
Services Lifecycle Management using Distributed

Computing Infrastructures in Neuroinformatics

Javier Rojas Balderrama

To cite this version:

Javier Rojas Balderrama. Services Lifecycle Management using Distributed Computing Infras-
tructures in Neuroinformatics. Distributed, Parallel, and Cluster Computing [cs.DC]. Univer-
sité Nice Sophia Antipolis, 2012. English. <NNT : 2012NICE4053>. <tel-00804893>

HAL Id: tel-00804893

https://tel.archives-ouvertes.fr/tel-00804893

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-00804893

UNIVERSITE NICE SOPHIA ANTIPOLIS
Ecole Doctorale de Sciences et Technologies
de l’Information et de la Communication

T H E S E

pour obtenir le titre de

Docteur en Sciences
de l’Université Nice Sophia Antipolis

Discipline : Informatique

présentée et soutenue par

Javier RƸƳƪƼBƪƵƭƮƻƻƪƶƪ
le 11 avril 2012

GESTION DU CYCLE DE VIE DE SERVICES DEPLOYES
SUR UNE INFRASTRUCTURE DE CALCUL DISTRIBUEE

ENNEUROINFORMATIQUE

Thése dirigée par JohanMƸƷƽƪưƷƪƽet Diane LƲƷưƻƪƷƭ

et préparée au sein du laboratoire I3S, équipeƶƸƭƪƵƲƼ

Jury :
Bernard GƲƫƪƾƭ Inserm, Rennes Rapporteur

JohanMƸƷƽƪưƷƪƽ CNRS, Sophia Antipolis Directeur

Christian PǕƻƮǃ Inria, Lyon Rapporteur

Michel RƲƿƮƲƵƵ Université Nice Sophia Antipolis President

Services Lifecycle Management
Using Distributed Computing Infrastructures

in Neuroinformatics

Contents

Abstract v

Abbreviations vii

Thesis statement ix

I Command–line interface applications as services 1

1 Services as building blocks of scientiɃc experiments 3
1.1 Interoperable applications . 4
1.2 Web services . 5
1.3 Metacomputing and global computing . 8
1.4 Survey of tools supporting command–line applications reuse 12
1.5 Conclusion . 17

2 Models for eȾcient reuse of ƬƵƲ applications 19
2.1 Enabling ƼƸƪ in production Grid infrastructures 19
2.2 EȾcient use of local resources . 22
2.3 Abstraction of command–line applications . 24
2.4 Discussion . 36

3 Reference implementation framework 37
3.1 Lifecycle of services . 38
3.2 Non–functional concerns integration . 47
3.3 Framework integration into third–party software 50
3.4 Implementation outcomes . 52
3.5 Conclusion . 53

II ScientiɃc workɇows in neuroimaging 55

4 ScientiɃc workɇows 57
4.1 Elements of scientiɃc workɇows . 57
4.2 GǀƮƷƭƲƪ&MƸƽƮƾƻ . 60
4.3 Summary . 63

5 Neuroimaging use–cases 65
5.1 ƶƻƲneuroimaging at a glance . 65
5.2 Automatic brain segmentation . 68
5.3 Longitudinal atrophy detection in Alzheimer’s disease 76
5.4 Summary . 79

CONTENTS

6 Enactment of scientiɃc workɇows on production ƭƬƲs 81
6.1 Workɇow design . 82
6.2 Materials andmethods . 83
6.3 Results . 87
6.4 Discussion . 94

Conclusions and perspectives 101

Appendix Schema of the ƬƵƲ application description 109

Appendix Template–based source code generation 113

Bibliography 114

iv

Abstract

There is an increasing interest among scientiɃc communities for sharing data and applications in

order to support research and foster collaborations. Interdisciplinary domains like neurosciences

are particularly eager of solutions providing computing power to achieve large–scale experimenta-

tion. Despite all progresses made in this regard, several challenges related to interoperability, and

scalability ofDistributedComputing Infrastructures arenot completely resolved though. They face

permanent evolution of technologies, complexity associated to the adoption of production envi-

ronments, and low reliability of these infrastructures at runtime.

Thiswork proposes themodeling and implementation of a service–oriented framework for the

execution of scientiɃc applications on Distributed Computing Infrastructures taking advantage of

High Throughput Computing facilities. Themodel includes a speciɃcation for description of com-

mand–line applications; a bridge to merge service–oriented architectures with Global computing;

and the eȾcient use of local resources and scaling. A reference implementation is proposed to

demonstrate the feasibility of the approach. It shows its relevance in the context of two applica-

tion–driven research projects executing large experiment campaign on distributed resources. The

framework is an alternative to existing solutions that are often limited to execution consideration

only, as it enables the management of legacy codes as services and takes into account their com-

plete lifecycle. Furthermore, the service–oriented approach helps designing scientiɃc workɇows

which are used as a ɇexible and way of describing application composed withmultiple services.

The approach proposed is evaluated both qualitatively and quantitatively using concrete appli-

cations in the area of neuroimaging analysis. The qualitative experiments are based on the opti-

mization of speciɃcity and sensibility of the brain segmentation tools used in the analysis of Mag-

netic Resonance Images of patient aȻected by Multiple Sclerosis. On the other hand, quantitative

experiments deal with speedup and latency measured during the execution of longitudinal brain

atrophy detection in patients impaired by Alzheimer’s disease.

Abbreviations

ƪƬƭ Ajax Command DeɃnition

ƪƭƷƲ The Alzheimer’s Disease Neuroimaging Initiative

ƪƹƲ Application Programming Interface

ƫƹƮƵ Business Process Execution Language

ƬƮ Computing element

ƬƵƲ Command–lined Interface

ƬƷƼ Central nervous system

ƬƸƻƫƪ CommonObject Request Broker Architecture

ƬƼƯ Cerebro–spinal ɇuid

Ƭƽ Computer tomography

ƭƬƲ Distributed Computing Infrastructure

ƭƲƮƽ Distributed Interactive Engineering Toolbox

ƭƲƻƪƬ Distributed Infrastructure with Remote Agent Control

ƮưƲ European Grid Initiative

ƮƶƫƸƼƼ The EuropeanMolecular Biology Open Software Suite

ƯƵƪƲƻ Fluid attenuated inversion recovery sequence

ƯƼƵ FMRIB Software Library

ưƪƼǀ Generic Application ServiceWrapper

ưƬ Grid Computing

ưƮƶƵƬƪ Grid ExecutionManagement for Legacy Code Applications

ưƶ Graymatter

GridFTP Grid File Transfer Protocol

gƻƪƿƲ The Grid Remote Application Virtualisation Interface

ưƾƲ Graphical User Interface

ưǀƮƷƭƲƪ GridWorkɇow EȾcient Enactment for Data Intensive Applications

ƱƽƬ High Throughput Computing

ƲƭƵ Interface Description Language

Ʋƺƻ Interquartile range

Ƴƪǁƫ Java Architecture for ǁƶƵBinding

Ƴƪǁ-ƻƹƬ The Java ƪƹƲ for ǁƶƵ–based ƻƹƬ

Ƴƪǁ-ǀƼ The Java ƪƹƲ for ǁƶƵWeb services

ABBREVIATIONS

ƳƭƵ Job Description Language

ƳƼƪưƪ Java implementation for the Simple ƪƹƲ for Grid Applications

ƳƼƸƷ JavaScript Object Notation

Ƶƫ Logging and Bookkeeping

ƵƬƬ Local coeȾcient criteria

ƵƬƲƭ Legacy Code Interface Description

ƶƬ Metacomputing

ƶƪƭ Median Absolute Deviation

ƶƷƲ Montreal Neurological Institute

ƶƻƲ Magnetic Resonance Imaging

Ʒƶƻ Nuclear Magnetic Resonance

ƸưƼƪ Open Grid Services Architecture

ƹƭ Proton density–weighted

ƹƮƽ Positron Emission Tomography

ƹƿƮ Partial volume eȻect

ƻƮƵƪǁ-Ʒư REgular LAnguage for ǁƶƵNext Generation

ƻƹƬ Remote procedure call

ƼƮ Storage element

ƼƬƾƯƵ Simple Conceptual UniɃed Flow Language

ƼƱƲǀƪ SHaring InteroperableWorkɇows for large–scale scientiɃc simulations

on Available ƭƬƲs initiative

ƼƸƪ Service-oriented Architecture

ƼƸƪƹ Simple Object Access Protocol

ƼƼƭ Sum of squared diȻerence

ƼƹƮƬƽ Single Photon Emission Computed Tomography

ƾƻƵ Uniform resource locator

ƾƻƲ Uniform resource identiɃer

ƿƲƹ The Virtual Imaging Platform

ǀƶ Whitematter

ǀƶƼ Workloadmanagement system

ǀƼ Web service

ǀƼƭƵ Web service Description Language

ǀƼƻƯ Web services Resource Framework

ǁƶƵ Extensible Markup Language

viii

Thesis Statement

Introduction

There is ahigh interest amongscientiɃc communities for thecreationand investigationof theoreti-

