R M = R1×p
i /(R1×p

i A)
defines an element of annRi⊗RM (dr+i), where dr+i ∈ R is the numerator of the ith diagonal
element the Smith normal form D of A over Ri, find a completion if it exists.

Algorithm 6. Input: A computable field k, R = k[∂1, . . . , ∂d], the ring Ri defined by (30), a
full row rank matrix A ∈ Rp×p, and F2 ∈ R

(p−r)×p defined as explained above.
Output: A completion F of F2 if it exists and [ ] if not.

1. Compute a right inverse of F2 over Ri.

2. If such a right inverse does not exist, then return [ ], else do:

(a) Compute an injective minimal parametrization Q ∈ Rp×r
i of the free Ri-module L =

R1×p
i /(R

1×(p−r)
i F2) of rank r (e.g., by computing a Smith normal form of F2 as

explained at the end of Section 5.1).

(b) Compute a left inverse T ∈ Rr×p
i of Q (see the end of Section 5.1).

(c) Factorize T with respect to (FT
2 AT )T over Ri.

RR n° 7953



30 Cluzeau & Dolean & Nataf & Quadrat

(d) If such a factorization does not exist, then return [ ], else if T = −Z F2 + ΛA, where

Z ∈ R
r×(p−r)
i and Λ ∈ Rr×p

i , then return the matrix F =

(

T + Z F2

F2

)

.

Algorithm 6 is implemented in the Maple package Schwarz built upon OreModules ([6])
and is demonstrated in Appendix 8.

Example 6. Consider again the elostatic equations introduced in Example 5. For the choice of
F2 given at the end of Example 5, we can find a completion of F2 defined by:

F =











1 − ∂y ∂x

∂y
2+∂z

2 −
∂x (∂y

2λ+2 ∂z
2λ+∂x

2λ+3 ∂z
2µ+2 ∂y

2µ+2 ∂x
2µ)

(λ+µ)(∂y
2+∂z

2)∂z

0 −∂z ∂y

0 0 1











∈ GL3(R1).

However, if we choose the matrix F2 defined by

F2 =

(

2 ∂x µ+ ∂x λ ∂y λ+ 2 ∂y µ ∂z λ+ 2 ∂z µ

1 0 0

)

,

then no completion exists for such F2.

6 Reduction of interface conditions

In the algorithms presented in Section 3, we have both equations in the domains Ωi and at
the interface Γ. In Sections 4 and 5, we saw how to construct many possible Smith variables
and how to use them to get simpler equations for the corresponding decomposition domain
algorithm. But, to simplify and speed up the algorithm, we also need to reduce the interface
conditions with respect to the equations in the domains. In the present section, we show how
symbolic computation techniques can be used to perform such reductions. A natural idea consists
in gathering all equations and computing a Gröbner basis (see Section 7). However, one has to
keep in mind that the independent variables do not play the same role. More precisely, the
interface conditions cannot be differentiated with respect to x1 since the border of the interface
is defined by the equation x1 = 0.

Consequently, we need to develop an alternative approach for reducing interface conditions.
This method has been implemented in Maple using the OreModules package ([6]). See Sec-
tion 8.2 for many examples of computations. The approach can be sketched as follows:

1. Compute a Gröbner basis of the equations inside the domain for a relevant monomial order.

2. Compute the normal forms of the interface conditions w.r.t. the latter Gröbner basis.

3. Write this normal forms in jet variables in x1.

4. Perform linear algebra manipulations to simplify the normal forms.

See Section 7 for precise definitions of these concepts.

Without loss of generality and in order to simplify the notations, we shall assume that the
equations only involve three dependent variables u, v, w in two independent variables x1 and x2.
We then set R = k[∂1, ∂2], where k is a field, and R1 = k(∂2)[∂1]. Equations inside the domains

Inria



Symbolic methods for developing new domain decomposition algorithms 31

have the form p1(∂1, ∂2)u+ p2(∂1, ∂2) v + p3(∂1, ∂2)w = 0, where the pi’s are polynomials with
coefficients in k. We consider the set of monomials in the four variables ∂x, u, v, w, and endow it
with the graded reverse lexicographic order defined in 3 of Example 7 below such that 1 ≺degrevlex

w ≺degrevlex v ≺degrevlex u ≺degrevlex ∂x. Then, we compute a Gröbner basis (see Section 7) of the
equations inside the domain with respect to the latter admissible term order (note that ∂2 is then
viewed as a parameter). Now, the interface conditions (computed from the Smith variables) are
given by equations of the form q1(∂1)u+ q2(∂1) v+ q3(∂1)w = 0, where the qi’s are polynomials
with coefficients in k(∂2). We can then compute their normal forms with respect to the Gröbner
basis. Once this has been done, to keep on simplifying the interface conditions, we consider
them all together and try to perform linear algebra simplifications between them. Here again,
we must be careful since multiplications by ∂1 are not allowed. To avoid such multiplications,
we first rewrite the normal forms of the interface conditions in jet variables in x1, i.e., we replace
the successive derivatives with respect to x1 by new variables. For instance, ∂1 u, ∂1 v, ∂1 w are
replaced by the new variables u1, v1, w1. We can then perform linear algebra simplifications
between the normal forms of the interface conditions to get simplified form of the interface
conditions. This method is implemented in the Maple package Schwarz and is illustrated step
by step on the example of the 2D linear elasticity system given in Section 8.2.1 below.

7 Appendix: An introduction to Gröbner basis techniques

For polynomial rings, Janet ([22]) and Buchberger ([3]) developed two constructive algorithms
which compute new sets of generators of a (left) ideal or a (left) module, called a Janet or a
Gröbner basis. Algorithms rewriting any element of that (left) ideal or (left) module in terms
of the new generators were also obtained. More generally, normal forms of general elements
can be computed with respect to the Janet or Gröbner bases (see, e.g., [3, 11, 12, 21] and the
references therein). More precisely, if R denotes a commutative polynomial ring over a computable
field k (e.g., Q, Z/Z p, where p is a prime), and A ∈ Rq×p, then the knowledge of a Janet or a
Gröbner basis of the R-submodule R1×q A of R1×p allows one to compute the normal form of any
element λ ∈ R1×p with respect to the Janet or Gröbner basis, i.e., to compute a distinguished
representative of the residue class of λ in the quotient R-module M = R1×p/(R1×q A). In
particular, Janet or Gröbner basis techniques allow one to constructively work in the (left) ideals
and (left) modules (e.g., computation of kernels, images, factorizations, left/right/generalized
inverses of multivariate polynomial matrices). They are nowadays implemented in different
computer algebra systems such as, e.g., Maple, Mathematica, Singular, Macaulay2, CoCoA, . . .
for different classes of commutative and noncommutative polynomial rings.

We shortly introduce the basic definitions and results on Gröbner bases for ideals and modules
over commutative polynomial rings. For more details, see [3, 11, 12, 21, 24].

In what follows, we explain how to compute a Gröbner basis in the case of a commutative
polynomial ring R = k[x1, . . . xn], where k is a computable field (e.g., Q, Z/Z p, where p is a
prime). Every element P of R can uniquely be written in the form

P =
∑

|µ|=0,...,r

aµ x
µ, aµ ∈ k, xµ = xµ1

1 · · · x
µn

n ,

where µ = (µ1 . . . µn) ∈ N1×n. The set defined by Mon(R) = {xµ | µ ∈ Nn} is a basis of the
k-vector space R. The elements of Mon(R) are called monomials of R.

In order to effectively study systems over commutative polynomial rings, we first need to
introduce monomial orders to compare polynomials (see, e.g., [3, 11, 21, 24]).

RR n° 7953



32 Cluzeau & Dolean & Nataf & Quadrat

Definition 4. 1. A total order ≺ on the set Mon(R) is called a well-ordering if every non-
empty subset of Mon(R) has a least element with respect to ≺.

2. A total well-ordering order ≺ on the set Mon(R) is called an admissible term order of
Mon(R) if it satisfies the following two conditions:

(a) 1 is the least element of Mon(R), namely, for all u ∈ Mon(R), u 6= 1 ⇒ 1 ≺ u.

(b) ≺ is compatible with the product, namely, if u, v ∈ Mon(R) satisfy u ≺ v, then
w u ≺ w v for all w ∈ Mon(R).

3. Given a nonzero polynomial P ∈ R = k[x1, . . . , xn] and an admissible term order ≺ on
Mon(R), we can compare the nonzero terms of P with respect to ≺. The greatest of these
monomials is called the leading monomial of P and is denoted by lm(P ). The coefficient of
lm(P ) is the leading coefficient of P , denoted by lc(P ), and the leading term lc(P ) lm(P )
of P denoted by lt(P ).

Let us give important examples of admissible term orders of Mon(R).

Example 7. We can identify an element xµ of Mon(R) with the multi-index µ ∈ N1×n.

1. The pure lexicographical order on Mon(R) is defined by µ ≺plex ν whenever the first nonzero
entry of ν−µ is positive. In particular, it means that x3 ≺plex x2 ≺plex x1. More generally,
if we consider R = Q[x1, x2, x3], then we have:

1 ≺plex x3 ≺plex x
2
3 ≺plex x2 ≺plex x2 x3 ≺plex x

2
2 ≺plex x1 ≺plex x1 x3 ≺plex x1 x2 ≺plex x

2
1.

2. The graded lexicographic order on Mon(R) is defined by µ ≺grlex ν whenever |µ| < |ν| or
if we have |µ| = |ν|, then the first nonzero entry of ν − µ is positive. For instance, if we
consider R = Q[x1, x2, x3], then we have:

1 ≺grlex x3 ≺grlex x2 ≺grlex x1 ≺grlex x
2
3 ≺grlex x2 x3 ≺grlex x

2
2 ≺grlex x1 x3

≺grlex x1 x2 ≺grlex x
2
1.

3. The graded reverse lexicographic order on Mon(R), also called degree reverse lexicographical
order, is defined by µ ≺degrevlex ν whenever |µ| < |ν| or if we have |µ| = |ν|, then the last
nonzero entry of ν −µ is negative. It is also denoted by ≺tdeg. For instance, if we consider
R = Q[x1, x2, x3], then we have:

1 ≺degrevlex x3 ≺degrevlex x2 ≺degrevlex x1 ≺degrevlex x
2
3 ≺degrevlex x2 x3 ≺degrevlex x1 x3

≺degrevlex x
2
2 ≺degrevlex x1 x2 ≺degrevlex x

2
1.

4. Let R be the polynomial ring over k with indeterminates x1, . . . , xn, y1, . . . , ym. Assume
that admissible monomial orders ≺x and ≺y on the monomials that only contain respect-
ively the xi’s and the yi’s are given. An elimination order is then defined by

u v ≺ w t ⇔ u ≺x w or u = w and v ≺y t,

where u, w (resp., v, t) are monomials containing only the xi’s (resp., yi’s). An elimination
order serves to eliminate the xi’s. The elimination order which we shaill use in what follows
is the one induced by the degree reverse lexicographical orders on x1, . . . , xn and y1, . . . , ym.
This is a very common order called lexdeg. For instance, if we consider R = Q[x1, x2, x3],
x = (x1, x2), y = x3, ≺x=≺tdeg and ≺y=≺tdeg, then we have:

1 ≺lexdeg x3 ≺lexdeg x
2
3 ≺lexdeg x2 ≺lexdeg x2 x3 ≺lexdeg x1 ≺lexdeg x1 x3 ≺lexdeg x

2
2

≺lexdeg x1 x2 ≺lexdeg x
2
1.

Inria



Symbolic methods for developing new domain decomposition algorithms 33

Definition 5. We call monomial ideal of R = k[x1, . . . , xn] an ideal of R generated by monomials.
If J is a subset of N1×n, then xJ denotes the set of monomials {xµ | µ ∈ J} and (xJ) the ideal
of R = k[x1, . . . , xn] generated by the elements of xJ .

Example 8. Let us consider the commutative polynomial ring R = Q[x1, x2] and the subset
J = {(2, 0), (0, 2)} of N1×2. Then, the monomial ideal (x2

1, x
2
2) of R generated by x2

1 and x2
2 is

defined by elements of the form P1 x
2
1 +P2 x

2
2, where P1 and P2 are two arbitrary polynomials of

R. In particular, the monomials of polynomial multiples of x2
1 correspond to the integer points of

the translated first quadrant at the point (2, 0). Similarly, the monomials of polynomial multiples
of x2

2 correspond to the integer points of the translated first quadrant at the point (0, 2). Hence,
the monomials of any element of (x2

1, x
2
2) belong to those two translated first quadrants.

The following lemma is called Dickson’s lemma.

Lemma 3. Every monomial ideal (xJ) of R = k[x1, . . . , xn] is generated by a finite set of
monomials of xJ .

A proof of Lemma 3 can be found in any textbooks on Gröbner bases (see, e.g., [11, 21]).

If we now consider a non-empty subset J of N1×n and the corresponding non-empty set xJ of
monomials, then according to Lemma 3, the monomial ideal (xJ) is generated by a finite number
of elements of xJ , say L = {xα, xβ , . . . , xθ}. Let us now consider a total order ≺ on the set
Mon(R) satisfying a and b of 2 of Definition 4, and µ ∈ J . Then, xµ ∈ (xα, xβ , . . . , xθ) and
thus there exists xγ ∈ L and ν ∈ Nn such that xµ = xν xγ . Hence, we either have xν = 1 which
yields xµ = xγ ∈ L or xν 6= 1 which, according to 1 ≺ xν and b of 2 of Definition 4, implies
xγ ≺ xγ xν = xµ. In other words, we have xµ ∈ L or xµ is greater than an element of L, which
shows that any element xµ of xJ is greater or equal to the least element of L, which finally proves
that a total order on the set Mon(R) satisfying a and b of 2 of Definition 4 is a well-ordering
order, and thus an admissible term order.

