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12, rue Marie Curie, 10010 Troyes, France

farah.mourad@utt.fr hichem.snoussi@utt.fr
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Abstract

This paper considers the localization problem in mobile sensor networks. Such a problem is a challenging

task, especially when measurements exchanged between sensors may contain outliers,i.e., data not matching the

observation model. This paper proposes two algorithms robust to outliers. These algorithms perform a set-membership

estimation, where only the maximal number of outliers is required to be known. Using these algorithms, estimates

consist of sets of boxes whose union surely contains the correct location of the sensor, provided that the considered

hypotheses are satisfied. This paper proposes as well a technique for evaluating the number of outliers to be robust

to. In order to corroborate the efficiency of both algorithms, a comparison of their performances is performed in

simulations using Matlab.

Index Terms

connectivity measurements, interval analysis, localization outliers, sensor networks, set-membership estimation
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I. INTRODUCTION

MOBILE Sensor Networks (MSNs) have recently emerged as a challenging research field. A MSN consists

of a large number of low-cost smart sensors with limited computational capacities and energy resources

[1]. Due to the lack of a fixed infrastructure in MSNs, the sensors are able to move in an uncontrolled manner.

For this reason and since sensed data are related to the locations of the sensors in almost all MSN applications,

many researchers have focused on the localization problem.A first solution for sensor localization is to equip all

sensors with Global Positioning Systems (GPS) [2]. However, this solution is non-practical in MSNs, since GPS

are expensive, high energy consuming and having great sizes. The alternative solution consists of equipping a few

number of sensors with GPS receivers. These sensors, aware of their locations, are calledanchors. The remaining

sensors, callednon-anchor nodesor simply nodes, have unknown locations, and hence they need to be localized.

Many anchor-based algorithms have been proposed for sensorlocalization. For instance, Dohertyet al. [3]

propose a centralized technique for position estimation. Localization in [3] is formalized as a convex optimization

problem, having connectivity measurements between sensors as constraints. In [4], [5], [6], different approaches

requiring few anchors have been proposed. Local maps with relative positions are constructed using measured

distances between nodes and their neighbors. A combinationof these maps with known positions of anchors leads

to absolute positions. Nevertheless, these techniques arenot very robust, because of errors accumulation while

combining the maps. Authors in [7] propose a distributed static algorithm, where each node defines its position

as the center of all observed anchors. In a different scenario [8], Galstyanet al. propose an online distributed

technique, where nodes use their detection of a moving target to update their position estimates. Blatt and Hero

[9] address the problem of source localization using sensors measurements. The problem is formulated as a convex

problem, that is solved using the Aggregated Projection Onto Convex Sets (APOCS) method. In [10], [11], [12],

dynamic approaches, based on sequential Monte-Carlo [13],are considered to estimate the positions of the nodes.

The posterior distribution of the unknown positions is estimated recursively with a set ofparticles. Terwilliger et

al. [14] propose to cover all possible solutions with the smallest enclosing disk. Alternative dynamic algorithms

for sensor localization, using interval analysis [15], have been proposed in [16], [17]. Position estimates are boxes

covering the possible locations of the sensors.

Existing methods have mainly considered the localization problem with the hypothesis that all measurements are
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consistent with the considered measurement model. However, in practical situations, outliers,i.e., data not matching

the measurement model, are encountered. Previously-mentioned estimation techniques are not very robust to such

outliers. In [18], Jaulinet al. propose a set-membership estimator robust to outliers based on interval analysis.

Savareseet al. [19] present a distributed robust algorithm for sensor localization. The method is separated into two

phases: the start-up phase, where first estimates of node positions are computed using hop counts to anchors; and

the refinement phase, where nodes communicate with their neighbors to update their positions using a least squares

triangulation technique. Nevertheless, a number of factors influence the convergence of the refinement phase, such

as the accuracy of first estimates and the magnitude of ranging errors. In [20], Rabbatet al. introduce a robust

localization algorithm of an isotropic energy source usingkernel averaging techniques. The proposed estimator

is more robust than the least squares estimator under a variety of conditions. Leger and Kieffer [21] present a

distributed version of the estimation algorithm [18], assuming that the maximal number of outliers is known. In

particular, a static distributed algorithm is proposed forsource localization using Received Signal Strength (RSS)

measurements. The proposed method adapts the Set InversionVia Interval Analysis (SIVIA) algorithm [15] to

evaluate a solution set.