calmodels, and theacquisitionandanalysis of experimental data. Theseactivities are fundamental

in order to validate previous results, encourage new interpretations, foster collaborations, and en-

able further Ƀndings. However, many important challenges, ranging from infrastructure support

to frameworks development passing through modeling, need to be faced to pursue experimental

campaigns.

Distributed computing infrastructures (ƭƬƲ) have become a strong driver for scientiɃc innova-

tion because they enable scientists to mutualize resources such as data, computing facilities, and

dataanalysisprocedures. These infrastructurespave theway to theemergenceof cross–institutional

scientiɃc communities. In addition, ƭƬƲs deliver computing and data storage capability needed to

address “big science” challenges. To support longstanding experimental campaigns, ƭƬƲs provide

experiment management frameworks with abstraction layers that shield the users from the com-

plexity of the underlying technologies and tools. Large–scale experimentation on such infrastruc-

tures remains diȾcult to setup and conduct though. Distributing computations related to an ex-

perimental campaign, deploying application components over an infrastructure, and monitoring

applications executionsmassively distributed are activities requiring skills thatmost scientists are

not acquainted with. Therefore the amount of work that scientists put to make those infrastruc-

tures suited for their speciɃc interest can be considerable and this work rarely addresses the need

of a wide range of users in this context.

In practice, data analysis tools developed by scientists make intensive use of command–line

interfaced (ƬƵƲ) applications. The ƬƵƲ tools are broadly adopted in scientiɃc computation both for

practical and historical reasons. They frequently represent legacy validated implementations. The

ƬƵƲ applications provide simple but versatile invocation interfaces, and they are commonly avail-

able. However, these applications do not usually follow any standard speciɃcation to implement

their invocation interfaces. They are not designed to interact with other applications in order to

build complex data analysis procedures in the form of assembled processing pipelines, or work-

ɇows. Additionally, the profusion of invocation speciɃcations and the lack of a uniform way to

process data and generate results make their use limited in a distributed environment. These con-

siderations restrict ƬƵƲ applications sharing across institutions, even if their users belong to the

same scientiɃc community.

THESIS STATEMENT

Distributed infrastructures serve ƬƵƲs through broadly–adopted batch systems. Batches were

initially designed to exploit command–line interfaces in remote tools invocation on local or wide-

area distributed infrastructures. An extended variety of batch systems andworkloadmanagement

systemshave been developed tomatch the need of diȻerent infrastructure scales. Yet, these simple

remote computing environments process computing tasks on–the–ɇy and they do not address the

problems of application tools deployment nor consider the structure of experiment workɇows.

The tools deployment, and data to process in ƭƬƲs involves to handle aspects bound to access

and operation of infrastructures, and applications installation. Production infrastructures do not

ensuresystematically resilientandreliable services. These infrastructures facewell–identiɃedprob-

lems such as high latency, unfair balance between execution tasks, and a non–negligible failure

rate. Furthermore, the deployment is often managed at an administrative level, limiting the au-

tonomy of scientists throughout experimentation.

EȾcient scientiɃc experimentation also requires strategies for tools execution and advanced

data manipulation. Despite the progresses made in data–intensive application composition with

the settlement of scientiɃc workɇows, this approach stumbles on integration obstacles for the en-

actment of applications. Control structures and iteration strategies, that scientiɃc workɇows lan-

guages provide to automate workɇows execution, cannot be fully exploited whereas the parame-

ters of ƬƵƲ applications are not properly described and the results conveniently handled.

The neuroimaging community, for instance, needs to analyze large brain image datasets. Sci-

entists are interested in designing complex workɇows combining image analysis tools from dif-

ferent sources. Their activities are often focused on statistical analysis procedures which involve

the processing of large population data. Besides, they deal with sensitive data geographically dis-

tributed. The case studies of this community draw attention to the management of applications,

their composition and enactment as scientiɃc workɇows, and fulɃllment of external concerns.

In fact, the instrumentation of scientiɃc experiments is not only conditioned to the infrastruc-

ture and the methods that scientists use to conduct their studies. They regularly have to contem-

plate additional concerns during experimentation to fulɃll institutional policies, protect informa-

tion, or monitor the execution platform. Thus, the integration of external concerns such as data

access control, users authentication, infrastructure load balancing, or processing validation is nec-

essary all along the process in order to carry out a successful experimentation.

Nowadays, multiple barriers slow advances in applied research because of the lack of appro-

priate working frameworks. Scientists usually have access to local computing resources that com-

monly reach power calculation limits during large experimental campaigns. Although scientists

may also count ondistributed computing facilities, hence the combination of local and remote het-

erogeneous platformsmakes experimentation challenging. The existing platforms partially allow

users to manage the deployment of applications on ƭƬƲs, design workɇows, and perform eȾcient

executions in a comprehensive environment.

x

Objectives

Objectives

Asa result of the analysis drafted in theprevious section the followingobjectivesmotivate thework

reported in this manuscript. They aim at improving grid computing experience, specially for neu-

roimaging scientists, by simplifying experiments design, and by providing eȾcient enactment.

1. Specify an abstraction of ƬƵƲ applications supporting executions on ƭƬƲs.

2. Implement an extensible framework enabling integration of non–functional concerns.

3. Adopt a deployment strategy ensuring scalable and ɇexible experimentation.

4. Ensure reliable and resilient executions on heterogeneous infrastructures.

5. Design scientiɃc workɇows instances of neuroimaging use–cases.

6. Enact scientiɃc workɇows eȾciently exploiting local and remote computing resources.

FulɃlling these objectives lead to a technical distributed–computing framework implementa-

tion. Exploiting this framework, as part of an interdisciplinary collaboration, the applicative part

of this work also focuses on two neuroimaging use–cases: the automatic brain segmentation, and

the longitudinal atrophy detection inAlzheimer’s disease. These research eȻorts aim at helping in

the treatment of brain conditions encompassing tools and techniques for analysis, modeling and

simulation. The establishment of links between interdisciplinary domains encourages new sci-

entiɃc insights, makes existing tools and data more valuable, and new studies more reliable and

reproducible.

Contributions

This work is positioned in the Ƀeld of neuroinformatics, as it deals with the organization of neu-

roscience applications and data with computationalmodels and their implementations. However,

it is not limited to that particular area since the contributions are valid for any domain interested

in software interoperability or production ƭƬƲs utilization. This work speciɃcally pays attention to

the way users handle ƬƵƲ applications in order to perform large–scale experimentation.

ThespeciɃcationofa schemetodescribeƬƵƲapplicationsdetailed inChapter2eases their (re)use.

The details of the interface invocation presented in a uniform manner becomes an expressive in-

strument to work with the data structures and types associated to the application’s parameters.