We can now introduce the concept of a Gröbner basis which plays an important role for the
computational issues in mathematical systems theory.

Definition 6. Let R = k[x1, . . . , xn] be a commutative polynomial ring over a computable field
k, ≺ an admissible term order on Mon(R), and I an ideal of R. A set of nonzero polynomials
G = {Qi}i=1,...,t ⊂ I is called a Gröbner basis for I if for all nonzero element P in I, there
exists i ∈ {1, . . . , t} such that lm(Qi) divides lm(P ), i.e., lm(P ) = M lm(Qi), for a certain
M ∈ Mon(R).

If we denote by lm(I) the monomial ideal of R = k[x1, . . . , xn] generated by the leading terms
of the elements of I, i.e., lm(I) = (lm(P ))P∈I\{0}, then a family G = {Qi}i=1,...,t of elements
of I is a Gröbner basis of I iff lm(I) = (lm(Q1), . . . , lm(Qt)). We note that the key point in
Definition 6 is that G must be finite because, otherwise, we can always take G = I \ {0}.

The existence of a Gröbner basis of I is a straightforward consequence of Lemma 3. Indeed,
according to Lemma 3, there exists a finite set {Qi}i=1,...,t of polynomials of I such that lm(I) =
(lm(Q1), . . . , lm(Qt)). Hence, an interesting issue is to explicitly compute those elements Qi’s
from a given set of generators of I and an admissible term order ≺ on Mon(R).

Before explaining how to compute Gröbner bases, we first want to explain their most import-
ant property. To do that, we first need to introduce the concept of reduction. In what follows,
we fix an admissible term order ≺ on Mon(R). Let P, Q ∈ R be given. If lm(Q) divides lm(P ),

RR n° 7953



34 Cluzeau & Dolean & Nataf & Quadrat

then P can be reduced modulo Q, namely, the leading term of P can be eliminated by considering
the new polynomial S defined by

S = P −
lc(P ) lm(P )

lc(Q) lm(Q)
Q = P −

lt(P )

lt(Q)
Q,

which satisfies lm(S) ≺ lm(P ). Let us illustrate the concept of reduction.

Example 9. Let R = Q[x1, x2] be the polynomial ring with the degree reverse lexicographical
order ≺degrevlex and the two polynomials P = 2x2

1 + 3x1 x
7
2 and Q = 6x3

2 − x1. In particular,
we have 1 ≺ x2 ≺ x1 ≺ x2

2 ≺ x1 x2 ≺ x2
1 ≺ x3

2 ≺ x1 x
2
2 ≺ x2

1 x2 ≺ x3
1 ≺ . . ., where, for simplicity

reasons, we have used the notation ≺ for ≺degrevlex. Then, we have lm(P ) = x1 x
7
2, lm(Q) = x3

2

and lm(Q) divides lm(P ), which shows that P can be reduced modulo Q as follows:

S = P −
3x1 x

7
2

6x3
2

Q = P −
1

2
x1 x

4
2Q =

1

2
x2

1 x
4
2 + 2x2

1.

Now, we can reduce P modulo a finite set {Qi}i=1,...,t of polynomials as follows.

Algorithm 7. • Input: P ∈ R = k[x1, . . . , xn], a finite set {Qi}i=1,...,t of elements of R,
and admissible term order ≺ on Mon(R).

• Output: Elements d1, . . . , dt and S of R such that

P =

t
∑

i=1

diQi + S,

and none of the monomials of S can be reduced by an element of {Qi}i=1,...,t.

1. Set S = 0 and di = 0 for i = 1, . . . , t.

2. While P 6= 0, do:

• If there exists i ∈ {1, . . . , t} such that lm(Qi) divides lm(P ), then do:

di ←− di +
lt(P )

lt(Qi)
, P ←− P −

lt(P )

lt(Qi)
Qi,

• Else, do S ←− S + lt(P ) and P ←− P − lt(P ).

3. Return d1, . . . , dt and S.

Remark 5. We point out that the output of Algorithm 7 depends on the particular choices of
i ∈ {1, . . . , t} such that lm(Qi) divides lm(P ).

Algorithm 7 is usually called the division algorithm in R and S is the remainder of P on
division by {Qi}i=1,...,t for the admissible term order ≺ or simply, the remainder of P modulo
{Qi}i=1,...,t. In particular, it generalizes the Euclidean division for a multivariate commutative
polynomial ring R = k[x1, . . . , xn].

An important property of a Gröbner basis G = {Qi}i=1,...,t of an ideal I of R is that each
polynomial P ∈ I is reduced to 0 modulo G, i.e., by subtracting suitable multiples of the Qi from
P , we get the zero polynomial. Indeed, applying Algorithm 7 to P and to the Gröbner basis
G = {Qi}i=1,...,t of I, we obtain polynomials d1, . . . , dt and S such that P =

∑t
i=1 diQi + S,

Inria



Symbolic methods for developing new domain decomposition algorithms 35

and none of the monomials of S can be reduced by an element of {Qi}i=1,...,t. But, S =

P−
∑t

i=1 diQi ∈ I, and if S 6= 0, then by definition of G, lm(S) ∈ lm(I) = (lm(Q1), . . . , lm(Qt)),

i.e., there exist b1, . . . , bt ∈ R such that lm(S) =
∑t

i=1 bi lm(Qi), which yields that there exists
j ∈ 1, . . . , t such that lm(Qj) divides lm(S), which contradicts the hypothesis on S, and thus

S = 0. Hence, every element P ∈ I can be written as P =
∑t

i=1 diQi, i.e., P ∈ (Q1, . . . , Qt),
and thus I = (Q1, . . . , Qt) because the Qi’s belong to I, which shows that a Gröbner basis
G = {Qi}i=1,...,t of an ideal I defines a set of generators of I, i.e., I = (Q1, . . . , Qt).

Proposition 1. Given a Gröbner basis G of an ideal I of R = k[x1, . . . , xn] for an admissible
term order ≺, P ∈ I iff the remainder of P modulo G is zero.

The knowledge of a Gröbner basis G of I allows us to solve the membership problem, namely,
to check whether or not a given polynomial P belongs to I: P belongs to I iff the remainder S
returned in the output of Algorithm 7 for a Gröbner basis G = {Qi}i=1,...,t of I is zero.

Let us now shortly explain how to compute a Gröbner basis of an ideal. For more details,
we refer to [3, 11, 21, 24]. Given P, Q ∈ I, we can let L = lcm(lm(P ), lm(Q)) to be the least
common multiple of the leading monomials of P and Q. One can obviously find another element
of the ideal I by computing the following so-called S-polynomial of P and Q:

S(P,Q) =
L

lt(P )
P −

L

lt(Q)
Q.

Example 10. We consider the polynomial ring R = Q[x1, x2, x3] with the degree reverse lex-
icographical order ≺degrevlex and denote by I the ideal of R generated by P = 2x1 x3 − x3 and
Q = x2

1 x2 − 1. Then, we have lm(P ) = x1 x3, lc(P ) = 2, lm(Q) = x2
1 x2, and lc(Q) = 1. Hence,

the S-polynomial S(P,Q) is defined by:

S(P,Q) =
x2

1 x2 x3

2x1 x3
P −

x2
1 x2 x3

x2
1 x2

Q =
1

2
x1 x2 P − x3Q = −

1

2
x1 x2 x3 + x3.

Now, since lm(S(P,Q)) = x1 x2 x3 is divisible by lm(P ), we obtain that S(P,Q) can be reduced
modulo P as follows:

T = S(P,Q)−

(

− 1
2 x1 x2 x3

2x1 x3

)

P = S(P,Q)−

(

−
1

4
x2

)

P = x3 −
1

4
x2 x3.

Of course, by construction, both S(P,Q) and T belong to the ideal I.

As previously noticed, S-polynomials of elements of I belong to I.

Theorem 4. Let I be an ideal of R = k[x1, . . . , xn] and an admissible term order ≺ on Mon(R).
Then, G = {Qi}i=1,...,t is a Gröbner basis of I for ≺ iff for all pairs (Qi, Qj) of distinct elements
of G, the remainder of S(Qi, Qj) modulo G is zero.

According to Theorem 4, Buchberger’s algorithm ([3]) takes a generating set {Pj}j=1,...,r of
the ideal I as input and constructs a Gröbner basis of I by starting with G = {Pj}j=1,...,r

and computing the S-polynomials of pairs of distinct polynomials in G. The S-polynomials are
reduced as long as possible modulo polynomials in G. The result of this sequence of reductions
are called the remainders of the S-polynomials modulo G. Every remainder different from zero is
then added to the set G and this procedure is iterated as long as there exist nonzero remainders
of S-polynomials. This algorithm terminates with a Gröbner basis G of the ideal I for the
admissible term order ≺.

RR n° 7953



36 Cluzeau & Dolean & Nataf & Quadrat

Algorithm 8. • Input: A finite set {Pj}j=1,...,r of polynomials of R = k[x1, . . . , xn] and
an admissible term order ≺ on Mon(R).

• Output: A Gröbner basis G = {Qi}i=1,...,t of the ideal I = (P1, . . . , Pr) of R.

1. Set G = {Pj}j=1,...,r and denote by P the set of distinct pairs of elements of G.

2. While P 6= ∅, do:

• Choose a pair (Pi, Pj) of P and remove it from P.

• Compute S(Pi, Pj) and reduce it modulo G.

• If the remainder S is nonzero, then:

– Add to P all the pairs of the form (P, S), where P ∈ G.

– Add S to G.

3. Return G.

Let us illustrate Algorithm 8 with an explicit example.

Example 11. We consider again Example 10. Let us compute a Gröbner basis of the ideal I.
We first set G = {P,Q}. In Example 10, we computed S(P,Q) = − 1

2 x1 x2 x3 + x3 and reduced
it by P to obtain the following polynomial:

T = S(P,Q)−

(

−
1

4
x2

)

P = x3 −
1

4
x2 x3.

Then, we set G = {P,Q, T}. Now, we need to compute the following S-polynomials:

{

S(P, T ) = 1
2 x2 P − (−4x1)T = − 1

2 x2 x3 + 4x1 x3,

S(Q,T ) = x3Q− (−4x2
1)T = −x3 + 4x2

1 x3.

Reducing these new S-polynomials modulo the elements of G, we obtain:

{

S(P, T )− 2T − 2P = 0,

S(Q,T )− (2x1 + 1)P = 0.
(49)

Hence, Buchberger’s algorithm terminates with the Gröbner basis G = {P,Q, T} of I.

Definition 7. A Gröbner basis G = {Qi}i=1,...,t of an ideal I of R is called minimal if the
following two conditions are satisfied:

1. For all i = 1, . . . , t, lc(Qi) = 1.

2. For all i = 1, . . . , t, Qi is reduced modulo G \ {Qi}.

Proposition 2. Every nonzero ideal I of R = k[x1, . . . , xn] admits a minimal Gröbner basis for
any given admissible term order ≺.

Remark 6. For computational purposes, the degree reverse lexicographical order is much more
feasible than the purely lexicographical one. The latter serves elimination purposes: Buchberger’s
algorithm, applied to a generating set of an ideal with respect to the lexicographical order, finds
a polynomial of the ideal I (if it exists) which contains only the ≺-least variable.

Inria



Symbolic methods for developing new domain decomposition algorithms 37

Example 12. Given an ideal I of R = k[x1, . . . , xn, y1, . . . , ym], we obtain a Gröbner basis of the
left ideal I ∩ k[y1, . . . , ym] by computing the Gröbner basis G of I with respect to an elimination
order (see 4 of Example 7) and intersecting G with k[y1, . . . , ym], which merely amounts to
omitting all polynomials in G that involve any xi.

Finally, we shortly explain how we can extend the previous results from ideals to modules
over a commutative polynomial algebra R (see, e.g., [12, 21]).

Let us denote by {f j}j=1,...,p the standard basis of the following free left R-module

R1×p = {(λ1 . . . λp) | λi ∈ R, i = 1, . . . , p},

namely, the kth component of f j is 1 if k = j and 0 otherwise. First, we need to extend the
term order ≺ on Mon(R) to the set of monomials of the form uf j , where u ∈ Mon(R) and
j = 1, . . . , p. When it does not lead to any confusion, we still denote by ≺ the extension of ≺ to
Mon(R1×p) =

⋃p
j=1 Mon(R) f j , where ≺ is asked to satisfy the following two conditions:

1. ∀ w ∈ Mon(R) : uf i ≺ v f j ⇒ w uf i ≺ w v f j .

2. ∀ j = 1, . . . , p : u ≺ v ⇒ uf j ≺ v f j .

Without loss of generality, we let fp ≺ fp−1 ≺ · · · ≺ f1. Then, there are two natural extensions
of a term order to Mon(R1×p) defined in the next definition.

Definition 8. Let ≺ be an admissible term order on Mon(R), u, v ∈ Mon(R), and {f j}j=1,...,p

the standard basis of the R-module R1×p.