In this paper, we propose an original adaptive approach for sensor localization in presence of outliers. Assuming

only that the maximal number of outliers is given, the proposed approach uses connectivity measurements in

addition to a mobility model to address the localization problem. The solution is then given using either SIVIA or

an alternative combinatorial technique. Another contribution of the paper is that it proposes a technique for evaluating

the maximal number of outliers to be robust to. Moreover, using a connectivity-based observation model, the paper

compares the performances of both robust localization algorithms.

The rest of the paper is organized as follows. Section II introduces the localization problem. A description of

the SIVIA algorithm and the combinatorial technique is thengiven in Section III. Section IV provides simulation

results whereas Section V concludes the paper.

II. PROBLEM STATEMENT

The proposed method is an anchor-based method where each node exchanges information with anchors to localize

itself. Consider a network ofNa anchors andNx mobile nodes. All sensors are assumed to be in the same plane:their

locations at timet are given byai(t) = (ai,1(t), ai,2(t))
T , i = 1, . . . , Na, for anchors andxj(t) = (xj,1(t), xj,2(t))

T ,
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j = 1, . . . , Nx, for nodes. In order to reduce the communication costs during the localization process, the proposed

method assumes that each mobile node does not exchange information with other nodes. For this reason and without

loss of generality, we focus on the localization of one generic mobile nodex(t) = (x1(t), x2(t))
T and we thus

drop the indexj.

A. Observation model

At time t, the mobile node receives signals from a setJ(t) ⊆ {1, . . . , Na} of anchors with specific Received

Signal Strengths (RSSs), denoted by�i(t), i ∈ J(t). These RSSs are assumed to follow the Okumura-Hata model

[22],

�i(t) = �0 − 10nP log10
di(x(t))

d0
+ "i(t). (1)

In (1), �i(t) is in dBm, �0 is the power measured (indBm) at a reference distanced0 from the anchorai(t), nP

is the path-loss exponent,di(x(t)) = ∥x(t) − ai(t)∥ is the Euclidian distance between the anchorai(t) and the

considered node and"i(t) is the measurement noise, modeled as zero-mean Gaussian with variance�2.

In practice,�0 andnP may vary from one anchor to the other and�2 may be quite large. Given the RSS values,

the proposed model may lead to inaccurate distance estimates. For this reason, only connectivity information are

employed: (1) is only used to determine whether the node is inthe vicinity of the i-th anchor. Let�r be some

RSS threshold corresponding to a distancer, which is the sensing range of the sensors. Then, if�i(t) ≥ �r, the

distancedi(x(t)) from the anchori to the node is deemed less thanr. Anchors for which�i(t) ≥ �r are called

detected anchors. Only detected anchors are then taken into account for the localization. The observation model is

then given by

(x1(t)− ai,1(t))
2 + (x2(t)− ai,2(t))

2 ≤ r2, i ∈ I(t), (2)

whereI(t) ⊆ J(t) is the set of indices of detected anchors,i.e. whose emitted signals have RSS at the nodex(t)

larger than�r. The observation model is thus given by a set of disk equations centered on the detected anchors

and havingr as radius.

In real environments, measurements may not follow exactly the observation model. Indeed, due to the additive

noise and the inaccuracy of the parameter values, a measuredRSS�i(t) could be less than�r while (2) is satisfied

for real and vice-versa. In the first case, the anchor is assumed to be out of the vicinity of the node, which is not
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true, and thus a correct measurement is omitted whereas in the second case, an outlier is obtained. The proposed

approach takes such outliers into consideration. Using theconnectivity-based model, it assumes that the maximal

number of outliers is known and denoted byq. In other words, it considers that∣I(t)∣−q measurements at minimum

are correct at each time step.