This abstraction enables the endorsement of applications descriptions to open and compliant im-

plementations of ƼƸƪ like Web services by transforming instances of the ƬƵƲ application scheme

into standard deɃnitions. Additionally, the introduction of the application’s characteristics related

to the execution into the deɃnitionof the application, such as systemrequisites or environment de-

pendencies, leads to the adoption of heterogeneous infrastructures andmultiple platforms. These

characteristics identify clearly the requirement for each execution instance.

xi

THESIS STATEMENT

The exhibition of ƬƵƲ applications as modular and interoperable components involves the in-

strumentation of the logic concerning the interpretation of the arguments, dependencies conɃgu-

ration, and the execution. This transformation is complex due to the need to respect the applica-

tions nature, and the integration of non–functional concerns associated to platform of execution

or data management. Chapter 3 presents a reference implementation of a ƼƸƪ approach detailing

the lifecycle of ƬƵƲ applications as services.

The deployment of ƬƵƲ applications as Web services also brings together ɇexibility and scala-

bility. The software development involved in this work carries out the implementation of an end-

to–end framework for applications wrapping, deployment and execution control. This strategy of

deployment engages the manifest replication of services and load balancing of hosting servers in

order to achieve large–scale experimentation. In addition, the extensive use of distributed com-

puting infrastructures is granted seamlessly. The framework oȻers a single interface to process

services invocations by dynamic reallocation of resources. The execution resilience and reliabil-

ity on such infrastructures is ensured by the implementation of resubmission mechanisms, data

replication, integration of multilevel job scheduling, and control of remote computing sites.

Finally, applications in neuroimaging are proposed in the second part of this thesis. The rep-

resentation of ƬƵƲ applications as Web services allows their composition as scientiɃc workɇows.

This approach describes the interactions and dependencies of applications using a highly expres-

sive language that includes iteration strategies for advanced datamanipulation. The design of sci-

entiɃc workɇows promotes eȾcient executions of data–intensive applications. A workɇow enact-

ment involves multiple levels of parallelism delegating at the same time data staging to execution

endpoints. In addition, eȾciency is enhanced introducing local resources for executions. This in-

clusion, conceived as amodeling to dispatch execution request based on resources availability, be-

comes a vehicle to overcome the latency caused by batch systems overheads. It is also amechanism

to reduce the failure rate associated to remote executions.

Context

This work was motivated by and applied to driver projects: NeuroLOG in the area of neurosinfor-

matics, and ƿƲƹ concerning the improvement aspects of the large–scale experimentation. Both

develop collaborative platforms and are grounded on a translational research view. They make

extensive use of ƬƵƲ applications and scientiɃc workɇows. The NeuroLOG project constitutes the

base context in termsof the reference frameworkdevelopment anduse–cases, whereas that theƿƲƹ

project provides elements to ensure enactment eȾciency.

TheNeuroLOGproject

NeuroLOG¹ is an applied research project that aims at integrating process, data, and knowledge

in neuroimaging [Montagnat, 2011]. The NeuroLOG project fosters the adoption of health–grids

in a pre–clinical community for supporting multi–centric studies targeting the treatment of four

pathologies: multiple sclerosis, brain tumors, cerebral strokes, and Alzheimer’s disease.

¹NeuroLOG project: http://neurolog.i3s.unice.fr/

xii

http://neurolog.i3s.unice.fr/

Context

The NeuroLOG project has developed a platform in a distributed environment. The platform

interfaces existing neuroinformatics resources (databases and processing tools) withoutmodiɃca-

tion of the legacy environment implemented at each participating site. The platform is grounded

on a common domain ontology also developed within the project, which provides a reference for

unifying theheterogeneousdata representations adoptedby the federationofpartners. In addition

to the federationof resources,NeuroLOGprovidesan interface todistributedcomputing infrastruc-

tures. It enables the bundling of neuroimage processing and their relocation for remote execution

when handling compute intensive tasks. The platform includes a workɇow manager used to de-

scribe complex image analysis pipelines, potentially involving large datasets. Federated datasets

and processing tools are semantically annotated. This domain knowledge is used to validate the

coherency of planed processing. The processing is enriched at runtime thanks to the inference of

new facts through the application of semantic rules attached to data processing tool classes. The

NeuroLOGplatform is a prototype deployed over several sites (Grenoble, Paris, Rennes, Sophia An-

tipolis) to demonstrate the validity of its federated approach.

NeuroLOG is guided by a prospective vision of biomedical research, where data is:

• commonly available to large user communities,

• described and shared using reference domain ontologies,

• browsable through search engines exploiting knowledge represented in ontologies,

• exploitable in an interdisciplinary framework that facilitates the binding of experimental

facts from diȻerent domains and contexts, and

• applied to heavy–processing tasks implying distributed infrastructures.

Similarly, the processing tools are:

• exposed asWeb services for easier dissemination and use,

• integrated inprocessingpipelines throughsemanticannotations foreasier compatibilityval-

idation of their linked inputs and outputs, and

• outsourced to distributed infrastructures such as grids for fast and reliable execution.

The NeuroLOG characteristics, specially those concerning the processing tools, become the re-

quirement analysis of this work. They represent the guiding thread for reuse modeling and de-

velopment. Additionally, the use–cases considered in this project are suitable examples of study

and validation support. In fact, neuroimaging tools are typically computational intensive applica-

tions with long execution timespans; work on large–size datasets; and the research teamsworking

with themare specialized on speciɃc topics. Therefore the collaboration and tools sharing not only

enhance the understanding of integrative aspects in neurosciences. The conducted studies also

provide quantitative information that may be statistically analyzed, corroborated, and compared.

The results may be a product of interdisciplinary eȻorts concentrated at the same time in involved

methods and available resources.

xiii

THESIS STATEMENT

TheVIP project

The Virtual Imaging Platform (ƿƲƹ) project² targetsmulti–modality, multi–organ and dynamic (4D)

medical images simulation. Integratingprovedsimulationsoftwareof the fourmain imagingmodal-

ities, the platform copes with interoperability challenges among simulators, addresses compati-

bility issues between organ models and provides transparent access to computing and storage re-

sources.

To tackle interoperability issues, the semantics of models and simulation tools are made ex-

plicit. This will be achieved using annotations referring to a set of consistent ontologies describing

the organmodels, the simulation data processing, the simulation tools and the simulated images.

Associated repositories andsoftware interfaceswill ease experimentdesign, assisted simulator and

model integration. To address the computational challenge, distributed computing infrastructure

technologies are employed. Yet, to cope with reliability issues of large–scale production environ-

ments, ƿƲƹproposes todevelopamulti–infrastructure executionenvironment able touseboth local

computing resources (multi–core servers and clusters) and large–scale grids. No heavy code paral-

lelization is involved though: speedup is provided from data and code parallelism only, naturally

expressed in simulations.

VƲƹ includes a strong application aspect to guarantee the adequacy of the resulting environ-

ment with the needs of imaging techniques developers, model designers and image processing re-

searchers. SpeciɃcally, ƿƲƹ includes four applicative objectives that are used to demonstrate this

adequacy. These applications are (1) the validation ƼƲƷƫƪƭ CT simulator, (2) the development of a

newUS sequence for motion detection, (3) themodelling of inɇammation process fromƶƻƲ simu-

lation, and (4) the evaluation of cardiac segmentation algorithms frommulti–modality images.

While the ƿƲƹ project covers a diversiɃed range of simulations, this work focuses on the reuse

and the execution interoperability aspects. Its working environment constitutes an example of the

integrative eȻort of software development, to provide a comprehensive framework to scientists,

taking into account non–functional concerns and heterogeneous environments of execution.

Organization

The document is composed of seven chapters, organized in two parts. The Ƀrst part reports the

proposed solution to the challenges identiɃed during theworkwith ƬƵƲapplications on distributed

computing infrastructures. The second part addresses the scientiɃc workɇows as an eȾcient al-

ternative raised by neuroimaging experimentation at large–scale. Each part may be read inde-

pendently because it includes the context formulation and the results. However, cross–references

throughout the document make a reading thread inviting to follow the sequence of chapters from

the introduction to the conclusions.

The Ƀrst part “Command–line Interface Applications as Services” is organized as follows:

Chapter 1: Services as building blocks of scientiɃc experiments. It is a state–of–the–art in the Ƀeld of

services, distributedcomputing infrastructures, and tools tomanagecommand–lineapplica-

²VƲƹproject: http://vip.creatis.insa-lyon.fr/

xiv

http://vip.creatis.insa-lyon.fr/

Organization

tions. This chapter is essential tounderstand the adopted approach in thiswork, and identify

the technological challenges.

