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matic number BBCq(G,H) is the minimum k such that G can be properly coloured with colours from {1, . . . ,k},
and moreover for each edge of H, the colours of its ends differ by at least q. In this paper we focus on the case when
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Coloration dorsale (circulaire) : arbres dorsaux dans les graphes planaires

Résumé : On considère un graphe G (non-orienté) et un sous-graphe H de G. Le nombre chromatique q-dorsal
BBCq(G,H) est le plus petit entier k tel que G puisse être coloré proprement avec les couleurs {1, . . . ,k} de telle
sorte qu’en plus pour toute arête de H, les couleurs de ses deux extrémités diffèrent d’au moins q. Dans ce rapport,
nous étudions le cas où G est planaire et H est une forêt. Nous donnons une série de résultats de NP-complétude
ainsi que des bornes supérieures pour BBCq(G,H), suivant le type de forêt (couplage, galaxie, arbre couvrant).
Nous abordons également une version circulaire du problème.

Mots-clés : coloration dorsale, graphe planaire, forêt, NP-complet
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1 Introduction

All the graphs considered in this paper are simple. Let G = (V,E) be a graph, and let H = (V,E(H)) be a spanning
subgraph of G, called the backbone. A k-colouring of G is a mapping f : V →{1,2, . . . ,k}. Let f be a k-colouring
of G. It is a proper colouring if | f (u)− f (v)| ≥ 1. It is a q-backbone colouring for (G,H) if f is a proper colouring
of G and | f (u)− f (v)| ≥ q for all edges uv∈ E(H). The chromatic number χ(G) is the smallest integer k for which
there exists a proper k-colouring of G. The q-backbone chromatic number BBCq(G,H) is the smallest integer k
for which there exists a q-backbone k-colouring of (G,H).

If f is a proper k-colouring of G, then g defined by g(v) = q · f (v)−q+1 is a q-backbone colouring of (G,H)

for any spanning subgraph H of G. Moreover it is well-known that if G = H, this q-backbone colouring of (G,H)

is optimal. Therefore, since BBCq(H,H)≤ BBCq(G,H)≤ BBCq(G,G), we have

q ·χ(H)−q+1≤ BBCq(G,H)≤ q ·χ(G)−q+1. (1)

If H is empty (i.e. E(H) = /0), then BBCq(G,H) = χ(G). Hence for any k≥ 3, deciding if BBCq(G,H)≤ k is
NP-complete because deciding if a graph is k-colourable is NP-complete (See [7]). However, when we impose G or
H to belong to certain graph classes, the problem sometimes become polynomial-time solvable. A trivial example
is when we impose H to have chromatic number at least r > (k+ q− 1)/q. Then BBCq(G,H) ≥ rq− q+ 1, and
so deciding if BBC(G,H) ≤ k can be done instantly by always returning ‘no’. A less trivial example is when we
impose H to have minimum degree 1. For such an H, deciding if BBC(G,H) ≤ q+ 1 is also polynomial-time
solvable, because BBCq(G,H) = q+ 1 if and only if G is bipartite. This simple observation was already made
by Broersma et al. [5] when H is a 1-factor (a spanning subgraph in which every vertex has degree exactly 1).
Furthermore, if we also impose H to be connected, we show in Theorem 17 that deciding if BBC(G,H) ≤ q+ 2
can be done in polynomial time. In contrast, if the condition of H being connected is removed, then it is NP-
complete (Theorem 18).

In this paper, we will focus on the particular case when G is a planar graph and H is a forest (i.e. an acyclic
graph). Inequality (1) and the Four-Colour Theorem imply that for any planar graph G and spanning subgraph
H, BBC(G,H) ≤ 3q+ 1. However, for q = 2, Broersma et al. [4] conjectured that this is not best possible if the
backbone is a forest.

Conjecture 1. If G is a planar graph and F a forest in G, then BBC2(G,F)≤ 6.

If true Conjecture 1 would be best possible. Broersma et al. [4] gave an example of a graph Ĝ with a forest
F̂ such that BBC2(Ĝ, F̂) = 6. See Figure 1. It is then natural to ask how large BBCq(G,F) could be when G is

Figure 1: A planar graph Ĝ with a forest F̂ (bold edges) such that BBCq(Ĝ, F̂) = q+4.

planar and F is a forest for larger values of q. We prove the following.

Theorem 2. If G is a planar graph and F a forest in G, then BBCq(G,F)≤ q+6.
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4 Frédéric Havet , Andrew D. King , Mathieu Liedloff , Ioan Todinca‡

In fact, we prove a more general result in Proposition 13 : for any pair (G,H) with H a subgraph of G,

BBCq(G,H)≤ (χ(G)+q−2)χ(H)−q+2.

For q ≥ 4, Theorem 2 is best possible. Indeed, we show a planar graph G∗ together with a spanning tree T ∗ such
that BBCq(G∗,T ∗) = q+6 for all q≥ 4. See Figure 2 and Proposition 15. Furthermore, we show in Theorem 32,

z2

y3 y4

y1

y2

z1

Figure 2: A planar graph G∗ and a tree T ∗ (bold edges) such that BBCq(G∗,T ∗) = q+6 for q≥ 4.

that for any fixed q ≥ 4, given a planar graph G and a spanning tree T of G, it is NP-complete to decide if
BBCq(G,T )≤ q+5.

On the other hand, we believe that if q = 3, Theorem 2 is not best possible.

Conjecture 3. If G is a planar graph and F a forest in G, then BBC3(G,F)≤ 8.

If true, Conjecture 3 would be tight. The pair (G∗,F∗) of Figure 2 satisfies BBC3(G∗,F∗) = 8. We show in
Proposition 16 that Conjecture 1 implies Conjecture 3.

A star is a tree in which a vertex v, called the center is adjacent to every other. A galaxy is a forest of stars.
As evidence in support of Conjectures 1 and 3, Broersma et al. [5] showed that if F is a galaxy in a planar graph G,
then BBCq(G,F)≤ q+4. This result is best possible even if F has maximum degree 3 as shown by the example
of Figure 1. Furthermore, we show in Theorems 21 and 29 that, for any q ≥ 2, it is NP-complete to decide if
BBCq(G,F)≤ q+3 given a planar graph G and a galaxy of maximum degree 3.

However, if the backbone is a matching, i.e. a galaxy with maximum degree 1, then fewer colours are needed.
Indeed, Broersma et al. [5] showed that if M is a matching in a planar graph G, then for any q≥ 3, BBCq(G,M)≤
q+3. They conjectured that the same holds for q = 2.

Conjecture 4 (Broersma et al. [5]). If G is a planar graph G and M a matching in G, then BBC2(G,M)≤ 5.

It is natural to ask the same question for galaxies with maximum degree at least 2. When q = 2, we answer
in the negative by showing that there are pairs of planar graphs and spanning forests of maximum degree 2 whose
2-backbone chromatic number is 6. Furthermore, we show that given a planar graph G and a spanning forest F of

INRIA



(Circular) backbone colouring: tree backbones in planar graphs 5

maximum degree 2, it is NP-complete to decide whether BBC2(G,F)≤ 5 (Theorem 23). We also show that given a
planar graph G with a hamiltonian path P, it is NP-complete to decide whether BBC2(G,F)≤ 5. This result refines
a result of Broersma et al. [3, 4] who proved it for a general graph G.

For q = 3, the problem remains open.

Problem 5. If G is a planar graph G and F a galaxy of maximum degree 2, is is true that BBCq(G,F) ≤ q+ 3,
for all q≥ 3?

