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Abstract

This paper considers the localization problem in mobilessemetworks. Such a problem is a challenging
task, especially when measurements exchanged betweenrsenay contain outliers,e., data not matching the
observation model. This paper proposes two algorithmsstabioutliers. These algorithms perform a set-membership
estimation, where only the maximal number of outliers isufeef to be known. Using these algorithms, estimates
consist of sets of boxes whose union surely contains thecblocation of the sensor, provided that the considered
hypotheses are satisfied. This paper proposes as well adeehfior evaluating the number of outliers to be robust
to. In order to corroborate the efficiency of both algorithrascomparison of their performances is performed in

simulations using Matlab.

Index Terms
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. INTRODUCTION

OBILE Sensor Networks (MSNs) have recently emerged as dectgahg research field. A MSN consists
M of a large number of low-cost smart sensors with limited cotagonal capacities and energy resources
[1]. Due to the lack of a fixed infrastructure in MSNs, the smrsare able to move in an uncontrolled manner.
For this reason and since sensed data are related to thetwcaf the sensors in almost all MSN applications,
many researchers have focused on the localization probAefinst solution for sensor localization is to equip all
sensors with Global Positioning Systems (GPS) [2]. Howethes solution is non-practical in MSNs, since GPS
are expensive, high energy consuming and having great. Sihesalternative solution consists of equipping a few
number of sensors with GPS receivers. These sensors, awtreiroocations, are callednchors The remaining
sensors, calledon-anchor nodesr simply nodes have unknown locations, and hence they need to be localized

Many anchor-based algorithms have been proposed for séosalization. For instance, Dohergt al. [3]

propose a centralized technique for position estimatiatalization in [3] is formalized as a convex optimization
problem, having connectivity measurements between seraorconstraints. In [4], [5], [6], different approaches
requiring few anchors have been proposed. Local maps wittiive positions are constructed using measured
distances between nodes and their neighbors. A combinafittiese maps with known positions of anchors leads
to absolute positions. Nevertheless, these techniquesareery robust, because of errors accumulation while
combining the maps. Authors in [7] propose a distributedicstalgorithm, where each node defines its position
as the center of all observed anchors. In a different soerj@lj Galstyanet al. propose an online distributed
technique, where nodes use their detection of a moving ttéogepdate their position estimates. Blatt and Hero
[9] address the problem of source localization using senswasurements. The problem is formulated as a convex
problem, that is solved using the Aggregated Projectioro@unvex Sets (APOCS) method. In [10], [11], [12],
dynamic approaches, based on sequential Monte-Carlo §t8]considered to estimate the positions of the nodes.
The posterior distribution of the unknown positions is mastied recursively with a set gfarticles Terwilliger et
al. [14] propose to cover all possible solutions with the snstllenclosing disk. Alternative dynamic algorithms
for sensor localization, using interval analysis [15], édneen proposed in [16], [17]. Position estimates are boxes
covering the possible locations of the sensors.

Existing methods have mainly considered the localizatiamblem with the hypothesis that all measurements are



consistent with the considered measurement model. Howievpractical situations, outliersg., data not matching
the measurement model, are encountered. Previously-onedtiestimation techniques are not very robust to such
outliers. In [18], Jaulinet al. propose a set-membership estimator robust to outliersdbaseinterval analysis.
Savareset al. [19] present a distributed robust algorithm for sensorliaation. The method is separated into two
phases: the start-up phase, where first estimates of nod@pssare computed using hop counts to anchors; and
the refinement phase, where nodes communicate with thejhbeis to update their positions using a least squares
triangulation technigue. Nevertheless, a number of fadtaftuence the convergence of the refinement phase, such
as the accuracy of first estimates and the magnitude of rgragirors. In [20], Rabbag¢t al. introduce a robust
localization algorithm of an isotropic energy source uskagnel averaging techniques. The proposed estimator
is more robust than the least squares estimator under aywafieconditions. Leger and Kieffer [21] present a
distributed version of the estimation algorithm [18], assug that the maximal number of outliers is known. In
particular, a static distributed algorithm is proposeddource localization using Received Signal Strength (RSS)
measurements. The proposed method adapts the Set Invéfisidnterval Analysis (SIVIA) algorithm [15] to
evaluate a solution set.

In this paper, we propose an original adaptive approacheosar localization in presence of outliers. Assuming
only that the maximal number of outliers is given, the prambsipproach uses connectivity measurements in
addition to a mobility model to address the localizationlgbeon. The solution is then given using either SIVIA or
an alternative combinatorial technique. Another contrdouof the paper is that it proposes a technique for evaigati
the maximal number of outliers to be robust to. Moreovem@si connectivity-based observation model, the paper
compares the performances of both robust localizationrigitgos.