1. The term over position order on Mon(R1×p) induced by ≺ is defined by:

uf i ≺ v f j ⇔ u ≺ v or u = v and f i ≺ f j .

2. The position over term order on Mon(R1×p) induced by ≺ is defined by:

uf i ≺ v f j ⇔ f i ≺ f j or f i = f j and u ≺ v.

The term over position order is of more computational value with regard to efficiency, whereas
the position over term order can be used to eliminate components: Buchberger’s algorithm
applied to a generating set of a R-submodule L of R1×p with respect to a position over term
order finds (if it exists) an element of the form P fj ∈ L, where P ∈ R.

If an admissible monomial order on Mon(R1×p) is fixed, then leading monomials, leading
coefficients, leading terms of elements in R1×p are defined as in the case of ideals. Moreover,
Buchberger’s algorithm carries over to R1×p. For more details, we refer, e.g., to [12, 21]. We
only give here an example.

Example 13. We endow the R = Q[x1, x2]-module R1×2 with the term over position order
induced by ≺degrevlex on Mon(R) and denote by L the R-submodule of R1×2 generated by
P = (x2

1 + x2)f1 + x1 x2 f2 and Q = (x2 + 1) f1 + f2. The S-polynomial S(P,Q), defined by

S(P,Q) = x2 P − x
2
1Q = (x2

2 − x
2
1) f1 + (x1 x

2
2 − x

2
1) f2,

which can be reduced by P and Q to:

T = S(P,Q) + P − x2Q = (x1 x
2
2 − x

2
1 + x1 x2 − x2) f2.

Then, P can still be replaced as a generator of L by P −Q = (x2
1− 1) f1 +(x1 x2− 1) f2, but no

further nonzero S-polynomials can be computed from P − Q, Q and T , since the leading term
of T lies in the second component, whereas the leading terms of P −Q and Q lie in the first one.
Thus, Buchberger’s algorithm terminates with a Gröbner basis G = {P −Q,Q, T} of L.

RR n° 7953



38 Cluzeau & Dolean & Nataf & Quadrat

Thereafter, non-experts on Gröbner basis techniques can only consider a Gröbner basis as a
kind of “black box” which allows one to compute much important information on polynomial
systems. For instance, using them, we can constructively solve the following problems:

1. Computation of kernels: Given a matrix A ∈ Rq×p, find B ∈ Rr×q satisfying:

kerR(.A) := {λ = (λ1 . . . λq) ∈ R
1×q | λA = 0} = R1×r B := {µB | µ ∈ R1×r}.

This is done by the following algorithm:

Algorithm 9. • Input: A commutative polynomial ring R and a finitely generated
R-submodule L of R1×p defined by a matrix A ∈ Rq×p, i.e., L = R1×q A.

• Output: A matrix B ∈ Rr×q such that kerR(.A) = R1×r B.

(a) Introduce the indeterminates η1, . . . , ηp, ζ1, . . . , ζq over R and define the following set:

P =







p
∑

j=1

Aij ηj − ζi | i = 1, . . . , q







.

(b) Compute a Gröbner basis G of P in the free R-module generated by the ηj ’s and the
ζi’s for j = 1, . . . , p and i = 1, . . . , q, namely,

⊕p
j=1Rηj ⊕

⊕q
i=1Rζi, with respect to

a term order which eliminates the ηj ’s.

(c) Compute the intersection G ∩ (
⊕q

i=1Rζi) = {
∑q

i=1Bki ζi | k = 1, . . . , r} by selecting
the elements of G containing only the ζi’s, and return B = (Bij) ∈ R

r×q.

2. Computation of factorizations: Given two matrices A ∈ Rq×p and A′ ∈ Rq′×p, find a
matrix A′′ ∈ Rq×q′

, when it exists, satisfying A = A′′A′.

This can be done by the following algorithm:

Algorithm 10. • Input: A commutative polynomial ring R, two matrices A ∈ Rq×p,
and A′ ∈ Rq′×p.

• Output: A matrix A′′ ∈ Rq×q′

such that A = A′′A′ if A′′ exists and [ ] otherwise.

(a) Introduce the indeterminates λj , j = 1, . . . , p and µi, i = 1, . . . , q′, over R, and define:

P =







p
∑

j=1

A′
ij λj − µi | i = 1, . . . , q′







.

(b) Compute the Gröbner basis G of P in
⊕p

j=1Rλj ⊕
⊕q′

i=1Rµi with respect to a term
order which eliminates the λj ’s.

(c) Define the following set:

Q =







p
∑

j=1

Akj λj | k = 1, . . . , q







.

(d) Reduce each element of Q w.r.t. G (see Algorithm 7) and call H = {Hi | i = 1, . . . , q}
the set obtained.

Inria



Symbolic methods for developing new domain decomposition algorithms 39

(e) If any Hi contains any λi, then return [ ], else let Hi =
∑q′

j=1A
′′
ij µj , for i = 1, . . . , q,

and return A′′ = (A′′
ij) ∈ R

q×q′

.

3. Computation of Bézout identities: Given a matrix A ∈ Rq×p, find (if it exists) a left inverse
B ∈ Rp×q (resp., right inverse C ∈ Rp×q) of A over R, namely, BA = Ip (resp., AC = Iq).

The left inverse can be computed as follows:

Algorithm 11. • Input: A commutative polynomial ring R and a matrix A ∈ Rq×p.

• Output: A matrix B ∈ Rp×q such that BA = Ip if B exists and [ ] otherwise.

(a) Introduce the indeterminates λj , j = 1, . . . , p and µi, i = 1, . . . , q, over R and define:

P =







p
∑

j=1

Aij λj − µi | i = 1, . . . , q







.

(b) Compute the Gröbner basis G of P in
⊕p

j=1Rλj ⊕
⊕q

i=1Rµi with respect to a term
order which eliminates the λj ’s.

(c) Remove from G the elements which do not contain any λi and call H this new set.

(d) Write H in the form Q1 (λ1 . . . λp)
T − Q2 (µ1 . . . µq)

T , where Q1 and Q2 are two
matrices with entries in R.

(e) If Q1 is invertible in R, then return B = Q−1
1 Q2 ∈ D

p×q, else return [ ].

The computation of the right inverse of a matrix over a commutative polynomial ring can
be done by applying the previous algorithm to the transpose of the matrix and transposing
the obtained matrix.

Let us illustrate the use of Gröbner bases to solve some of the previous problems.

Example 14. Let us consider again Examples 10 and 11. In Example 10, we found:

T = S(P,Q)−

(

−
1

4
x2

)

P =

(

1

2
x1 x2 +

1

4
x2

)

P − x3Q.

Substituting T into the formulas for S(P, T ) and S(Q,T ) obtained in Example 11, we get:

{

S(P, T ) = (2x2
1 x2 + x1 x2 + 1

2 x2)P − 4x1 x3Q,

S(Q,T ) = (2x3
1 x2 + x2

1 x2)P + (−4x2
1 x3 + x3)Q.

Then, the identities (49) become the following two relations

{

(x2
1 x2 − 1)P − x3 (2x1 − 1)Q = 0,

(2x1 + 1) (x2
1 x2 − 1)P − (2x1 + 1)x3 (2x1 − 1)Q = 0,

which yields kerD(.(P Q)T ) = RL, where L = (x2
1 x2 − 1 − x3 (2x1 − 1)) because the second

equation of the previous system is a multiple of the first one.

Finally, using the Gröbner basis G = {P,Q, T} of the ideal I = (P, Q) of R generated by P
and Q, we can prove that the ring R/I is 1-dimensional, which means that the dimension of the
complex solutions V (I) of the polynomial system {P = 0, Q = 0} is 1, which can be checked by
direct computation: V (I) = {(x1 x2 0) ∈ C3 | x2

1 x2 = 1} ∪ {(1/2 4 x3) ∈ C3 | x3 ∈ C}.

RR n° 7953



40 Cluzeau & Dolean & Nataf & Quadrat

From the two above simple examples, it clearly appears that the corresponding computations
cannot generally be obtained without the use of Gröbner basis techniques and without their
implementations in a computer algebra system. If an implementation of Buchberger’s algorithm
is only at hand for R and not for R1×p, where p > 1, then one can overcome this problem by
introducing new variables f1, . . . ,fp and ignoring any polynomial which contains any nonlinear
term in the f j ’s in the result (we note that the input for Buchberger’s algorithm consists of
polynomials which are homogeneous in the f j ’s and reduction keeps homogeneity). In partic-
ular, the Maple package Groebner actually does not form any product with the f j ’s when the
monomial order is properly defined. This fact is used in the development of the OreModules

package ([6]) built upon the Maple packages Groebner and Ore−algebra ([7]). In particular,
OreModules allows one to effectively study the previously listed problems (and more) for the
class of Ore algebras of functional operators available in Ore−algebra. The OreModules pack-
age is a main computational tool for studying the properties of finitely presented modules over
Ore algebras appearing in mathematical systems theory. The package Janet ([2]) follows the
same philosophy but is based on the concept of Janet bases ([2, 22, 31]).

8 Appendix: Maple computations

8.1 Completion problem

In this section, we study the completion problem considered in Section 5.2.

8.1.1 Elasticity 3D

> restart:
> with(linalg):
> with(OreModules):
> with(Schwarz):

We consider the elastostatic equations, i.e., the Navier-Cauchy equations in R3. This system is
defined by Ry = 0, where R ∈ A3×3 is a matrix with entries in the commutative polynomial
ring A = Q(λ, µ)[dx, dy, dz] of PD operators in dx = ∂/∂x, dy = ∂/∂y and dz = ∂/∂z with
coefficients in Q(λ, µ), where λ and µ are the two Lamé constants.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],diff=[dz,z],polynom=[x,y,z],
> comm=[lambda,mu]):

> R := matrix(3, 3,[-2*dx^2*mu-dx^2*lambda-dy^2*mu-dz^2*mu,-dx*dy*(lambda+mu),
> -dx*dz*(lambda+mu),-dx*dy*(lambda+mu),-dx^2*mu-2*dy^2*mu-dy^2*lambda-dz^2*mu,
> -dy*dz*(lambda+mu),-dx*dz*(lambda+mu),-dy*dz*(lambda+mu),
> -dx^2*mu-dy^2*mu-2*dz^2*mu-dz^2*lambda]);

R :=









−2 dx 2µ− dx 2λ− dy2µ− dz 2µ −dx dy (λ+ µ) −dx dz (λ+ µ)

−dx dy (λ+ µ) −dx 2µ− 2 dy2µ− dy2λ− dz 2µ −dy dz (λ+ µ)

−dx dz (λ+ µ) −dy dz (λ+ µ) −dx 2µ− dy2µ− 2 dz 2µ− dz 2λ









Inria



Symbolic methods for developing new domain decomposition algorithms 41

Let ∆ = dx2 + dy2 + dz2. We can check that the Smith normal form of R is the diagonal
matrix having 1, ∆ and ∆2 as diagonal entries

> S:=map(factor,smith(R,dx));

S :=









1 0 0

0 dx 2 + dy2 + dz 2 0

0 0
(

dx 2 + dy2 + dz 2
)2









i.e., R = E S F , where E, F ∈ GL3(B) and B = Q(λ, µ, dy, dz)[dx]. As a consequence, the
residue class of the second (resp., third) row of the matrix F in the B-module B1×3/(B1×3R)
must be annihilated by the PD operator ∆ (resp., ∆2). To find a set of possible F ’s (i.e.,
possible “Smith variables”), we first compute families of generators of the elements of the A-
module M = A1×3/(A1×3R) respectively annihilated by the PD operators ∆ and ∆2. This can
be done by means of the AnnOp procedure.

> Delta:=dx^2+dy^2+dz^2:
> F2:=AnnOp(Delta,R,A);

F2 :=















−dz µ 0 dx µ

−dy µ dx µ 0

2 dx µ+ dx λ dy λ+ 2 dy µ dz λ+ 2 dz µ

0 −dz µ dy µ















> F3:=AnnOp(Delta^2,R,A);

F3 :=









2µ2 + λµ 0 0

0 2µ2 + λµ 0

0 0 2µ2 + λµ









Then, the second (resp., third) row of F can be chosen among the B-linear combinations of the
rows of F2 (resp., F3). Once these two rows have been chosen, we can try to complement them
to a unimodular matrix F which further satisfies that its first row (the one that we need to find)
is annihilated by 1, i.e., by the first entry of the diagonal matrix S. As it is illustrated below,
this complement does not always exist since the choices made for the second and third row of F
may not lead to a unimodular matrix whose first row is annihilated by 1.