Broersma et al. [5] proved that deciding if BBCq(G,M)≤ q+2 for a given graph G and matching M is NP-
complete. We prove in Subection 2.2 that it remains NP-complete even if we impose G to be planar. In contrast, we
prove that deciding if BBCq(G,T )≤ q+2 for a given graph G and spanning tree T is polynomial-time solvable.

One can generalize the notion of backbone colouring by allowing a more complicated structure of the fre-
quency space. The most natural one is to consider a circular metric. A circular k-colouring of G or Zk-colouring is
a mapping f : V → Zk. The notions of circular q-backbone colouring and circular q-backbone chromatic number
are defined similarly to those of q-backbone colouring and circular q-backbone chromatic number by replacing
colouring by circular colouring. The circular q-backbone chromatic number of a graph pair (G,H) is denoted
CBCq(G,H).

A circular q-backbone k-colouring is trivially a q-backbone k-colouring. On the other hand, a q-backbone
k-colouring yields a circular q-backbone (k+ q− 1)-colouring. Hence for every graph pair (G,H) (where H is a
spanning subgraph of G) we have

BBCq(G,H)≤ CBCq(G,H)≤ BBCq(G,H)+q−1. (2)

Also,
q ·χ(H)≤ CBC(G,H)≤ q ·χ(G). (3)

Observe that if G is bipartite and H is non-empty, Equation (3) implies that CBC(G,H) = 2q. More generally,
if χ(G) = H, then CBC(G,H) = q ·χ(G). However if 2≤ χ(H)< χ(G), one can improve on the upper bound. We
show in Proposition 33 that, for any pair (G,H) with H a subgraph of G,

CBCq(G,H)≤ (χ(G)+q−2)χ(H). (4)

Since CBC(G,H) = χ(G) when H is empty and k-COLOURABILITY is NP-complete, for any fixed k ≥ 3,
given a graph G and a subgraph H it is NP-complete to decide if CBC(G,H)≤ k. But if insist that H is not empty,
then CBCq(G,H)≥ 2q by Proposition 3. Hence deciding if CBCq(G,H) is at most k with k ≤ 2q−1 can be done
instantly by always returning ‘no’. Less trivially, Proposition 36 shows that if H is a connected spanning subgraph
of G, then CBCq(G,H) = 2q if and only if G is bipartite. Hence deciding deciding if CBC(G,H) = 2q can be done
in polynomial time.

Inequality (4) implies that CBCq(G,F) ≤ 2q+ 4 for any planar graph G and forest F in G. We believe that
this upper bound can be reduced by at least one.

Conjecture 6. If G is a planar graph and F a spanning forest of G, then CBCq(G,F)≤ 2q+3.

A natural question is to ask whether conjecture would be best possible.

Problem 7. For any q≥ 2, does there exist a planar graph Gq and a spanning forest Fq of Gq such that CBCq(Gq,Fq)=

2q+3?

Conjecture 6 holds if the backbone F is a galaxy. It follows directly from (2) and the fact that BBCq(G,F)≤
q+4 in such a case, as mentioned earlier. We believe however that one can use one colour less.

Conjecture 8. Let G be a planar graph and F a galaxy in G, then CBCq(G,F)≤ 2q+2.
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If true, this conjecture would be tight, since the circular q-backbone chromatic number of a K4 with backbone
K1,3 is 2q+ 2. As evidence in support of this conjecture 6, Broersma et al. [5] deduced from the Four-Colour
Theorem that if G is a planar graph and M a matching in G then CBCq(G,M)≤ 2q+2.

Broersma et al. also give an example of a planar graph G and a matching M such that (G,M) has no 2-
backbone Z5-colouring. We show in Theorems 37 and 41 that for any fixed k ∈ {4,5}, it is NP-complete to decide
if BBC2(G,M) ≤ k for given planar graph G and matching M. For larger values of q, the following questions are
still open.

Problem 9. Let G be a planar graph and let M be a matching M in G. For any q≥ 3, is it true that CBCq(G,M)≤
2q+1 ?

Problem 10. Is it NP-complete to decide if CBC(G,F)≤ 6 for a planar graph G and spanning forest F?

Problem 11. For any g≥ 5, is it NP-complete to decide if CBC(G,M)≤ 4 for a planar graph G of girth at least
g and matching M?

We prove in Theorem 34 that if G has girth at least 5, then CBC(G,M) ≤ 2q+ 1. We wonder if the same
holds for planar graph of girth 4.

Problem 12. Let G be a planar graph of girth 4 and let M be a matching in G. Is it true that CBCq(G,M)≤ 2q+1 ?

2 Backbone colouring

2.1 About Conjectures 1 and 3

Proposition 13. Let G be a graph and let H be a subgraph of G. Then BBCq(G,H)≤ (χ(G)+q−2)χ(H)−q+2.

Proof. Let g be a χ(G)-colouring of G and h a χ(H)-colouring of H. Let f be the colouring defined by:

f (v) =

{
(h(v)−1)(q−2+χ(G))+g(v), if h(v) is odd,
(h(v)−1)(q−2+χ(G))+χ(G)−g(v) if h(v) is even.

It is simple matter to check that f is a q-backbone ((χ(G)+q−2)χ(H)−q+2)-colouring of (G,H).

A parachute on v or a parachute with harness v is a complete graph on four vertices whose three edges
incident to v are in the backbone.

Proposition 14. (i) For q≥ 2, in a q-backbone (q+3)-colouring of a parachute, the harness is coloured in
{1,q+3}.

(ii) For q≥ 3, in a q-backbone (q+4)-colouring of a parachute, the harness is coloured in {1,2,q+3,q+4}.

(iii) For q≥ 4, in a q-backbone (q+5)-colouring of a parachute, the harness is coloured in {1,2,3,q+3,q+
4,q+5}.

Proof. Let y be the harness.
(ii) If 3 ≤ φ(y) ≤ q+2, then at most two colours can appear on its neighbours. Because those three vertices

form a clique, they have three different colours and so φ(y) ∈ {1,2,q+3,q+4}.
(iii) If 4≤ φ(y)≤ q+2, then at most two colours can appear on its neighbours. Because those three vertices

form a clique, they have three different colours and so φ(y) ∈ {1,2,3,q+3,q+4,q+5}.

Proposition 15. Let G∗ and T ∗ be the graph and its spanning tree depicted Figure 2. For any q≥ 4, BBCq(G∗,T ∗)≥
q+6.

INRIA
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Proof. Assume for a contradiction that there is a q-backbone (q+5)-colouring φ of (G∗,T ∗). By Proposition 14-
(iii), the vertices y1,y2,y3,y4,z1,z2 are coloured in {1,2,3,q+3,q+4,q+5}. Without loss of generaltiy, we may
assume that φ(y2)∈ {1,2,3}. But then φ(z1) and φ(z2) must be in {q+3,q+4,q+5}, because y2z1 and y2z2 are in
E(T ∗). And φ(y1), φ(y2) and φ(y3) are in {1,2,3} because y3z1 and y1z2 and y4z2 are in E(T ∗). But {y1,y2,y3,y4}
is a clique in G∗, so they must all get different colours, a contradiction.

Conjecture 3 is implied by Conjecture 1.

Proposition 16. Conjecture 1 implies Conjecture 3.

Proof. Assume that Conjecture 1 holds. Let G be a planar graph and F a forest in G. Then (G,F) admits a 2-
backbone 6-colouring φ. Let ψ be defined by ψ(v) = φ(v) if φ(v) ∈ {1,2}, ψ(v) = φ(v)+ 1 if φ(v) ∈ {3,4}, and
ψ(v) = φ(v)+2 if φ(v) ∈ {5,6}. One easily check that ψ is a 3-backbone 8-colouring of (G,F).