Chapter 2: Models for reuse of command–line applications. It represents the theoretical contribution

of this work. An encompassing model of service–oriented architecture and global comput-

ing is presented. In the sameway, a strategy is deɃned for the eȾcient use of local resources

duringworkɇow enactment. Finally, a complete speciɃcation to describe command–line ap-

plications is deɃned. This chapter was partially published in [Rojas Balderrama et al., 2010].

Chapter 3: Reference implementation framework. It represents the software development contribu-

tion. A comprehensive working environment for wrapping, deployment, and execution of

scientiɃc applications is detailed from the lifecycle perspective. This chapter was included

in [Ferreira da Silva et al., 2011], and [Rojas Balderrama et al., 2011].

The second part “ScientiɃc Workɇows in Neuroimaging” makes extensive use of the develop-

ment eȻorts for application reuse, and software integration addressed in the Ƀrst part. It is orga-

nized as follows:

Chapter 4: ScientiɃc workɇows. It is a comprehensive summary of concepts about data represen-

tation, the adopted scientiɃc workɇow environment and its underlying language speciɃca-

tion. This chapter represents the conceptual pointers required for workɇows design and en-

actment of use–cases introduced in the next chapter.

Chapter 5: Neuroimaginguse–cases. It reports on theneuroimagingexamples adopted in thiswork:

the automatic brain segmentation, and the longitudinal atrophy detection in Alzheimer’s

disease. This chapter summarizes the interdisciplinaryworkperformed incollaborationwith

the Asclepios team from ƲƷƻƲƪ. These use–cases were presented in [Rojas Balderrama et al.,

2008], and [Gibaud et al., 2011].

Chapter 6: Enactment and execution on production distributed computing infrastructures. It details the

scientiɃc workɇow instantiation of the neuroimaging use–cases; and the experimentation

focused on qualitative results, and execution scalability on production environments. First

part of this chapterwaspublished in [Pernodet al., 2008] and the secondone in [RojasBalder-

rama et al., 2012]

A Ƀnal chapter recapitulates the conclusions, and states the prospects.

xv

Part I

Command–line InterfaceApplications

as Services

Chapter 1

Services as BuildingBlocks

of Scientific Experiments

ScientiɃccommunities takeadvantageof ƼƸƪprinciples, as sucharchitectureshave for longdemon-

strated theirability tohandle interoperabilityemphasizingonconceptsof reusableandautonomous

softwarecomponents (amongothers). HoweverƼƸƪdoesnotenable legacyapplications reuseper se.

Legacy applications, provided as command lines, are a fundamental part for processing and ana-

lyzing scientiɃc data. There are also “new command–line applications” which are not legacy but

developed as it for simplicity and the ability to use them though regular batch systems. These ap-

plications represent a huge foregoing investment. They encapsulate algorithms that still respond

to the expectations of users, and they are not re–implementable using modern techniques due to

lack resources and time. In addition, the real need to access such applications from other com-

puters, and the requirement of a programmatic way to invoke them,motivate the implementation

of non–intrusive approaches to wrap them as services to enable their reuse. The impact of inten-

sive use of legacy applications also pushed to look for new environments to obtain fast and reliable

frameworks adoptingdistributed computing infrastructures andpreserve those applications as the

building blocks of scientiɃc experiments.

The command–line interface tools, conceived to be executed on console terminals, are consid-

ered legacy applications because theyhave a simple interface to interactwithusers and they arenot

designed to interoperate with other applications or be executed remotely. These applications are

executed using parameters to provide inputs, and describe outputs in a syntax that is not always

uniform. They depend on system environment variables, and often require additional libraries to

run. Web services can be a solution to reuse command–line applications providing a technology

stack todeliver resultsover Internetwithoutworryingon installationor conɃgurationbecause they

can run remotely exchanging information, and interoperating bymeans of standardmechanisms.

This chapter summarizes the state–of–the–art for the reuse of legacy applications as services,

the adoption of distributed computing infrastructures to overcome the increasing need of power

computation, and a brief review of initiatives that take into account the ƼƸƪ principles in legacy

application transformations. It introduces several technologies involved in reusability, interoper-

ability, and scalability.

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

1.1 Interoperable applications

There has been a long–standing desire in software engineering for a standard way of collecting

and using software. Initially conventional middleware were developed at a time where the sys-

tems were limited to local private networks or conditioned to the Internet using mere adaptions.

They were conceived to resolve speciɃc problems in a well–deɃned context. Later, the interactions

between applications, specially when they are located in a distributed environment, were assured

by communication models. Protocols of communication were deɃned standing out expressive-

ness, convenient combination, and semantic soundness. Technologies implementing such proto-

cols enabled interoperability between programming languages, operative systems, and computer

architectures. Two major examples are the Remote Procedure Call (ƻƹƬ) systems, and the object

request brokers.

1.1.1 Remote procedure call

The original goal of remote procedure call (ƻƹƬ) [Birell andNelson, 1984] was to provide a transpar-

entway to call procedures in remote computers based on the client/server architecture. In fact, the

ƻƹƬmechanism is the underlying principle of most of current middleware because it introduced

the concept of Interface DeɃnition Language (ƲƭƵ). An ƲƭƵ is an abstraction of the procedures rep-

resentation specifying the input/output parameters. The ƲƭƵ represents the description of the ser-

viceprovidedby the server. Once the ƲƭƵis deɃned, a compiler generates the client and server stubs.

The stubs are a model of data representation and the references to their implementation. When a

client performs a ƻƹƬ call, the client stubs are used to ask the execution of the remote procedure.

Next, the server stubs call the procedure itself and send back the results to the client stub. Finally,

the client stub returns the results of the application to the client.

1.1.2 Object request broker

An object request broker [CORBA, 2008] is a middleware supporting the interoperability between

remote objects. This is a natural evolution of the ƻƹƬ for adapting to the Object Oriented Paradigm.

Thegoalof thisbrokers is close to theƻƹƬ. Theymask thecomplexitybehind the remote invocation.

Themost famous implementation is ƬƸƻƫƪof the Object Management Group.¹ It is a speciɃcation

and an architecture for the creation and management of distributed and object–oriented applica-

tions over a network. The ƬƸƻƫƪ speciɃcation is independent to any implementation regarding

the programming language or the operative system. CƸƻƫƪdeɃnes the communication interfaces

using ƲƭƵ–ƬƸƻƫƪ, a more powerful language compared to ƻƹƬbecause it supports concepts of her-

itage andpolymorphism. Moreover, ƬƸƻƫƪimplements a dynamic invocation based on a discovery

mechanism on the client side that is not possible with ƻƹƬ. Other types of object brokers are also

available, such as ƭƬƸƶand its descendant ƬƸƶ+ ofMicrosoft,² and the Java RemoteMethod Invo-

cation³ (ƻƶƲ). However ƭƬƸƶ and ƬƸƶ+ are speciɃc to Microsoft operating systems, and ƻƶƲ is a

¹Object Management Group: http://www.omg.org/
²Microsoft Component Object Model Technologies: http://www.microsoft.com/com
³Java ƻƶƲ: http://download.oracle.com/javase/6/docs/technotes/guides/rmi

4

http://www.omg.org/
http://www.microsoft.com/com
http://download.oracle.com/javase/6/docs/technotes/guides/rmi

Web services

Java–based technology restricted to work from the Java Virtual Machine.

1.1.3 Discussion

The eȻective reuse of ƬƵƲ application with ƻƹƬ or object request brokers is diȾcult to accomplish

due to the code instrumentation. The ƬƸƻƫƪ protocol, for instance, despite its independence re-

garding programming languages, requires to implement the objects of the communication inter-

faces. In consequence, this is not practical for widespread use becauseworkingwith source code is

inevitable.

At the same time, ƻƹƬand later the ƬƸƻƫƪprotocol were incapable to resolve completely inter-

operability problems such as data interchange and execution autonomy in heterogeneous archi-

tectures. Moreover, the consensus of such technologies was limited and alternatives based on ǁƶƵ

formats emerged quickly because of their neutral approach. This initially promoted their cohabi-

tation speaking the same vocabulary but later the industry identiɃedWeb services as a promising

implementation to face interoperability.

