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INDUCING CHAOS IN A GENE REGULATORY NETWORK BY COUPLING AN

OSCILLATING DYNAMICS WITH A HYSTERESIS-TYPE ONE

CAMILLE POIGNARD

Abstract. In this paper, we investigate the chaotic behavior of a gene regulatory network modeled by four

differential equations and seventeen parameters. This network, called V-system, has been designed to couple

in a simple way an oscillating system with one having a bistable switch. After having studied it analytically,
we exhibit (by a constructive proof) the mechanism responsible of chaos for a general differential system

presenting such a coupling. Namely, given a generic one-parameter family of smooth vector fields on Rn

presenting a Hopf bifurcation, we prove that under an assumption on the Jacobian at the bifurcation point,

we can create such a chaotic system by perturbing the parameter thanks to a hysteresis-type dynamics.

Finally, we numerically show that the mechanism highlighted previously takes place in the V-system, for a
particular set of values of its parameters.

1. Introduction

This article is motivated by the growing interest in understanding and controlling biological regulatory
systems, two main topics in systems and synthetic biology, where identification and characterization of regu-
latory units with prescribed dynamical features are essential (see [30] and [15]). Many metabolic and genetic
intracellular regulations are homeostatic, that is they maintain constant some viability parameters (rate,
concentration, level, etc...) by perpetually adapting the internal state of the cell to a changing environment.
Temperature, pH, osmotic pressure are emblematic, but other examples are the control of internal concen-
tration of metal ions which are essential as trace but become lethal at higher rate (as can be seen in [22]). In
general, breaking of homeostasis can lead important damages, like Wilson’s disease in the context of copper
homeostasis ([22]).

The question dealt with in this article is how to break homeostasis and induce a chaotic dynamics in a given
model of homeostatic regulatory unit. Concrete motivation of such a general problem is the investigation
of a way to destroy an organism having a stable dynamics by destabilizing its metabolism (see [19]). Other
motivations are the investigations of the role played by chaos in the formation and the behavior of cells,
which have begun to be supported by experiments since the last decade (see [5]).
In most cases, the homeostatic regulation is due to a negative feedback, that is to say a mechanism creating
a response that inhibits the action starting this mechanism. More rarely, it can also be caused by a positive
feedback (an example is the blood clotting process).

More precisely, we aim at inducing chaos in a gene regulatory network (G.R.N), issued from a contin-
uous modeling: this means its dynamical behavior is described by differential equations, that translate in
mathematical terms the set of chemical reactions defining this system. It has been invented by J.J Tyson1

and E. Pécou, and was called V-system in recognition of its origins. Its particularity lies in the fact that it
was designed so as to couple in a very simple way, an oscillating system with one having a hysteresis-type
dynamics, the interest being that those two dynamics are the typical mechanisms causing respectively a
negative and a positive loop (see [29], [30]). This guarantees the plausibility of our network and of the
emergence of chaos in many other G.R.Ns.
Usually, given one G.R.N represented by a differential system, we can reduce its set of chemical reactions
(governed by the mass-action law) into a smaller system, thanks to the classical quasi-steady state approx-
imation. This leads to the appearance of regulation functions expressing the nonlinearities effects present
in this small system (see [20], [17]). This is the case of the Goodwin model ([6], [18]) which describes the

Date: 29 december 2011.
1John Tyson, Department of Biological Sciences, Virginia Polytechnic Institute and State University.
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production of the mRNA m of a gene, coding for an enzyme that catalyses a chemical reaction of which
final product z represses the production of m. The repression of the mRNA is described by the following
equation:

ṁ =
k

1 +

(
z

j

)2 − γm,

in which k is a kinetics constant, j is a threshold parameter and γ designs a rate of degradation.
The network we consider in this paper concerns four genes of which expressions are regulated at the

transcriptional step. The four proteins coded by them are represented by the variables (Ai)i=1,··· ,4. The
regulation functions are of the same kind as in the Goodwin model but they are more complex because there
is here a competition among the proteins that block or activate the transcription of the genes associated to
them. Here are the (adimensionalized) equations representing their evolution in concentration:





Ȧ1 =

k1 + k11

(
A1

j11

)2

+ k13

(
A3

j13

)2

1 +

(
A1

j11

)2

+

(
A2

j12

)2

+

(
A3

j13

)2 − γ1A1

Ȧ2 =

k21

(
A1

j21

)2

1 +

(
A1

j21

)2 − γ2A2

Ȧ3 =
k3

1 +

(
A4

j34

)2 − γ3A3

Ȧ4 =

k4 + k4

(
A1

j41

)2

1 +

(
A1

j41

)2

+

(
A3

j43

)2 − γ4A4

.

There are 17 parameters in this model: the terms jik are concentrations assumed to be constant (they
represent some thresholds), the quantities ki design kinetics constants and γi the degradation terms asso-
ciated to Ai. Thus all our parameters are taken in R+. As explained above, the V-system is the matching
of two sub-systems that we’ll denote VA1,A2

and VA3,A4
which are respectively composed of the two first

equations and of the last two ones. The first sub-system VA1,A2 (in which A3 is this time considered as a
parameter) admits a Hopf bifurcation, which creates an oscillating behavior near the associated bifurcation
point. The second one VA3,A4

(in which A1 is seen as a parameter) admits a hysteresis-type dynamics which
makes it jump from a stable steady-state to the other one.
Let us describe how the genes act on each other. In each equation the linear degradation of Ai is counter-
balanced by a nonlinear term. In the first equation, the production of A1 is activated by itself and by A3

while A2 inhibites A1: A2 and A3 are competing with each other on the operator region of the gene encoding
protein A1. The second equation tells us that A1 activates the production of A2 and bounds it from above
by k21. The third one is the same as in the Goodwin’s model, and shows the inhibition of A3 by protein A4.
In the last equation, the same mechanism appears as in the first one: the more A3 is produced the more A4

tends to decrease, while A1 tends to increase the production of A4.
Picture 1 shows the interaction graph that sums up the effects (positive or negative) of the proteins on each
other (an edge that ends with an arrow shows a positive feedback, while a one that ends with a stroke stands
for a negative feedback).
Our goal is to find a set of values of the 17 parameters that we’ll denote P1 for which the associated V-system
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V1 exhibits chaos, with the only rule that the chosen values be strictly positive, and to explain the mechanism
responsible of this behavior.
Let us notice that our result is in coherence with Thomas’ conjecture which states that a positive (the bistable
switch) and a negative (the Hopf subsystem) loops are necessary conditions for chaos ([28]). Many other
conjectures and results linking the properties of the graph interaction of a gene network, with its dynamical
behavior have been stated for a few decades (see [11], [27], [26] and very recently [21] and [23]).

A1 A2

A3 A4

1

Figure 1. The interaction graph of the V-system.

In our setting, a chaotic dynamical system is a system having a strictly positive topological entropy, which
guarantees a sensitive dependence on initial conditions.
Usually, the method used to find chaos in a particular differential system is the computing of Lyapunov
exponents in different directions: having a strictly positive Lyapunov exponent implies the chaotic dynamics
of the system considered. Here such an approach fails because the chaos in the V-system is weak, as it is
the case in a lot of models representing a physical phenomenon of the nature (see [3], [10], [12]): numerical
experiments realized by Tyson’s team did not get through in this direction. Moreover the main drawback of
this numerical approach is that it does not explain where the chaos comes from: here we want to demonstrate
the presence of chaos so that our result be applicable in other models of genetic regulation.

We thus aim at proving that, any general differential system obtained as the matching of the two dynamics
described above has (under some generic assumptions on the way these are coupled) a chaotic dynamics.
In a more mathematical setting, we want to prove that given a generic one-parameter family of smooth
vector fields on Rn admitting a local Hopf bifurcation, it is possible to impose a hysteresis dynamics on the
parameter so as to obtain a (higher-dimensional) chaotic dynamical system.
In the article [19], the following analogous result is proved: for a one-parameter family of smooth ordinary
differential equations that all admit a globally stable asymptotic state, it is possible, under very mild con-
ditions, to construct a feedback on the parameter to get a chaotic system. Unlike what is done in this
paper, our result deals with the case of an exchange of stability, appearing at the critical bifurcation point.
The other and main difference concerns the approaches chosen to prove the results. Indeed, the proof of E.
Pécou’s theorem relies on the construction of a homoclinic orbit which permits to meet or to reconstruct a
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well-known chaotic situation, namely those respectively described by the Shilnikov theorem (see [24], and
[7]), and the geometric Lorenz attractors ([8], [7]). Similarly another paper in which this approach using the
Shilnikov theorem is also adopted is the one of L. Chua (see [2]). It concerns a system with three equations
and four parameters modeling the behavior of a class of electronic circuits. The proof of the existence of a
homoclinic orbit is very numerical, and specific to the particular class of piecewise linear differential equa-
tions composing this model.
Here we could also try to apply the Shilnikov theorem thanks to the spiraling motion associated to the
Hopf bifurcation, although we cannot directly apply it (see proposition (4.4) of subsection 4.1.c). But this
way to do would not be relevant for the concrete models of genetic regulation, because it would require the
finding of such an orbit (satisfying in addition the right assumptions concerning the associated stable and
unstable manifolds) in those systems. This is usually impossible due to their too high number of equations
and parameters. In particular, trying to find such an orbit in our V-system which admits seventeen ones
would not be realistic.
To sum up, as in [19] we also want to consider the theoretical aspect of the problem but with a more con-
structive approach than the one adopted in it and in [2], that would fit better with the concrete differential
models of genetic regulation, especially the V-system.