The procedure SmithVariablesCompletion takes as inputs the matrix R, the lower part of
the Smith form (here diag(∆,∆2)), the chosen rows of F (here a row of F2 and a row of F3)
and B. It decides whether or not the given choice can be complemented as previously explained.
If so, then it returns the corresponding matrices E, S and F , and [ ] otherwise. For instance, if
we choose the fourth row of F2 and the third row of F3 (up to constant)

> F23:=stackmatrix(row(F2,4),row(F3,3)/(2*mu^2+lambda*mu));

F23 :=

[

0 −dz µ dy µ

0 0 1

]

and run the procedure SmithVariablesCompletion:

RR n° 7953



42 Cluzeau & Dolean & Nataf & Quadrat

> B:=DefineOreAlgebra(diff=[dx,x],polynom=[x],comm=[dy,dz,lambda,mu]):
> SVC:=SmithVariablesCompletion(R,diag(Delta,Delta^2),F23,B):
> E:=SVC[1];
> S:=SVC[2];
> F:=SVC[3];

E :=













(−2µ− λ) dx 2 −
(

dy2 + dz 2
)

µ (2 µ+λ)dy dx

(dy2+dz2)dz µ

(−4 µ2−4 λ µ−λ2)dx
dz (dy2λ+dz2µ+dz2λ+dy2µ)

−dx dy (λ+ µ) dz2µ+2 dy2µ+dy2λ

(dy2+dz2)dz µ
− (2 µ+λ)dy

(dy2+dz2)dz

−dx dz (λ+ µ) (λ+µ)dy
(dy2+dz2)µ

−2 µ−λ

dy2+dz2













S :=









1 0 0

0 dx 2 + dy2 + dz 2 0

0 0
(

dx 2 + dy2 + dz 2
)2









F :=











1 − dy dx

dy2+dz2 −
dx (dy2λ+2 dz2λ+dx2λ+3 dz2µ+2 dy2µ+2 dx2µ)

(λ+µ)(dy2+dz2)dz

0 −dz µ dy µ

0 0 1











We find that this particular choice can be complemented to a unimodular matrix F whose first
row is annihilated by 1. However, choosing the third row of F2 and the first row of F3, we obtain

> F23p:=stackmatrix(row(F2,3),row(F3,1)/(2*mu^2+lambda*mu));

F23p :=

[

2 dx µ+ dx λ dy λ+ 2 dy µ dz λ+ 2 dz µ

1 0 0

]

and running again the procedure, we find that this choice cannot be complemented, which yields
an empty output:

> SVC:=SmithVariablesCompletion(R,diag(Delta,Delta^2),F23p,B);

[]

Once a “good choice” has been made, we can run the procedure ReducedInterfaceConditions
(see Section 8.2) to reduce the interface conditions obtained with the corresponding F . For in-
stance, with the “good choice” previously given, we can reduce the interface conditions of the
update step of the algorithm defined by means of the PD operators 1, 1 and ∆, i.e., apply
ReducedInterfaceConditions to U , V and ∆W , where U, V, W denote the system variables.

> ReducedInterfaceConditions(R,SVC[3],A,[1,1,Delta],[U,V,W]);

[V = 0,W = 0, Ux = 0]

To obtain a longer list of reduced interface conditions (e.g., for the interface conditions defined
by means of 1, 1 and ∆ for the update step, and by dx, dx, dx∆ for the correction step)
computed with distinct matrices F constructed as previously explained, we loop over all the
possible combinations made with one row of F2 and one row of F3, check whether or not this
candidate is “good” (i.e., whether or not the corresponding matrix can be complemented as
previously explained), and if so, compute the corresponding F , and then run the procedure
ReducedInterfaceConditions.

Inria



Symbolic methods for developing new domain decomposition algorithms 43

> for i from 1 to rowdim(F2) do
> for j from 1 to rowdim(F3) do
> F23:=stackmatrix(row(F2,i),row(F3,j)/(2*mu^2+lambda*mu)):
> SVC:=SmithVariablesCompletion(R,diag(Delta,Delta^2),F23,B):
> if SVC=[] then
> print([[i,j],[]]);
> else
> print([[i,j],
> ReducedInterfaceConditions(R,SVC[3],A,[1,1,Delta],[U,V,W]),
> ReducedInterfaceConditions(R,SVC[3],A,[dx,dx,dx*Delta],[U,V,W])]);
> fi:
> od:
> od:

[[1, 1], []]

[[1, 2], [V = 0, Ux = −Wdz ,Wx = dz U ], [Ux = −dy dz V λ+dy dz V µ+Wdy2µ+2 Wdz2µ+Wdz2λ
dz (2 µ+λ) , Vx = 0,Wx =

(dy2+dz2)U

dz
]]

[[1, 3], [W = 0, Ux = −dy V,Wx = dz U ], [Ux = −dy dz V λ+dy dz V µ+Wdy2µ+2 Wdz2µ+Wdz2λ
dz (2 µ+λ) , Vx =

(dy2+dz2)U

dy
,Wx = 0]]

[[2, 1], []]

[[2, 2], [V = 0, Ux = −Wdz , Vx = Udy ], [Ux = − 2 V dy2µ+V dy2λ+V dz2µ+dy dz Wλ+dy dz Wµ
(2 µ+λ)dy , Vx = 0,Wx =

(dy2+dz2)U

dz
]]

[[2, 3], [W = 0, Ux = −dy V, Vx = Udy ], [Ux = − 2 V dy2µ+V dy2λ+V dz2µ+dy dz Wλ+dy dz Wµ
(2 µ+λ)dy , Vx =

(dy2+dz2)U

dy
,Wx = 0]]

[[3, 1], []]

[[3, 2], []]

[[3, 3], []]

[[4, 1], [U = 0,W = dz V
dy

, Vx = −Wxdz
dy

], [V = −Wdz
dy

, Ux = 0,Wx = dz Vx

dy
]]

[[4, 2], [V = 0,W = 0, Ux = 0], [U = 0, Vx = 0,Wx = 0]]

[[4, 3], [V = 0,W = 0, Ux = 0], [U = 0, Vx = 0,Wx = 0]]

With this method, we can find the Smith variables (i.e., the F ’s) that lead to simple reduced
interface conditions (for both the update and the correction steps). From the above computations,
the simplest reduced interface conditions were obtained for the matrix F formed by the fourth
row of F2 and the second (or third) row of F3.

We note that we do not test all the possible unimodular matrices F such that R = E S F ,
where E unimodular, since the second (resp., third) row of F can be chosen as a B-linear
combination of the rows of F2 (resp., F3). Consequently, it might happen that another choice
of B-linear combinations provides a simpler form for the reduced interface conditions.

RR n° 7953



44 Cluzeau & Dolean & Nataf & Quadrat

8.1.2 Stokes 2D

We consider the Stokes equations in R2. This system is defined by Ry = 0, where R ∈ A3×3 is a
matrix with entries in the commutative polynomial ring A = Q(ν, c)[dx, dy] of PD operators in
dx = ∂/∂x and dy = ∂/∂y with coefficients in Q(ν, c), where ν is the viscosity and c the reaction
coefficient.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[nu,c]):

> R:=evalm([[-nu*(dx^2+dy^2)+c,0,dx],[0,-nu*(dx^2+dy^2)+c,dy],[dx,dy,0]]);

R :=









−ν
(

dx 2 + dy2
)

+ c 0 dx

0 −ν
(

dx 2 + dy2
)

+ c dy

dx dy 0









Let ∆ = dx2 + dy2 and L = −ν∆ + c. We can check that the Smith normal form S of R is
the diagonal matrix which entries are 1, 1 and L∆

> S:=map(factor,smith(R,dx));

S :=









1 0 0

0 1 0

0 0 −
(dx2+dy2)(−ν dx2−ν dy2+c)

ν









i.e., R = E S F , where E, F ∈ GL3(B) and B = Q(ν, c, dy, dz)[dx]. As a consequence, the
residue class of the third row of F in the B-module B1×3/(B1×3R) must be annihilated by
the PD operator L∆. We compute a family of generators of the elements of the A-module
M = A1×3/(A1×3R) annihilated by L∆ using the AnnOp procedure.

> Delta:=dx^2+dy^2:
> L:=-nu*Delta+c:
> F3:=AnnOp(Delta*L,R,A);

F3 :=















1 0 0

dy −dx 0

−ν dx −ν dy 1

0 1 0















We then obtain different choices for the last row of F . Using the SmithVariablesCompletion
procedure, we can try to complement each of the rows of F3 to a unimodular matrix F whose
first two rows are annihilated by 1. This yields distinct choices for F from which we can run the
ReducedInterfaceConditions procedure to reduce the interface conditions defined by means of
the PD operators 1 and L for the update step, and by dx and dxL for the correction step.

Inria



Symbolic methods for developing new domain decomposition algorithms 45

> B:=DefineOreAlgebra(diff=[dx,x],polynom=[x],comm=[dy,nu,c]):
> for i from 1 to rowdim(F3) do
> F31:=row(F3,i):
> SVC:=SmithVariablesCompletion(R,diag(Delta*L),F31,B):
> if SVC=[] then
> print([[i],[]]);
> else
> print([[i],
> ReducedInterfaceConditions(R,SVC[3],A,[1,L],[U,V,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[dx,dx*L],[U,V,P])]);
> fi;
> od:

[[1], [U = 0, Px = 0], [P = 0, V = 0]]

[[2], []]

[[3], []]

[[4], [P = 0, V = 0], [U = 0, Px = 0]]

8.1.3 Stokes 3D

We consider the Stokes equations in R3. This system is defined by Ry = 0, where R ∈ A4×4 is a
matrix with entries in the commutative polynomial ring A = Q(ν, c)[dx, dy, dz] of PD operators
in dx = ∂/∂x, dy = ∂/∂y and dz = ∂/∂z with coefficients in Q(ν, c), where ν is the viscosity
and c the reaction coefficient.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],diff=[dz,z],polynom=[x,y,z],
> comm=[nu,c]):

> R:=evalm([[-nu*(dx^2+dy^2+dz^2)+c,0,0,dx],[0,-nu*(dx^2+dy^2+dz^2)+c,0,dy],
> [0,0,-nu*(dx^2+dy^2+dz^2)+c,dz],[dx,dy,dz,0]]);

R :=















−ν
(

dx 2 + dy2 + dz 2
)

+ c 0 0 dx

0 −ν
(

dx 2 + dy2 + dz 2
)

+ c 0 dy

0 0 −ν
(

dx 2 + dy2 + dz 2
)

+ c dz

dx dy dz 0















Let ∆ = dx2 + dy2 + dz2 and L = −ν∆ + c. We can check that the Smith normal form S of
R is the diagonal matrix which entries are 1, 1, L and L∆

> S:=map(factor,smith(R,dx));

S :=

















1 0 0 0

0 1 0 0

0 0 −−ν dx2−ν dz2−ν dy2+c
ν

0

0 0 0 −
(−ν dx2−ν dz2−ν dy2+c)(dx2+dy2+dz2)

ν

















RR n° 7953



46 Cluzeau & Dolean & Nataf & Quadrat

i.e., R = E S F , where E, F ∈ GL4(B) and B = Q(ν, c, dy, dz)[dx]. As a consequence, the residue
class of the third (resp., fourth) row of F in the B-module B1×4/(B1×4R) must be annihilated
by the PD operator L (resp., L∆). Using the AnnOp procedure, we compute the families of
generators of the elements of the A-module M = A1×4/(A1×4R) respectively annihilated by L
and by L∆.

> Delta:=dx^2+dy^2+dz^2:
> L:=-nu*Delta+c:
> F3:=AnnOp(L,R,A);

F3 :=

































−dz 0 dx 0

−dy dx 0 0

ν dx dz ν dy dz ν dz 2 − c −dz

ν dx dy ν dy2 + ν dz 2 − c 0 −dy

dx dy dz 0

ν dx 2 + ν dy2 + ν dz 2 − c 0 0 −dx

0 −dz dy 0

































> F4:=AnnOp(L*Delta,R,A);

F4 :=

































1 0 0 0

dz 0 −dx 0

dy −dx 0 0

−ν dx −ν dy −ν dz 1

0 1 0 0

0 dz −dy 0

0 0 1 0

































We obtain different choices for the last two rows of F . Using the SmithVariablesCompletion
procedure, we can try to complement the matrix formed by one row of F3 and one row of F4 to
a unimodular matrix F whose first two rows are annihilated by 1. This yields distinct choices for
F from which we can run the ReducedInterfaceConditions procedure to reduce the interface
conditions defined by means of the PD operators 1, 1 and L for the update step, and by dx, dx
and dxL for the correction step. We only print out the result when the choice of the last rows
of F is a “good” one, i.e., when it can be complemented the matrix formed by the proposed two
rows to a unimodular matrix whose first two rows are annihilated by 1.

Inria



Symbolic methods for developing new domain decomposition algorithms 47

> B:=DefineOreAlgebra(diff=[dx,x],polynom=[x],comm=[dy,dz,nu,c]):
> for i from 1 to rowdim(F3) do
> for j from 1 to rowdim(F4) do
> F34:=stackmatrix(row(F3,i),row(F4,j)):
> SVC:=SmithVariablesCompletion(R,diag(L,L*Delta),F34,B):
> if SVC=[] then
> else
> print([[i,j],
> ReducedInterfaceConditions(R,SVC[3],A,[1,1,L],[U,V,W,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[dx,dx,dx*L],[U,V,W,P])]);
> fi:
> od:
> od:

[[1, 5], [P = 0, V = 0,Wx = dz U ], [P = −−Wν dy2+Wc+ν dz dy V
dz

, Px = 0,Wx = −
U(−ν dy2−ν dz2+c)

ν dz
]]

[[1, 7], [P = 0,W = 0,Wx = dz U ], [P = −−Wν dy2+Wc+ν dz dy V
dz

, Px = 0,Wx = 0]]

[[2, 5], [P = 0, V = 0, Px = Uν dz 2 − Uc− ν Wxdz ], [P = −ν dy Wdz−V ν dz2+V c
dy

, Px = 0,Wx = −
U(−ν dy2−ν dz2+c)

ν dz
]]

[[2, 7], [P = 0,W = 0, Px = Uν dz 2 − Uc− ν Wxdz ], [P = −ν dy Wdz−V ν dz2+V c
dy

, Px = 0,Wx = 0]]

[[3, 1], [P = −Wc
dz
, U = 0, Px = 0], [P = 0, V = −Wdz

dy
,Wx = −dz Px

c
]]

[[3, 5], [P = 0, V = 0,W = 0], [U = 0, Px = 0,Wx = 0]]

[[4, 1], [P = −ν dy Wdz−V ν dz2+V c
dy

, U = 0, Px = 0], [P = 0, V = −Wdz
dy

, Px = −Uc+ Uν dz 2 − ν Wxdz ]]

[[4, 5], [P = 0, V = 0,W = 0], [U = 0, Px = 0,Wx = 0]]

[[4, 7], [P = 0, V = 0,W = 0], [U = 0, Px = 0,Wx = 0]]

[[7, 1], [U = 0, V = dy W
dz

, Px = 0], [P = 0, V = −Wdz
dy

, Px = −−dz Uν dy2−Uν dz3+dz Uc+Wxν dy2+Wxν dz2

dz
]]

[[7, 5], [P = 0, V = 0,W = 0], [U = 0, Px = 0,Wx = 0]]

[[7, 7], [P = 0, V = 0,W = 0], [U = 0, Px = 0,Wx = 0]]

With this method, we can find the Smith variables (i.e., the F ’s) that lead to simple reduced
interface conditions (for both the update and the correction steps). From the above computations,
the simplest reduced interface conditions were obtained, for instance, for a matrix F formed by
the seventh row of F3 and the seventh row of F4.