1.2 Web services

The notion of service was introduced before the concept of Web service was coined by the Open

Group (formerlyOpenSoftware Foundation) for the speciɃcation of theDistributedComputingEn-

vironment standard.⁴ However, the acquired importance of the concept is associated to the emer-

gence of Web services. The concept of service is deɃned as an abstract resource representing the

possibilities to performa task in order to guarantee a given functionality coherent from thepoint of

viewof the provider and the client agent. This servicemust be implementedby a concrete provider.

Using the base of the service concept, several deɃnitions tried to specify the concept ofWeb service

(WS), for example Curbera et al. [2001] deɃne it as follows:

AWeb service is a networked application that is able to interact using standard applica-

tion–to–applicationWeb protocols over well deɃned interfaces, and which is described using

a standard functional description language.

Web services describe a distributed computing paradigm that diȻers from other approaches

such as ƬƸƻƫƪ in its focus on Internet–based standards to address heterogeneous distributed com-

puting. The use of standard technologies reduces problems related to the heterogeneity, and it is

the key to facilitate the integration of applications. Evenmore,Web services provide the necessary

support for new architectures such as the Service Component Architecture [SCA, 2007].

Web services may be used for the implementation of the Service–oriented Architecture, but

they have to follow all its properties, so other components are needed to complement that architec-

ture. Namely, ƾƭƭƲ is used for publishing the services, ǀƼƭƵ for the description of the service, and

ƼƸƪƹ for the protocol of communication.

⁴Distributed Computing Environment: http://www.opengroup.org/dce/

5

http://www.opengroup.org/dce/

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

Service–orientedArchitecture

The Service–oriented Architecture (ƼƸƪ) is a set of design principles used during the phases of sys-

tems development and integration [Erl, 2005]. A systembased on ƼƸƪfocuses on the requirements

deɃned at strategy level, and business process. SƸƪ is also an architecture of distributed systems

based on the concepts of services and characterized by the following properties:

• Standardized service contract. Services adhere to communication agreements, as deɃned

collectively by one ormore service–description documents.

• Service loose coupling. Services maintain a relationship that minimizes dependencies and

only requires that theymaintain an awareness of each other.

• Service abstraction. Services hide logic from the outside world beyond descriptions in the

service contract.

• Service reusability. Logic is divided into services with the intention of promoting reuse.

• Service autonomy. Services have control over the logic they encapsulate.

• Service statelessness. Services minimize resource consumption by deferring the manage-

ment of state information when necessary.

• Service discoverability. Services are supplementedwith communicativemeta data by which

they can be eȻectively discovered and interpreted.

• Service composability. Services are eȻective composition participants, regardless of the size

and complexity of the composition.

The ƼƸƪservices are described usingmetadata. The provider stores the information of services

in a directory. A client agent can discover a service based on speciɃc criteria published on that

directory. Then the client uses the storedmetadata to exchangemessages with the service.

1.2.1 WebServicesDescription Language

TheWeb Services Description Language (ǀƼƭƵ) [Christensen et al., 2001] provides a model for de-

scribing Web services using an ǁƶƵ format. WƼƭƵ splits the abstract functionality from the con-

crete details of the service instantiation. Basically a ǀƼƭƵ is composed of deɃnitions. Every deɃ-

nition includes interfaces (ports), messages, bindings and services. An interface is deɃned by as-

sociating a network address with a reusable binding, and a collection of ports deɃnes a service.

Messages are abstract descriptions of the data being exchanged, and port types are abstract collec-

tions of supported operations. The concrete protocol anddata format speciɃcations for a particular

port type constitutes a reusable binding, where the operations and messages are then bound to a

concrete network protocol andmessage format. In this way, ǀƼƭƵdescribes the public interface to

theWeb service. Data types of messages are not always deɃned inside the service description. An

6

Web services

additional ǁƶƵ schema actually may be attached to the service description listing types of opera-

tionmessages.

WƼƭƵ is often used in combination with the Simple Object Access protocol (ƼƸƪƹ). In those

cases, any client program connecting to aWeb service can read the description to determine avail-

able operations. The agents interacting with theWeb services uses ƼƸƪƹmessages. The client can

then use ƼƸƪƹ to actually call one of the operations listed in the ǀƼƭƵɃle and exchange messages

with the provider calling the operations declared in theǀƼƭƵ.

1.2.2 SimpleObject Access Protocol

The SimpleObject Access Protocol (ƼƸƪƹ) [Gudgin et al., 2007] provides a deɃnition of information

represented inǁƶƵformat. It is used to exchange structured information and types in a distributed

and decentralized environment. SƸƪƹ is an independent protocol, that is not attached to any plat-

form or programming language.

The speciɃcation of ƼƸƪƹ establishes a standard message format. It may be used in ƻƹƬ-like

transactions or in document–centricmessagemechanisms. SƸƪƹfacilitates the implementation of

synchronous and asynchronous communication models. It deɃnes a structured communication

protocol containing protocol headers, an envelope section, headers of the message and its body.

The contents of the envelope, headers, and body are not deɃned by the ƼƸƪƹ speciɃcation. They

are dependent on the implementation. However, the ƼƸƪƹ speciɃcation deɃnes how to use those

elements. SƸƪƹ is not tied to any transfer protocol. It may be used with several protocols such as

Ʊƽƽƹor Ƽƶƽƹ.

1.2.3 Universal DescriptionDiscovery and Integration

TheUniversalDescriptionDiscoveryand Integration (ƾƭƭƲ) [UDDI, 2004] isaplatform–independent

ǁƶƵ–based registry designed to be queried using ƼƸƪƹmessages. It also provides access to ǀƼƭƵ

documents describing the protocol bindings and message formats required to interact with the

Web services listed in its directory. UƭƭƲ is conceptually a catalog server of names and addresses.

The information stored by this registry is oriented to human interpretation. For this reason a dy-

namic binding is not possible because an automated client is not capable to discover a service an

build a communicationmessage at execution time.

A ƾƭƭƲbusiness registration consists of three components (i) White Pages, giving information

about the business supplying the service (ii) Yellow Pages, providing a classiɃcation of the service

or business, based on standard taxonomies, and (iii) Green Pages used to describe how to access a

WS, with information on the service bindings.

1.2.4 Summary

Web serviceswere conceived to ease interoperability based on standard technologies, reducing the

heterogeneity and providing support for the integration of applications. They are the result of

the consensus of diȻerent speciɃcations, namely the ǀ3Ƭ⁵ recommendations the ǀƼƭƵ and ƼƸƪƹ

⁵WorldWideWeb Consortium: http://www.w3c.org/

7

http://www.w3c.org/

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

[Christensen et al., 2001; Gudgin et al., 2007]. In principle, the reuse of scientiɃc applications is ef-

fectiveembracing techniques likewrappingof theƬƵƲapplications inWSinterfaces. Thisnon–intrusive

approach exposes the applications as services hiding the implementations details, and exhibiting

the functionality.

Although the Web community developed the ƼƸƪ to tackle the challenge raised by software

reuse/distribution, it put a little eȻort in improvingperformanceof ƼƸƪ–basedapplications. Mean-

while, the metacomputing and global computing models were developed revolutionizing the ac-

cess to large–scale infrastructures for optimizing the execution and for promoting the sharing of

storage an power calculation.

1.3 Metacomputing andglobal computing

Distributed Computing Infrastructures (ƭƬƲ) have become a strong driver for scientiɃc innovation.

The increasing need for computing power and data federation arising in many international con-

sortiapushed forward thedevelopmentofunprecedented large–scale infrastructures. HighThrough-

putComputing (ƱƽƬ)environmentsobtainedcommunityattentionbecause theydeliver largeamounts

of processing capacity over long periods of time. The way to the development of ƱƽƬ [Thain et al.,

2005] was already paved in the nineties, when the outstanding growth of the Internet in terms of

size, reliability, and bandwidth enabled super–computing capability using large amount of regu-

lar computing resources geographically distributed. At that time diȻerent architectures were de-

Ƀned proposing the base elements of the current implementations. From those architectures two

models, metacomputing and global computing, encompass most of concepts related to eȾcient

computation and distributed location.