Our strategy consists in the construction of a Horseshoe map using the singular perturbations theory:
indeed we impose a fast hysteresis dynamics on the parameter so that our dynamical system be a slow-fast
one. The use of the slow-fast dynamics has the advantage of exhibiting a hierarchy among the parameters
([4]): concerning the V-system, it permits us to see which parameters have to be chosen great compared to
the other ones. As usual, the Horseshoe-type dynamics is created from a Poincaré section of which return
map permits the transition from a time-continuous dynamical system to a discrete one. We refer the reader
to [7], [9], [32] for more details on this classical way to proceed.

The paper is divided in four parts. In the first one (section 2), we recall the Hopf bifurcation and hysteresis
phenomena and define precisely the notion of hysteresis curve. The second part (section 3) is the analysis of
the V-system in which we exhibit the important parameters responsible of the presence of the two desired
dynamics in this system. We also make a first hierarchy among the seventeen ones so as to reduce the
dimension to three, according to the singular perturbations theory, in view of the geometrical study that
will follow.
In section 4 we state and prove the main result on chaos created by perturbing the parameter of a vector field
on Rn admitting a Hopf bifurcation (Theorem (4.2)). We begin by the two-dimensional case (see subsection
4.1). The mechanism creating chaos relies on a linear model (see 4.1.c) with two spirals having close but
distinct centers, for which we construct a one-dimensional Poincaré section which is covered twice. Then
we prove that chaos is kept up when the situation is no more linear by constructing a Horseshoe from this
one-dimensional section (see 4.1.c). Let us notice that the idea of fitting two spirals well was already pointed
out in [14] by R. Lozi, even though it was not prove in this article this can lead to chaos. We finish subsection
4.1 by proving a corollary of Theorem (4.2). Next, the general case n ≥ 2 is proved at the end of section 4,
under the hypothesis that all the non purely imaginary eigenvalues of the Jacobian at the bifurcation point
have a strictly negative real part. The exactly same reasoning as in dimension two can be applied, because
this assumption forces the dynamics to locally restrict itself to a manifold of dimension two.
Lastly, in the fourth part (section 5) we use three scales of time to be in the situation of section 4. This
permits us to see the parameters of our system, from which the chaotic dynamics mostly depends on. We
summarize in Theorem (5.1) the conditions on these key parameters, resulting from all our study. Finally,
we exhibit a set of parameters P1 defining a V-system V1, for which we numerically prove that the same
mechanism as the one highlighted previously takes place.

2. Short recalls on local bifurcations theory and hysteresis-type dynamics. Notations
and definitions.

2.1. Hopf bifurcation. Given a differential system representing a physical phenomenon, some qualitative
changes may appear in the solutions of this system as we vary the parameters defining it: for instance the
emergence of two fixed points or an exchange of stability among them. Bifurcations theory is the study
of those sudden changes of phase portrait (see [7], [32]). The number of parameters defining the system is
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called the codimension of the bifurcation.
All this text deals with a typical local bifurcation of codimension one, that is which appear near a critical point
(called the bifurcation point) of a one-parameter differential system for a particular value of the parameter
(the bifurcation value): the Hopf bifurcation. It consists in the birth of a periodic orbit near a critical point
for which the associated Jacobian has exactly two eigenvalues with zero real part. As the parameter vary
near the bifurcation value, this critical point loses its stability and a periodic orbit appears. The precise
mathematical assumptions required to get such a bifurcation, and its normal form are written in subsection
4.1.a.
Another local bifurcation of codimension one that we encounter with the hysteresis phenomenon is the
saddle-node one, which consists in the emergence of two fixed points of distinct stability.

2.2. Hysteresis curve. The nonlinear phenomenon of hysteresis is defined differently depending on the
domain in which it appears. There are plenty of, such as electricity, economics, mechanics, physics of
materials... In our context (that is the biology of cells), it is an irreversible one that concerns a system of
which dynamics passes from one state to another one. As a threshold value is overtaken, the system jumps
to the other state without residing between the two one’s. Then, varying the parameter in the backward
sense makes the system go back to its first state, but after having reached a threshold different from the first
one (as seen in figure 2).
For our study we will need to precise mathematically this notion by defining a hysteresis curve (sometimes
called switch):

Definition 2.1. By hysteresis we mean a connected curve in R2, defined by some equations of the form
g (x, y) = 0, where g is a smooth function from R2 to R, for which there exist two reals x∗ < x∗∗ such that:
(i)For every x < x∗ or x > x∗∗, there is only one z in R verifying g (x, z) = 0, and this unique critical point
of the equation ẏ = g (x, y) is asymptotically stable.
(ii)For every x∗ < x < x∗∗, there are exactly three zeros (x, zi)i=1,2,3 of g. Among them, two points say

z1, z3 are asymptotically stable critical points of ẏ = g (x, y) (and the other one is repulsive).
(iii)For x = x∗ or x = x∗∗ there are exactly two zeros (x, zi)i=1,2 of g. One of the zi’s is asymptotically
stable and the other one is degenerate.
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Figure 1. A hysteresis curve.

Notation 2.2. In the rest of the text we will only use the notations (x∗, y∗),
(x∗∗, y∗∗) so as to mention the first and second saddle-node bifurcation points of a
given hysteresis.

Remark 2.3. Notice that the inferior and superior branches of a hysteresis defined
by a function g are no more invariant when we perturb the equation ẏ = g(x, y) by
adding an equation of the form ẋ = f(x, y), as we are going to do in the rest.

We will denote by G2 the set of smooth real-valued functions g on R2 defining
such curves, and by Gc,2 the subset of G2 composed of hysteresis that can in addition
be described as the graph of a (cubic-like) function in the variable y. (By a cubic
function we mean a third degree polynomial function).
We will also use hysteresis having flat inferior and superior branches and a linear
unstable one. We will refer to them as hysteresis with flat branches. They are
defined by their points (x∗, y∗) and (x∗∗, y∗∗), that we’ll also call bifurcation points,
even though we cannot really say there is a bifurcation in this case. Gp,2 will be the
set of piecewise linear functions from R2 to R, defining such curves. To construct
an element h of Gp,2, one can for instance take a negative real a and define the real
function e by:

∀x ∈ R, e(x) =





y∗∗ if x ≤ a,
(y∗∗ − y∗) x/a + y∗ if x ∈ [a, 0],

y∗ if x ≥ 0

Then it suffices to bend the graph of e by considering the function h (x, y) =
e (x − by) − y, for a convenient choice of the constant b, and to notice that the
three constant branches of the hysteresis defined by h have the desired stability.

2.2. Working out the result in the case n = 2. In all the subsection we set
n = 2. The main result of the paper is the following:

Theorem 2.4. Let us assume the hypotheses H1,H2 on f are satisfied. If the
function φ verifies (φ�

1(µ0),φ
�
2(µ0)) �= (0, 0), then there exists a smooth function h

in G2, and a non zero real a, such that for every sufficiently small positive number

Figure 2. A hysteresis curve.

So a hysteresis can be decomposed in three parts: two stable curves that we call the superior and inferior
branches, separated by the unstable branch. If y∗, y∗∗ are the degenerate critical points of the vector fields
gx∗ and gx∗∗ let us remark that locally in (x∗, y∗) appears a saddle-node bifurcation, since in a neighborhood
of it we have a stable critical point and an unstable one that collapse and then disappear, as the parameter
x varies. We call (x∗, y∗) the first saddle-node bifurcation point. The same thing happens in the second
saddle-node bifurcation point (x∗∗, y∗∗).

Notation 2.2. In the rest of the text we will only use the notations (x∗, y∗), (x∗∗, y∗∗) so as to mention the
first and second saddle-node bifurcation points of a given hysteresis.
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Remark 2.3. Notice that the inferior and superior branches of a hysteresis defined by a function g are no
more invariant when we perturb the equation ẏ = g (x, y) by adding an equation of the form ẋ = f (x, y), as
we are going to do in the following.

We will denote by G2 the set of smooth real-valued functions g on R2 defining such curves, and by Gc,2 the
subset of G2 composed of hysteresis that can in addition be described as the graph of a (cubic-like) function
in the variable y. (By a cubic function we mean a third degree polynomial function).
We will also use hysteresis having flat inferior and superior branches and a linear unstable one (see figure
3), and will refer to them as hysteresis with flat branches. They are defined by their points (x∗, y∗) and

O
x

y1

y2

x∗ x∗∗

1

Figure 3. A hysteresis with flat branches.