2.2 q-backbone (q+2)-colouring

Theorem 17. Given a connected graph G and a spanning connected subgraph H, one can decide in polynomial
time if BBCq(G,H)≤ q+2.

Proof. Observe first that if H is not bipartite, then BBC(H,H) = 2q+1 by (1), and so BBC(G,H)≥ q+3. So we
first check if H is bipartite. If not, we return ‘no’. If it is, we get a bipartition (A,B) of H.

Observe that if (G,H) has a q-backbone (q+2)-colouring, then (free to rename A and B) all the vertices of A
are coloured in {1,2} and all the vertices of B in {q+ 1,q+ 2}, because H is connected. We then can transform
our instance into an instance I(G,H) of 2SAT as follows. For each vertex v, we create a variable xv. Intuitively, for
a vertex x ∈ A (resp. x ∈ B), the variable xv will be true if and only if v is coloured 1 (resp. q+2) and false if and
only if v is coloured 2 (resp. q+1). Now for each edge uv, we create the following clauses.

• If u and v are both in A or both in B, we create the clauses xu∨ xv and x̄u∨ x̄v;

• if u ∈ A and v ∈ B, we create the clause xu∨ xv.

It is easy to check that (G,H) has a q-backbone (q+2)-colouring if and only if I(G,H) is satisfiable.
Since 2SAT is well-known to be polynomial-time solvable, we can decide in polynomial time if BBCq(G,H)≤

q+2.

Theorem 18. For any q≥ 2, the following problem is NP-complete problem.
Input: A planar graph G and a 1-factor F of G.
Question: BBCq(G,F)≤ q+2?

Proof. The problem is trivially in NP since a q+2-backbone colouring of (G,F) is clearly a certificate.
Reduction from NOT-ALL-EQUAL 3SAT, which is defined as follows:

Input: A set of clauses each having three literals.
Question: Does there exists a suitable truth assignment, that is such that each clause has at least one true and at
least one false literal?

This problem was shown NP-complete by Schaefer [11].
Let C = {C1, . . . ,Cn} be a collection of clauses of size three over a set U of variables. We will construct a

graph pair (G,F) such that F is a 1-factor of G. Since V (F) =V (G), we only precise which edges are in E(F).
The following gadget will be useful. A forcing gadget at v or a forcing gadget with head v is the graph

depicted Figure 3.
A key point in the reduction will be the following claim.
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8 Frédéric Havet , Andrew D. King , Mathieu Liedloff , Ioan Todinca‡

v5 vv

v6
v3

v4

v7

v2 v1

Figure 3: A forcing gadget with head v (left) and its symbol (right) (Edges of E(F) are in bold.)

Claim 19. In any q-backbone (q+2)-colouring of a forcing gadget, its head is coloured in {1,q+2}.

Proof. Consider a forcing gadget, whose vertices are named as in Figure 3, and φ a q-backbone (q+2)-colouring
of it. Since all the vertices are matched in F , there all must be coloured in {1,2,q+1,q+2}.

Assume for a contradiction that φ(v) = 2. Then φ(v1) = q+2. Thus φ(v2) ∈ {1,q+1}. Now if φ(v2) = q+1,
then necessarily φ(v3) = 1. Therefore, whatever the colouring may be, v4 and v5 are both adjacent to a vertex
coloured 1. Hence {φ(v4),φ(v5)} = {2,q+ 2}. Therefore {φ(v2),φ(v3)} = {1,q+ 1}. But then v6 cannot be
coloured.

Similarly, we get a contradiction if φ(v) = q+1.

For every variable u ∈ U , create a variable subgraph Pu which is obtained from the path (a1(u),b1(u),
a2(u),b2(u), . . . ,an(u),bn(u)) by adding a forcing gadget on each of its vertex.

For every clause Ci = `1∨ `2∨ `3, create a clause gadget Di as shown Figure 4.

ci(`2)

ci(`1) di(`1)

di(`3) ci(`3)

di(`2)

Figure 4: The clause Di. (Edges of E(F) are in bold, forcing gadgets are represented by their symbols.)

Then for each clause Ci and each literal ` of Ci, we add a path of length three (ci(l),c′i(l),c
′′
i (l),ai(u)) if ` is

the non-negated variable u, and (ci(l),c′i(l),c
′′
i (l),bi(u)) if ` is the negated variable ū. We also add two forcing

gadgets with heads c′i(l) and c′′i (l).
It is easy to see that the resulting graph G′ may be drawn in the plane such that the crossed edges are those of

type c′i(`)c
′′
i (`) for some literal `. In particular, the two endvertices of a crossed edge are heads of forcing gadgets.

As long as there is a crossing C between two edges t(C)u(C) and v(C)w(C), we replace these two edges by
the crossing gadget CG(C) depicted Figure 5, so that the only edges that are possibly crossed (if there were several
crossings on tu or uv) are t(C)t ′(C), u(C)u′(C), v(C)v′(C) and w(C)w′(C). After this process, there is no more
crossing so the resulting graph G is planar.

INRIA
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u(C)

t(C)

v(C) w(C)

u′(C)

d(C)

a(C)

c(C)

b(C)

v′(C) w′(C)

t ′(C)

Figure 5: The crossing gadget CG(C). (Edges of E(F) are in bold, forcing gadgets are represented by their
symbols.)
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Let us now prove that (G,F) admits a q-backbone (q+ 2)-colouring if and only if C has a suitable truth
assignment.

Assume first that (G,F) admits a q-backbone (q+2)-colouring φ. Let u be a variable. Since there are heads
of forcing gadgets, by Claim 19, all the ai(u) and bi(u) are coloured in {1,q+ 2}. Moreover, since they form a
path, all the ai(u) are coloured with the same colour and all the bi(u) are coloured with the other. Hence one can
define the truth assignment ψ by ψ(u) = true if φ(ai(u)) = 1 for 1 ≤ i ≤ n, and ψ(u) = f alse if φ(ai(u)) = q+2
for 1≤ i≤ n.

We shall prove that ψ is suitable.

Claim 20. For all crossing C in G′, we have {φ(t(C)),φ(u(C))}= {1,q+2} and {φ(v(C)),φ(w(C))}= {1,q+2}.

Subproof. By induction on the reverse order of creation of the crossing gadget.
By construction, t(C), u(C), v(C), w(C), t ′(C), u′(C), v′(C), and w′(C) are heads of forcing gadgets. So they

are coloured 1 or q+2. Without loss of generality, we may assume that φ(t(C)) = 1.
If the edge t(C)t ′(C) was crossed and then replaced by a series of crossing gadget, by induction, φ(t ′(C)) =

q+2. It is also trivially the case if t(C)t ′(C) still exists. Hence {φ(a(C)),φ(b(C))}= {1,q+1}.
Assume for a contradiction that φ(u(C)) 6= q+ 2. Then, as above, {φ(c(C)),φ(d(C))} = {1,q+ 1}. This

is a contradiction, because a(C)c(C) and a(C)d(C) are edges. Hence φ(u(C)) = q+ 2, and so φ(u′(C)) = 1 and
{φ(c(C)),φ(d(C))}= {2,q+2}.