Computing resources transparently available to the user through networks have been called

a metacomputer [Smarr and Catlett, 1992]. Metacomputers are network of heterogeneous, com-

putational resources linked by software. Indeed, to achieve this level of organization eȾciently,

compute resourcesmust be integrated into a seamless resource that can be easily managed within

one framework.

Metacomputing adds another dimension to the conɃguration management over a potentially

arbitrary collection of heterogeneous resources. The frameworkmust be able to identify available

resources, acquire any such resource, initialize the computation on it, and eventually terminate. A

metacomputing frameworkmust be able tomanage resource eȻectively not only exploiting diȻer-

entmachines but supporting diȻerent types of parallelism,managing both synchronous and asyn-

chronous control ɇow among compute nodes, allowing control–oriented and data–oriented syn-

chronization, andmanaging data locality in order to minimize communication and latency. Com-

munication among compute nodesmust be controllable by the application tomanage the available

bandwidth and tolerance. A metacomputing system allows applications to assemble and use col-

lection of resources on demand, independently from their physical location.

Metacomputing has much in common with both distributed and parallel systems, yet also dif-

fers from these architectures in important ways [Foster and Kesselman, 1997]. Like distributed sys-

tems, metacomputing must integrate resources of widely varying capabilities, connected by po-

8

Metacomputing and global computing

tentially unreliable networks and often located in diȻerent administrative domains. However, the

need for high performance can require programmingmodels and interfaces fundamentally diȻer-

ent from those used in distributed systems. Metacomputing applications, as in parallel computing,

often need to schedule communications carefully to meet performance requirements but the het-

erogeneousanddynamicnatureofmetacomputingsystems limits theapplicabilityof someparallel

computing tools.

Theresourcemanagement formetacomputing is typicallybasedon resourcebrokers [Czajkowski

et al., 1998], involved in servicing single requests. They translate application requirements inmore

concrete resource requirementswith theassistanceof an informationservice. The informationser-

vice is responsible for providing eȾcient and pervasive access to information about current avail-

ability and capacity of resource. At low level the management enables remote monitoring and ex-

ecution of processes or jobs created in response to a resource request, and periodically updates the

information service with the current activity.

Themetacomputingmodelwas successfully implemented inproductionenvironments like the

gLite⁶middleware providing access to batch systems. However this approachhas somedrawbacks.

It is ineȾcient, wasting computational resources while waiting for requests, and it needs to inte-

grate signiɃcant mechanisms, techniques and tools to assure allocation of resources, scheduling,

authentication, and authorization.

Almost at the same time, the global computing model emerged as a simple and eȻective ab-

straction layer to shield the users from the complexity of underlying distributed systems [Foster,

2005b]. Global computing refers to computation over infrastructures available globally, provides

uniformserviceswith variable guarantees for security, reliability, scalability, and self–management

with particular regard to the programmability of these services. In fact, the adoption of ƼƸƪ and

the subsequent use of Web standards deɃned a more speciɃc model based on services. The global

computing vision requires protocols that are not only open andgeneral–purpose but also standard.

Standards allow institutions to establish resource–sharing arrangements dynamically. Those stan-

dards are also important as amean of enabling general–purpose services and tools.

Global computingprovides the foundations for thedevelopmentof large–scalegeneral–purpose

computer systems that have dependably predictable behavior for the needs of diȻerent organiza-

tions. Itmight be designed to support resource sharing, or services transactions. In essence, global

computing is not just middleware, but goes up to software engineering methods. Furthermore, it

addresses a range of issues such asmobility, ubiquity, and interactivity.

1.3.1 Grid computing

The Grid computing term [Baker et al., 2002; Schwiegelshohn et al., 2010] was adopted to cover the

technologies addressing high performance computing in anheterogeneous environment operated

by cross–institutional and global–scale initiatives. Almost immediately, the need to interoperate

ever more heterogeneous resources led to a paradigm shift.

⁶gLite: http://glite.cern.ch/

9

http://glite.cern.ch/

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

Grid computing concerns essentially a range of middleware technologies intended to support

resource sharing between groups of computers as virtual organizations (VO), a dynamic set of in-

dividual and/or institutions deɃned around a set of rules and conditions [Foster, 2001]. Originally,

the research associated to grids wasmeant to increase computing power by sharing tasks between

computers. The essence of Grid computing can be summarized in a system that coordinates re-

sources that are not subject to centralized control, delivering non–trivial qualities of service. The

strengths of grids include the security architecture and resource management, conversely identi-

Ƀed weaknesses are lack of fault–tolerance and self–management.

1.3.2 Grid services

Beyond harnessing computing power, Grid infrastructures provide a ɇexible and adaptive sup-

port compatible with modern application development methodologies. A convergence took place

between Grid technologies and the Web technologies with the Open Grid Services Architecture

(ƸưƼƪ). This architecture represents an evolution towards a Grid system architecture based on ƼƸƪ

concepts and technologies. Grid services are presented as an extended version ofWeb services that

combines speciɃcness of the architecture such as security and decentralization. Their use resulted

in the redesign of grids middleware as collections of collaborative services and the emergence of

the ǀƼƻƯ standard [WSRF, 2006]. On the practical side, after years of experience and reɃnement,

the Globus Toolkit⁷ (GT) produced a widely used de facto reference implementation.

The Grid services [Foster et al., 2002] are improved Web services that introduce statefulness,

service data, notiɃcationmechanisms, groups of services, lifecyclemanagement, and amore pow-

erful addressing scheme called Grid Service Handle. The addressing scheme proposed by the Grid

services implementation usesǀƼƭƵas reference format to provide the information about commu-

nication. They are based on the Web Service Resource Framework (ǀƼƻƯ), a standardized archi-

tecture to submit jobs to the Grid organized on virtual organizations for resource sharing. Grid

services also represent the foundations of ƬƵƲ application reuse on a distributed environment be-

causemany frameworks implement them to enable the execution of legacy application as services

(see section 1.4).

1.3.3 GridRPC

Amongexistingmiddleware andapplicationprogrammingapproaches, theRemoteProcedureCall

over the Grid, or GridRPCmodel, was developed to ease Grid programming [Seymour et al., 2002].

GridRPC services enable the distributed execution of applications and serve as a communication

layer and an invocation interface for high–level software components. It Ƀlls the gap between ser-

vices provided on Grid infrastructures and the programming–level abstraction required to imple-

ment a distributedmiddleware. This approach is also close to ƼƸƪbecause it deɃnes amodelwhere

a service is registered in a registry and a client invokes the service on the server [Nakada et al.,

2007].

⁷Globus Toolkit: http://www.globus.org/toolkit

10

http://www.globus.org/toolkit

Metacomputing and global computing

GridRPC focuses on the invocation of remote procedures across a network rather than on a

stack of technologies. For instance, an environment based on independent services involves the

setup of all technologies associated to each service (i.e., conɃguration, execution, monitoring). In

some cases, those services share technologies such as aWeb server, databasemanagement system,

etc. However in other cases, the technologies should coexist in the same system independently. In

contrast, GridRPC provides a common interface to perform all the invocations, such as Ƀle transfer

or job submissions. GridRPC also preserves performance rather than adopting a protocol based on

ǁƶƵdocuments, promoting the direct use of an ƪƹƲ. In the same way, GridRPC avoids the reuse of

object technologies like ƬƸƻƫƪ for several reasons, among witch ƲƭƵ expressiveness that does not

specify non–functional requirements, to focus on a simple lightweight implementation thatmeets

the needs of scientiɃc computing [Tanaka et al., 2004].

The adoption of GridRPC promotes interoperability on ƭƬƲs without imposing an implemen-

tation in contrast to the Globus Toolkit. However both approaches require the source code in-

strumentation under a reference middleware. Such approaches are, most of the time, designed

to access one type of infrastructure at a time, or they applywhen components exclusively allow the

execution of applications on distributed environments ignoring more complex scenarios like the

integration of local resources and heterogeneous platforms.