(x∗∗, y∗∗), that we’ll also call bifurcation points, even though we cannot really say there is a bifurcation in
this case. Gp,2 will be the set of piecewise linear functions from R2 to R, defining such curves. To construct
an element h of Gp,2, one can for instance take a negative real a and define the real function e by:

∀x ∈ R, e (x) =





y∗∗ ifx ≤ a,
(y∗∗ − y∗)x/a+ y∗ if x ∈ [a, 0].

y∗ ifx ≥ 0

Then it suffices to bend the graph of e by considering the function h (x, y) = e (x− by)− y, for a convenient
choice of the constant b, and to notice that the three constant branches of the hysteresis defined by h have
the desired stability.

3. The V-system as the coupling of an oscillating system with a switch.

In this section, we present the analytical study of the V-system. We exhibit some conditions on the
parameters for which its sub-systems VA1,A2

and VA3,A4
present the two desired dynamics.

3.1. A local Hopf bifurcation in the sub-system VA1,A2 . The sub-system VA1,A2 is the one defined by
the equations:





Ȧ1 =

k1 + k11

(
A1

j11

)2

+ k13

(
A3

j13

)2

1 +

(
A1

j11

)2

+

(
A2

j12

)2

+

(
A3

j13

)2 − γ1A1

Ȧ2 =

k21

(
A1

j21

)2

1 +

(
A1

j21

)2 − γ2A2

,

where A3 is considered here as a parameter.
For every A3, let FA3 (A1, A2) be the vector field in R2 associated to VA1,A2 . Making Ȧ2 = 0 and replacing
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the expression of A2 in the first equation, we remark that the nullcline of this system, that is to say the set
{(A1, A2, A3) : FA3 (A1, A2) = (0, 0)}, can be expressed as the graph of a function in the variable A1. The
Jacobian matrix DFA3

(A1, A2) of our vector field is:



2A1 (k11 − γ1A1)

j211

(
1 +

(
A1

j11

)2

+

(
A2

j12

)2

+

(
A3

j13

)2
) − γ1

−2γ1A1A2

j212

(
1 +

(
A1

j11

)2

+

(
A2

j12

)2

+

(
A3

j13

)2
)

2j221A1 (k21 − k2)

(j221 +A2
1)

2 −γ2




.

Naturally we are interested in the eigenvalues of this matrix for points (A1, A2, A3) belonging to the nullcline.
The calculations are inextricable, but using Mathematica, we find that for the following particular set of
parameters:





k1 = 0.05, k11 = 5, k13 = 2.4, γ1 = 0.1

j11 = 2.5, j12 = 0.5, j13 = 2

k2 = 0, k21 = 0.3, j21 = 17.5, γ2 = 0.03

and for the values (A1, A2, A3) = (16.5139, 4.71033, 3.30896), the jacobian matrix of the system VA1,A2

(associated to this set of parameters) has two pure imaginary eigenvalues, and so this system admits a local
Hopf bifurcation.

3.2. A hysteresis in the sub-system VA3,A4
. Now we study the second sub-system VA3,A4

defined by
the two equations:





Ȧ3 =
k3

1 +

(
A4

j34

)2 − γ3A3

Ȧ4 =

k4 + k4

(
A1

j41

)2

1 +

(
A1

j41

)2

+

(
A3

j43

)2 − γ4A4

.

Making Ȧ4 = 0 and replacing the new expression of A4 in the third equation, we get that the nullcline
associated to this subsystem is:






A1, A3,

k4
γ4




1 +

(
A1

j41

)2

1 +

(
A1

j41

)2

+

(
A3

j43

)2





 : (A1, A3) ∈ CA1,A3




,

where CA1,A3
designates the set:





(A1, A3) ∈ R2
+ : γ3A3 =

k3

(
1 +

(
A1

j41

)2

+

(
A3

j43

)2
)2

(
1 +

(
A1

j41

)2

+

(
A3

j43

)2
)2

+
k4

2

γ24j
2
34

(
1 +

(
A1

j41

)2
)2





.

We claim this last set is, under certain conditions on the parameters a hysteresis. To do this we prove the
following property:

Property 3.1. Assuming we have
k4
γ4j34

> 2, there exist two numbers 0 < A∗1 < A∗∗1 such that:

- ∀A1 < A∗1 or A1 > A∗∗1 , there is exactly one point in CA1,A3
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- ∀A1 ∈ (A∗1, A
∗∗
1 ), there are exactly three points in CA1,A3

- If A1 = A∗1 or A = A∗∗1 , there are exactly two points in CA1,A3 .

Proof. To reduce the expressions appeared above, we introduce a new variable:

X = 1 +

(
A1

j41

)2

.

As we are only interested in the positive values of our variables, we can use X instead of using A1 in our
calculations. Let fX (A3) be the right-hand side of the equation defining the set CA1,A3

. A simple calculus
shows that f ′X is strictly positive on R∗+, tends to zero as A3 tends to infinity, and that we have f ′X (0) = 0.
Thus the graph of fX has a form given by the figure (4):

A3

fX(A3)

O

1

Figure 4. Graph of the function fX .

Now the idea is to study the intersection of the previous graph with the line γ3A3 when γ3 varies. Let
search on positive values Ao

3 for which the tangent at the point (Ao
3, fX (Ao

3)) passes through (0, 0). Such a
point Ao

3 verifies the equality f ′X (Ao
3)Ao

3 = fX (Ao
3), that is to say:

4
k4

2

γ24j
2
34

(
Ao

3

j43

)2

X2

(
X +

(
Ao

3

j43

)2
)2

+
k4

2

γ24j
2
34

X2

= X +

(
Ao

3

jdc

)2

,

which is equivalent to:

C0
3 + 3X2C0

(
1− k4

2

γ24j
2
34

)
+ 3XC0

2 +X3

(
1 +

k4
2

γ24j
2
34

)
= 0,

where C0 is equal to

(
Ao

3

j43

)2

. And since we have
k4
γ4j34

> 2, there exist two strictly positive solutions

(depending on the variable A1) 0 < C1 < C2 of this equation, and so two values 0 < A1
3 < A2

3 for which the
tangent at

(
Ai

3, fX
(
Ai

3

))
passes through the origin.

So for every positive A1, there exist two thresholds 0 < c1 (A1) < c2 (A1) (which are the two slopes of the
tangents) such that:

- if γ3 < c1 (A1) or γ3 > c2 (A1), there is only one point in CA1,A3
,

- if γ3 = c1 (A1) or γ3 = c2 (A1) there are two points in this curve,
- if c1 (A1) < γ3 < c2 (A1) there are three points in it.

Considering again γ3 as a fixed parameter, it remains to justify why we can express this last result in terms
of the variable A1. To do this, we look at the monotony of ci. We have:

ci (A1) =
4k3k4

2

j43γ24j
2
34

X2
√

Ci

(X + Ci)
3

(
1 +

k4
2

γ24j
2
34

(
X

X + Ci

)2
)2 ,
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O γ3c1(A1) c2(A1)

1

Figure 5. The curve CA1,A3
for a fixed A1.

and because Ci is a root of the equation written above, so:

(Ci +X)
3

=
k24
γ24j

2
34

(3Ci −X)X2.

From this last equality, we get two informations: the first one is that the quotient Ci/X is a constant and
thus does not depend on the variable A1, the second one is the following expression of the square root

√
Ci:

√
Ci =

γ4j34

k4
√

3

√
Ci +X

√
(Ci +X)

2

X2
+

k4
2

γ24j
2
34

X

Ci +X
.

Substituting in the expression of ci (A1) we obtain the existence of two strictly positive constants (αi)i=1,2,
such that for every positive A1, we have:

ci (A1) =
αi√

1 +

(
A1

j41

)2
,

which implies the strict monotony of the functions ci. Thus the numbers c−11 (γ3) and c−12 (γ3) are well defined
and distinct because c1 (A1) 6= c2 (A1) for any positive A1. Setting A∗1 = c−11 (γ3), and A∗∗1 = c−12 (γ3) we
get the result. �

Property 3.2. Assuming the parameters satisfy the condition
k4
γ4j34

> 2, then CA1,A3
is a hysteresis defined

by a function in Gc,2.

Proof. Since the set CA1,A3
can be expressed as the graph of a function in the variable A3, and thanks to

the property (3.1), we are sure it has the form of a hysteresis defined by an element of the set Gc,2. To see
that the stability conditions required in the definition 2.1 are satisfied, it suffices to consider the sign of the

derivatives
∂g

∂A3
(A1, A3) where g (A1, A3) = fX (A3)− γ3A3. For a point (A1, A3) in CA1,A3

, this comes to

looking at the sign of the following expression:

4k3γ3
2k4

2

j243γ4
2j234

(
1 +

(
A1

j41

)2
)2

A3
3

(
1 +

(
A1

j41

)2

+

(
A3

j43

)2
)3 − γ3.
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This expression tends to −γ3 as A1 tends to infinity: by continuity this proves that the inferior branch of
the curve CA1,A3 is stable. Necessarily its other parts also have the desired stabilities. �

Lastly, the isocline of VA3,A4 appears as the intersection of the cartesian product of CA1,A3 by R+ with
the set:





(A1, A3, A4) : A4 =
1

γ4




k4 + k4

(
A1

j41

)2

1 +

(
A1

j41

)2

+

(
A3

j43

)2







.

