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Abstract

The use of the Gaia astrometric catalogue in the past needs some care to propagate
the positions and derive their accuracy from the published values at the Catalogue
epoch. The basic propagation model is presented and the accuracy in the past is
provided as a function of magnitude and elapsed time.

1 Introduction

The ESA space astrometry mission, due for launch in late 2013, will survey the sky down
to the 20th magnitude with an unprecedented astrometric accuracy of 25 muas at 15 mag,
carrying out simultaneously multi-epoch photometry and spectroscopy. The mission is
optimised to observe stellar sources to produce a stereoscopic and kinematic census of
about one billion stars in our Galaxy enabling to probe the formation and evolution of
the Milky Way. The expected astrometric accuracy is shown in Fig. 1 as a function of
the G magnitude (very similar to R band for most stars). More precisely this gives the
end-of-mission accuracy in astrometric parameters applicable to single stars at the mean
epoch of the Catalogue, typically around 2016. More complex astrometric models will be
applied for multiple systems and the accuracy should degrade a little, depending on the
complexity of the dynamical model. Thanks to the simultaneous observation of several
10,000s quasars, the Gaia frame will be kinematically non rotating and aligned to the best
version of the ICRF available at Gaia completion.

2 Propagation of Gaia Astrometry

To use the Gaia catalogue to reprocess old observations would require that a Gaia position
at mean epoch is propagated in the past, over a timespan that could reach one century.

Gaia astrometric accuracy in the past
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Figure 1: Gaia expected final astrometric accuracy at mean epoch as a function of the
magnitude.

Since proper motions components are available this seems to be a trivial exercice to get
the barycentric position with a linear transformation like,

(
α(t)− α(t0)

)
cos δ0 = μα(t− t0) (1a)

δ(t)− δ(t0) = μδ(t− t0) (1b)

which amounts to identifying the time derivatives of the coordinates, or better the com-
ponents of the velocity on the plane of the sky, to the first differences.

But there are modelling errors in Eqs. 1 due to the neglect of terms of higher order in
μα, μδ in the right-hand-side. Given the accuracy of Gaia, it can be shown that, depending
on the star distance, they are not negligible when the propagation extends over several
10s years. A more general model is applicable to single stars for which the 3D motion can
be considered rectilinear with constant velocity for several centuries. While this is true
for the space motion, this is not for the projected displacement on the plane of the sky
which is far from uniform at the Gaia accuracy.
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2.1 The vectorial propagation equation

Based on this rectilinear motion we have the very simple propagation model,

OM(t) = OM0 + V t (2)

relating the initial star position vector at the initial epoch (here t0 = 0) to the position at
any time t. Putting

|OM0| = r (3)

for the distance at the first epoch and using respectively u0 and u for the unit vectors in
the direction of the star at t0 = 0 and t, one has

OM
r

= u0 +
V
r

t (4)

and then with W = V/r, to express the velocity in angular unit,

OM
r

= u0 + W t (5)

and finally with W = |W|,

u(t) =
u0 + W t

|u0 + W t|

= (u0 + W t)
(
1 + 2u0 ·W t + W 2 t2

)−1/2

(6)

Eq. (6) is the exact form of the propagation model for a single star giving the unit direction
vector at time t without approximation, beyond the fact that the 3-D motion is uniform on
a straight line. One can see that it depends on the three components of the velocity scaled
by the distance, that is to say on the three components of the angular proper motion,
including that in the radial direction. Numerically all the computations can be done in
rectangular coordinates and transformed at the end in spherical coordinates, namely the
right-ascension and declination at epoch. One must notice that the radial velocity vr is
required above the first order approximation.

2.2 The coordinate propagation equations

Although Eq. 6 solves the practical numerical problem, it is useful to express the result
directly in spherical coordinates to extend the validity of Eq. 1 beyond the linear approx-
imation. There are several methods to derive the more exact expressions, for example by
expanding Eq. 6 in power of t and projecting on the plane of the sky. I propose below an
alternative and more direct method based on the covariant derivative of the velocity.
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Consider again the basic kinematical model with a uniform rectilinear motion in the Eu-
clidean space. It is characterized by the fact that the velocity vector is parallel transported
along the geodesic of the underlying space, i.e. along a straight line. This means that the
3-D acceleration d2r/dt2 = 0 and more generally in any moving coordinate system that
the covariant derivative is identically zero,

D2r/Dt2 = 0 (7)

Expressing this fact in curvilinear (here spherical) coordinates yi one has

γi =
d2yi

dt2
+ Γi

jk

dyj

dt

dyk

dt
(8)

where the Christoffel symbols Γi
jk are computed from the metric of R3 in spherical coor-

dinates,
ds2 = dr2 + r2 cos2 δ dα2 + r2 dδ2 (9)

using y1 = r, y2 = α, y3 = δ, which gives in the local frame (normalised with unit vectors)
er, eα, eδ the non-zero Christoffel symbols,

Γ1
22 = −r cos2 δ Γ1

33 = −r Γ2
12 = 1/r (10a)

Γ2
23 = − tan δ Γ3

13 = 1/r Γ3
22 = sin δ cos δ (10b)

Then with γi = 0 for a uniform rectilinear motion one has,

r̈ = r cos2 δ α̇2 + r δ̇2 (11a)

α̈ = −2
r

ṙ α̇ + 2 tan δ α̇δ̇ (11b)

δ̈ = −2
r

ṙδ̇ − sin δ cos δ α̇2 (11c)

Eqs. 11b-11c are the general expressions for the second derivatives of the right ascension
and declination of a star moving on a straight line at constant speed in space. There are
supplementary terms of the same order of magnitude which are different from zero even
in the case of a purely tangential motion.