XtreemOS: Integrated Support of Grid–based Services

In grid computing, physical devices, applications and datasets could all be seen as services. Yet,

they are not considered as a technological commodity due to the complexity associated to theman-

agement of resources. Initiatives as XtreemOS⁸ aim at resolving transparency, scalability, inter-

operability, and security issues from the user point of view. XtreemOS organizes the access to the

available resources inVirtualOrganizations as an integrated support on top of an operative system.

The software architecture of the platform distinguishes two main layers the XtreemOS-F, and the

XtreemOS-G one [Coppola et al., 2008]. They provide, respectively, local support and integration

of diȻerent resources into a single computing platform.

While initiatives as Grid Services or GridRPC have been build to resolve the access to Grid en-

vironments using intermediate middlewares, XtreemOS proposes an approach where an underly-

ing operative system is extended for enabling and facilitating Grid computing. Middlewares like

Globus toolkit have been adoptedwhere institutions agree on a reference implementation to com-

mission the operation of the infrastructure. In the sameway, the principle of transparent access of

XtreemOS is valid when the same operative system is available everywhere. Nevertheless, neither

of these approaches can be adopted on infrastructures composed byheterogeneous service sources

or operative systems like the European Grid Initiative. Most of the ƮưƲ services (i.e., storage, exe-

cution, monitoring) are based on common middleware components, and the resources share the

same system conɃguration, however the autonomy of each organization imposes to harness ser-

vices according to the provided interfaces independently.

⁸XtreemOS: http://www.xtreemos.org

11

http://www.xtreemos.org

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

1.3.4 Summary

Grid computing, resulting from the evolution of metacomputing and global computing models,

addresses the permanent need of computing power. To achieve that goal, institutions supply re-

sources, develop middleware, deɃne speciɃcations, charter rules of use, and foster the develop-

ment of tools supporting the existingmiddleware. For instance, the utilization of batch systems in

the execution of ƬƵƲ applications were commonly adopted on production grids by means of a uni-

form job description language. Several projects implemented strategies on top of middlewares to

improve the access to the distributed computing infrastructures. Those initiatives were interested

in providing tools letting users execute their applications eȾciently on the ƭƬƲs. SpeciɃcally, they

havebeenpayingattention to implementnon–intrusive tools for reusingandexecutingƬƵƲapplica-

tions because technologies and services such as the Grid services do not pay attention in Ƀne–level

management of applications or they only resolve partially concerns going from interoperability to

usability. Some of these eȻorts are detailed in next section.

1.4 Survey of tools supporting command–line applications reuse

The idea of software reuse is not new [Rich andWalters, 1983]. Several approaches have been stud-

ied such as the reuse at programming level to build applications directly fromseveral pieces of code

[Bigot et al., 2008] or approaches of reusing executable command–line applications directly [Ma-

teos et al., 2008]. The reuse of such applications still involves important eȻort in the scientiɃc

community because this facilitates the integration of a wide range of applications in current re-

search. There are several toolkits and environments which use a non–invasive approaches to wrap

the command–line applications as services. They do not create new binary executables or modify

the existing ƬƵƲ applications. The concept of service in these environments, in most cases associ-

ated with ƼƸƪ, creates an opportunity for reusing such applications under diȻerent circumstances

depending on the target infrastructure, the protocols of communication or the domain of appli-

cation, among others. In this section some relevant examples are presented. This work does not

pretend to be exhaustive, focusing only on recognized initiatives that have proven to be useful and

provide at the same time interesting concepts of service–oriented design.

1.4.1 LONI Pipeline

The ƵƸƷƲ Pipeline [Dinov et al., 2009] is a graphical environment for construction, validation, and

executionof neuroimagingdata analysis applications. It is a packaged solution to allowdistributed

infrastructuresutilization, to facilitate data provenance, and toprovide a signiɃcant library of com-

putational tools including automated data format conversion. As part of its environment, one of

the tools facilitates the integration of heterogeneous applications asmodules. These modules rep-

resents well–deɃned standalone applications, comprising local or remote binary executables and

services with well–deɃned command–line syntax. The modules are created providing general in-

formation like authors, version, name, description, and detailed information about the syntax of

the parameters. The parameters may be directories, enumerations, Ƀles, numbers, strings or ɇow

12

Survey of tools supporting command–line applications reuse

controls that provide a sense of data typing support to themodules. Themodulesmay also include

dependencies to the applications. The ƵƸƷƲ Pipeline integrates the modules in pipelines involving

large number of datasets andmultiple processing tools.

Data in terms of databases, data services, and Ƀle systems, along side with the modules may

be integrated in the environment. This ɇexibility of integration permits eȾcient resource man-

agement. The ƵƸƷƲPipeline environment is focused on neuroimaging data and analysis protocols.

However, by design, it is domain agnostic and its architecturemay be usedwhere computationally

intense tasks are performed. Unfortunately, ƵƸƷƲ Pipeline modules are not constructed on stan-

dardized bases and the catalog of services is only useful within the environment. Although the

integration to broader distributed infrastructures is supported with the adoption of its Distributed

Pipeline Server (ƭƹƼ).

1.4.2 GASW

TheGeneric Application ServiceWrapper (ưƪƼǀ) [Glatard et al., 2006a] is a dynamic servicewhich

aims at enabling the execution of ƬƵƲ applications as services at runtime. This service is generic,

wrapping an application behind its standard interface, and submitting a job instance to a ƭƬƲ. The

ưƪƼǀ service simpliɃes the embedding of applications into services interpreting a description of

the application. Its Legacy Code Descriptor is an ǁƶƵ–based Ƀle which contains the name and lo-

cation of the executable, the access method of the input data, the command–line options of the

parameters, and the name and access method of the libraries or scripts that may be needed for the

execution aside from the target binary executable. The ưƪƼǀ service leverages external middle-

ware submissionmethods for the execution. It also implements application grouping service calls

to optimize the execution time.

GƪƼǀdoes not address the deployment of the applications though. The generic service is not

data typedanddoesnothaveahigh–level interface tocreate thedescriptions. This later issuemakes

the wrapping of applications diȾcult because it requires in–depth knowledge of the ad–hoc ǁƶƵ

structure and technical concepts associated to the distributed infrastructures. The service exposi-

tion used on ưƪƼǀ is based on a factory pattern. This process involves to use a generic interface

to dynamically process the applications arguments. That kind of optimization can be considered

harmful in a contract–Ƀrst approach because clients trying to execute the original service may be

unable to Ƀnd it as well deɃned service loosing qualitative information regarding the types or na-

ture of parameters.

1.4.3 GEMLCA

The Grid ExecutionManagement for Legacy Code Architecture (ưƮƶƵƬƪ) [Delaitre et al., 2005] is a

general architecture for deploying ƬƵƲapplications as Grid serviceswithout the need for codemod-

iɃcation. GƮƶƵƬƪ aims at providing an infrastructure to deploy applications as ƸưƼƪ–compliant

services. Its architecture is composed of four basic components:

1. The Compute Server represents hardware resources, such as a single computer or clusters, on

13

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

which applications in form of binary executables are potentially available to make them ac-

cessible through Grid services.

2. The Grid Host Environment implements a service–oriented Grid layer on top of a compliant

middleware. This environment connects the Computer Server with a grid. Current distribu-

tions of ưƮƶƵƬƪsupport ƸưƼƪ–built Grid services based on the Globus Toolkit.

3. The ưƮƶƵƬƪResource provides a set of Grid services (i.e., code factory and processor) which

exposes applications as services. Along with the Grid Host Environment, the ưƮƶƵƬƪ Re-

source is installed on the Compute Server representing a ưƮƶƵƬƪGrid Resource.

4. TheưƮƶƵƬƪClient comprises the client–side software. There are two typesof ưƮƶƵƬƪClients:

(1) a command–line interface, installed on anymachine through which a user would like ac-

cess to the ưƮƶƵƬƪresources, and (2) aWeb portal based on GridSphere⁹ to provide a graph-

ical interface through which a user can access to the applications as Grid services.