This intersection is a smooth curve in the three-dimensional space (A1, A3, A4) (see the figure 6).

O

A4

A1

A3

1

Figure 6. The isocline of the sub-system VA3,A4
.

3.3. Using two scales of time to reduce the dimension of the system. As explained in the introduc-
tion, we aim at exhibiting a mechanism creating chaos in the V-system (and in other ones having the same
dynamical features). This needs a geometrical analysis of its phase portrait, which is a difficult task since it
is a four-dimensional system.
To reduce the dimension to three, we apply the Tychonoff theorem on slow-fast systems (see [31], [13]), by
considering the fourth equation as a fast equation. Indeed, this last equation can be rewritten under the
form:

1

γ4
Ȧ4 =

k4
γ4

1 +

(
A1

j41

)2

1 +

(
A1

j41

)2

+

(
A3

j43

)2 −A4.
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Thus, if the value γ4 is very great and of the same order of magnitude as k4, the Tychonoff theorem tells us
that the dynamics of the V-system is approximately the same as the following slow system S :





A′1 =

k1 + k11

(
A1

j11

)2

+ k13

(
A3

j13

)2

1 +

(
A1

j11

)2

+

(
A2

j12

)2

+

(
A3

j13

)2 − γ1A1

A′2 =

k2 + k21

(
A1

j21

)2

1 +

(
A1

j21

)2 − γ2A2

A′3 =

k3

(
1 +

(
A1

j41

)2

+

(
A3

j43

)2
)2

(
1 +

(
A1

j41

)2

+

(
A3

j43

)2
)2

+
k4

2

γ24j
2
34

(
1 +

(
A1

j41

)2
)2 − γ3A3

,

where ′ stands for the derivative according to the fast time τ = γ4t. The assumptions needed to apply this
result are very easy to verify here since the nullcline of the fourth equation in the variable A4 is the graph
of a function in the other variables and thus is a manifold. Moroever the use of two scales of time does not
change the structure of the V-system: it only requires to choose the parameter γ4 very great and k4 such
that the ratio k4/γ4 be greater or equal to one.

4. Creating chaos from a generic family of vector fields admitting a Hopf bifurcation

From the analysis made in the part 3, we are led to investigate chaos in a general differential system
obtained as the coupling of a Hopf bifurcation with a system of which nullcline is a hysteresis curve. This is
the aim of part 4.

Let (fµ)µ∈R be a generic family of smooth vector fields in Rn, depending smoothly on the parameter µ,

admitting a local Hopf bifurcation in a point x0 of Rn, for the value of parameter µ0. For each real µ, the
associated vector field has a flow governed by the equation:

ẋ = f (x, µ) ,

where f is the smooth function naturally defined on Rn+1 by the equality f (x, µ) = fµ (x). Our goal is
to prove that under an assumption of contractility on the eigenvalues of the Jacobian at x0, and under a
hypothesis on the curve of critical points of f, which is implicitely defined in a neighborhood of x0, we can
construct a smooth function g such that the extended singularly perturbed system:

ẋ = f (x, µ)

εµ̇ = g (x, µ) ,

where ε is a small positive number, is chaotic.

4.1. The result in dimension two. In all the section we deal with the two-dimensional version of the
problem (i.e we set n = 2).

4.1.a. The hypotheses. Here we precise the assumptions we make on the function f.
H1 There exists a value µ0 and a critical point x0 of the field fµ0

such that the Jacobian Dxfµ0

(
x0
)

has
a pair of pure imaginary complex eigenvalues ±iβ with β > 0.

By the implicit function theorem, the curve of zeros of f is, in a neighborhood of
(
x0, µ0

)
, the graph of a

smooth function in the variable µ, defined in a small open interval U . We denote by φ = (φ1, φ2) this function.
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H2 Let α (µ) ± iβ (µ) be the eigenvalues of the Jacobian Dxfµ (φ (µ)) that are equal to ±iβ in µ0. We
assume we have α′ (µ0) 6= 0, which means that the two eigenvalues cross the pure imaginary axis with a
non-zero velocity.

Under these two assumptions, there exists a change of variables for which the Taylor expansion of degree
three of f is of the form:

ẋ1 =
(
a0µ+ b0

(
x21 + x22

))
x1 −

(
ω + a1µ+ b1

(
x21 + x22

))
x2(1)

ẋ2 =
(
ω + a1µ+ b1

(
x21 + x22

))
x1 +

(
a0µ+ b0

(
x21 + x22

))
x2.(2)

Generically, the coefficients a0, b0 are non null in the last equations: in this case, restricting the interval
U if necessary, the Hopf bifurcation’s theorem tells us that all the fixed points φ (µ) with µ smaller than µ0

are focuses encircled by limit cycles (which disappear in the bifurcation value µ0), and all the fixed points
φ (µ) with µ greater than µ0 are also focuses but with inverse stability. Recall that this Hopf bifurcation is
supercritical if α′ (µ0) < 0, which means that the cycles are stable so that the focuses in the planes µ > µ0

are stable ones, or subcritical ifnot (in which case the stability is reverse).

Remark 4.1. It is well known that Assumptions H1,H2 are not sufficient to get a Hopf bifurcation. This
can be seen by looking at the system (written in complex form) ż = (µ+ i) z. Our result will also work for
such a degenerate case.

4.1.b. The Theorem. The two-dimensional version of our result is the following:

Theorem 4.2. Let us assume Hypotheses H1,H2 on f are satisfied.
If the function φ verifies (φ′1 (µ0) , φ′2 (µ0)) 6= (0, 0), then there exists a smooth function h in G2, and a non
zero real number a, such that for every sufficiently small positive number ε, the singularly perturbed system:

(3)





ẋ1 = f1 (x1, x2, µ)
ẋ2 = f2 (x1, x2, µ)
εµ̇ = h (x1 + ax2, µ)

,

taken in a neighborhood V of
(
x0, µ0

)
enough small, is chaotic.

Notice that the hypothesis on the curve of critical points of f is generic. In particular, it is satisfied
by differential models of gene regulatory networks presenting a Hopf bifurcation, notably the V-system.
Moreover this condition is the same as the one asked by E.Pécou, in her article [19].
If one wants to have a hysteresis that can be described as a cubic-like function in the variable µ, the analogous
result is the following:

Corollary 4.3. With the same assumptions as in Theorem (4.2), there exists a smooth function h in Gc,2,
a non zero real a, and two small numbers 0 < ε1 < ε2, such that for every ε in ]ε1, ε2[, the system (3), taken
in a neighborhood V of

(
x0, µ0

)
enough small, is chaotic.

The proof of this corollary is the same as the one of (4.2), except for its last step (see subsection 4.1.d).

4.1.c. Proof of Theorem (4.2). All along the proof, we assume that we have α′ (µ0) < 0 (in case of a Hopf
bifurcation at µ0 this means the cycles are stable ones). The case where α′ (µ0) > 0 is totally similar (see
the remark at the end of the subsection).

The idea of the demonstration is to take a function h defining a hysteresis curve of which stable part
intersects the curve of fixed points of f in only one point, say the origin O that belongs to the Hopf bifurcation
surface, so as to use the spiraling motion due to this bifurcation.
There are infinitely many such smooth functions h: let’s take any one in Gc,2, and denote by F the vector
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field defining system (3). Then, the Jacobian at the origin is:

DF (O) =




∂f1
∂µ

(O)

Df(O)
∂f2
∂µ

(O)

1

ε

∂h (0, 0)

∂x1

a

ε

∂h (0, 0)

∂x1

1

ε

∂h (0, 0)

∂µ




.

Because of the assumption on the curve of critical points of f, the terms on the top right of this matrix are
non null, and so all the possible cases can happen concerning its spectrum when ε vary in ]0, 1[: it can, for
instance, be only composed of real eigenvalues, in which case in the neighborhood of the origin the spiraling
motion would not exist. So we cannot directly work with any smooth function h in Gc,2.
On the other hand, if the function h is in Gp,2 then the terms on the bottom left are equal to zero, and the
dynamics locally in the origin is the one we want to have. More than that, the following proposition (of
which proof is just an application of the implicit function theorem) tells us that given a very small ε, if the
stable branches of the hysteresis have a slope of order ε, then the dynamics is the same as in this flat case.