In particular, one vertex of {a(C),b(C),c(C),d(C)} is coloured 1 and another is coloured q+2. Now assume
for a contradiction that {φ(v(C)),φ(w(C))} 6= {1,q+2}. Then v(C) and w(C) are both coloured 1 or both coloured
q+2, and so v′(C) and w′(C) are both coloured q+2 or both coloured 1, respectively. This is a contradiction, as
all vertices of {a(C),b(C),c(C),d(C)} are adjacent to some vertex in {v′(C),w′(C)}. ♦

Let Ci = `1 ∨ `2 ∨ `3 be clause. Claim 20 implies that for j ∈ {1,2,3}, φ(ci(` j)) = 1 if ψ(u) = f alse and
φ(ci(` j)) = q+ 2 if ψ(u) = true. Now the three ci(` j), 1 ≤ j ≤ 3, cannot be all coloured 1 (resp. q+ 2), for
otherwise {φ(di(`2)),φ(di(`3))} must be {2,q+2} (resp. {1,q+1}) and so di(`1) cannot be coloured, because it
must be coloured in {1,q+2} as head of a forcing gadget. Thus at least one of the ci(l j) is coloured 1 and at least
one is coloured q+2, and so Ci has at least one true and at least one false literal.

Hence ψ is suitable.

Reciprocally, assume that C has a suitable truth assignment ψ. For all u ∈U and all 1 ≤ i ≤ n, let us define
φ(ai(u)) = 1 and φ(bi(u)) = q+2 if ψ(u) = true, and φ(ai(u)) = q+2 and φ(bi(u)) = 1 if ψ(u) = f alse. Similarly,
for every literal `, we set φ(ci(`)) = 1, φ(c′i(`)) = q+2, φ(c′′i (`)) = 1, if ` is false, and φ(ci(`)) = q+2, φ(c′i(`)) = 1,
φ(c′′i (`)) = q+2, if ` is true.

One can extend φ into a q-backbone (q+2)-colouring of (G,F). Indeed, it is sufficient to show that we can
extend it to forcing, clause and crossing gadgets.

If v is the head of a forcing gadget and φ(v) = 1, we can set φ(v1) = q+2, φ(v2) = q+1, φ(v3) = 1, φ(v4) =

q+ 2, φ(v5) = 2, φ(v6) = 2, and φ(v7) = q+ 2. Similarly, we can extend the colouring to the forcing gadget if
φ(v) = q+2.

Consider a clause gadget Di. Since Ci has at least one true and at least one false literal, at least one vertex
of ci(`1), ci(`2) ci(`3) is coloured 1 and at least one is coloured q+ 2. If ci(`1) is coloured q+ 2, and ci(`2) and
ci(`2) are assigned 1, then we can set φ(di(`1)) = 1, φ(di(`2)) = 2, and φ(di(`3)) = q+2. If ci(`1) and ci(`2) are
coloured 1, and ci(`3) is assigned q+2, then we can set φ(di(`1)) = q+2, φ(di(`2)) = q+1, and φ(di(`3)) = 1.

Finally consider a crossing gadget such that {φ(t(C)),φ(u(C))}= {φ(v(C)),φ(w(C))}= {1,q+2}. By sym-
metry, we may assume that φ(t(C)) = φ(v(C)) = 1 and φ(u(C)) = φ(w(C)) = q+ 2. Then we can set φ(t ′(C)) =

φ(v′(C)) = q+2, φ(u′(C)) = φ(w′(C)) = 2, φ(a(C)) = 1, φ(b(C) = q+1, φ(c(C)) = q+2, and φ(d(C)) = 2.
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2.3 2-backbone 5-colouring

2.3.1 Galaxy backbone

Theorem 21. The following problem is NP-complete.
Input: A planar graph G and a galaxy F with maximum degree 3.
Question: Is BBC2(G,F)≤ 5?

Proof. Reduction from PLANAR 3-COLOURABILITY, which consists of deciding if a given connected planar graph
is 3-colourable. This problem was shown to be NP-complete by Stockmeyer [13].

Let H be a 2-connected planar graph. We shall construct a planar graph G and a galaxy F with maximum
degree 3 in G such that BBC2(G,F)≤ 5 if and only if H is 3-colourable.

As a forcing gadget at v, we will use the parachute with harness v. It is easy to see that in a 2-backbone
5-colouring of a parachute, its harness is coloured in {1,5}.

We consider any embedding of H. For each face (x1,x2, . . . ,xk,x1) of H, we put a cycle (z1,z2, . . . ,z2kz1),
inside which we put parachutes on every vertex zi for every 1≤ i≤ 2k. We then add the edges xiz2i xiz2i+1 for all
1≤ i≤ k.

Assume that (G,F) has a 2-backbone 5-colouring φ, then, because of the parachutes, all the vertices in the
cycles added inside faces must be coloured in {1,5}. Moreover consecutive vertices on one such cycles get
different colours, so one is coloured 1 and the other is coloured 5. Hence all the vertices in H are coloured in
{2,3,4}. Hence φ induces a proper 3-colouring on H with colours {2,3,4}.

Reciprocally, assume that H is 3-colourable. Then there exists a proper 3-colouring c of H into {2,3,4}.
One can then colour all the cycles inside faces with 1 and 5. The colouring can then easily be extended into a
2-backbone 5-colouring of (G,F).

Corollary 22. The following problem is NP-complete problem.
Input: A planar graph G and a spanning tree T of G.
Question: BBC2(G,T )≤ 5?

Proof. Reduction from the problem of Theorem 21. Given an instance (G,F) of this problem, one can find a set E1

of edges of G−F such that F ∪E1 is a spanning tree of G. Then for every edge e of E1 we add a path Pe of length
4 (with 3 new internal vertices) to get a graph G′ and we let T ′ be the tree whose edge set is E(F)∪

⋃
e∈E1

E(Pe).
Since for any pair (α,β) ∈ {1,2,3,4,5}2, there is a 2-backbone 5-colouring of the path of length 4 such that the
first vertex is coloured α and the last vertex is coloured β, it follows that (G,F) has a 2-backbone 5-colouring if
and only if (G′,T ′) has a 2-backbone 5-colouring.

Theorem 23. The following problem is NP-complete problem.
Input: A planar graph G and a galaxy F with maximum degree 2.
Question: Is BBC(G,F)≤ 5?

Proof. The proof is identical the one of Theorem 21. The only difference comes from the forcing gadget, which is
more complicated because it cannot contains stars of degree 3 in F .

To construct the forcing gadget, we need an auxiliary gadget, called no-3-gadget. It is depicted Figure 6.

Claim 24. In any 2-backbone 5-colouring of a no-3-gadget, its roof is not coloured in 3.
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x

e
e′

x

c′

b′

a′
d′f

c

b

a

g

d f ′

h
i

Figure 6: The no-3-gadget with roof x and its symbol.

Proof. We will denote the vertices of the no-3-gadget by their names in Figure 6. Assume for a contradiction that
there is a 2-backbone 5-colouring φ of a no-3-gadget such that φ(x) = 3.

Assume first that φ(a) ∈ {4,5}, then φ(b) ∈ {1,2} and {φ(a),φ(c)} = {4,5}. Hence φ(d) ∈ {1,2} and so
{φ( f ),φ(c)} = {4,5}. Therefore φ(e) = 3 and so φ(d) = 1. Similarly, if φ(a) ∈ {1,2}, we obtain that φ(d) = 5.
Hence, φ(d) ∈ {1,5}.

Similarly, φ(d′) ∈ {1,5}. Free to consider 6− φ instead of φ, we may assume that φ(d) = 1 and φ(d′) = 5.
Thus φ( f ′) = 2.

Now φ(g) ∈ {3,4}. If φ(g) = 3, then {φ(i),φ(h)} = {1,5}, and if φ(g) = 4, then {φ(i),φ(h)} = {1,2}. In
both cases, one of h and i is coloured 1, which is impossible because φ(d) = 1.