The rest of the paper is organized as follows. Section lloghices the localization problem. A description of
the SIVIA algorithm and the combinatorial technique is thlggven in Section Ill. Section IV provides simulation

results whereas Section V concludes the paper.

II. PROBLEM STATEMENT

The proposed method is an anchor-based method where eaglexcthnges information with anchors to localize
itself. Consider a network aV, anchors andV,, mobile nodes. All sensors are assumed to be in the same (iaire:

locations at time are given bya; () = (a;1(t), ai2(t))T,i = 1,..., Ny, for anchors anet;(t) = (z;1(t), zj2(t))7,



j=1,...,N,, for nodes. In order to reduce the communication costs dutie localization process, the proposed
method assumes that each mobile node does not exchangeatifum with other nodes. For this reason and without
loss of generality, we focus on the localization of one gienerobile nodex(t) = (x1(t),z2(¢))” and we thus

drop the indexj.

A. Observation model

At time ¢, the mobile node receives signals from a gét) C {1,..., N,} of anchors with specific Received
Signal Strengths (RSSs), denoted &yt), ¢ € J(t). These RSSs are assumed to follow the Okumura-Hata model
[22],

pi(t) = po — 10nplog;, di(=(t) +&i(t). 1)

do
In (1), pi(t) is in dBm, pg is the power measured (ihBm) at a reference distanek from the anchom;(t), np
is the path-loss exponent;(x(t)) = ||x(t) — a;(t)| is the Euclidian distance between the anchgit) and the
considered node ang(t) is the measurement noise, modeled as zero-mean Gaussiamanances?.

In practice,pg andnp may vary from one anchor to the other amtimay be quite large. Given the RSS values,
the proposed model may lead to inaccurate distance estimiabe this reason, only connectivity information are
employed: (1) is only used to determine whether the node iheénvicinity of thei-th anchor. Letp, be some
RSS threshold corresponding to a distamcavhich is the sensing range of the sensors. Thep;(if) > p,, the
distanced;(x(t)) from the anchor to the node is deemed less thanAnchors for whichp;(t) > p, are called
detected anchor€©nly detected anchors are then taken into account for ttedifation. The observation model is
then given by

(21(t) — ain(t)? + (w2(t) —aip(t))? < r?, i€ I(t), )

whereI(t) C J(t) is the set of indices of detected anchars, whose emitted signals have RSS at the nadg
larger thanp,.. The observation model is thus given by a set of disk equatmntered on the detected anchors
and havingr as radius.

In real environments, measurements may not follow exabtyabservation model. Indeed, due to the additive
noise and the inaccuracy of the parameter values, a meaB&8d;(¢) could be less thap, while (2) is satisfied

for real and vice-versa. In the first case, the anchor is asdumbe out of the vicinity of the node, which is not



true, and thus a correct measurement is omitted wherea® iaettond case, an outlier is obtained. The proposed
approach takes such outliers into consideration. Usingctimmectivity-based model, it assumes that the maximal
number of outliers is known and denoted daylin other words, it considers thak(t)| — ¢ measurements at minimum

are correct at each time step.

B. Mobility model

The proposed method takes also advantage of the mobilityeohtdes to improve the estimation accuracy. Any
available information about the motion of the node could bed.to define the mobility model. This paper proposes
a very general mobility model where only the maximal velpdf the nodev,, ., is assumed to be known. Then,

the positions of the generic node at time stéepsAt andt satisfy

(z1(t) — 21 (t — AL))? + (22(t) — 22(t — AL))? < At? 02 (3)

max*

More generally, the mobility model could be reformulatedf@afows,
f(x(t — At),z(t),v) =0, 4)

wherev is some parameter only known to belong to some known intéoyghere [v] = [0, Uiz ).

C. Description of the robust set-membership localization

Estimating the location of the sensor at timeonsists of finding the seX(¢) of all locations consistent with
the mobility model (4) and at leasi(¢)| — ¢ observation constraints (2). In other words, these lonat&hould be
in the vicinity of at least(¢)| — ¢ detected anchors. A set-membership estimator [23] rolougtautliers [24] at
time ¢ is then obtained, since any(t)| — ¢ measurements instead [df(¢t)| measurements are considered for the
estimator.