Proposition 4.4. Let B be a square matrix of size two, of which spectrum is (α± iβ), with α, β > 0, and
let A (ε) be the matrix of size three:

A (ε) =




a1,3
B a2,3

a3,1 aa3,1 −γε


 ,

where γ is a strictly positive number. Then for any ε enough small, the spectrum S (A (ε)) of A (ε) has the
form:

S (A (ε)) = {α+ εz1 (ε)± i (β + εz2 (ε)) ,−γ/ε+ εz3 (ε)},
where the zi (ε) are bounded functions of ε.

Thus we adopt the following strategy: we first describe the hysteresis curves with flat branches that are
conveniently placed comparing with the curve of critical points φ in order to prove Theorem (4.2) in the
(weaker) case when the function h is in Gp,2. And then we will transform the convenient function h into a
smooth one.

Let us fix a value µ∗∗ in U greater than µ0. Because of the generic assumption there exists a value µ∗

for which we have φ (µ∗) 6= φ (µ∗∗). Without loss of generality, we suppose that the point (φ (µ∗) , µ∗) is the
origin O. We want to work with a function g of which set of zeros is the cartesian product of the straight
line (Oφ (µ∗∗)) with a hysteresis in the plane orthogonal to this line. To do this we begin by choosing two
values x∗1, x

∗∗
1 verifying x∗1 < x∗∗1 < 0 if φ2 (µ∗∗) > 0 (or else x∗1 > x∗∗1 > 0 if φ2 (µ∗∗) < 0) and such that the

hysteresis with flat branches defined by the two bifurcation points (x∗1, 0) and (x∗∗1 , µ
∗∗) does not intersect

the graph of φ in another point than the origin. Besides we ask that the reals x∗1, x
∗∗
1 are close enough to

zero, so that the points (x∗1, 0) and (x∗∗1 , 0) are inside the possible cycle C0 belonging to the plane µ = 0 (see
the figure 7).

In the rest of the text we will assume (without loss of generality) that φ2 (µ∗∗) > 0, and thus the values
x∗1, x

∗∗
1 will be taken negative. Now that we have defined our function h, we set g (x1, x2, µ) = h (x1 + ax2, µ),

where x1 +ax2 = 0 is an equation of the straight line (Oφ (µ∗∗)). Our first goal is to prove that for a certain
choice of the values x∗1, x

∗∗
1 and µ∗∗, such a function g verifies that the system:





ẋ1 = f1 (x1, x2, µ)
ẋ2 = f2 (x1, x2, µ)
εµ̇ = g (x1, x2, µ)

,(4)
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µ

x1

x2

(φ(µ∗∗), µ∗∗)

(φ(µ0), µ0)

O

1

x1

x2

C0

φ(µ∗∗)
O

x1 + ax2 = 0

1

Figure 2. The Hopf bell-like surface and the surface defined by a
piecewise-linear hysteresis.

2.3.a. Using the singular perturbations theory to describe the flow of (2). Let’s
take a piecewise linear function g from R3 to R of the same kind as above. By
construction, the system (2) admits the origin as unique critical point. Remark
that since the function x1 �→ h (x1, 0) is constant, there exists locally in the origin,
an invariant stable manifold of dimension one and an unstable one of dimension two.
In fact, we even have that the inferior and superior half planes of the hysteresis, that
are the cartesian products of the stable branches of h by (Oφ (µ∗∗)), are invariant
except near the two straight lines ∆∗ and ∆∗∗ (that we’ll call the two fold lines of the
hysteresis), respectively defined by the equations x1 +ax2 = x∗

1 and x1 +ax2 = x∗∗
1 .

This is clear by the Cauchy-Lipschitz theorem, which can be applied here because
the function h is Lipschitz continuous (indeed, the function e defined at the end of
2.1.b is Lipschitz continuous).

Figure 7. The Hopf bell-like surface and the surface defined by a piecewise-linear hysteresis.

is chaotic.

Using the singular perturbations theory to describe the flow of (4). Let’s take a piecewise linear function
g from R3 to R of the same kind as above. By construction, the system (4) admits the origin as unique
critical point. Remark that since the function x1 7→ h (x1, 0) is constant, there exists locally in the origin, an
invariant stable manifold of dimension one and an unstable one of dimension two. In fact, we even have that
the inferior and superior half planes of the hysteresis, that are the cartesian products of the stable branches
of h by the line (Oφ (µ∗∗)), are invariant except near the two straight lines ∆∗ and ∆∗∗ (that we call the
two fold lines of the hysteresis), respectively defined by the equations x1 + ax2 = x∗1 and x1 + ax2 = x∗∗1 .
This is clear by the Cauchy-Lipschitz theorem, which can be applied here because the function h is Lipschitz
continuous (indeed, the function e defined at the end of 2.1 is Lipschitz continuous).
Moroever, these invariant half planes can be described as (constant) graphs in the variables x1, x2: namely
the graphs ξ− (x1, x2) = 0 for (x1, x2) above ∆∗ and ξ+ (x1, x2) = µ∗∗ for (x1, x2) below ∆∗∗.
This fact allows us to use singular perturbation theory:

Proposition 4.5. As ε > 0 tends to zero, the flow ϕ2,ε of (4) is C0-approached by a flow ϕ2 of which
trajectories are successions of continuous arcs, each of them being the union of a segment of the form{(
x01, x

0
2, µ
)

: 0 ≤ µ ≤ µ∗∗
}

with a solution of one of the equations ẋ = f (x, ξ+ (x)) and ẋ = f (x, ξ− (x)).
14



More precisely, we have:

∀M > 0, ∀p ∈ V, ∀t ∈ [0,M ], lim
ε→0

ϕ2,ε (p, t) = ϕ2 (p, t) ,

where V is a neighborhood of
(
x0, µ0

)
enough small.

Proof. It suffices to apply again the Tychonoff theorem on slow-fast systems. The idea is the following: for
ε > 0 enough small, any point which is not a zero of our function g will be carried vertically (that is to say
along the µ-axis) by the flow ϕ2,ε until it reaches a stable part of the hysteresis, in which case its motion
will be defined by the flow reduced on this surface.

To precise this idea, let ϕ+ be the reduced flow associated to the slow equation ẋ = f (x, ξ+ (x)). By
construction of our hysteresis defined by g, its critical point φ (µ∗∗) (which is unique in a neighborhood of(
x0, µ0

)
enough small) is stable. So, for initial conditions enough close to this point, the trajectories will hit

the fold line ∆∗∗ in a finite time, afterwards they will not exist anymore. Moroever, asking that the value
x∗∗1 be closer to zero if necessary, we get that these trajectories are almost logarithmic spirals defined by a
polar equation of the form:

ρ = ρ0e

α (µ∗∗)
β (µ∗∗)

(θ−θ0)
,

in the sense that locally in φ (µ∗∗), the flow ϕ+ is close to its linear part.
The same holds for the reduced flow ϕ− of the other slow equation ẋ = f (x, ξ− (x)). In this case, the tra-

jectories are nearby repulsive logarithmic spirals, having a polar equation defined by the positive coefficient
α (0) /β (0) (see figure 8).

Now, let us denote by ϕ2 the continuous flow, of which trajectories are those of the reduced flows ϕ+, ϕ−
connected between them by vertical segments of the form

{(
x∗1, x

0
2, µ
)

: 0 ≤ µ ≤ µ∗∗
}

or
{(
x∗∗1 , x

0
2, µ
)

: 0 ≤ µ ≤ µ∗∗
}
.

Tychonoff’s theorem tells us that ϕ2 is the limit of ϕ2,ε as ε tends to zero, in the meaning of proposition
(4.5). 8 CAMILLE POIGNARD AND ELISABETH PÉCOU

O

x1

x2

µ
∆∗∗

∆∗

ϕ+

ϕ−

1

Figure 3. The dynamics of the flow ϕ2.

x1

x2
ϕ−

ϕ+

O

∆
∗

∆
∗∗

x1 + ax2 = 0

1

Figure 4. The flow ϕ3.

Proposition 2.8. There exists a choice of the values x∗
1 < x∗∗

1 < 0 and µ∗∗ > 0
such that the linear limit flow ϕ3 associated to the system (2) covers at least twice a
segment I belonging to the plane µ = 0. More precisely, there exists a decomposition
I = I1 ∪ I2 in two sub-intervals and a Poincaré return map P (associated to ϕ3)
defined on I, such that the images P 2 (I1), P 2 (I2) strictly contain I.

Figure 8. The dynamics of the flow ϕ2.

�

Definition 4.6. The flow ϕ2 of proposition (4.5) is called the limit flow associated to the system (4).
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A linear model creating chaos. Here we simplify again our problem by considering the case where the reduced
flows ϕ− and ϕ+ (of which orbits are repulsive spirals centered at the origin, and attractive ones centered
at φ (µ∗∗)), are linear. The linear limit flow of proposition (4.5) obtained by this way is denoted by ϕ3. We
claim we have:

x1

x2
ϕ0

ϕ1

O

∆
∗

∆
∗∗

x1 + ax2 = 0

1

Figure 9. The flow ϕ3.