8.1.4 Oseen 2D

We consider the Oseen equations in R2. This system is defined by Ry = 0, where R ∈ A3×3

is a matrix with entries in the commutative polynomial ring A = Q(ν, c, b1, b2)[dx, dy] of PD
operators in dx = ∂/∂x and dy = ∂/∂y with coefficients in Q(ν, c, b1, b2), where ν is the viscosity,
c the reaction coefficient, and (b1, b2) the convection velocity.

We first define A and R.

RR n° 7953



48 Cluzeau & Dolean & Nataf & Quadrat

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[nu,c,b1,b2]):

> R:=evalm([[-nu*(dx^2+dy^2)+c+b1*dx+b2*dy,0,dx],
> [0,-nu*(dx^2+dy^2)+c+b1*dx+b2*dy,dy],[dx,dy,0]]);

R :=









−ν
(

dx 2 + dy2
)

+ c+ b1 dx + b2 dy 0 dx

0 −ν
(

dx 2 + dy2
)

+ c+ b1 dx + b2 dy dy

dx dy 0









Let ∆ = dx2 + dy2 and L = −ν∆ + b1 dx+ b2 dy + c. We can check that the Smith normal
form S of R is the diagonal matrix which entries are 1, 1 and L∆

> S:=map(factor,smith(R,dx));

S :=









1 0 0

0 1 0

0 0 −
(dx2+dy2)(−ν dx2−ν dy2+c+b1 dx+b2 dy)

ν









i.e., R = E S F , where E, F ∈ GL3(B) and B = Q(ν, c, b1, b2, dy)[dx]. As a consequence, the
residue class of the third row of F in the B-module B1×3/(B1×3R) must be annihilated by the
PD operator L∆. Using the AnnOp procedure, we compute the family of generators of the
elements of the A-module M = A1×3/(A1×3R) annihilated by L∆.

> Delta:=dx^2+dy^2:
> L:=-nu*Delta+b1*dx+b2*dy+c:
> F3:=AnnOp(L*Delta,R,A);

F3 :=















1 0 0

dy −dx 0

b1 − ν dx −ν dy + b2 1

0 1 0















We then obtain different choices for the last row of F . Using the SmithVariablesCompletion
procedure, we can try to complement each row of F3 to a unimodular matrix F whose first two
rows are annihilated by 1. This yields distinct choices for F which can be used as an input of
the ReducedInterfaceConditions procedure to reduce the interface conditions in the different
following cases:

Case 1 Let Robin = ν dx − b1/2. The interface conditions are given by the PD operators 1
and L for the update step, and by Robin and dxL for the correction step.

Inria



Symbolic methods for developing new domain decomposition algorithms 49

> Robin:=nu*dx-b1/2:
> for i from 1 to rowdim(F3) do
> F31:=stackmatrix(row(F3,i)):
> SVC:=SmithVariablesCompletion(R,diag(L*Delta),F31,B):
> if SVC=[] then
> print([[i],[]]);
> else
> print([[i],
> ReducedInterfaceConditions(R,SVC[3],A,[1,L],[U,V,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[Robin,dx*L],[U,V,P])]):
> fi:
> od:

[[1], [U = 0, Px = 0], [P = 0, U = −2 ν dy V
b1

]]

[[2], []]

[[3], [P = 0, U = −V b2
b1

], [P = −dy Ub12+2 V b1 ν dy2−dy V b1 b2−2 b2 Uν dy2+2 b2 Uc+2 Ub22dy

b1 dy
, Px = 0]]

[[4], [P = 0, V = 0], [V = 2
(−ν dy2+c+b2 dy)U

b1 dy
, Px = 0]]

With this method, we can find the Smith variables (i.e., the F ’s) that lead to simple reduced
interface conditions (for both the update and the correction steps). From the above computations,
the simplest reduced interface conditions were obtained for the matrix formed by the first row
of F3.

Case 2 The interface conditions are given by the PD operators 1 and L for the update step,
and by dx and Robin∆ for the correction step.

> for i from 1 to rowdim(F3) do
> F31:=stackmatrix(row(F3,i)):
> SVC:=SmithVariablesCompletion(R,diag(L*Delta),F31,B):
> if SVC=[] then
> print([[i],[]]);
> else
> print([[i],
> ReducedInterfaceConditions(R,SVC[3],A,[1,L],[U,V,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[dx,Robin*Delta],[U,V,P])]):
> fi:
> od:

[[1], [U = 0, Px = 0], [V = 0, Px = 2 ν dy2P−b2 dy Ub1+2 ν dy2Ub1−cUb1

b1
]]

[[2], []]

[[3], [P = 0, U = −V b2
b1

], [P = X
Y
, Px = −V b1 ν dy2−b2 Uν dy2+b2 Uc+Ub22dy−dy V b1 b2

−ν dy+b2
]]

where

X = −3 ν cdy V b1 b2 + 2 ν2Ub1 2dy3 − ν b1 2dy Uc− 2 b2 ν2cUdy2 + 2 b2 ν c2U + 2 cV b1 ν2dy2

+2 ν2V b2 dy3b1 − 3 ν b1 b2 2dy2V − 3 ν b1 2dy2Ub2 + b1 b2 3dy V + 2 ν dy b2 2Uc+ b1 2b2 Uc

+cV b1 b2 2 + b1 2b2 2Udy ,

RR n° 7953



50 Cluzeau & Dolean & Nataf & Quadrat

and:

Y = −dy b1
(

2 ν2dy2 − 3 ν dy b2 + b2 2
)

.

[[4], [P = 0, V = 0], [P = −dy V b1 b2−b1 V c+2 ν cUdy+2 b2 Uν dy2−2 ν2dy3U
b1 dy

,

Px = Uν dy2 − Uc− Ub2 dy + b1 dy V ]]

With this method, we can find the Smith variables (i.e., the F ’s) that lead to simple reduced
interface conditions (for both the update and the correction steps). From the above computations,
the simplest reduced interface conditions were obtained for the matrix formed by the first row
of F3.

Case 3 The interface conditions are given by the PD operators L and Robin for the update
step, and by 1 and dxL for the correction step.

> for i from 1 to rowdim(F3) do
> F31:=stackmatrix(row(F3,i)):
> SVC:=SmithVariablesCompletion(R,diag(L*Delta),F31,B):
> if SVC=[] then
> print([[i],[]]);
> else
> print([[i],
> ReducedInterfaceConditions(R,SVC[3],A,[L,Robin],[U,V,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[1,dx*L],[U,V,P])]):
> fi:
> od:

[[1], [U = −2 ν dy V
b1

, Px = 0], [P = 0, U = 0]]

[[2], []]

[[3], [P = 0, Px = −1/2 dy b12U−2 b2 Uν dy2+2 b2 Uc+2 Ub22dy−dy V b1 b2+2 V b1 ν dy2

−ν dy+b2
],

[P = −Ub1 − V b2 , Px = 0]]

[[4], [P = 0, Px = Uν dy2 − Uc− Ub2 dy + 1/2 b1 dy V ], [V = 0, Px = 0]]

With this method, we can find the Smith variables (i.e., the F ’s) that lead to simple reduced
interface conditions (for both the update and the correction steps). From the above computations,
the simplest reduced interface conditions were obtained for the matrix formed by the first row
of F3.

Case 4 The interface conditions are given by the PD operators dx and ∆ for the update step,
and by 1 and Robin∆ for the correction step.

Inria



Symbolic methods for developing new domain decomposition algorithms 51

> for i from 1 to rowdim(F3) do
> F31:=stackmatrix(row(F3,i)):
> SVC:=SmithVariablesCompletion(R,diag(L*Delta),F31,B):
> if SVC=[] then
> print([[i],[]]);
> else
> print([[i],
> ReducedInterfaceConditions(R,SVC[3],A,[dx,Delta],[U,V,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[1,Robin*Delta],[U,V,P])]):
> fi:
> od:

[[1], [U = − Px

b2 dy+c
, V = 0], [U = 0, Px =

dy (2 ν dy P+2 cν V +2 ν dy V b2+b12V )
b1

]]

[[2], []]

[[3], [P = − b2 dy Ub1+cb2 V +b22dy V +cUb1

b2 dy
, Px = −V b1 ν dy2−b2 Uν dy2+b2 Uc+Ub22dy−dy V b1 b2

−ν dy+b2
],

[P = −Ub1 − V b2 , Px = X
Y

]]

[[4], [P = −V (b2 dy+c)
dy

, Px = Uν dy2 − Uc− Ub2 dy + b1 dy V ], [P = Z
T
, V = 0]]

where X, Y, Z and T are four rather involved polynomials which are not printing here.

With this method, we can find the Smith variables (i.e., the F ’s) that lead to simple reduced
interface conditions (for both the update and the correction steps). From the above computations,
the simplest reduced interface conditions were obtained from the first row of F3.

8.1.5 Oseen 3D

We consider the Oseen equations in R3. This system is defined by Ry = 0, where R ∈ A4×4 is a
matrix with entries in the commutative polynomial ring A = Q(ν, c, b1, b2, b3)[dx, dy, dz] of PD
operators in dx = ∂/∂x, dy = ∂/∂y and dz = ∂/∂z with coefficients in Q(ν, c, b1, b2), where ν is
the viscosity, c the reaction coefficient, and (b1, b2, b3) the convection velocity.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],diff=[dz,z],polynom=[x,y,z],
> comm=[nu,c,b1,b2,b3]):

> L:=-nu*dx^2-nu*dy^2-nu*dz^2+b1*dx+b2*dy+b3*dz+c;
> R:=evalm([[L,0,0,dx],[0,L,0,dy],[0,0,L,dz],[dx,dy,dz,0]]);

L := −ν dx 2 + b1 dx − ν dy2 − ν dz 2 + c+ b2 dy + b3 dz

R :=















L 0 0 dx

0 L 0 dy

0 0 L dz

dx dy dz 0















Let ∆ = dx2 + dy2 + dz2 and L = −ν∆ + b1 dx + b2 dy + b3 dz + c. We can check that the
Smith normal form S of R is the diagonal matrix which entries are 1, 1, L and L∆.

> S:=map(factor,smith(R,dx));

RR n° 7953



52 Cluzeau & Dolean & Nataf & Quadrat

S :=

















1 0 0 0

0 1 0 0

0 0 −L
ν

0

0 0 0 −
L(dx2+dy2+dz2)

ν

















i.e., R = E S F , where E, F ∈ GL4(B) and B = Q(ν, c, b1, b2, b3, dy, dz)[dx]. As a consequence,
the residue class of the third (resp., fourth) row of F in the B-module B1×4/(B1×4R) must
be annihilated by the PD operator L (resp., L∆). Using the AnnOp procedure, we compute
the families of generators of the elements of the A-module M = A1×4/(A1×4R) respectively
annihilated by L and L∆.

> Delta:=dx^2+dy^2+dz^2:
> L:=-nu*Delta+b1*dx+b2*dy+b3*dz+c:
> F3:=AnnOp(L,R,A);

F3 :=
































−dz 0 dx 0

−dy dx 0 0

dz ν dx − dz b1 −b2 dz + ν dy dz −c− b3 dz + ν dz 2 −dz

dx ν dy − b1 dy ν dy2 + ν dz 2 − b3 dz − c− b2 dy 0 −dy

dx dy dz 0

ν dx 2 − b1 dx + ν dy2 + ν dz 2 − b3 dz − c− b2 dy 0 0 −dx

0 −dz dy 0

































> F4:=AnnOp(L*Delta,R,A);

F4 :=

































1 0 0 0

dz 0 −dx 0

dy −dx 0 0

b1 − ν dx −ν dy + b2 b3 − dz ν 1

0 1 0 0

0 dz −dy 0

0 0 1 0

































We then obtain different choices for the last rows of F . Using the SmithVariablesCompletion
procedure, we can try to complement a matrix formed by one row of F3 and one row of F4 to a
unimodular matrix F whose first two rows are annihilated by 1. This yields distinct choices for
F which can be used as an input of the ReducedInterfaceConditions procedure to reduce the
interface conditions in the following distinct cases:

Case 1 Let Robin = ν dx − b1/2. The interface conditions are defined by means of the PD
operators 1, L and 1 for the update step, and by Robin, Robin and dxL for the correction step.
We run the algorithms for all the distinct choices for F .