The forcing gadget is the one depicted Figure 7.

Claim 25. In any 2-backbone 5-colouring of a forcing gadget, its head is coloured in {1,5}.

Proof. Consider a forcing gadget, whose vertices are named as in Figure 3, and φ a 2-backbone 5-colouring of it.
Let us prove that φ(w) = 3 and so that φ(v) ∈ {1,5}. Assume for a contradiction that φ(w) 6= 3. Without loss

of generality, we may assume that φ(w) ∈ {1,2}.
Observe that the vertices x, y, z, x′, y′, z′ are not assigned 3 because they are roofs of no-3-gadgets.
If φ(w) = 1, then (φ(x),φ(y),φ(z)) and (φ(x′),φ(y′),φ(z′)) is either (4,2,5) or (5,2,4). Hence the vertices x,

x′ and z are all coloured in {4,5}, which is impossible, since they form a triangle.
If φ(w) = 2, then (φ(x),φ(y),φ(z)) and (φ(x′),φ(y′),φ(z′)) is either (4,1,5) or (5,1,4). Hence the vertices x,

x′ and z are all coloured in {4,5}, which is impossible, since they form a triangle.

To get the equivalence between the 3-colourability of the original graph H and the existence of a 2-backbone
5-colouring of (G,F), it remains to prove that for any α ∈ {1,5}, there is a 2-backbone 5-colouring of the forcing
gadget such that the head is coloured α.

We denote the vertices by their names in Figure 3. Set φ(w) = 3, φ(x) = φ(y′) = 1, φ(y) = φ(z′) = 5, φ(z) = 2
and φ(x′) = 4.
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y′

x′z′

x y z

w

v

Figure 7: The forcing gadget with head v. (Edges of E(F) are in bold, no-3-gadgets are represented by their
symbols.)

Observe that no vertex in {x,y,z,x′,y′,z′} has been coloured 3. Hence, it remains to prove that for any
β ∈ {1,2,4,5}, there is a 2-backbone 5-colouring of the forcing gadget such that the head is coloured β. By
symmetry, φ and 6−φ, it suffices to prove that one exists for β ∈ {1,2}. We denote the vertices by their names in
Figure 6. Let us denote by β̄ the colour of {1,2}\{β}.

φ(a) = 3, φ(b) = β̄, φ(c) = 5, φ(d) = 4, φ(e) = β, φ( f ) = β̄, φ(a′) = 3, φ(b′) = 5, φ(c′) = β̄, φ(d′) = 5,
φ(e′) = β, φ( f ′) = 3, φ(g) = 1, φ(h) = 5, φ(i) = 3.

2.3.2 Hamiltonian-path backbone

Theorem 26. The following problem is NP-complete problem.
Input: A planar graph G with a hamiltonian path P.
Question: BBC2(G,P)≤ 5?

To prove this theorem, we shall use a reduction similar to the one of Theorem 21. However, we do not reduce
directly from PLANAR 3-COLOURABILITY but use an intermediate problem whose NP-completeness is proven by
reducing PLANAR 3-COLOURABILITY to it.

This intermediate problem is the following:
TRACEABLE PLANAR 3-COLOURABILITY

Input: A planar graph G with a hamiltonian path P.
Question: Is G 3-colourable?

Lemma 27. TRACEABLE PLANAR 3-COLOURABILITY is NP-complete.

Proof. Reduction from PLANAR 3-COLOURABILITY. Let H be a connected planar graph. We will construct a
planar graph G having a hamiltonian path P such that χ(G)≤ 3 if and only if χ(H)≤ 3.
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To do so, we shall construct a sequence of pairs (Gi,Pi) for 1 ≤ i ≤ |V (H)| such that Pi is a path in the
planar connected graph Gi, |V (Pi)| = |V (Gi)|− |V (H)|+ i, and χ(Gi)≤ 3 if and only if χ(H)≤ 3. Then the path
P := PV (H) will be a hamiltonian path of G := GV (H) and χ(G)≤ 3 if and only if χ(H)≤ 3.

Let x be a vertex of H. We set G1 := H and P1 := (x). Trivially, (G1,P1) verifies the above property.
Assume now that i ≥ 1 and let us construct (Gi+1,Pi+1) from (Gi,Pi). Let Pi = (v1,v2, . . . ,v`) be a path.

Since Gi is connected, there exists j such that v j is adjacent to a vertex y in V (Gi) \V (Pi). If j = 1, then let
Pi+1 := (y,v1,v2, . . . ,v`), and Gi+1 := Gi; if j = p, then let Pi+1 := (v1,v2, . . . ,v`,y), and Gi+1 := Gi; if y is also
incident to v j+1, let Pi+1 := (v1, . . . ,v j,y,v j+1, . . . ,v`)). In those three cases, (Gi+1,Pi+1) has trivially the desired
property.

So we may assume that 1 < j < ` and y is not adjacent to v j+1. Let y1,y2, . . .yr be the neighbours of v j in
their order around it such that v j+1 = yr, yk = y and v j−1 = yq for q < r.

Let Gi+1 be the graph obtained from Gi as follows. For all 1≤ s≤ k−1, remove the edge v jys, add three ver-
tices as,bs,cs and the edges asbs,bscs,csas,v jas,v jbs,bsys; Add the edges csas+1 for all 1≤ s≤ k−2, and v j+1a1.
Finally add a vertex y′ and the edges yy′ and y′ck−1. Let Pi+1 be the path obtained from Pi by replacing the edge
v jv j+1 by the subpath (v j,y,ck−1,bk−1,ak−1, . . . ,c1,b1,a1,v j+1). See Figure 8, which illustrates the construction
when k = 5.

y′

v j

y1

y3

Gi

y = y5

y4

y2v j−1

v j+1

v j

y1

Gi+1

y = y5

y4

y3

b3

c1

c2
b2

a2

b1
a1

b4

a3

c3a4c4

y2v j−1

v j+1

Figure 8: Constructing (Gi+1,Pi+1) from (Gi,Pi) (Egdes of the paths are in bold.)

Clearly, the number of vertices not covered by Pi+1 in Gi+1 is one less than the number of vertices not covered
by Pi in Gi. So, since |V (Pi)|= |V (Gi)|− |V (H)|+ i, we have |V (Pi+1)|= |V (Gi+1)|− |V (H)|+ i+1.

It remains to prove that Gi+1 is 3-colourable if and only if Gi is.
Assume first that Gi+1 admits a proper 3-colouring φ in {1,2,3}. We claim that it also induces a proper

3-colouring of Gi. Indeed, without loss of generality, we may assume that φ(v j) = 1 and φ(v j+1) = 2. Then for all
1≤ s≤ s−1, φ(as)= 3 and φ(cs)= 2, so φ(bs)= 1. Hence φ(ys) 6= 1. Therefore, for all 1≤ s≤ s−1, φ(ys) 6= φ(v j).
Since the v jys, 1≤ s≤ k−1, are the only edges of Gi which are not in Gi+1, φ is a proper 3-colouring of Gi.

Conversely, assume that Gi admits a 3-colouring φ in {1,2,3}. It induces a partial proper 3-colouring of
G, such that φ(v j) 6= φ(ys) for all 1 ≤ s ≤ k− 1. Let us extend it. Without loss of generality, φ(v j) = 1 and
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φ(v j+1) = 2. For all 1 ≤ s ≤ s− 1, set φ(as) = 3, φ(bs) = 1, and φ(cs) = 2. Finally, colour y′ with the colour in
{1,2,3}\{φ(y),φ(ck−1)}. This gives a proper 3-colouring of Gi+1.