Proposition 4.7. There exists a choice of the values x∗1 < x∗∗1 < 0 and µ∗∗ > 0 such that the linear
limit flow ϕ3 associated to the system (4) covers at least twice a segment I belonging to the plane µ = 0.
More precisely, there exists a decomposition I = I1 ∪ I2 in two sub-intervals and a Poincaré return map P
(associated to ϕ3) defined on I, such that the images P 2 (I1), P 2 (I2) strictly contain I.

Proof. Let F1,F2 be the linear flows defined in the plane µ = 0, of which orbits are respectively centered at
the origin (0, 0) and at the point φ (µ∗∗), and have the polar equations:

ρ = ρ0e

α (0)

β (0)
(θ−θ0)

and ρ = ρ0e

α (µ∗∗)
β (µ∗∗)

(θ−θ0)
.

We use these two flows so as to fix the position of the two fold lines ∆∗,∆∗∗ of our hysteresis h (i.e to fix
the values x∗1, x

∗∗
1 ). Recall that their slopes is −1/a.

(i)We begin with the position of the fold ∆∗.
Given an initial condition M0 = (ρ0, θ0) near the origin, any point M = (ρ, θ) belonging to the trajectory
(F1 (M0, t))t∈R satisfies:

M =


ρ0e

α (0)

β (0)
(θ−θ0)

cos (θ) , ρ0e

α (0)

β (0)
(θ−θ0)

sin (θ)


 ,

in cartesian coordinates. Derivating this expression in θ, we get that the locus of points at which the tangent
of the flow F1 has a slope equals to −1/a, is a straight line, having a constant angle with the half-axis Ox1
equals to

arctan




α (0)

β (0) a
+ 1

1

a
− α (0)

β (0)


 ,

or π/2 in the case where a = β (0) /α (0) (see figure 10).
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Denote by A the intersection of this straight line with one having an equation of the form x1 + ax2 = b
where b is strictly negative. Call ∆ this last line, and consider the first return of the point A in ∆, that is to
say the point B = F1 (A, τ (A)), where τ (A) is the first strictly positive time necessary for A to hit this line.
We obtain a straight line (OB) which is clearly the locus of first return of the points, in which the slope of
the tangent to F1 is −1/a, in this tangent. To see this, it suffices to observe that the image of a logarithmic
spiral under a homotethy is still a spiral of same nature, defined by the same coefficient (here α (0) /β (0)).
Remark that (OB) has a slope strictly smaller than a.
From the construction of these two lines (OA) and (OB), we adjust the position of ∆∗ by taking the circle
centered at φ (µ∗∗) of ray Oφ (µ∗∗): it cuts (OB) in a point at which we draw ∆∗ (figure 10).
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B

A

x1

x2

φ(µ∗∗)
O

∆

∆
∗

x1 + ax2 = 0

1

Figure 5. Construction of the fold line ∆∗.

necessary for the point M to reach ∆∗∗), we get that the image J � = [A�
1B

�
1] of J

under Ψ1 is a segment of which extremity B�
1 has a strictly positive x2-coordinate.

Moreover, fixing the value x∗∗
1 so that the origin be enough close to ∆∗∗, we obtain

that J � intersects the spiral S0 in at least 3 points having a strictly negative x2-
coordinate, and such that the extremity A�

1 = Ψ1 (A1) does not belong to the spiral
S1 (see figure 6).
(iii) Now that we have fixed our hysteresis h, let us prove that ϕ3 is chaotic.
By (ii) the segment J � contains three points M1, M2, M3 of the spiral S0 (all having
a strictly negative x2-coordinate) which are consecutive (i.e there exist two times
t1, t2 > 0, such that ϕ3 (t1, M3) = M2 and ϕ3 (t2, M2) = M1). Then let us consider
the first return map Ψ in the axis (Ox1) associated to the flow ϕ3 (or equivalently
F1), and set:

�
I1 = [Ψ (M1) Ψ (M2)]

I2 = [Ψ (M2) Ψ (M3)]
.

By construction we have:�
Ψ(J �) = Ψ ◦ Ψ1 ◦ Ψ0 (I1) � I1 ∪ I2

Ψ ◦ Ψ1 ◦ Ψ0 (I1) = Ψ ◦ Ψ1 ◦ Ψ0 (I2)
,

which means that the map Ψ ◦ Ψ1 ◦ Ψ0 covers the interval I = I1 ∪ I2 twice.

Figure 10. Construction of the fold line ∆∗.

(ii) Then, we consider the flow F2, so as to position ∆∗∗.
Let us denote by J = [A1B1] the segment of which extremities are the intersections of ∆∗ with our two
straight lines (OA) and (OB). We know there is a unique trajectory S0 of the flow F1 which is tangent to
∆∗, and that the tangency point is the boundary A1 of this segment.
The return of J in the line (Oφ (µ∗∗)) by rotations centered at φ (µ∗∗) is a segment of the form [OC] with C
having a strictly non zero x2-coordinate. As the value µ∗∗ ≥ µ0 was chosen arbitrarily in the construction
of our hysteresis h, we can take it closer to µ0 if necessary, so that we can make the spiraling motion of
the flow F2 be very close to a rotation one. Thus denoting by Ψ1 the application of first return in ∆∗∗ (i.e
defined by the equality Ψ1 (M) = F2 (M, τ (M)), where τ (M) is the time necessary for the point M to reach
∆∗∗), we get that the image J ′ = [A′1B

′
1] of J under Ψ1 is a segment of which extremity B′1 has a strictly

positive x2-coordinate. Moreover, fixing the value x∗∗1 so that the origin be enough close to ∆∗∗, we obtain
that J ′ intersects the spiral S0 in at least 3 points having a strictly negative x2-coordinate, and such that
the extremity A′1 = Ψ1 (A1) does not belong to the spiral S1 (see figure 11).
(iii) Now that we have fixed our hysteresis h, let us prove that ϕ3 is chaotic.
By (ii) the segment J ′ contains three points M1,M2,M3 of the spiral S0 (all having a strictly negative
x2-coordinate) which are consecutive (i.e there exist two times t1, t2 > 0, such that ϕ3 (t1,M3) = M2 and
ϕ3 (t2,M2) = M1). Then let us consider the first return map Ψ in the axis (Ox1) associated to the flow ϕ3
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(or equivalently F1), and set:
{
I1 = [Ψ (M1) Ψ (M2)]

I2 = [Ψ (M2) Ψ (M3)]
.

By construction we have: {
Ψ(J ′) = Ψ ◦Ψ1 ◦Ψ0 (I1) ) I1 ∪ I2
Ψ ◦Ψ1 ◦Ψ0 (I1) = Ψ ◦Ψ1 ◦Ψ0 (I2)

,

which means that the map Ψ ◦Ψ1 ◦Ψ0 covers the interval I = I1 ∪ I2 twice.CHAOS OBTAINED FROM A HOPF BIFURCATION 11
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Figure 6. The one-dimensional section I covered twice by the flow ϕ3.

From all of this we conclude that the segment I is a Poincaré section for the
linear limit flow ϕ3. Let P be the return map of ϕ3 associated to this section. This

Figure 11. The one-dimensional section I covered twice by the flow ϕ3.

From all of this we conclude that the segment I is a Poincaré section for the linear limit flow ϕ3. Let P be
the return map of ϕ3 associated to this section. This map does not cover I twice because we have P (I2) = I1,
but the map P 2 does (because P (I1) = Ψ ◦Ψ1 ◦Ψ0 (I1) contains I2), which finishes the proof. �
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Our application P of the previous proposition is piecewise continuous, because the boundary points of
the segments I1, I2 (denoted Ψ (M1) ,Ψ (M2) ,Ψ (M3) in the previous proof) are discontinuous ones. It is
well known that any piecewise continuous application of an interval covering at least twice this interval has
strictly positive topological entropy. Thus, we have proved:

Corollary 4.8. There exists a choice of the three values x∗1 < x∗∗1 < 0 and µ∗∗ > 0 such that the linear limit
flow ϕ3 associated to the system (4) is chaotic.

Proof of the result when the hysteresis is piecewise linear with flat branches. Now let us consider again the
limit flow ϕ2 of the system (4), but this time without assuming that ϕ+ and ϕ− are linear. In this case we
still have a Poincaré return map P associated to ϕ2 and defined on a segment I = I1 ∪ I2 belonging to the
plane µ = 0, such that the images P2 (I1) and P2 (I2) strictly contain I.

Indeed, making a Taylor development of the function x 7→ f (x, 0) at the origin (0, 0), we get by the implicit
function theorem, that the locus of points at which the tangent of the flow ϕ− is parallel to (Oφ (µ∗∗)) is
(locally at (0, 0)) a curve which is tangent to the straight line (OA) of the construction we made above.
Similarly the points of first return in these tangents form now a curve tangent (at the origin (0, 0)) to the
straight line (OB) we had before. So the circle of ray (Oφ (µ∗∗)) still cuts this curve in a point at which we
can draw the line ∆∗. Then we can go on the same construction as in the linear model.