B. Mobility model

The proposed method takes also advantage of the mobility of the nodes to improve the estimation accuracy. Any

available information about the motion of the node could be used to define the mobility model. This paper proposes

a very general mobility model where only the maximal velocity of the nodevmax is assumed to be known. Then,

the positions of the generic node at time stepst−Δt andt satisfy

(x1(t)− x1(t−Δt))2 + (x2(t)− x2(t−Δt))2 ≤ Δt2.v2max. (3)

More generally, the mobility model could be reformulated asfollows,

f(x(t−Δt),x(t), v) = 0, (4)

wherev is some parameter only known to belong to some known interval[v] (here[v] = [0, vmax]).

C. Description of the robust set-membership localization

Estimating the location of the sensor at timet consists of finding the setX(t) of all locations consistent with

the mobility model (4) and at least∣I(t)∣ − q observation constraints (2). In other words, these locations should be

in the vicinity of at least∣I(t)∣ − q detected anchors. A set-membership estimator [23] robust to q outliers [24] at

time t is then obtained, since any∣I(t)∣ − q measurements instead of∣I(t)∣ measurements are considered for the

estimator.

Assume thatx(t − Δt) belongs to some setX(t − Δt). According to this approach, and to computeX(t), a

predictedset is first evaluated using the mobility model

X
∗(t) = {x ∣ ∃x′ ∈ X(t−Δt),∃v ∈ [v],f(x′,x, v) ≤ 0}. (5)

Measurements are then taken into account to correctX
∗(t) as follows

X(t) =
∪

C∈C∣I(t)∣−q

I(t)

(

∩

ℓ∈C Xℓ(t)

)

, (6)
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whereC∣I(t)∣−q

I(t) is the set of all(∣I(t)∣ − q)-combinations of indices inI(t), C is a set of indices belonging to

C
∣I(t)∣−q

I(t) and

Xℓ(t) = {x ∈ X
∗(t) ∣ ∥x− aℓ(t)∥ ≤ r}. (7)

Then,
∩

ℓ∈C Xℓ(t) denotes the set of locations ofX∗(t) that satisfy the specific observation constraints denoted in

C; whereasX(t) denotes the set of locations ofX∗(t) that satisfy any(∣I(t)∣ − q) observation constraints. The

number of combinations to be considered in (6) isK(t) = ∣I(t)∣!
(∣I(t)∣−q)!q! whereq! denotes the factorial ofq.

An alternative definition ofX(t) inspired by [24] is

X(t) = {x ∈ X
∗(t) ∣ Σi∈I(t)�(x,ai(t)) ≥ ∣I(t)∣ − q}, (8)

where�(x,ai(t)) =

⎧



⎨



⎩

1 if ∥x− ai(t)∥ ≤ r,

0 otherwise.
This definition does not involve any combinatorial. One may easily prove that (6) and (8) are equivalent. This

technique would be used in the following to solve the localization problem.

III. L OCALIZATION ALGORITHMS

Solving the localization problem in a guaranteed way consists of finding the set of all node locations that satisfy

the problem constraints while being robust to outliers. In this paper, interval analysis [15] is employed to achieve

this goal. At each time step, the proposed method computes a set of non-overlapping boxes, calledsubpaving

[15], whose union covers the solution setX(t). Assume that[X](t) is the solution subpaving containing the actual

position of the generic node at timet. One has

[X](t) =
∪

1≤j≤n(t)

[xj ](t), (9)

where[xj ](t) = [xj,1](t)× [xj,2](t) is a two-dimensional box andn(t) is the number of boxes in[X](t). As shown

in Section II-C, finding[X](t) involves a prediction phase followed by a correction phase.

A. Prediction phase

Assume that[X](t − Δt) is the subpaving obtained at timet − Δt. Computing the predicted set[X]∗(t) may

be done by evaluating (5), whereX(t − Δt) is replaced by[X](t − Δt), which is quite difficult. Nevertheless,
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for each box[xj ](t − Δt) = [xj,1](t − Δt) × [xj,2](t − Δt) ∈ [X](t − Δt), the corresponding box[xj ]
∗(t) =

[xj,1]
∗(t)× [xj,2]

∗(t) ∈ [X]∗(t) has to be compliant with the mobility model (3), leading to the following constraint