Inria



Symbolic methods for developing new domain decomposition algorithms 53

> B:=DefineOreAlgebra(diff=[dx,x],polynom=[x],comm=[dy,dz,nu,c,b1,b2,b3]):
> Robin:=nu*dx-b1/2:
> for i from 1 to rowdim(F3) do
> for j from 1 to rowdim(F4) do
> F34:=stackmatrix(row(F3,i),row(F4,j));
> SVC:=SmithVariablesCompletion(R,diag(L,L*Delta),F34,B);
> if SVC=[] then
> s:=[[i,j],[]]:
> else
> s:=[[i,j],ReducedInterfaceConditions(R,SVC[3],A,[1,L,1],[U,V,W,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[Robin,Robin,dx*L],[U,V,W,P])]:
> fi:
> od:
> od:

Since the results are quite large, we only give the simplest reduced interface conditions (for
both the update and the correction steps of the algorithm). It is obtained by choosing the first
row of F3 and the seventh row of F4:

[[P = 0,W = 0,Wx = dz U ],

[P = −1/2 Wxb12+b12dz U+2 b1 dz ν dy V −4 ν2dy2Wx+4 b3 dz ν Wx+4 cν Wx+4 b2 dy ν Wx

dz b1
,W = 2 ν Wx

b1
, Px = 0]]

Case 2 The interface conditions are defined by means of the PD operators 1, L and 1 for the
update step, and by Robin, Robin∆ and dx for the correction step. We run the algorithms for
all the distinct choices for F .

> for i from 1 to rowdim(F3) do
> for j from 1 to rowdim(F4) do
> F34:=stackmatrix(row(F3,i),row(F4,j));
> SVC:=SmithVariablesCompletion(R,diag(L,L*Delta),F34,B);
> if SVC=[] then
> s:=[[i,j],[]]:
> else
> s:=[[i,j],ReducedInterfaceConditions(R,SVC[3],A,[1,L,1],[U,V,W,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[Robin,Robin*Delta,dx],[U,V,W,P])]:
> fi:
> od:
> od:

Since the results are quite large, we only give the simplest reduced interface conditions (for
both the update and the correction steps of the algorithm). It is obtained by choosing the first
row of F3 and the seventh row of F4:

[[P = 0,W = 0,Wx = dz U ],

[P = − 2 ν dz Px−2 Wν dy2b1−2 ν Wb1 dz2+b1 Wb3 dz+b1 Wc+b1 Wb2 dy

dz b1
,

U = −2
ν (−2 dz Px+Wdy2b1+2 Wb1 dz2+dy b1 dz V )

dz b12 ,Wx = 0]]

Case 3 The interface conditions are defined by means of the PD operators 1, L and Robin for
the update step, and by Robin, dxL and 1 for the correction step. We run the algorithms for all
the distinct choices for F .

RR n° 7953



54 Cluzeau & Dolean & Nataf & Quadrat

> for i from 1 to rowdim(F3) do
> for j from 1 to rowdim(F4) do
> F34:=stackmatrix(row(F3,i),row(F4,j));
> SVC:=SmithVariablesCompletion(R,diag(L,L*Delta),F34,B);
> if SVC=[] then
> s:=[[i,j],[]]:
> else
> s:=[[i,j],ReducedInterfaceConditions(R,SVC[3],A,[1,L,Robin],[U,V,W,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[Robin,dx*L,1],[U,V,W,P])]:
> fi:
> od:
> od:

Since the results are quite large, we only give the simplest reduced interface conditions (for
both the update and the correction steps of the algorithm). It is obtained by choosing the first
row of F3 and the seventh row of F4:

[[P = 0,W = 2 ν dz U
b1

,Wx = dz U ], [W = 0, Px = 0,Wx = −dz (Ub1+2 P+2 ν dy V )
b1

]]

Case 4 The interface conditions are defined by means of the PD operators 1, ∆ and dx for the
update step, and by Robin, Robin∆ and 1 for the correction step. We run the algorithms for all
the distinct choices for F .

> for i from 1 to rowdim(F3) do
> for j from 1 to rowdim(F4) do
> F34:=stackmatrix(row(F3,i),row(F4,j));
> SVC:=SmithVariablesCompletion(R,diag(L,L*Delta),F34,B);
> if SVC=[] then
> s:=[[i,j],[]]:
> else
> s:=[[i,j],
> ReducedInterfaceConditions(R,SVC[3],A,[1,Delta,dx],[U,V,W,P]),
> ReducedInterfaceConditions(R,SVC[3],A,[Robin,Robin*Delta,1],[U,V,W,P])]:
> fi:
> od:
> od:

Since the results are quite large, we only give the simplest reduced interface conditions (for
both the update and the correction steps of the algorithm). It is obtained by choosing the first
row of F3 and the seventh row of F4:

[P = − (b3 dz+c+b2 dy)W
dz

, U = 0,Wx = 0]

[W = 0, Px = X
2 b1 ν

,Wx = −dz (Ub1+2 P+2 ν dy V )
b1

]]

where:

X =b1 2P + b1 3U + 2 ν b3 dz Ub1 + 2 b1 ν cU + 2 ν b1 2dy V + 2 ν dy b1 b2 U + 4 cV ν2dy

+ 4 ν2dy2V b2 + 4 b3 dz V ν2dy + 4 ν b2 Pdy + 4 ν cP + 4 ν b3 dz P.

The computations were done by the Maple Schwarz package built upon OreModules ([6]).

Inria



Symbolic methods for developing new domain decomposition algorithms 55

8.2 Reduction of interface conditions

In this section, we illustrate the problem studied in Section 6.

8.2.1 Elasticity 2D

> restart:
> with(linalg):
> with(OreModules):
> with(Schwarz):

We consider the system of the linear elasticity equations in R2. This system is defined by Ry = 0,
where R ∈ A2×2 is a matrix with entries in the commutative polynomial ring A = Q(λ, µ)[dx, dy]
of PD operators in dx, dy with coefficients in Q(λ, µ), where λ and µ are the two Lamé constants,
dx = d/dx and dy = d/dy are the derivations with respect to x respectively y.

We define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[lambda,mu]):

> R :=evalm([[(2*mu+lambda)*dx^2+mu*dy^2,(lambda+mu)*dx*dy],
> [(lambda+mu)*dx*dy,(2*mu+lambda)*dy^2+mu*dx^2]]);

R :=

[

(2µ+ λ) dx 2 + µ dy2 (λ+ µ) dx dy

(λ+ µ) dx dy (2µ+ λ) dy2 + µ dx 2

]

The equations can be written:

> G := convert(evalm(R&*[u,v]),set);

G :=
{(

(2µ+ λ) dx 2 + µ dy2
)

u+ (λ+ µ) dx dy v, (λ+ µ) dx dy u+
(

(2µ+ λ) dy2 + µ dx 2
)

v
}

We now define the new commutative polynomial ring B = Q(λ, µ, dy)[dx, u, v].

> B:=DefineOreAlgebra(diff=[dx,x],polynom=[u,v,x],comm=[dy,u,v,lambda,mu]):

We then define an appropriate term order to sort the indeterminates of the commutative
polynomial ring B and compute a Gröbner basis of the set of equations G with respect to this
term order.

> mTord:=‘OreModules/term_order‘(B[1],tdeg(dx,u,v,x),[u,v]);

> GB:=‘OreModules/gb‘(G,mTord);

GB := [dx dy uλ+ dx dy uµ+ 2 vµ dy2 + vdy2λ+ vµ dx 2,

2uµ dx 2 + udx 2λ+ uµ dy2 + dx dy vλ+ dx dy vµ]

We now show how to reduce the interface conditions with respect to the Gröbner basis GB.
We first need to define the interface conditions. To achieve this, we compute the Smith normal
form of R with respect to the variable dx.

> S:=map(factor,smith(R,dx,’U’,’V’));

S :=

[

1 0

0
(

dy2 + dx 2
)2

]

RR n° 7953



56 Cluzeau & Dolean & Nataf & Quadrat

The unimodular matrices U and V over the ring C = Q(λ, µ, dy)[dx] are such that U RV = S.
Equivalently defining E = U−1 and F = V −1, we have E S F = R. In our case, the matrices E
and F are the following ones:

> E:=inverse(U);
> F:=inverse(V);

E :=





(λ+ µ) dx dy µ

dy2

2µ dy2 + dy2λ+ µ dx 2 µ2dx

dy3(λ+µ)





F :=





−
(−dy2λ+µ dx2)dx

dy3(λ+µ)
1

1 0





Given two operators Op1 and Op2, for instance, Op1 = 1 and Op2 = dx2 +dy2, the interface
conditions are computed from the matrix F (here only from the second row of F ) as follows:

> Op1:=1:
> IC_1:=Mult(Op1,linalg[submatrix](F,2..2,1..2),A);

IC1 :=
[

1 0
]

> Op2:=dx^2+dy^2:
> IC_2:=Mult(Op2,linalg[submatrix](F,2..2,1..2),A);

IC2 :=
[

dy2 + dx 2 0
]

We then reduce the interface conditions with respect to the Gröbner basis of the equations
of the system. We take the first interface condition.

> IC1:=evalm(IC_1&*evalm([[u],[v]]));

IC1 :=
[

u
]

Then we compute its normal form with respect to GB.

> NIC1:=‘OreModules/normal_form‘(IC1[1,1],GB,mTord);

NIC1 := u

We then do the same with the second interface condition:

> IC2:=evalm(IC_2&*evalm([[u],[v]]));

IC2 :=
[ (

dy2 + dx 2
)

u
]

> NIC2:=‘OreModules/normal_form‘(IC2[1,1],GB,mTord);

NIC2 := − (λ+µ)dx dy v

2 µ+λ
+ dy2u(λ+µ)

2 µ+λ

Finally, we perform linear algebra simplifications to the system formed by the two normal
forms NIC1 and NIC2. To avoid any multiplication by dx in the computation, we first replace
dxu and dx v by the jet variables ux and vx in NIC1 and NIC2 and subtract them by right
hand sides f1 and f2.

> M1:=subs(u=u[x],v=v[x],coeff(NIC1,dx,1))+coeff(NIC1,dx,0)-f[1];

M1 := u− f1

> M2:=subs(u=u[x],v=v[x],coeff(numer(NIC2),dx,1))+coeff(numer(NIC2),dx,0)-f[2];

Inria



Symbolic methods for developing new domain decomposition algorithms 57

M2 := − (λ+ µ) dy vx + dy2u (λ+ µ)− f2

We finally solve {M1 = 0,M2 = 0} in the unknowns ux, vx, u, v, and put f1 = f2 = 0 in the
result to obtain the reduced interface conditions.

> Sols:=subs(f1=0,f2=0,solve(M1,M2,u[x],v[x],u,v));

Sols := {u = 0, ux = ux , v = v, vx = 0}

We obtain the following reduced interface conditions:

u(x, y) = 0,
∂ v(x, y)

∂ x
= 0.

The result can be directly obtained using the procedure ReducedInterfaceConditions. The
procedure takes as inputs the matrix R of the system, a unimodular matrix F corresponding to
the Smith normal form of R, the commutative polynomial ring A, the PD operators Op1 = 1
and Op2 = dx2 + dy2 defining the interface conditions and the names of the variables u and v.
The ouput contains the reduced interface conditions.

> ReducedInterfaceConditions(R,F,A,[1,dx^2+dy^2],[u,v]);

[u = 0, vx = 0]

Given the matrix R, the unimodular matrices E and F satisfying R = E S F , where S is
the Smith normal form of R, are not unique. Moreover, as we have noticed before, the interface
conditions depend on the choice of F . Thus, we can obtained distinct reduced interface conditions
for distinct choices of F . For instance, we can consider another F :

F1 :=





1 −
dx (3 µ dy2+2 dy2λ+2 µ dx2+dx2λ)

dy3(λ+µ)

0 1





We then obtain the following reduced interface conditions:

> ReducedInterfaceConditions(R,F1,A,[1,dx^2+dy^2],[u,v]);

[v = 0, ux = 0]

8.2.2 Elasticity 3D

We consider the elastostatic equations (i.e., the Navier-Cauchy equations) in R3. This system
is defined by Ry = 0, where R ∈ A3×3 is a matrix with entries in the commutative polynomial
ring A = Q(λ, µ)[dx, dy, dz] of PD operators in dx, dy, dz with coefficients in Q(λ, µ), where λ
and µ are the two Lamé constants, dx = d/dx, dy = d/dy and dz = d/dz are the derivations
with respect to x respectively y and z.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],diff=[dz,z],polynom=[x,y,z],
> comm=[lambda,mu]):

> R := matrix(3, 3,[-2*dx^2*mu-dx^2*lambda-dy^2*mu-dz^2*mu,-dx*dy*(lambda+mu),
> -dx*dz*(lambda+mu),-dx*dy*(lambda+mu),-dx^2*mu-2*dy^2*mu-dy^2*lambda-dz^2*mu,
> -dy*dz*(lambda+mu),-dx*dz*(lambda+mu),-dy*dz*(lambda+mu),
> -dx^2*mu-dy^2*mu-2*dz^2*mu-dz^2*lambda]);

RR n° 7953



58 Cluzeau & Dolean & Nataf & Quadrat

R :=









−2 dx 2µ− dx 2λ− dy2µ− dz 2µ −dx dy (λ+ µ) −dx dz (λ+ µ)

−dx dy (λ+ µ) −dx 2µ− 2 dy2µ− dy2λ− dz 2µ −dy dz (λ+ µ)

−dx dz (λ+ µ) −dy dz (λ+ µ) −dx 2µ− dy2µ− 2 dz 2µ− dz 2λ









The Smith normal form of R with respect to the variable dx is given by:

> S:=smith(R,dx,’U’,’V’);

S :=









1 0 0

0 dx 2 + dy2 + dz 2 0

0 0 dy4 + 2 dx 2dy2 + 2 dy2dz 2 + 2 dz 2dx 2 + dx 4 + dz 4









The reduced interface conditions depend on the unimodular matrices E and F satisfying
R = E S F . Let us first consider the F returned by the Maple procedure smith.