Then, from this segment I constructed above, we can create a rectangular section transverse to the plane
µ = 0, admitting a Horseshoe:

Proposition 4.9. For the same choice of the values x∗1, x
∗∗
1 , µ

∗∗ taken in proposition (4.7), there exists a
rectangle R transverse to the plane µ = 0, such that for any ε > 0 enough small, the flow ϕ2,ε of the system
(4) covers at least twice this section.
More precisely, there exists a decomposition R = R1 ∪R2 in two rectangles such that for any ε > 0 enough
small, the flow ϕ2,ε admits a Poincaré return map Pε defined on R, such that P2

ε (R1) ,P2
ε (R2) are disjoint

and contain both one rectangle that intersects R along all its length (see figure 12).

Proof. Let us fix a positive number s > 0. We consider the rectangle R1 (s) which is above I1, that is to
say defined by:

R1 (s) = {(x1, x2, µ) : (x1, x2) ∈ I1 andµ ∈ [0, s]} ,

and set R (s) = R1 (s) ∪R2(s), where R2(s) is the rectangle of height s, associated to the segment I2.
As previously, for any ε enough small, there exists a Poincaré return map Pε associated to the flow ϕ2,ε

which is defined on the rectangle R (s). Each of the images P2
ε (R1 (s)) and P2

ε (R2 (s)) is a rectangle that
crosses R (s) by covering all its lenght. Therefore, to obtain a horseshoe, it suffices to verify that these two
images are disjoint.

We first remark that the images under P2
ε of the interiors

◦
R1 (s),

◦
R2 (s) of the two rectangles, must be

disjoint: indeed there is no point z1, z2 in
◦

R1 (s) ×
◦

R2 (s) such that Pε (z1) = Pε (z2), otherwise we would
have

ϕ2,ε (τ (z1)− τ (z2) , z1) = z2,

and thus either z1 or z2 would return in R (s) in a time strictly smaller than the first return time in this
section. Then, let Γ (s) be the edge common to our two rectangles, that is the segment above the point Ψ (M2)
belonging to both I1 and I2. By construction of the return map P, the distance between P2 (Ψ (M2)) and
the boundary of I is strictly positive (see the proof of proposition (4.7)). Thus, as this distance does not
depend on ε and by continuity of each flow ϕ2,ε, there exists a value s0 such that for any ε > 0 enough small,
the image P2

ε (Γ (s0)) does not intersect the section R (s0). The assertion is proved. �

The conclusion of all we have done in subsection 4.1.c, is that there exists a choice of the values x∗1, x
∗∗
1 , µ

∗∗

for which the associated function g constructed at the beginning of subsection 4.1.c verifies that (for every
ε > 0 enough small) the system (4) is chaotic, which is the piecewise linear version of Theorem (4.2) .
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End of the proof of the result . Finally, we can transform the piecewise linear hysteresis h into a smooth one,
by smoothing the rough edges near the points (x∗1, µ

∗) and (x∗∗1 , µ
∗∗): this does not affect the dynamics of

our system since the images (under the flow (φt)t∈R) of the invariant Cantor set included in R (s0) are all at
a distance strictly positive of the flat branches, in particular of the rough edges of the hysteresis. The result
is proved in the case α′ (µ0) < 0.

Remark 4.10. In the case where α′ (µ0) > 0 (which corresponds to a subcritical Hopf bifurcation), it suffices
to take the symmetric of the hysteresis we considered above with regard to the axis Ox1. The exactly same
reasoning applies in this case. The proof is achieved.

4.1.d. Proof of Corollary (4.3). Let us consider again the set R (s0) defined above. There exist two small
numbers 0 < ε1 < ε2 such that for any ε in ]ε1, ε2[, both P2

ε (R1 (s0)) and P2
ε (R2 (s0)) will cover this set

while being at a bounded distance of the plane µ = 0.
We can therefore bend the inferior stable branch of the piecewise linear hysteresis h without modifying the
dynamics established above (see Proposition (4.4) at the end of the remark 4.10 below), and also smooth
the rough edge near the point (x∗1, µ

∗). We obtain an inferior branch that can be described as the graph of
a smooth function in the variable µ. Applying the same for the superior branch of h, we get the result.

µ = 0

Γ(s0)

P2
ε (R1(s0))

P2
ε (R2(s0))

1

Figure 12. The covering of the rectangle R (s0) by the map P2
ε (for a fixed ε in ]ε1, ε2[).

4.2. The result in the general case n ≥ 2. Theorem (4.2) can be extended to the case where (fµ)µ∈R is

a family of vector fields in Rn, with n ≥ 2, provided we make an additional hypothesis of contractility on
the other eigenvalues of the Jacobian at the bifurcation point.

4.2.a. The hypotheses. H1′ There exists a value µ0 and a critical point x0 of the field fµ0
such that the Jaco-

bian Dxfµ0

(
x0
)

has a pair of pure imaginary complex eigenvalues ±iβ with β > 0, and the other eigenvalues
λ3, · · · , λn have a strictly negative real part.
Here again, we denote by φ = (φ1, · · · , φn) the smooth function defined on a neighborhood U of the bifur-
cation value µ0, that locally defines the graph of fixed points associated to the function f.

Hypothesis H2 on the cross of the pure imaginary axis with a non-zero velocity, has not changed.
Remark that restricting U if necessary, we have that the eigenvalues λ2 (µ) , · · · , λn (µ) (which are equal to
λ2, · · · , λn in µ = µ0) have also a strictly negative real part.
For each µ in U , we denote by Πµ the plane span by the real and imaginary parts of the eigenvectors as-
sociated to α (µ) ± iβ (µ). Note that all those planes are almost parallel because these eigenvectors vary
smoothly with the parameter µ.

Under these two assumptions, the center manifold theorem gives us the existence, for every µ in U , of a
smooth manifold of dimension two Wµ, tangent at the point (φ (µ) , µ) to the plane Πµ. This manifold is
attracting for the flow of the equation ẋ = f (x, µ). Moroever, for every µ in U , the dynamics of this system
restricted to Wµ is given by equations of the form:

(5)

{
u̇1 =

(
a0µ+ b0

(
u21 + u22

))
u1 −

(
ω + a1µ+ b1

(
u21 + u22

))
u2

u̇2 =
(
ω + a1µ+ b0

(
u21 + u22

))
u1 +

(
a0µ+ b0

(
u21 + u22

))
u2

.
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4.2.b. The theorem and its proof. The n-dimensional version of our result is the following:

Theorem 4.11. Let us suppose that Hypotheses H1′,H2 on the function f are satisfied. Assume more-
over that the projection of the graph x = (φ1 (µ) , · · · , φn (µ)) on the plane Πµ0 is not reduced to the point
(φ (µ0) , µ0). Then, there exist two distinct integers i, j in [1, n], two non zero real numbers ai, aj and a
smooth function h in G2 such that for every ε > 0 enough small, the singularly perturbed system:

(6)

{
ẋ = f (x, µ)
εµ̇ = h (aixi + ajxj , µ)

,

taken in a neighborhood of
(
x0, µ0

)
enough small, is chaotic.

Proof. The exactly same reasoning as in the two-dimensional case can be applied.
(i)Indeed, let us first fix a value µ∗∗ in U , strictly greater than µ0. By assumption on the graph x = φ (µ),
there exists a value of the parameter (say 0) which is strictly smaller than µ0 and such that the projection X0

of the point (φ (µ∗∗) , 0) on the plane Π0 is not equal to the fixed point (φ (0) , 0). Without loss of generality,
we assume that this last point is the origin O = (0, · · · , 0) of Rn+1.
Then we consider two planes H∗, H∗∗ which are parallel to the plane containing the origin and the two points
(φ (µ∗∗) , 0) , X0. There exist two distinct integers i, j in [1, n], such that the equations of these planes are of
the form:

aixi + ajxj = x∗

aixi + ajxj = x∗∗,

where ai, aj and x∗, x∗∗ are four non zero numbers. The intersections H∗ ∩ Π0 and H∗∗ ∩ Π0 are two lines
that will be our two fold lines ∆∗,∆∗∗ of subsection 4.1.c. To finish this first step we consider the element
h in Gp,2 defining the hysteresis with flat branches of which bifurcation points are (x∗, 0) and (x∗∗, µ∗∗), in
order to prove the piecewise linear version of the result before smoothing this convenient hysteresis.
(ii) Without loss of generality, we can assume that the origin is very close to the two fold lines that intersect
by the way a small neighborhood of the origin in Rn+1, in which the flow of the system (6) is very close
to its linear part. Thanks to the hypothesis H1′, we can therefore construct a rectangular section I in
the hyperplane µ = 0, that transversely cross the plane Π0, and which is covered twice by the limit flow
associated to (6). It remains to extend vertically this section I, that is to say to consider the sets

R (s) = {(x, µ) ∈ I × [0, s]} ,

for some small strictly positive s. There exist a value s0 such that R (s0) is a Horseshoe for the flow of the
system (6). We conclude by taking off this rectangle from the hyperplane µ = 0, and by smoothing the
hysteresis as in the two-dimensional case. �

To finish section 4.2, we also have the similar corollary as in section 3:

Corollary 4.12. With the same assumptions as in Theorem (4.11), there exist two integers i, j in [1, n],
two non zero real numbers ai, aj, a smooth function h in Gc,2 and two small numbers 0 < ε1 < ε2, such that
for every ε in ]ε1, ε2[, the system (6), taken in a neighborhood of

(
x0, µ0

)
enough small, is chaotic.