([xj,1]
∗(t)− [xj,1](t−Δt))2 + ([xj,2]

∗(t)− [xj,2](t−Δt))2 ⊆ [0,Δt2.v2max]. (10)

Relaxing (10) yields the following expressions of[xj,1]
∗(t) and [xj,2]∗(t)

[xj,i]
∗(t) = [xj,i](t−Δt) + [−Δt.vmax,Δt.vmax], i = 1, 2. (11)

Let [X̃]∗(t) =
∪

j [xj ]
∗(t) be the set of all boxes evaluated with (11). One may prove that[X]∗(t) ⊂ [X̃]∗(t). The

convex hull[x]∗(t) = [x1]
∗(t)× [x2]

∗(t) [15] of [X̃]∗(t) is the smallest box containing[X̃]∗(t). Its components are

defined as

[xi]
∗(t) = [ min

j≤n(t−1)
(x∗

j,i(t)), max
j≤n(t−1)

(x∗
j,i(t))], i = 1, 2, (12)

wherex∗
j,1(t) andx∗

j,1(t) are the low and high endpoints of[xj,1]
∗(t) respectively.[x]∗(t) is a rectangular area

that covers all possible locations that could be taken by thenode at timet according to its mobility model. The

convex hull is used in the correction phase instead of[X̃]∗(t) to reduce the computational complexity.

B. Correction using the SIVIA algorithm

The SIVIA algorithm [15] performs a succession of bisections and selections of boxes compliant with the

localization constraints. Let[x] be a box, set initially to[x]∗(t). The following test function is evaluated


([x]) =

⎧











⎨











⎩

1 if
∑

i∈I(t) �([x],ai) ≥ ∣I(t)∣ − q,

−1 if
∑

i∈I(t) �̃([x],ai) > q,

0 otherwise,

(13)

where�([x],a) is equal to1 if sup(∥[x]−a∥) ≤ r and0 otherwise whilẽ�([x],a) is equal to1 if inf(∥[x]−a∥) > r

and 0 otherwise. Graphically,�([x],a) = 1 means that the box[x] is entirely included in the connectivity disk

centered on the anchora, whereas̃�([x],a) = 1 means that the box[x] is entirely outside the connectivity disk

centered on the anchora.

The box [x] is added to the solution[X](t) if 
([x]) = 1, meaning that allx ∈ [x] satisfy at least∣I(t)∣ − q

observation constraints. Boxes inconsistent with more than q observation constraints (
([x]) = −1) are withdrawn,

whereas others having a non-empty intersection with the solution set (
([x]) = 0) are bisected. The box[x] is
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[x]∗(t)

a1

a2

a3
a4

r

Fig. 1. Robust localization with the SIVIA algorithm.

1

3

2

[x]∗(t)

a1

a2

a3
a4

r

Fig. 2. Robust localization with the combinatorial technique.

bisected into two sub-boxes of equal area[x]1 and[x]2 along the dimension having the largest width. The sub-boxes

are then tested, kept in the solution, withdrawn, or bisected until the maximal width of the resulting sub-boxes is

less than a given threshold�. An illustration of the proposed method is given in Fig. 1. Itshows four detected

anchors, one of them being an outlier (q = 1). The exact solution of the problem is given in light gray whereas

the subpaving provided by SIVIA is given in both light and dark gray.

C. Correction using the combinatorial technique

In this algorithm, both the combinatorial formulation (6) and the convex hull[x]∗(t) including all propagated

boxes using (12) are considered. Based on (6), the proposed algorithm consists in contracting the initial domain

[x]∗(t) with each combinationC ∈ C
∣I(t)∣−q

I(t) of observations. For this reason, all observation equations indicated

in C are iterated in theforward-backwardcontractor [15]. This contractor iterates all constraintswithout any prior

order until no contraction is possible. The resulting region is the smallest box covering the intersection of[x]∗(t)

with all the observation disks ofC. In order to use each constraint of (2) in the forward-backward contractor, one

should expressx1(t) as a function ofx2(t), and vice versa as follows,
⎧



⎨



⎩

ai,1(t)− bi,1(t) ≤ x1(t) ≤ ai,1(t) + bi,1(t),

ai,2(t)− bi,2(t) ≤ x2(t) ≤ ai,2(t) + bi,2(t),

(14)

for each detected anchori wherebi,1(t) =
√

r2 − (x2(t)− ai,2(t))2 andbi,2(t) =
√

r2 − (x1(t)− ai,1(t))2. Using

intervals and having an initial box[x], these inequalities would lead to the contracted box[x′] defined as follows,
⎧