> F:=inverse(V);

F :=













−
dx (2 dx2µ2+µ dx2λ+dz2µ2−dy2λ2−2 µ dy2λ)

dy (λ+µ)(2 dy2µ+dy2λ+dz2µ)
1 −

dz (dx2µ−dy2λ−dy2µ)
dy (2 dy2µ+dy2λ+dz2µ)

dx dz
dy2+dz2 0 1

−−dy2−dz2+dx dz

dy2+dz2 0 −1













Choosing this particular F , the interface conditions are the following:

> Delta:=dx^2+dy^2+dz^2:
> IC1:=Mult(dx,linalg[submatrix](F,2..2,1..3),A);
> IC2:=Mult(dx,linalg[submatrix](F,3..3,1..3),A);
> IC3:=Mult(dx*Delta,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

dz dx2

dy2+dz2 0 dx
]

IC2 :=
[

−
dx (−dy2−dz2+dx dz)

dy2+dz2 0 −dx

]

IC3 :=
[

−
dx (dy2+dz2+dx2)(−dy2−dz2+dx dz)

dy2+dz2 0 −dx dz 2 − dx dy2 − dx 3
]

We reduce them using the ReducedInterfaceConditions procedure. This yields:

> ReducedInterfaceConditions(R,F,A,[dx,dx,dx*Delta],[u,v,w]);

[v = −dz w
dy

, ux = 0, vx = −−wxdy2λ+dz udy2µ−2 wxdy2µ+udz3µ−wxdz2µ
dy dz (λ+µ) ]

However, choosing others F provides distinct (simpler) reduced interface conditions. With

F1 :=











1 −
dx (3 dy2µ+2 dy2λ+2 dx2µ+2 dz2µ+dx2λ+dz2λ)

dy (dy2+dz2)(λ+µ)
− dx dz

dy2+dz2

0 dz −dy

0 0 1











we obtain

Inria



Symbolic methods for developing new domain decomposition algorithms 59

> ReducedInterfaceConditions(R,F1,A,[dx,dx,dx*Delta],[u,v,w]);

[u = 0, vx = 0, wx = 0]

and with

F2 :=











1 −
dx (3 dy2µ+2 dy2λ+2 dx2µ+2 dz2µ+dx2λ+dz2λ)

dy (dy2+dz2)(λ+µ)
− dx dz

dy2+dz2

0 dz −dy

1 0 0











we get:

> ReducedInterfaceConditions(R,F2,A,[dx,dx,dx*Delta],[u,v,w]);

[v = −dz w
dy

, ux = 0, vx = dy wx

dz
]

8.2.3 Stokes 2D

We consider the Stokes equations in R2. This system is defined by Ry = 0, where R ∈ A3×3 is
a matrix with entries in the commutative polynomial ring A = Q(ν, c)[dx, dy] of PD operators
in dx, dy with coefficients in Q(ν, c), where ν is the viscosity and c the reaction coefficient,
dx = d/dx and dy = d/dy are the derivations with respect to x respectively y.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[nu,c]):

> R:=evalm([[-nu*(dx^2+dy^2)+c,0,dx],[0,-nu*(dx^2+dy^2)+c,dy],[dx,dy,0]]);

R :=









−ν
(

dx 2 + dy2
)

+ c 0 dx

0 −ν
(

dx 2 + dy2
)

+ c dy

dx dy 0









The Smith normal form of R with respect to the variable dx is given by:

> S:=smith(R,dx,’U’,’V’);

S :=









1 0 0

0 1 0

0 0 −−2 dy2ν dx2−dy4ν+dy2c−ν dx4+dx2c
ν









The reduced interface conditions depend on the unimodular matrices E and F satisfying
R = E S F . Let us consider, for instance, the F returned by the Maple procedure smith.

> F:=inverse(V);

F :=











0 −ν dx2−ν dy2+c
dy

1

dx
dy

1 0

1 0 0











Choosing this particular F , the interface conditions are the following:

RR n° 7953



60 Cluzeau & Dolean & Nataf & Quadrat

> L:=-nu*(dx^2+dy^2)+c:
> IC1:=Mult(dx,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(dx*L,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

dx 0 0
]

IC2 :=
[

−ν dx 3 − dx ν dy2 + dx c 0 0
]

We reduce them using the ReducedInterfaceConditions procedure. This yields:

> ReducedInterfaceConditions(R,F,A,[dx,dx*L],[u,v,p]);

[p = 0, v = 0]

8.2.4 Stokes 3D

We consider the Stokes equations in R3. This system is defined by Ry = 0, where R ∈ A4×4 is a
matrix with entries in the commutative polynomial ring A = Q(ν, c)[dx, dy, dz] of PD operators
in dx, dy, dz with coefficients in Q(ν, c), where ν is the viscosity and c the reaction coefficient,
dx = d/dx, dy = d/dy and dz = d/dz are the derivations with respect to x respectively y and z.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],diff=[dz,z],polynom=[x,y,z],
> comm=[nu,c]):

> R:=evalm([[-nu*(dx^2+dy^2+dz^2)+c,0,0,dx],[0,-nu*(dx^2+dy^2+dz^2)+c,0,dy],
> [0,0,-nu*(dx^2+dy^2+dz^2)+c,dz],[dx,dy,dz,0]]);

R :=















−ν
(

dx 2 + dy2 + dz 2
)

+ c 0 0 dx

0 −ν
(

dx 2 + dy2 + dz 2
)

+ c 0 dy

0 0 −ν
(

dx 2 + dy2 + dz 2
)

+ c dz

dx dy dz 0















The Smith normal form of R with respect to the variable dx is given by:

> S:=smith(R,dx,’U’,’V’);

S :=

















1 0 0 0

0 1 0 0

0 0 dx 2 − −ν dy2−ν dz2+c
ν

0

0 0 0 −
(−ν dx2−ν dy2−ν dz2+c)(dx2+dy2+dz2)

ν

















The reduced interface conditions depend on the unimodular matrices E and F satisfying
R = E S F . Let us consider, for instance, the F returned by the Maple procedure smith.

> F:=inverse(V);

F :=

















0 −ν dx2−ν dy2−ν dz2+c
dy

0 1

dx
dy

1 dz
dy

0

dz dx
dy2+dz2 0 1 0

−−dy2−dz2+dz dx

dy2+dz2 0 −1 0

















Inria



Symbolic methods for developing new domain decomposition algorithms 61

Choosing this particular F , the interface conditions are the following:

> L:=-nu*(dx^2+dy^2+dz^2)+c:
> IC1:=Mult(dx,linalg[submatrix](F,3..3,1..4),A);
> IC2:=Mult(dx,linalg[submatrix](F,4..4,1..4),A);
> IC3:=Mult(dx*L,linalg[submatrix](F,4..4,1..4),A);

IC1 :=
[

dz dx2

dy2+dz2 0 dx 0
]

IC2 :=
[

−
dx (−dy2−dz2+dx dz)

dy2+dz2 0 −dx 0

]

IC3 :=
[

−
(−dy2−dz2+dx dz)dx (−ν dy2−ν dz2−ν dx2+c)

dy2+dz2 0 dx ν dy2 + dx ν dz 2 + ν dx 3 − dx c 0

]

We reduce them using the ReducedInterfaceConditions procedure. This yields:

> ReducedInterfaceConditions(R,F,A,[dx,dx,L*dx],[u,v,w,p]);

[p = 0, v = −dz w
dy

, px = −−dz uν dy2−uν dz3+dz uc+wxν dy2+wxν dz2

dz
]

8.2.5 Oseen 2D

We consider the Oseen equations in R2. This system is defined by Ry = 0, where R ∈ A3×3

is a matrix with entries in the commutative polynomial ring A = Q(ν, c, b1, b2)[dx, dy] of PD
operators in dx, dy with coefficients in Q(ν, c, b1, b2), where ν is the viscosity, c the reaction
coefficient, (b1, b2) the convection velocity, dx = d/dx and dy = d/dy are the derivations with
respect to x respectively y.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],polynom=[x,y],comm=[nu,c,b1,b2]):

> R:=evalm([[-nu*(dx^2+dy^2)+c+b1*dx+b2*dy,0,dx],
> [0,-nu*(dx^2+dy^2)+c+b1*dx+b2*dy,dy],[dx,dy,0]]);

R :=









−ν
(

dx 2 + dy2
)

+ c+ b1 dx + b2 dy 0 dx

0 −ν
(

dx 2 + dy2
)

+ c+ b1 dx + b2 dy dy

dx dy 0









The Smith normal form of R with respect to the variable dx is given by:

> S:=map(factor,smith(R,dx,’U’,’V’));

S :=









1 0 0

0 1 0

0 0 −
(dx2+dy2)(−ν dx2+b1 dx−ν dy2+c+b2 dy)

ν









The reduced interface conditions depend on the unimodular matrices E and F satisfying
R = E S F . Let us consider, for instance, the F returned by the Maple procedure smith.

> F:=inverse(V);

RR n° 7953



62 Cluzeau & Dolean & Nataf & Quadrat

F :=











0 −ν dx2+b1 dx−ν dy2+c+b2 dy

dy
1

dx
dy

1 0

1 0 0











Choosing this particular F , we can compute the reduced interface conditions using the Re-
ducedInterfaceConditions procedure.

Four cases of interface conditions have to be distinguished. To write these four cases, we
introduce the following PD operators:

> Delta:=dx^2+dy^2:
> L2:=-nu*(dx^2+dy^2)+b1*dx+b2*dy+c:
> Robin:=nu*dx-b1/2:

Case 1

Correction step The interface conditions are the following:

> IC1:=Mult(Robin,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(L2*dx,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

ν dx − 1/2 b1 0 0
]

IC2 :=
[

−ν dx 3 + b1 dx 2 − dx ν dy2 + dx c+ dx b2 dy 0 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[Robin,L2*dx],[u,v,p]);

[p = 0, u = −2 ν dy v
b1

]

Update step The interface conditions are the following:

> IC1:=Mult(L2,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(1,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

−ν dx 2 + b1 dx − ν dy2 + c+ b2 dy 0 0
]

IC2 :=
[

1 0 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[L2,1],[u,v,p]);

[u = 0, px = 0]

Case 2

Correction step The interface conditions are the following:

> IC1:=Mult(Robin*Delta,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(dx,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

ν dx 3 + dx ν dy2 − 1/2 b1 dx 2 − 1/2 dy2b1 0 0
]

IC2 :=
[

dx 0 0
]

Inria



Symbolic methods for developing new domain decomposition algorithms 63

We reduce them:

> ReducedInterfaceConditions(R,F,A,[Robin*Delta,dx],[u,v,p]);

[v = 0, px = −−2 ν dy2p+b1 ub2 dy−2 ν udy2b1+b1 uc
b1

]

Update step The interface conditions are the following:

> IC1:=Mult(1,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(L2,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

1 0 0
]

IC2 :=
[

−ν dx 2 + b1 dx − ν dy2 + c+ b2 dy 0 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[1,L2],[u,v,p]);

[u = 0, px = 0]

Case 3

Correction step The interface conditions are the following:

> IC1:=Mult(dx*L2,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(1,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

−ν dx 3 + b1 dx 2 − dx ν dy2 + dx c+ dx b2 dy 0 0
]

IC2 :=
[

1 0 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[dx*L2,1],[u,v,p]);

[p = 0, u = 0]

Update step The interface conditions are the following:

> IC1:=Mult(L2,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(Robin,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

−ν dx 2 + b1 dx − ν dy2 + c+ b2 dy 0 0
]

IC2 :=
[

ν dx − 1/2 b1 0 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[L2,Robin],[u,v,p]);

[u = −2 ν dy v
b1

, px = 0]

Case 4

RR n° 7953



64 Cluzeau & Dolean & Nataf & Quadrat

Correction step The interface conditions are the following:

> IC1:=Mult(Delta*Robin,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(1,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

ν dx 3 + dx ν dy2 − 1/2 b1 dx 2 − 1/2 dy2b1 0 0
]

IC2 :=
[

1 0 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[Delta*Robin,1],[u,v,p]);

[u = 0, px =
dy (2 ν dy p+2 ν vc+2 ν dy vb2+b12v)

b1
]

Update step The interface conditions are the following:

> IC1:=Mult(Delta,linalg[submatrix](F,3..3,1..3),A);
> IC2:=Mult(dx,linalg[submatrix](F,3..3,1..3),A);

IC1 :=
[

dx 2 + dy2 0 0
]

IC2 :=
[

dx 0 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[Delta,dx],[u,v,p]);

[u = − px

c+b2 dy
, v = 0]

8.2.6 Oseen 3D

We consider the Oseen equations in R3. This system is defined by Ry = 0, where R ∈ A4×4

is a matrix with entries in the commutative polynomial ring A = Q(ν, c, b1, b2, b3)[dx, dy, dz]
of PD operators in dx, dy, dz with coefficients in Q(ν, c, b1, b2), where ν is the viscosity, c the
reaction coefficient, (b1, b2, b3) is convection velocity, dx = d/dx, dy = d/dy and dz = d/dz are
the derivations with respect to x respectively y and z.