5. Numerical evidence of a chaotic motion in the V-system

Finally, in order to apply Theorem (4.2) to find chaos in our V-system, it suffices to use three scales of
time so that the slow system S written in section 3.3 be in fact a slow-fast one. This comes to considering
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the V-system under the form:




Ȧ1 =

k1 + k11

(
A1

j11

)2

+ k13

(
A3

j13

)2

1 +

(
A1

j11

)2

+

(
A2

j12

)2

+

(
A3

j13

)2 − γ1A1

Ȧ2 =

k2 + k21

(
A1

j21

)2

1 +

(
A1

j21

)2 − γ2A2

1

γ3
Ȧ3 =

k3
γ3

1

1 +

(
A4

j34

)2 −A3

1

γ4
Ȧ4 =

k4
γ4

1 +

(
A1

j41

)2

1 +

(
A1

j41

)2

+

(
A3

j43

)2 −A4

,

in which γ3 is chosen very great but much less than γ4, and the ratios k3/γ3, k4/γ4 are greater or equal to
one.
From this use of three scales of time and the study done in section 3, we are finally able to exhibit the key
parameters (among the 17 ones) of which the chaotic dynamics in the V-system strongly depends on, by
classifying all the parameters in three groups. The first group contains those associated to VA1,A2

(for which
this sub-system must have a Hopf bifurcation), the second one is the subset {j34, k3, k4, γ3, γ4}, and the last
one is composed of the parameters that remain. Recall that, the second group must satisfy the assumption
of property 3.1 to have a hysteresis, besides the inequalities we have just mentioned above. We thus can
enunciate the following:

Theorem 5.1. There exist some sets of parameters P, satisfying the conditions:

- the sub-systems VA1,A2 admit a Hopf bifurcation,
- the parameters j34, k3, k4, γ3, γ4 verify the inequalities:

1� γ3 � γ4, 2 <
k4
γ4j34

, 1 ≤ k3
γ3
, 1 ≤ k4

γ4
,

for which the associated V-systems V are chaotic.

We cannot say the two conditions of Theorem 5.1 are sufficient to get chaos, since we also need that the
Hopf bifurcation surface be well positioned compared with the hysteresis surface (conformed with figure (7))
and that this last one be enough flat. But this condition, involving notably the parameters of the third
group, cannot be quantified.
From this hierarchy among the parameters, we are led to the following set of parameters P1:





k1 = 0.05, k11 = 5, k13 = 2.4, γ1 = 0.1

j11 = 2.5, j12 = 0.5, j13 = 2

k2 = 0, k21 = 0.3, j21 = 17.5, γ2 = 0.03

k3 = 330, γ3 = 32, j34 = 1.5

k4 = 387, j41 = 2.9119, j43 = 0.75, γ4 = 100.1

.

The figure (13) shows the bifurcation surfaces of the slow system S 1, associated to the V-system V 1.
Numerical investigations realized with the software Xdim permitted us to find a Poincaré map that covers

twice the section on which it is defined, in an exactly similar way as planned (see figures (14), (15), and
(16)). We thus can conclude that V 1 is chaotic.
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the values of the parameters. We consider the set P1:



ksa = 0.05, ksaa = 5, ksac = 2.4, kda = 0.1

jaa = 2.5, jab = 0.5, jac = 2

ksb = 0, ksba = 0.3, jba = 17.5, kdb = 0.03

ksc = 330, kdc = 32, jcd = 1.5

ksd = 3.87, ksda = 3.87, jda = 2.9119, jdc = 0.75, kdd = 1.001

,

in which we have imposed the different scales of parameters explained above. We
cannot really increase the values because of numerical instabilities appeared in the
software Xdim for such high values. Remark that the parameters of the system
V 1

A,B and V 0
A,B are the same, thus V 1

A,B still admits a Hopf bifurcation. Moroever

we have
ksd

kddjcd
= 2.57742 and ksd = ksda thus by the proposition 3.2 the set C 1

A,C

is a hysteresis. The figure (11) shows the bifurcation surfaces associated to the slow
system S 1.

Figure 11. The hysteresis and the curve of critical points associ-
ated to the Hopf bifurcation of the system S 1

With Xdim we found a Poincaré map that covers twice the section on which it
is defined, in an exactly similar way as planned (see figures (12) and (13)).

This convinces us that S 1 is chaotic. Such a section can be found for the Vir-
giniator V1, by multiplying the parameters ksd, ksda, kdd by a very great number.

Figure 13. The hysteresis and the curve of critical points associated to the Hopf bifurcation
of the system S 1.

Figure 14. A trajectory of the system V 1.

6. Conclusion

We have proved that there exist some values of the parameters for which the V-system admits chaos,
and highlighted the key parameters responsible in a major part of this dynamics (see Theorem 5.1). This
has been done by proving the existence of a horseshoe, which guarantees mathematically the robustness of
chaos in our system: that is to say, there exists a small number η0 > 0 such that for every 0 < η < η0,
every vector field of the form F + ηG (where F denotes the one defining the V-system) is chaotic near the
Hopf bifurcation point. This robustness is called structural stability in mathematics (see [7], [9]), and must
not be confused with the sensitive dependence on initial conditions of the system (indeed given a chaotic
system, the trajectories are very sensitive to perturbations, but the system itself can still be chaotic under
some small changes).
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Figure 15. A Poincaré map for the flow of V 1 that covers twice the segment on which it is defined.

In practice even a slight modification of the parameters in the V-system makes us leave the region on which
we have the desired dynamics: as said in the introduction the chaos in it is weak even if it is theoretically
robust. In this fact lies all the interest of the paper, for a purely numerical study would have attributed the
variations in this system to noise.

Since a lot of gene networks present the same characteristics as the V-system, namely a positive feedback
(induced here by a Hopf bifurcation) and a negative one (induced by a switch), we can hope to see chaotic
variations in the dynamics of other such networks.
Besides the interest mentioned in the introduction in controlling, modifying the activity of a given cell, the
investigation of chaotic G.R.N.s, presenting a stronger and more visible chaos (for instance having strongly
positive Lyapunov exponents) is also relevant because of the possibility of chaos as a source of diversity in
the behavior of cells (see [16]). For instance, recent studies done on stem cells have pointed out that cells
presenting chaotic oscillations in gene expression dynamics have the ability to differentiate into other cell
types, leading to the hypothesis that chaos could be involved in differentiation (see [5]). Of course, the
variations in gene expression must be in a great part due to randomness but the idea that deterministic
nonlinear effects (and in particular chaos) are also involved in them have been established experimentally in
some recent cases (see [25] and [1]).
These advances in favor of a chaotic gene expression have been done thanks to progress in experimental
techniques, which may permit to corroborate or unvalidate in the future those new ideas.
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The author thanks Elisabeth Pécou for her help and her advices, especially on the biological aspects of
this work.

References

[1] L. Becks, F.M. Hilker, H. Malchow, K. Jurgens, and H. Arndt. Experimental demonstration of chaos in a microbial food
web. Nature, 435:1226–1229, 2005.

[2] Leon Chua, Motomasa Komuro, and Takashi Matsumoto. The double scroll family. IEEE Trans. Circuits and Systems-I,
33:1072–1118, 1986.

[3] Freeman Dyson. Birds and frogs. Notices of the AMS, 56(2), 2009.
[4] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations,

31:53–98, 1979.

[5] Chikara Furusawa and Kunihiko Kaneko. Chaotic expression dynamics implies pluripotency: when theory and experiment
meet. Biology direct, 4(17), 2009.

[6] Bryan C. Goodwin. Oscillatory behavior in enzymatic control processes. Advances in enzyme regulation, 5:425–428, 1965.

24



Figure 16. A Poincaré map for the flow of V 1 that covers twice the segment on which it is defined.

[7] John Guckenheimer and Philip Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol-
ume 42 of Applied Mathematical Sciences. Springer-Verlag, New York, 1990. Revised and corrected reprint of the 1983
original.

[8] John Guckenheimer and R.F. Williams. Structural stability of lorenz attractors. IHES Pub. Math., 50:59–72, 1979.
[9] Gérard Iooss, Robert Helleman, and Raymond Stora. Comportement chaotique des systèmes déterministes. Applied Math-
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[19] Elisabeth Pécou. Desynchronization of one-parameter families of stable vector fields. Nonlinearity, 19(2):261–276, 2006.
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