Assume thatr(t — At) belongs to some seéf(t — At). According to this approach, and to compuf¢t), a

predictedset is first evaluated using the mobility model
X*(t) ={z | I’ € X(t — At),Jv € [v], f(z', z,v) < 0}. (5)

Measurements are then taken into account to coiXé¢t) as follows

0= U ( Neoni ) ©

Cec\f(t)\*q

I(t)



WhereCKg)‘_q is the set of all(|I(t)] — ¢)-combinations of indices il (¢), C is a set of indices belonging to
11(t)]—
Cray 7 and

Xy(t) ={z e X*(t) | lz — ar(t)]| <7} ()

Then,N,c X¢(t) denotes the set of locations &f (¢) that satisfy the specific observation constraints denated i

C'; whereasX(t) denotes the set of locations &f*(t) that satisfy any(|I(¢)| — ¢q) observation constraints. The

number of combinations to be considered in (6)i$t) = % whereq! denotes the factorial of.
An alternative definition ofX(¢) inspired by [24] is
X(t) ={x € X*(t) | Biern M, ai(t)) = [1(t)] — q}, (8)

1 if & —ai(t)]| <
whereA(z, a;(t)) =

0 otherwise.
This definition does not involve any combinatorial. One masgily prove that (6) and (8) are equivalent. This

technigue would be used in the following to solve the locdlan problem.

[11. L OCALIZATION ALGORITHMS

Solving the localization problem in a guaranteed way cassi§finding the set of all node locations that satisfy
the problem constraints while being robust to outliers.His paper, interval analysis [15] is employed to achieve
this goal. At each time step, the proposed method computest afsnon-overlapping boxes, callesibpaving
[15], whose union covers the solution S&tt). Assume thafX](¢) is the solution subpaving containing the actual

position of the generic node at tinie One has

X)) = |J =0, 9)

1<j<n(t)

where[x;](t) = [z;1](t) x [x;2](t) is a two-dimensional box andl(t) is the number of boxes ifX](¢). As shown

in Section II-C, finding[X](¢) involves a prediction phase followed by a correction phase.

A. Prediction phase

Assume thatX](¢ — At) is the subpaving obtained at time- At¢. Computing the predicted s&]*(¢) may

be done by evaluating (5), whed&(t — At) is replaced byX](¢ — At), which is quite difficult. Nevertheless,



for each box[z;](t — At) = [z;1](t — At) x [z;2](t — At) € [X](t — At), the corresponding boke;|*(t) =

[1])*(t) x [x;2]*(t) € [X]*(¢) has to be compliant with the mobility model (3), leading te following constraint
([ (1) = [2ja) (t = A1) + ([z52)" (1) = [wjo] (t — A1) C [0, At”.07, ). (10)
Relaxing (10) yields the following expressions|af 1]*(¢) and [x;]*(t)

[24]"(t) = [xj4)(t — At) + [~ At Vmag, At-Vmaz), 7 = 1,2. (11)

Let [X]*(t) = U,[z;]"(t) be the set of all boxes evaluated with (11). One may prove [[idtt) C [X]*(t). The
convex hull[z]*(t) = [z1]*(t) x [z2]*(t) [15] of [X]*(¢) is the smallest box containing]*(t). Its components are
defined as

[z:]"(t) = [ min (2j;(t)), max (2j;(t))],i=1,2, (12)
j<n(t-1)

j<n(t=1)
wherez’ | (t) andz;,(¢) are the low and high endpoints @f;.]*(¢) respectively.[z]*(¢) is a rectangular area
that covers all possible locations that could be taken bynibde at timet according to its mobility model. The

convex hull is used in the correction phase insteaddf(¢) to reduce the computational complexity.

B. Correction using the SIVIA algorithm

The SIVIA algorithm [15] performs a succession of bisectiaand selections of boxes compliant with the
localization constraints. Lgtc] be a box, set initially tda]*(¢). The following test function is evaluated
1 if Zie](t) M[z], a;) > |I(t)] — q,
W) =9 -1 it iy Mzl a) > g, (13)
0 otherwise
where\([z], a) is equal tal if sup(||[z]—a|) < r and0 otherwise while\([x], a) is equal tal if inf(||[x]—al|) >
and 0 otherwise. GraphicallyA([x],a) = 1 means that the boke| is entirely included in the connectivity disk
centered on the anchar, whereas\(|z],a) = 1 means that the boke] is entirely outside the connectivity disk
centered on the anchar.
The box[z] is added to the solutiofiX]|(¢) if v([x]) = 1, meaning that alle € [z] satisfy at least/(¢)| — ¢
observation constraints. Boxes inconsistent with more thabservation constraints/(jz]) = —1) are withdrawn,

whereas others having a non-empty intersection with thetisal set ¢([x]) = 0) are bisected. The bop| is
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Fig. 1. Robust localization with the SIVIA algorithm. Fig. 2. Robust localization with the combinatorial techréq

bisected into two sub-boxes of equal afea and[x], along the dimension having the largest width. The sub-boxes
are then tested, kept in the solution, withdrawn, or biskctetil the maximal width of the resulting sub-boxes is
less than a given thresholid An illustration of the proposed method is given in Fig. 1shows four detected
anchors, one of them being an outlier£ 1). The exact solution of the problem is given in light gray wdees

the subpaving provided by SIVIA is given in both light and kigray.