Proof of Theorem 26. Reduction from TRACEABLE PLANAR 3-COLOURABILITY. Let (H,Q) be an instance of
this problem. We shall construct a graph G and a hamiltonian path P of G such that BBC(G,P)≤ 5 if and only if
χ(H) ≤ 3. To do so we start from H and for each edge xy of Q, we will plug in an edge gadget E(xy) containing
a hamiltonian path P(xy) from x to y. The union of all the P(xy), xy ∈ E(Q), will then be a hamiltonian path P of
the resulting graph G.

To construct the edge gadget, we use an auxiliary forcing gadget depicted Figure 9. The head of such a gadget
is the vertex denoted by v in the figure. Its fringes are the vertices denoted by a and e.

cb d
e

e
a

v v

a

Figure 9: The forcing gadget with head v and fringes a and e (left) and its symbol (right)

Claim 28. In any 2-backbone 5-colouring of a forcing gadget, the head is coloured in {2,4}.

Proof. We denote the vertices by their names in Figure 9. Suppose for a contradiction that there is a 2-backbone
5-colouring φ such that φ(v) /∈ {2,4}. By the symmetry φ→ 6−φ, we may assume that φ(v) ∈ {1,3}.

If φ(v) = 3, then all the vertices a,b,c,d,e are coloured in {1,2,4,5}. On the path (a,b,c,d,e), vertices
coloured {1,2} alternate with vertices coloured {4,5}. Hence a, c, and e are all coloured in {1,2}, or all coloured
in {4,5}, which is a contradiction as they form a clique.

If φ(v) = 1, then all the vertices a,b,c,d,e are coloured in {2,3,4,5}. Now φ(b) is at distance 2 from the two
distinct colours φ(a) and φ(c), hence φ(b)∈ {2,5}. Similarly, φ(d)∈ {2,5}. But φ(c) is at distance 2 from φ(b) and
φ(d), so φ(b) = φ(d). Then the three vertices a, c, and e are all coloured in {2,3,4,5}\{φ(b)−1,φ(b),φ(b)+1},
which has cardinality 2. This is a contradiction as those three vertices form a clique.

Now the edge gadget is the one depicted Figure 10.

Let us now prove that BBC(G,P)≤ 5 if and only if χ(H)≤ 3.

Assume first that (G,P) admits a 2-backbone 5-colouring φ. Since H is a subgraph of G, φ induces a proper
colouring on H. We shall prove that every vertex of H is coloured in {1,3,5}, thus proving that this proper
colouring uses (at most) 3 colours.

Every vertex v of H is contained in an edge xy of Q, so it is contained in the edge gadget E(xy) in G. So it
is adjacent to two vertices (namely v1 and v2 if v = x, and v2 and v3 if v = y), which are heads of forcing gadgets
and adjacent. Hence by Claim 40, one of these vertices is coloured 2 and the other is coloured 4. Hence v must be
coloured in {1,3,5}.

Let us now assume that H is 3-colourable. Then there exists a proper colouring φ of H with {1,3,5}. Let
us now extend into a 2-backbone 5-colouring of (G,P). It is sufficient to prove that we can extend it to every
edge-gadget.
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a1

x y

e1 a2 e2 a3

v1 v2 v3

e3

Figure 10: The edge gadget E(xy) and its hamiltonian path P(xy) in bold (Forcing gadgets are represented by their
symbols.)

To extend it the edge-gadget E(xy) (we use the names of Figure 10), set φ(v1) = φ(v3) = 2 and φ(v2) = 4.
Now, since for any pair (α,β) ∈ {1,2,3,4,5}2, there is a 2-backbone 5-colouring of the path of length 4 such that
the first vertex is coloured α and the last vertex is coloured β, it suffices to prove that we can extend φ to the forcing
gadget.

Consider such a forcing gagdet (with vertex names as in Figure 9). Then φ(v) ∈ {2,4}. By the symmetry
φ→ 6− φ, we may assume that φ(v) = 2. Then setting φ(a) = 4, φ(b) = φ(d) = 1, φ(c) = 3 and φ(e) = 5, we
obtain the desired extension.

Hence, BBC(G,P)≤ 5.

2.4 q-backbone (q+3)-colouring for q≥ 3

Theorem 29. For any q≥ 3, the following problem is NP-complete problem.
Input: A planar graph G and a galaxy F with maximum degree 3.
Question: Is BBCq(G,F)≤ q+3?

Proof. Reduction from PLANAR 3-COLOURABILITY.
We shall need the graph, which we call a kite, depicted Figure 11. The vertex named t on the figure is the tip

of the kite, the one named u its corner.

Claim 30. If φ is a q-backbone (q+3)-colouring of a kite such that φ(t) ∈ {1,2,3,q+1,q+2,q+3}, then either
φ(t) ∈ {1,2,3} and φ(u) = q+3, or φ(t) ∈ {q+1,q+2,q+3} and φ(u) = 1.

Proof. Observe that the vertices v,z1,z2,z3 are harnesses of parachutes. This by Proposition 14-(i), they must be
assigned 1 or q+3.

Assume that φ(v) = 1, then φ(z1) = φ(z2) = φ(z3) = q + 3. Thus {φ(s1),φ(s2)} = {q + 1,q + 2} and so
φ(u) = q+3 and φ(t) ∈ {1,2,3}.

Similarly if φ(u) = q+3, we obtain φ(u) = 1 and φ(t) ∈ {q+1,q+2,q+3}.

Let H be a planar graph. Let (G,F) be the graph pair obtained from H as follows. Firstly, for each face f of
H, we create a parachute Pf with harness v f , and for each vertex x incident to f , we create a kite K f (x) with tip x
and corner u f (x). We then link the vertex v f to all the u f (x). Secondly, for every vertex x ∈V (H), we add a vertex
yx and the edge xyx in the backbone.

Clearly, the resulting graph G is planar and the resulting backbone F is a galaxy with maximum degree 3.
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v
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Figure 11: The kite

Let us now prove that BBCq(G,F)≤ q+3 if and only if H is 3-colourable.
Assume first that (G,F) admits a q-backbone (q+ 3)-colouring φ. Observe that each vertex x in V (H) is

coloured in {1,2,3,q+1,q+2,q+3}, because it is adjacent to yx in F .
Let x be a vertex in V (H). Free to consider q+4−φ, we may assume that φ(x) ∈ {1,2,3}. Consider a face f

incident to x in H. By Claim 30, the kite K f (x) has its corner coloured q+3. Together with Proposition 14-(i), this
implies that φ(v f ) = 1. Thus, the corner of the kites in f cannot be coloured 1, therefore there are coloured q+3
and so by Claim 30, all the vertices incident to f in H are all coloured in {1,2,3}. Applying this reasoning to each
face of H, we obtain that all vertices of H are coloured in {1,2,3}. Hence, φ induces a proper 3-colouring on H.

Conversely, assume that H admits a proper 3-colouring c. One can extend into a q-backbone (q+3)-colouring
of (G,F) as follows. For every x ∈V (H), we colour yx with q+3; for every face f , we colour the vertex v f with 1
and the corners of the kites by q+3. One can then extend the colouring to each kite (as in the proof of Claim 30)
to obtain a q-backbone (q+3)-colouring of (G,F).

The reduction above can be modified to have a spanning tree T for the backbone in place of the galaxy F .
It suffices consider a spanning tree U of H and do the following: add a path of length two in the backbone along
each edge of the tree U ; for each kite, add tz3 and vz3 in the backbone and add paths of length two in the backbone
along edges z1v and z2v. This will prove the following statement.