To write down the model to third order one needs also the third time derivatives of α, δ,
which after a some algebra reduce to,

d3yi

dt3
=

[
−∂Γi

jk

∂yl
+ 2Γi

mj Γm
kl

]
ẏj ẏk ẏl (12)

and with the substitution of (10) one gets,

d3α

dt3
= 6

ṙ2

r2
α̇− 12 tan δ

ṙ

r
α̇δ̇ + 6 tan2 δ α̇δ̇2 − 2α̇3 (13a)

d3δ

dt3
= 6

ṙ2

r2
δ̇ + 3 sin 2δ

ṙ

r
α̇2 − 3 α̇2 δ̇ − 2δ̇3 (13b)
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Now one can write the propagation model as,

α(t) = α0 + α̇ t + α̈
t2

2
+

...
α

t3

6
(14a)

δ(t) = δ0 + δ̇ t + δ̈
t2

2
+

...
δ

t3

6
(14b)

or with Equations (11, 13, 14) and denoting μα = α̇ cos δ0, μδ = δ̇, μr = vr/r, where r is
the distance of the star at initial epoch,

Δα cos δ0 = μα t− [μr μα − tan δ0 μα μδ] t2

+
[
μ2

r μα − 2 tan δ0 μr μα μδ + tan2 δ μα μ2
δ −

μ3
α

3 cos2 δ0

]
t3

(15)

Δδ = μδ t−
[
μr μδ +

tan δ0

2
μ2

α

]
t2

+
[
μ2

r μδ + tan δ0 μr μ2
α −

μ2
α μδ

2 cos2 δ0
− μ3

δ

3

]
t3

(16)

Equations (15)-(16) give the propagation model to third order of the proper motions. One
sees the presence of the radial velocity in second and third order terms.

Solving now this system for μα and μδ, or equivalently inverting the series to the same
order gives the proper motion components from the positions at two epochs. The process
leads to the final transformation,

μα t = a(1 + μr t)− tan δ0 a d +
3 cos2 δ0 − 1

6 cos2 δ0
a3 − tan δ0 a dμrt (17a)

μδ t = d (1 + μr t) +
1
2

tan δ0 a2 +
2 cos2 δ0 − 1

2 cos2 δ0
a2 d +

1
2

tan δ0 a2 μrt +
d3

3
(17b)

where a = Δα cos δ0, and d = Δδ.

2.3 The propagation of the covariance matrix

For each star, the Gaia catalogue will provide simultaneously the 5 astrometric param-
eters (position, proper motion components and parallax) together with their covariance
matrix in equatorial coordinates. The diagonal terms will give the standard deviation at
epoch, that is to say an estimate of the uncertainty. This is the most compact statistical
synthesis of the noisy observations based on the single star astrometric model. As we have
propagated the position in the past, one must do the same for the estimated uncertainty.
Basically if we start from the linear propagation model given in Eq. 1, one has essentially
something close to,

σ2
α(t) ≈ σ2

α0
+ σ2

μα
(t− t0)2 (18a)

σ2
δ (t) ≈ σ2

δ0 + σ2
μδ

(t− t0)2 (18b)
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Figure 2: Evolution of the accuracy of the Gaia positional stellar catalogue with time due
to the uncertainty in the annual proper motions of stars.

where correlations at t0 have been neglected and a simple linear propagation model has
been used. One should however note that α, μα and δ, μδ become quickly highly corre-
lated and in applications using both positions and proper motions, extreme care must be
exercised in the statistical inference. The propagation of the covariance matrix is much
more complex and involves the Jacobian matrix of the general transformation between the
astrometric parameters at epoch t0 and t. More precisely the covariance matrices at two
epochs are related by,

C(t) = JC(t0)JT (19)

For the position the transformation is the generalisation of Eq. 1 given by Eqs. 15-16 and
by their derivatives for the proper motion components, while Eq. 19 generalises Eqs. 18.
Without entering into the details, this has been implemented in a computer program and
allowed expressing the accuracy of the Gaia propagated astrometry in the past (and future)
as a function the magnitude, using the expected accuracy at the Catalogue Epoch. The
results are shown in Fig. 2 for the sky-averaged accuracy between 1890-2090. One must
note the ∼ mas accuracy for the faint stars of the Carte du Ciel around the beginning of
the program.