C. Correction using the combinatorial technique

In this algorithm, both the combinatorial formulation (&)dathe convex hullxz]*(¢) including all propagated
boxes using (12) are considered. Based on (6), the propdgedtlam consists in contracting the initial domain
[x]*(t) with each combinatiorC' € Cﬁg”_q of observations. For this reason, all observation equstindicated
in C are iterated in théorward-backwardcontractor [15]. This contractor iterates all constrainighout any prior
order until no contraction is possible. The resulting reg® the smallest box covering the intersection®f*(t)

with all the observation disks af'. In order to use each constraint of (2) in the forward-baakiwantractor, one

should express (t) as a function ofrs(t), and vice versa as follows,

a;1(t) = bi1(t) < xi(t) < aiqi(t) + bi1(t), 14)

am(t) — b@g(t) < xg(t) < az‘vg(t) + bz‘vg(t),

for each detected anchomwhereb; 1 (t) = /12 — (x2(t) — a;2(t))? andb; o(t) = /12 — (x1(t) — a;1(t))%. Using

intervals and having an initial boje], these inequalities would lead to the contracted gk defined as follows,

(1] = lai1 (t) = bi1(t), i (t) + biy ()], (15)

5] = [ai2(t) — bia(t), ai2(t) + bi2(t)],



where bi1(t) = sup([y/r2 — ([z2] — ai2(t))2]) and bi2(t) = sup([y/r2 — ([z1] — a;1(¢))?]). Then,

considering the combinatiofi of constraints, and starting with the predicted domairtifily [z]c = [z]*(t)), the

contracted boXx]- would be obtained by performing the following steps.

while [z]c is contracteddo

for s € C do

bia(t) = sup([y/r2 — ([z2]c — aia(1))?]);

[z1]e = [z1]e N aii () — bin(t), a1 (t) + bia(t)];

bia(t) = sup([y/r2 — ([z1]c — aia(1))?));

[z2]c = [z2]c N{aia(t) — bia(t), as2(t) + bia(t)];

end

end

Algorithm 1. Computation of the contracted box using the forward-baclveantractor.

Each non-empty boke]c, C € CHS”_Q, is added to the solutiofX](¢) at timet. The boxes inX](¢) may have
non-empty intersections. Consequently, in order to obtain-overlapping boxes, one could apply the following
procedure:

(i) Consider an empty final set,

(i) Sort all boxes of[X](¢) according to their decreasing areas,

(iii) Add the largest box to the final set,

(iv) Select the following box in the sorted list,

(v) Deprive it from all boxes already added to the final set,

(vi) Add the result to the set.
Steps (iv) to (vi) are repeated until all sorted boxes aresiclamed. Recall that depriving a bdu] from a box[y]
yields a set of non-overlapping boxes covering all the aintof [x] not included in[y]. An illustration of the
proposed method is given in Fig. 2. It shows four detectedhars; one of them yielding an erroneous observation.
The first solution leads to two boxes, the b@xand the one in dashed line. Using the depriving techniguegth

non-overlapping boxe®), @, and® (in bold line) are then selected covering the exact solufioright gray).
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D. Evaluation of the number of outliers to tolerate

Consider the vectgp of RSS measurements. Determining frgnthe maximal number of outlierg, which have
to be tolerated, may be done by choosinguch thatPr (Q < ¢|p) > 1 — v, wherePr (Q < ¢|p) is the probability

that ¢ or less outliers have occurred knowipgandv € [0, 1] is some tuning parameter. One has

r(Q < qlp) = ZPr = klp)

(16)
:Z 3 Pr(Q = k,slp),
k=0 (s€{0,1}Na 3", 5,=F)
wheres is some pattern indicating whether anchioe 1,..., N, is providing an outlier { = 1) or a reliable
measurements{ = 0). Now
Pr(Q = k,s|p) = Pr(Q = kls, p) . Pr (s|p) . (17)

Let p; and p; be the noisy and noiseless RSS measurements provided bythhanchor. The probability; that
the i-th anchor provides an outlier is nulb;(= 0) if p; < p, since in this case, the anchbis not detected and
will thus not provide any outlier. Otherwise; is given as follows,
pi =Pr(pj <pelpi = pr) =Pr(pi — pi > pi — pr)
=Pr(e; > pi — pr) (18)

-3 o-w(352)).

whereg; is thei-th measurement noise. Then, assuming that all measureroiat samples are independent

H Dis; + pi) (1 - 3@)) : (19)
=1

Now, since

1, if Zz S; = k
Pr(Q = kls,p) = Pr(Q = kls) = ) (20)

0, otherwise

one is able to evaluater (Q < ¢g|p) and to choose.