⎨



⎩

[x′1] = [ai,1(t)− bi,1(t), ai,1(t) + bi,1(t)],

[x′2] = [ai,2(t)− bi,2(t), ai,2(t) + bi,2(t)],

(15)
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where bi,1(t) = sup([
√

r2 − ([x2]− ai,2(t))2]) and bi,2(t) = sup([
√

r2 − ([x1]− ai,1(t))2]). Then,

considering the combinationC of constraints, and starting with the predicted domain (initially [x]C = [x]∗(t)), the

contracted box[x]C would be obtained by performing the following steps.

while [x]C is contracteddo

for i ∈ C do

bi,1(t) = sup([
√

r2 − ([x2]C − ai,2(t))2]);

[x1]C = [x1]C ∩ [ai,1(t)− bi,1(t), ai,1(t) + bi,1(t)];

bi,2(t) = sup([
√

r2 − ([x1]C − ai,1(t))2]);

[x2]C = [x2]C ∩ [ai,2(t)− bi,2(t), ai,2(t) + bi,2(t)];

end

end

Algorithm 1: Computation of the contracted box using the forward-backward contractor.

Each non-empty box[x]C , C ∈ C
∣I(t)∣−q

I(t) , is added to the solution[X](t) at timet. The boxes in[X](t) may have

non-empty intersections. Consequently, in order to obtainnon-overlapping boxes, one could apply the following

procedure:

(i) Consider an empty final set,

(ii) Sort all boxes of[X](t) according to their decreasing areas,

(iii) Add the largest box to the final set,

(iv) Select the following box in the sorted list,

(v) Deprive it from all boxes already added to the final set,

(vi) Add the result to the set.

Steps (iv) to (vi) are repeated until all sorted boxes are considered. Recall that depriving a box[x] from a box[y]

yields a set of non-overlapping boxes covering all the points x of [x] not included in[y]. An illustration of the

proposed method is given in Fig. 2. It shows four detected anchors, one of them yielding an erroneous observation.

The first solution leads to two boxes, the box1⃝ and the one in dashed line. Using the depriving technique, three

non-overlapping boxes1⃝, 2⃝, and 3⃝ (in bold line) are then selected covering the exact solution(in light gray).
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D. Evaluation of the number of outliers to tolerate

Consider the vector� of RSS measurements. Determining from� the maximal number of outliersq, which have

to be tolerated, may be done by choosingq such thatPr (Q ≤ q∣�) > 1− �, wherePr (Q ≤ q∣�) is the probability

that q or less outliers have occurred knowing� and� ∈ [0, 1] is some tuning parameter. One has

Pr (Q ≤ q∣�) =
q

∑

k=0

Pr (Q = k∣�)

=

q
∑

k=0

∑

(s∈{0,1}Na ,
∑

i
si=k)

Pr (Q = k, s∣�) ,
(16)

wheres is some pattern indicating whether anchori = 1, . . . , Na is providing an outlier (si = 1) or a reliable

measurement (si = 0). Now

Pr (Q = k, s∣�) = Pr (Q = k∣s,�) .Pr (s∣�) . (17)

Let �i and�∗i be the noisy and noiseless RSS measurements provided by thei-th anchor. The probabilitypi that

the i-th anchor provides an outlier is null (pi = 0) if �i < �r since in this case, the anchori is not detected and

will thus not provide any outlier. Otherwise,pi is given as follows,

pi = Pr (�∗i < �r∣�i ≥ �r) = Pr (�i − �∗i > �i − �r)

= Pr ("i > �i − �r)

=
1

2

(

1− erf

(

�i − �r√
2�2

))

,

(18)

where"i is the i-th measurement noise. Then, assuming that all measurementnoise samples are independent

Pr (s∣�) =
Na
∏

i=1

(pisi + (1− pi) (1− si)) . (19)

Now, since

Pr (Q = k∣s,�) = Pr (Q = k∣s) =

⎧







⎨







⎩

1, if
∑

i si = k

0, otherwise

, (20)

one is able to evaluatePr (Q ≤ q∣�) and to chooseq.