Theorem 31. The following problem is NP-complete problem.
Input: A planar graph G and a spanning tree T of G.
Question: Is BBC2(G,T )≤ 5?

2.5 q-backbone (q+5)-colouring

Theorem 32. For any q≥ 4, the following problem is NP-complete problem.
Input: A planar graph G and a spanning tree T of G.
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Question: Is BBCq(G,F)≤ q+5?

Proof. Reduction from PLANAR 3-COLOURABILITY.
Let H be a planar graph. We shall construct a planar graph G together with a spanning tree T such that H is

3-colourable if and only if BBCq(G < T )≤ q+5. Take U be a spanning tree of H.
We first construct a graph G′ from H by adding for every edge e = uv of U we add a vertex xe linked to u and

v. We let T ′ be the spanning tree of G′ induced by the new edges. The pair (G,T ) is then obtained from (G′,T ′) by
adding a parachute on every vertex. Clearly G is planar as for each edge e = uv the path uxev can be drawn along
the edge uv.

Suppose that (G,T ) admits a q-backbone (q+5)-colouring. Then by Proposition 14-(iii), every vertex in G′

is coloured in {1,2,3,q+3,q+4,q+5}. Now that the vertices of H form one of the part of the bipartition of T ′.
Hence, the colours of the vertices of H are either all in {1,2,3} or all in {q+ 3,q+ 3,q+ 5}. In both cases, φ

induces a proper 3-colouring on H.
Conversely, it is straightforward to extend a a proper 3-colouring of H into a q-backbone (q+5)-colouring of

(G,T ).

3 Circular backbone colouring

The following Proposition is an analogue to Proposition 13 and its proof is similar.

Proposition 33. Let G be a graph and let H be a subgraph of G such that 2≤ χ(H)< χ(G). Then CBCq(G,H)≤
(χ(G)+q−2)χ(H).

Proof. Let g be a χ(G)-colouring of G and h a χ(H)-colouring of H.
Assume first that χ(H) is even. Let f be the colouring defined by:

f (v) =

{
(h(v)−1)(q−2+χ(G))+g(v), if h(v) is odd,
(h(v)−1)(q−2+χ(G))+χ(G)−g(v) if h(v) is even.

One can easily check that f is a circular q-backbone ((χ(G)+q−2)χ(H))-colouring of (G,H).

Assume now that χ(H) is odd. Let f be the colouring defined by:

f (v) =



1, if h(v) = 1 and g(v) = χ(G),

g(v)+1, if h(v) = 1 and g(v)< χ(G),

χ(G)+q−1, if h(v) = 2 and g(v) = χ(G)−1,
χ(G)+q, if h(v) = 2 and g(v) = χ(G),

2χ(G)+q−2−g(v), if h(v) = 2 and g(v)< χ(G)−1,
(h(v)−1)(q−2+χ(G))+g(v), if h(v) is odd and h(v)> 2,
(h(v)−1)(q−2+χ(G))+χ(G)−g(v) if h(v) is even and h(v)> 2.

One can easily check that f is a circular q-backbone ((χ(G)+q−2)χ(H))-colouring of (G,H).

3.1 Planar graphs of girth at least 5

Theorem 34. Let G be a planar graph of girth at least 5 and M a matching in G. Then CBCq(G,M)≤ 2q+1.

Proof. Our proof is based on a structural result of Borodin and Glebov [1]. See also [9].
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Theorem 35 (Borodin and Glebov [1]). The vertex set of every planar graph of girth at least 5 can be partitioned
into an independent set and a set which induces a forest.

Let (S,F) be a partition of V (G) such that S is stable and F induces a forest. Let us colour every vertex of
S with 1. Now since F is a forest, it has an ordering v1, . . . ,vp such that for every i, vi has at most one neighbour
in {v1, . . . ,vi−1}. We colour the vertices of F according to this ordering as follows. If vi has no neighbour in
{v1, . . . ,vi−1}, then colour it with q+ 1. If vi has a neighbour u in {v1, . . . ,vi−1} and uvi /∈ E(M), then colour it
with a colour of {q+ 1,q+ 2} not assigned to u. If vi has a neighbour u in {v1, . . . ,vi−1} and uvi ∈ E(M), then
assign 2q+1 (resp. 2 to vi) if u is coloured q+1 (resp. q+2). It is easy to check that the obtained colouring is a
q-backbone Z2q+1-colouring of (G,M).

3.2 Circular q-backone 2q-colouring

Proposition 36. Let G be a graph and H a spanning connected subgraph of G. Then CBCq(G,H) = 2q if and
only if G is bipartite.

Proof. If G is bipartite, then χ(G) = χ(H) = 2. Thus, by Equation 3, CBCq(G,H) = 2q.
Assume now that (G,H) admits a circular q-backbone 2q-colouring f . Let v be a vertex of G. Without loss

of generality, we may assume that f (v) = 1. Then all the neighbours of v in H must be coloured q+1. And so on,
by induction, all the vertices at even distance from v in H are coloured 1 and all the vertices at odd distance from
v in H are coloured q+1. Since H is connected and spans G, it follows that all vertices are coloured 1 or q+1, so
G is bipartite.

Proposition 36 implies that given a graph G and a spanning connected subgraph H, deciding if CBCq(G,H) =

2q can be done in polynomial time. In contrast, if the condition of G be connected is removed, when q = 2, the
problem becomes NP-complete, as shown by the following theorem.

Theorem 37. The following problem is NP-complete problem.
Input: A planar graph G and a matching M in G.
Question: Is CBC2(G,M)≤ 4?

Proof. The problem is trivially in NP since a circular 2-backbone 4-colouring of (G,F) is clearly a certificate.
To prove it is NP-complete, we give a reduction from NOT-ALL-EQUAL 3SAT.
Let C = {C1, . . . ,Cn} be a collection of clauses of size three over a set U of variables. We will construct a

graph pair (G,M) such that M is a matching in G.
To do so we need some definitions and gadgets.
Colours 1 and 3 are said to be twins and so do the colour 2 and 4. Trivially two vertices joined by an edge of

M receives distinct twin colours. Two colours are siblings if they are equal or twins.
A link with ends u and v and central edge w1w2 is a subgraph with vertex set {u,v,w1,w2} and edge set

{uw1,uw2,vw1,vw2} with w1w2 ∈M. Two ends of a link are said to be linked.

Claim 38. In a circular 2-backbone 4-colouring c, the colours of the ends of a link are siblings.

Proof. The two vertices w1 and w2 are joined by an edge of M, so {c(w1),c(w2)} ∈ {{1,3};{2,4}}. Hence if u is
coloured in {1,3} (resp. {2,4}), then {c(w1),c(w2)} is {2,4} (resp. {1,3}), and so v is coloured in {1,3} (resp.
{2,4}).

For each variable u∈U , we create a variable gadget Gu which is obtained from the distinct vertices au
1,a

u
2, . . . ,a

u
n

by linking, from 1≤ i≤ n−1, the vertices au
i and au

i+1 by an link with central edge bu
i cu

i .
Claim 38 (and its proof) immediately implies the following.
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Claim 39. In a circular 2-backbone 4-colouring of Gu, all the ai
u are coloured with two sibling colours and all the

bi
u with the two other colours (which are also siblings).