We first define A and R.

> A:=DefineOreAlgebra(diff=[dx,x],diff=[dy,y],diff=[dz,z],polynom=[x,y,z],
> comm=[nu,c,b1,b2,b3]):

> L:=-nu*dx^2-nu*dy^2-nu*dz^2+b1*dx+b2*dy+b3*dz+c;
> R:=evalm([[L,0,0,dx],[0,L,0,dy],[0,0,L,dz],[dx,dy,dz,0]]);

L := −ν dx 2 + b1 dx − ν dy2 − ν dz 2 + c+ b2 dy + b3 dz

R :=















L 0 0 dx

0 L 0 dy

0 0 L dz

dx dy dz 0















The Smith normal form of R with respect to the variable dx is given by:

> S:=map(factor,smith(R,dx,’U’,’V’));

Inria



Symbolic methods for developing new domain decomposition algorithms 65

S :=

















1 0 0 0

0 1 0 0

0 0 −L
ν

0

0 0 0 −
L(dx2+dy2+dz2)

ν

















The reduced interface conditions depend on the unimodular matrices E and F satisfying
R = E S F . Let us consider, for instance, the F returned by the Maple procedure smith.

> F:=inverse(V);

F :=

















0 −ν dx2+b1 dx−ν dy2−ν dz2+c+b2 dy+b3 dz

dy
0 1

dx
dy

1 dz
dy

0

dz dx
dy2+dz2 0 1 0

−−dy2−dz2+dz dx

dy2+dz2 0 −1 0

















Choosing this particular F , we can compute the reduced interface conditions using the Re-
ducedInterfaceConditions procedure.

Four cases of interface conditions have to be distinguished. Here, we shall only give the
computed reduced interface conditions for the first case: the other ones can be obtained in a
similar way but we then get huge expressions that are not readable. To write these four cases,
we define the following PD operators:

> Delta:=dx^2+dy^2+dz^2:
> Robin:=nu*dx-b1/2:

Case 1

Correction step The interface conditions are the following:

> IC1:=Mult(Robin,linalg[submatrix](F,3..3,1..4),A);
> IC2:=Mult(Robin,linalg[submatrix](F,4..4,1..4),A);
> IC3:=Mult(dx*L,linalg[submatrix](F,4..4,1..4),A);

IC1 :=
[

−1/2 (−2 ν dx+b1)dz dx

dy2+dz2 0 ν dx − 1/2 b1 0
]

IC2 :=
[

1/2
(−2 ν dx+b1)(−dy2−dz2+dx dz)

dy2+dz2 0 −ν dx + 1/2 b1 0

]

IC3 :=
[

−
(−dy2−dz2+dx dz)dx (−ν dx2−ν dy2−ν dz2+b1 dx+b2 dy+b3 dz+c)

dy2+dz2 0 −dx L 0

]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[Robin,Robin,dx*L],[u,v,w,p]);

RR n° 7953



66 Cluzeau & Dolean & Nataf & Quadrat

[ p = 0,

u = −2 ν dy v
b1
− 2 ν dz w

b1
,

px = −2 ν2dy3v
b1

− 2 ν2wdz dy2

b1
+ 2 ν dy2vb2

b1

+1/2
(b12w−2 ν wxb1)dy2

b1 dz
− 2 ν2dy vdz2

b1
+ 1/2 (4 b2 ν w+4 ν b3 v)dz dy

b1
+ 1/2

(vb12+4 ν cv)dy
b1

−2 ν2wdz3

b1
+ 2 b3 ν wdz2

b1
+ 1/2

(2 b12w−2 ν wxb1+4 cν w)dz
b1

]

Update step The interface conditions are the following:

> IC1:=Mult(1,linalg[submatrix](F,3..3,1..4),A);
> IC2:=Mult(L,linalg[submatrix](F,4..4,1..4),A);
> IC3:=Mult(1,linalg[submatrix](F,4..4,1..4),A);

IC1 :=
[

dx dz
dy2+dz2 0 1 0

]

IC2 :=
[

−
(−ν dx2−ν dy2−ν dz2+b1 dx+b2 dy+b3 dz+c)(−dy2−dz2+dx dz)

dy2+dz2 0 −L 0

]

IC3 :=
[

−−dy2−dz2+dx dz

dy2+dz2 0 −1 0
]

We reduce them:

> ReducedInterfaceConditions(R,F,A,[1,L,1],[u,v,w,p]);

[u = 0, w = dz v
dy
, px = 0]

The computations were done by the Maple Schwarz package built upon OreModules

([6]).

References

[1] Y. Achdou, P. L. Tallec, F. Nataf, and M. Vidrascu. A domain decomposition preconditioner
for an advection-diffusion problem. Comput. Methods Appl. Mech. Engrg., 184:145–170,
2000. 4

[2] Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, and D. Robertz. The MAPLE Package
“Janet”: I. Polynomial Systems. In V. G. Ganzha, E. W. Mayr, and E. V. Vorozhtsov,
editors, Proceedings of Computer Algebra in Scientific Computing (CASC), pages 31–40,
2003. The Janet project http://wwwb.math.rwth-aachen.de/Janet. 40

[3] B. Buchberger. An algorithm for finding the basis elements in the residue class ring modulo
a zero dimensional polynomial ideal. Journal of Symbolic Computation, 41(3-4):475–511,
2006. PhD Thesis, English translation. 31, 35

[4] D. A. Buchsbaum and D. Eisenbud. What annihilates a module? Journal of Algebra,
47:231–243, 1977. 17, 20, 22, 26

[5] F. Chyzak, A. Quadrat, and D. Robertz. Effective algorithms for parametrizing linear control
systems over Ore algebras. Appl. Algebra Engrg. Comm. Comput., 16:319–376, 2005. 16, 19

Inria

http://wwwb.math.rwth-aachen.de/Janet


Symbolic methods for developing new domain decomposition algorithms 67

[6] F. Chyzak, A. Quadrat, and D. Robertz. OreModules: A symbolic package for the study
of multidimensional linear systems. In J. Chiasson and J.-J. Loiseau, editors, Applications
of Time-Delay Systems, volume 352 of Lecture Notes in Control and Information Sciences,
pages 233–264. Springer, 2007. http://wwwb.math.rwth-aachen.de/OreModules. 22, 30,
40, 54, 66

[7] F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras proves multivariate
identities. J. Symbolic Comput., 26:187–227, 1998. 40

[8] T. Cluzeau and A. Quadrat. Factoring and decomposing a class of linear functional systems.
Linear Algebra Appl., 428(1):324–381, 2008. 5, 16

[9] T. Cluzeau and A. Quadrat. On algebraic simplifications of linear functional systems. In
Topics in Time Delay Systems, volume 388 of Lecture Notes in Control and Inform. Sci.,
pages 167–178. Springer, Berlin, 2009. 5

[10] T. Cluzeau and A. Quadrat. OreMorphisms: a homological algebraic package for factoring,
reducing and decomposing linear functional systems. In Topics in Time Delay Systems,
volume 388 of Lecture Notes in Control and Inform. Sci., pages 179–194. Springer, Berlin,
2009. 5

[11] A. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Springer, second
edition, 1997. 7, 31, 33, 35

[12] A. D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry, volume 185 of Graduate
Texts in Mathematics. Springer, second edition, 2005. 31, 37

[13] V. Dolean and F. Nataf. A new domain decomposition method for the compressible Euler
equations. M2AN Math. Model. Numer. Anal., 40(4):689–703, 2006. 5, 13

[14] V. Dolean, F. Nataf, and G. Rapin. Deriving a new domain decomposition method for the
Stokes equations using the Smith factorization. Math. Comp., 78(266):789–814, 2009. 5, 12,
13

[15] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Springer,
1995. 7, 20, 21, 22

[16] A. Fabiańska and A. Quadrat. Applications of the Quillen-Suslin theorem to multidimen-
sional systems theory. In H. Park and G. Regensburger, editors, Gröbner Bases in Control
Theory and Signal Processing, volume 3 of Radon Series on Computation and Applied Math-
ematics, pages 23–106. de Gruyter, 2007. 24, 25

[17] C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its
parallel solution algorithm. Internat. J. Numer. Methods Engrg., 32:1205–1227, 1991. 4, 10

[18] L. Gerardo-Giorda, P. L. Tallec, and F. Nataf. A Robin-Robin preconditioner for advection-
diffusion equations with discontinuous coefficients. Comput. Methods Appl. Mech. Engrg.,
193:745–764, 2004. 4

[19] V. Girault and P. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer,
Heidelberg-Berlin, 1986. 9

[20] R. Glowinski, Y. Kuznetsov, G. Meurant, J. Periaux, and O. Widlund, editors. Fourth Inter-
national Symposium on Domain Decomposition Methods for Partial Differential Equations,
Philadelphia, 1991. SIAM. 68

RR n° 7953

http://wwwb.math.rwth-aachen.de/OreModules


68 Cluzeau & Dolean & Nataf & Quadrat

[21] G.-M. Greuel and G. Pfister. A Singular Introduction to Commutative Algebra. Springer,
second edition, 2008. 31, 33, 35, 37

[22] M. Janet. Leçons sur les systèmes d’équations aux dérivées partielles. Cahiers scientifiques
IV. Gauthier-Villars, 1929. 31, 40

[23] T. Kailath. Linear Systems. Prentice-Hall, 1979. 5, 6, 7

[24] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras of
solvable type. J. Symbolic Computation, 9:1–26, 1990. 31, 35

[25] B. Malgrange. Systèmes différentiels à coefficients constants. In Séminaire Bourbaki
1962/63, volume 8 of 1962-1964, pages 79–89. Société Mathématique de France, 1996. 19

[26] J. Mandel. Balancing domain decomposition. Comm. on Applied Numerical Methods, 9:233–
241, 1992. 4, 10

[27] J. Mandel and M. Brezina. Balancing domain decomposition: Theory and performance in
two and three dimensions. UCD/CCM report 2, 1993. 4, 10

[28] J. Mandel, C. Dohrmann, and R. Tezaur. An algebraic theory for primal and dual substruc-
turing methods by constraints. Appl. Numer. Math., 54:167–193, 2005. 4, 10

[29] F. Nataf. A new approach to perfectly matched layers for the linearized Euler system. J.
Comput. Phys., 214(2):757–772, 2006. 5

[30] L. Pavarino and O. Widlund. Balancing Neumann-Neumann methods for incompressible
Stokes equations. Comm. Pure Appl. Math., 55:302–335, 2002. 4

[31] J.-F. Pommaret. Systems of Partial Differential Equations and Lie Pseudogroups. Gordon
and Breach, 1978. 40

[32] A. Quadrat. An introduction to constructive algebraic analysis and its applications. In
CIRM, editor, Les cours du CIRM, volume 1 of Journées Nationales de Calcul Formel
(2010), pages 281–471. 2010. INRIA report 7354, http://hal.archives-ouvertes.fr/
inria-00506104/fr/. 16, 17, 19, 25

[33] Y. D. Roeck and P. L. Tallec. Analysis and test of a local domain decomposition precondi-
tioner. In R. Glowinski et al. [20], 1991. 4, 10

[34] P. L. Tallec, J. Mandel, and M. Vidrascu. A Neumann-Neumann domain decomposition
algorithm for solving plate and shell problems. SIAM J. Numer. Anal., 35:836–867, 1998. 4

[35] P. L. Tallec and A. Patra. Non-overlapping domain decomposition methods for adaptive hp
approximations of the Stokes problem with discontinuous pressure fields. Comput. Methods
Appl. Mech. Engrg., 145:361–379, 1997. 4, 5

[36] J. Wloka, B. Rowley, and B. Lawruk. Boundary Value Problems for Elliptic Systems. Cam-
bridge University Press, Cambridge, 1995. 5, 6

Inria

http://hal.archives-ouvertes.fr/inria-00506104/fr/
http://hal.archives-ouvertes.fr/inria-00506104/fr/


RESEARCH CENTRE

SACLAY – ÎLE-DE-FRANCE

Parc Orsay Université

4 rue Jacques Monod

91893 Orsay Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399


	Introduction
	Smith normal forms of linear systems of PDEs
	Application to Cauchy-Navier equations
	Application to Oseen and Stokes equations

	Optimal domain decomposition algorithms for scalar equations
	An approach by hand calculations
	An algorithmic approach
	A few results of module theory
	Computation of relevant Smith variables

	Reduction of interface conditions
	Appendix: An introduction to Gröbner basis techniques
	Appendix: Maple computations
	Completion problem
	Elasticity 3D
	Stokes 2D
	Stokes 3D
	Oseen 2D
	Oseen 3D

	Reduction of interface conditions
	Elasticity 2D
	Elasticity 3D
	Stokes 2D
	Stokes 3D
	Oseen 2D
	Oseen 3D