IV. SIMULATIONS

In this section, we compare the SIVIA-based method (SBL) to the combinatorial-based one (CBL). We consider

a group trajectory model where sensors are moving along similar trajectories over100 s. We deploy31 sensors in a

100 m×100 m area,30 of them being anchors. Since nodes use only anchors information to localize themselves, we
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consider the localization of a single mobile node. The simulated trajectory of the node is with a maximal velocity

of 2.3 m.s−1 and a localization stepΔt of 1s. RSS measurements are generated using the distances between the

considered node and all anchors and model (1) with�0 = 100 dBm, d0 = 1 m andnP = 4. Moreover,r is set to

10 m and�r to 60 dBm. In order to compare the SBL algorithm to the CBL algorithm, we take different values

of the variance�2 of the measurement noise, leading to different numbers of outliers. In fact, for each value of�2,

q is evaluated using the results in Section III-D, with� = 0.1.

Note that the initial position of the node is supposed to be known. One may also use the whole deployment area

as initial domain. All simulations are performed on an Intel(R) Core(TM)2 CPU at2.40 GHz and 1 GB RAM,

using MATLAB 6.1.

We first set� = 3 dBm, yielding either none or only one outlier per time step. Applying the results of

Section III-D one obtainsPr (q = 0) = 0.4161, Pr (q ≤ 1) = 0.9109 andPr (q ≤ 2) = 0.9958. With � = 0.1, one

getsq = 1. With � = 0.01, one would takeq = 2, which leads to less accurate estimates (less measurementsare

taken into account) but still containing the solution set. Note that if too less outliers are tolerated, one may obtain

empty solution sets or sets not containing the actual location of the node.

With q = 1, Fig. 3 shows the subpavings obtained with both SBL and CBL methods. Note that the threshold�

of SIVIA is set to1 m. The plot shows that both results cover the actual positionof the node. The average ratio of

the areas of subpavings obtained with SBL over those obtained with CBL is equal to0.827. SBL leads to a more

accurate estimate. However, the average time required for the localization process is equal to0.471 s per time step

with SBL and to0.051 s with CBL. This difference is due to the limited number of combinations considered in

CBL at each time step (6 ≤ ∣I∣ ≤ 10 with q = 1). The average number of boxes per subpaving is equal to120

with SBL, whereas it is equal to3 with CBL. Here, CBL is less memory consuming. Note that with aprecision

parameter higher than1 m in SIVIA, SBL needs less computing time but provides largersubpavings.

In a second set of experiments,� varies from1 dBm to 15 dBm. Fig. 4 shows the maximal number of outliers

q, the total number of considered anchors∣I∣, the average computing time per step and the ratio of the average

subpaving areas obtained with SBL over CBL as a function of�. The simulated data are generated ten times for

each�, the results are thus average values over the set of simulations. The plot shows that CBL is faster than SBL

when the standard deviation� is less than8 dBm. In these cases,q is less than4 and the maximal number of
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Fig. 3. An illustration of the subpavings obtained with the SBL and the CBL algorithms.
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considered anchors is less than13. When the noise variance increases, the computation time ofthe CBL method

becomes quite large compared to SBL. Choosing one algorithmor the other depends on the anchor density and on

the proportion of outliers.

V. CONCLUSION

This paper proposes and compares two techniques for mobile sensor localization, that are robust to any fixed

number of erroneous measurements. Using interval analysis, the estimates are sets of non-overlapping boxes

containing the actual location. The SIVIA-based algorithm(SBL) bisects the search region leading to many boxes

describing efficiently the solution set; the combinatorialmethod (CBL) leads to larger boxes including the solution

as well. In terms of computing time, CBL is more efficient thanSBL for a small number of outliers, whereas the
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complexity of SBL is almost constant whatever the number of tolerated outliers.
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