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To cite this version:

Horacio Rostro-Gonzalez, Bruno Cessac, Juan Vasquez, Thierry Viéville. Back-engineering of
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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Introduction
We consider the deterministic evolution of a time-discre-
tized spiking network of neurons with connection weights
with delays, taking network of generalized integrate and
fire (gIF) neuron model with synapses into account [1].
The purpose is to study a class of algorithmic methods
able to calculate the proper parameters (weights and
delayed weights) allowing the reproduction of a spike
train produced by an unknown neural network.

Methods
The problem is known as NP-hard when delays are to be
calculated. We propose here a reformulation, now
expressed as a Linear-Programming (LP) problem, thus
allowing to provide an efficient resolution. It is clear that
this does not change the maximal complexity of the prob-
lem, whereas the practical complexity is now dramatically
reduced at the implementation level. More precisely we
make explicit the fact that the back-engineering of a spike
train (i.e., finding out a set parameters, given a set of ini-
tial conditions), is a Linear (L) problem if the membrane
potentials are observed and a LP problem if only spike
times are observed, for a gIF model. Numerical robustness
is discussed. We also explain how it is the use of a gener-
alized IF neuron model instead of a leaky IF model that
allows to derive this algorithm. Furthermore, we point out
how the L or LP adjustment mechanism is distributed and
has the same architecture as a "Hebbian" rule. A step fur-
ther, this paradigm is easily generalizable to the design of
input-output spike train transformations.

Results
Numerical implementations are proposed in order to ver-
ify that is always possible to simulate an expected spike
train. The results obtained shows that this is true, expect
for singular cases. In a first experiment, we consider the
linear problem and use the singular value decomposition
(SVD) in to obtain a solution, allowing a better under-
standing the geometry of the problem. When the aim is to
find the proper parameters from the observation of spikes
only, we consider the related LP problem and the numer-
ical solutions are derived thanks to the well-established
improved simplex method as implemented in GLPK
library. Several variants and generalizations are carefully
discussed showing the versatility of the method.

Discussion
Learning parameters for the neural network model is a
complex issue. In biological context, this learning mecha-
nism is mainly related to synaptic weights plasticity and as
far as spiking neural network are concerned STDP [2]. In
the present study, the point of view is quite different since
we consider supervised learning, in order to implement
the previous capabilities. To which extends we can "back-
engineer" the neural network parameters in order to con-
straint the neural network activity is the key question
addressed here.
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