For each clause Ci = `i
1∨`i

2∨`i
3, we create a triangle zi

1zi
2zi

3. Now for j = 1,2,3, if `i
j is the nonnegated literal

u, we join zi
j with au

i , and if `i
j is the negated literal ū, we join zi

j with bu
i . Such edges are said to be red. So far, the

obtained graph H is not planar, but we can clearly draw it such that only red edges cross. We can now subdivide
every red edge into a red path such that every edge is crossed at most once. We then replace the red edges which
are not crossed by a link (with the same end) and two red edges uv and xy that cross each other by the crossing
gadget depicted Figure 12. The resulting graph G is planar and it comes with a matching M.

d

y

u′ v′

y′

x′

u

x

v

a b

c

Figure 12: The crossing gadget

Claim 40. In a circular 2-backbone 4-colouring of the forcing gadget, the colours of u and v are siblings and
the colours of u and v are siblings. In addition, for any 4-tuple {cu,cv,cx,cy} such that cu and cv are siblings
and cx and cy are siblings, there is a circular 2-backbone 4-colouring c of the forcing gadget such that c(u) = cu,
c(v) = cv, c(x) = cx, and c(y) = cy.

Proof. Consider first a circular 2-backbone 4-colouring of the forcing gadget. u is linked to u′, which is linked to
v′, which in turn is linked to v. Hence, by Claim 38, the colours of u and v are siblings.

Assume that x is coloured in {1,3}, then x′ is also coloured in {1,3}, say 1. The vertices a and b are assigned
twin colours, so one is coloured 2 and the other 4. We now distinguish two cases depending on the colour of u′.

1. Assume u′ is coloured 3. Then v′ must also be coloured 3. The vertices c and d are assigned twin colours,
so one is coloured 2 and the other 4. Hence y′ is coloured 1.

2. Assume u′ is coloured in {2,4}. Without loss of generality, we may assume it is coloured 2. Then a is
coloured 4 and b is coloured 2, so v′ is coloured 4. Hence y′ is coloured in {1,3}.

In both cases the colour of x and y′ are siblings, and so, by Claim 38, the colours of x and y are siblings.

For any 4-tuple {cu,cv,cx,cy} such that cu and cv are siblings and cx and cy are siblings, finding the desired
circular 2-backbone 4-colouring is straightforward and left to the reader.

We shall now prove that C admits a suitable truth assignment if and only if CBC(G,M)≤ 4.

Assume first that (G,M) admits a circular 2-backbone 4-colouring. Let φ be the truth assignment defined by
φ(u) = true if all the ai

u are coloured in {1,3}, and φ(u) = f alse if all the ai
u are coloured in {2,4}. Note that is
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well defined by Claim 39. Now by Claims 38 and 40, for each clause Ci = `i
1∨ `i

2∨ `i
3, the vertex zi

j is coloured in
{1,3} if and only if the literal `i

j is true. But since zi
1zi

2zi
3 is a triangle, at least three colours must appear on these

vertices, and so at least one from {1,3} and at least one from {2,4}. Hence, at least one of the literals of Ci is true
and at least one is false. Thus φ is suitable.

Reciprocally, assume that C admits a suitable truth assignment φ. If φ(u) = true, then colour all the ai
u with

1, all the bi
u with 2 and all the ci

u with 4. And if φ(u) = f alse, then colour all the ai
u with 2, all the bi

u with 1 and all
the ci

u with 3. Now, for each clause Ci = `i
1∨ `i

2∨ `i
3, some literal, say `i

1, is true and some literal, say `i
3, is false.

Then assign 1 to zi
1, 2 to zi

3, and colour zi
2 with 3 if `i

2 is true and 4 otherwise. By Claims 38 and 40, this partial
colouring may be extended into a circular 2-backbone 4-colouring of (G,M).

Theorem 41. The following problem is NP-complete problem.
Input: A planar graph G and a matching M in G.
Question: Is CBC2(G,M)≤ 5?

Proof. The reduction is from PLANAR C5-COLOURING which is defined as follows:
Input: A planar graph G.
Question: Does G have a homomorphism onto C5, the cycle of length 5?
This was proved to be NP-complete by MacGillivray and Siggers [10].

To make the reduction we need an edge gagdet. This gadget is built from the planar graph H1(u,v) together
with the matching M1(u,v) depicted in Figure 13.

w

u v

Figure 13: Graph H1(u,v) with matching M1(u,v) (in bold)

The graph H2(x,y) is obtained from H1(x,y) by replacing the edge uw by H1(w,u). The matching M2(x,y) is
then the union of M1(x,y)\{uw} and M1(w,u). Observe that x and y are incident to no edges of M2(x,y). The pair
(H2(x,y),M2(x,y)) is the edge gadget.

Broersma et al. [5] proved that in any circular 2-backbone 5-colouring of (H1(u,v),M1(u,v)), vertices u
and v receive colours which are cyclically 2 apart. In addition, its straightforward to see that any precolouring
of u and v with colours that are cyclically 2 apart can be extended into a circular 2-backbone 5-colouring of
(H1(u,v),M1(u,v)). These two facts imply the following claim.

Claim 42.
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(i) In any circular 2-backbone 5-colouring of (H2(x,y),M2(x,y)), vertices x and y receive colours which
are cyclically 2 apart.

(ii) Any precoloring of x and y with colours that are cyclically 2 apart can be extended into a circular
2-backbone 5-colouring of (H2(x,y),M2(x,y)).

Let H be an instance of PLANAR C5-COLOURING. Replace each edge xy∈E(G) an edge gadget (H2(x,y),M2(x,y))
to obtain a planar graph G and a matching M (the union of the M2(x,y)). By Claim 42-(i), every circular 2-backbone
5-colouring of (G,M) induces a C5-colouring of H (the vertices of the C5 are the colours (1,3,5,2,4)). Conversely,
by Claim 42-(ii), any C5-colouring of H can be extended into a circular 2-backbone 5-colouring of (G,M). Hence
H admits a C5-colouring if and only if (G,M) admits a circular 2-backbone 5-colouring.

Remark 43. Adding long paths along existing edges to transform the matching into a spanning tree, one derives
that deciding if CBC(G,T )≤ 5, given a planar graph G and a spanning tree T of G, is NP-complete.

4 Further research

Campos et al. [6] proved that if G is planar and T has diameter at most 3, then BBC2(G,T ) ≤ 5. Hence one can
the find the 2-backbone chromatic number of such a pair in polynomial time. One can ask of the complexity for
larger diameter.

Problem 44. For a fixed d ≥ 4, what is the complexity of finding the 2-backbone chromatic number of (G,T ),
when G is planar and T a spanning tree of diameter d ?

Since deciding if the 2-backbone chromatic number of (G,T ) is at most k, for any fixed k ≤ 4 can be done
in polynomial in polynomial time, if Conjecture 1 holds, Problem 44 is equivalent to finding the complexity of
deciding if BBC2(G,T )≤ 5.

If G is a triangle-free planar graph, then, by Grötzsch’s Theorem [8], it is 3-colourable, and so BBCq(G,H)≤
2q+ 1 and CBC(G,H) ≤ 3q for any subgraph H of G. Hence both Conjectures 1 and 6 for q = 2, when G is
triangle-free. A natural first step would be to extend prove the two conjectures or at least improve on the above
upper bounds for larger values of q.

Steinberg’s Conjecture (1976) states that every planar graph without 4- and 5-cycles is 3-colourable. Towards
this, Erdős (1991) proposed the following relaxation of Steinberg’s Conjecture: Determine the smallest value of
k, such that every planar graph without cycles of length from 4 to k is 3-colourable. The best known bound for
such a k is 7 which was proved by Borodin, Glebov, Raspaud and Salavatipour [2]. Hence, an evidence to both
Conjecture 6 and Steinberg’s Conjecture would be to prove the following:

Conjecture 45. If G is a planar graph without 4- and 5-cycles and F a spanning forest of G, then CBC(G,F)≤ 7.
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