IV. SIMULATIONS

In this section, we compare the SIVIA-based method (SBLh#dombinatorial-based one (CBL). We consider
a group trajectory model where sensors are moving alondasitnajectories ovet00 s. We deploy31 sensors in a

100 mx 100 m area30 of them being anchors. Since nodes use only anchors infarmiat localize themselves, we
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consider the localization of a single mobile node. The satad trajectory of the node is with a maximal velocity
of 2.3 m.s~! and a localization stepAt of 1s. RSS measurements are generated using the distances héheee
considered node and all anchors and model (1) wite= 100 dBm, dy = 1 m andnp = 4. Moreover,r is set to
10 m andp, to 60 dBm. In order to compare the SBL algorithm to the CBL algorithng take different values
of the variances? of the measurement noise, leading to different numbers tiees: In fact, for each value af?,

g is evaluated using the results in Section IlI-D, with= 0.1.

Note that the initial position of the node is supposed to bewkm One may also use the whole deployment area
as initial domain. All simulations are performed on an IR} Core(TM)2 CPU aR.40 GHz and1 GB RAM,
using MATLAB 6.1.

We first setc = 3 dBm, yielding either none or only one outlier per time step. Aipy the results of
Section [lI-D one obtain®r (¢ = 0) = 0.4161, Pr (¢ < 1) = 0.9109 andPr (¢ < 2) = 0.9958. With v = 0.1, one
getsq = 1. With » = 0.01, one would take; = 2, which leads to less accurate estimates (less measurearents
taken into account) but still containing the solution settdNthat if too less outliers are tolerated, one may obtain
empty solution sets or sets not containing the actual looati the node.

With ¢ = 1, Fig. 3 shows the subpavings obtained with both SBL and CBlhods. Note that the threshodd
of SIVIA is set tol m. The plot shows that both results cover the actual posdfdhe node. The average ratio of
the areas of subpavings obtained with SBL over those olataiitn CBL is equal t00.827. SBL leads to a more
accurate estimate. However, the average time requiredhéolotalization process is equal@al71 s per time step
with SBL and t00.051 s with CBL. This difference is due to the limited number of cdndiions considered in
CBL at each time step6(< || < 10 with ¢ = 1). The average number of boxes per subpaving is equalto
with SBL, whereas it is equal t8 with CBL. Here, CBL is less memory consuming. Note that witpracision
parameter higher thah m in SIVIA, SBL needs less computing time but provides largalbpavings.

In a second set of experimentsyaries from1 dBm to 15 dBm. Fig. 4 shows the maximal number of outliers
g, the total number of considered anch¢f§ the average computing time per step and the ratio of theageer
subpaving areas obtained with SBL over CBL as a functiom.ofhe simulated data are generated ten times for
eacho, the results are thus average values over the set of simgafihe plot shows that CBL is faster than SBL

when the standard deviatian is less thar8 dBm. In these caseg; is less thard and the maximal number of
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Fig. 3. An illustration of the subpavings obtained with thBLSand the CBL algorithms.
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Fig. 4. An illustration ofg and || at the top plot, the computing times in the middle plot andrété of the subpavings areas (SBL over
CBL) in the bottom plot.

considered anchors is less thah When the noise variance increases, the computation timibeo€CBL method

becomes quite large compared to SBL. Choosing one algowthtine other depends on the anchor density and on

the proportion of outliers.

V. CONCLUSION

This paper proposes and compares two techniques for madnleos localization, that are robust to any fixed
number of erroneous measurements. Using interval analiisis estimates are sets of non-overlapping boxes
containing the actual location. The SIVIA-based algorit{®BL) bisects the search region leading to many boxes
describing efficiently the solution set; the combinaton@thod (CBL) leads to larger boxes including the solution

as well. In terms of computing time, CBL is more efficient tHaBL for a small number of outliers, whereas the
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complexity of SBL is almost constant whatever the numberotdrated outliers.
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