The ưƮƶƵƬƪResource is responsible for hiding the native nature of an application bywrapping

it with a Grid service, and processing service requests coming fromusers. The deployment of such

a service implies that the applicationmay run in its native environment on a Compute Server. The

ưƮƶƵƬƪResource handles the application using an ǁƶƵ–based Legacy Code Interface Description

(ƵƬƲƭ) Ƀle. This Ƀle provides metadata about the application, such as the executable path, the job

manager, the execution environment, and information parameters including name, type, order,

regular expressions for input validation, etc.

GƮƶƵƬƪdoesnot require codingmodiɃcationof applications and the eȻort fromclients ismin-

imized using the graphical interface. In spite of this, the deployment process of new Grid ser-

vices involves administrative tasks on the server side. Since the current ưƮƶƵƬƪhas GT2, GT4, and

gLite submitters, applications can be executed/submitted to all machines with these middleware.

GƮƶƵƬƪuses stateful services primary to support amulti–user environment, but not for the lifecy-

cle management of ƬƵƲ applications though.

1.4.4 gRAVI

The Grid Remote Application Virtualisation Interface (gƻƪƿƲ) [Chard et al., 2009] is a plug–in ex-

tension to the Introduce toolkit [Hastings et al., 2007]. This toolkit is designed to support the Grid

service development through three identiɃed steps:

1. The creation. The developer describes at highest level basic attributes about the service such

as name and namespace. The implementation of the service is then created with these con-

Ƀguration properties using the Introduce engine.

2. The modiɃcation. The developer adds, removes or modiɃes service methods, properties, re-

sources, and security conɃguration. In this step, strong typed service interfaces are created

using pre–registered and well–deɃned schemas. The Introduce toolkit includes the notion

of data repositories that maps deɃned types to application input parameters.

⁹GridSphere portal framework: http://www.gridsphere.org/

14

http://www.gridsphere.org/

Survey of tools supporting command–line applications reuse

3. The deployment. The developer deploys the service to a Grid service container after the spec-

iɃcation of deployment and security conɃguration. A deployment component gathers the

libraries required for the service as well as those Ƀles which contain the actual runtime code

of the service.

gƻƪƿƲ allows users to wrap binary applications as secure ǀƼƻƯ–compliant services without re-

quiring to write any implementation code, description Ƀles, or deployment scripts. This plug–in

extends the Introduce toolkit creation and modiɃcation steps adding new backend code creation

processesandcomplementarygraphical interfacewithin the IntroduceGraphicalDevelopmentEn-

vironment. This interface removes the need for users to run scripts or create/modify description

Ƀles. gƻƪƿƲ services oȻer synchronous and asynchronous invocation methods. They also include

methods to stage data with several encoding formats including GridFTP and base 64 encoded bi-

nary data. Each service also exposes interfaces to monitor the running application via polling or

notiɃcations.

gƻƪƿƲ provides a way to reduce the cost of creating Grid services by simplifying the develop-

ment and deployment process. Nevertheless, the processing of parameters is based on existing

service type schemas that are not trivial to create and requires themanagement of repositories. De-

spite its interesting features, the design of gƻƪƿƲ forces to use in each service all its dependencies

increasing signiɃcantly the packaging size to detriment of library reuse so thismethod is not advis-

able for a large number of services. Additionally, it supports exclusively execution on distributed

infrastructure, banishing the potential of light or short–term executions on local servers.

1.4.5 Soaplab2

Soaplab2 [Senger et al., 2008] is a framework that allows service providers tomake command–line

applications accessible as Web services. It is based onmetadata descriptions of the programs that

includes information about the description, type, provider, names and types of input data or com-

mand–line parameters, andnames and types of resulting output. Soaplab2 usesƪƬƭ, a format orig-

inally createdby theEuropeanMolecularBiologyOpenSoftwareSuite¹⁰ (ƮƶƫƸƼƼ) todeɃne inauni-

formwaybioinformatics tools, to create thedescriptions, and to transformtheminacorresponding

ǁƶƵ format Ƀle. The ǁƶƵdescription is stored and used by the Soaplab2 server to execute the ap-

plications processing the input data and to retrieve the results. The architecture of Soaplab2 server

can optionally use local databases for keeping results persistently. On the client side, Soaplab2 pro-

vides a richWeb–based interface, which allows users to select a service, specify its inputs, start the

service, and display the results. Soaplab2 has a rich client library supporting an extensible protocol

layer to assure interoperability with diȻerentWeb service standards.

Soaplab2 canautomatically generate anddeployWebserviceson topof existing command–line

applications. It is especially suited for applications with well described input and output param-

eters allowing integration of applications within a single programming interface. Nevertheless,

Soaplab2 does not resolve the build/install/deploy cycle because it uses development tools such as

¹⁰ƮƶƫƸƼƼ: http://www.emboss.org/

15

http://www.emboss.org/

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

Ant¹¹ andMaven¹² toperformthese tasks. Soaplab2doesnotprovidean interface towrap theappli-

cations asWeb services. Thus thework directly with the ƪƬƭformat is a cumbersome requirement

due to its technical characteristics. Furthermore, Soaplab2 is not oriented to execute the applica-

tion on distributed infrastructures.

1.4.6 Comparison

The main goal of developing tools like ƵƸƷƲ Pipeline, ưƪƼǀ, ưƮƶƵƬƪ, gƻƪƿƲ, or Soaplab2 is to pro-

vide robust and extensible frameworks enabling eȾcient utilization of resources, and to provide

the means for dissemination and validation of research protocols and scientiɃc innovation. An

important experience has been gainedwith their development [Krishnan and Bhatia, 2009]. From

this experience common elements are identiɃed to underline their potentialities and remaining

issues:

• Descriptions of applications. The characterization of ƬƵƲ applications is necessary for bind-

ing the application to a service interface. The elements deɃned in the deɃnitionmust fulɃll

Ƀne–grained details of arguments, including types, and the target infrastructures.

• Interoperability. Interoperability is assured by open protocols. Web services (and their Grid

variants) mechanisms for describing, accessing, and securing services provide the shared

vocabulary. The value of an exposed service is measured with regards to the capability to

discover, and access it.

• Scalability. The data volumes and computational demands are often beyond the capacity of a

centralized server. Distributed infrastructures, like clusters and grids, and the interconnec-

tion with the services are suitable solutions to respond this challenge.

• Usability. The control of the middleware hosting services and their lifecycle management

play and important role in the use and dissemination of scientiɃc applications. This con-

trol doesnothave to limit users throughout their experimentationby incorporating complex

technological layers of administration.

From the interoperability point of view,most of the initiatives (with the exception of ƵƸƷƲPipe-

line and ưƪƼǀ) have recognized the undisputed need of Web protocols. These protocols deɃnes

data types and the interfaces of operations. GƮƶƵƬƪ and gƻƪƿƲ, work directly during creation of

services to provide the ǀƼƻƯ–based services. This alternative manages security concerns in par-

allel to the functional requirements. Although the implementation behind the resulting services

depend on the installation of the adopted middleware (i.e., Globus Toolkit). On the other hand,

Soaplab2 is focused only on basic standard protocol proɃles.

Concerning the scalability, all approaches described but Soaplab2 take into account distributed

infrastructures to delegate the execution of the applications. This adoption has natural advantages

¹¹Apache Ant: http://ant.apache.org/
¹²ApacheMaven: http://maven.apache.org/

16

http://ant.apache.org/
http://maven.apache.org/

Conclusion

over limited computing resources but includes a side–eȻect. All tools adopting scalability mea-

sures focus on the execution by delegation ignoring the potential beneɃt of nixed execution both

on local servers and distributed infrastructures.

Usability is covered at diȻerent levels. GƪƼǀ, only covers the execution of applications but it

does not manage the creation and deployment stages leaving to the user the role of manually cre-

ating the description, deploying the application, and invoking the resulting service. GƮƶƵƬƪ and

Soaplab2 includes interfaces for the invocation (graphical or through ƪƹƲ) but again the creation

and deployment are left as administrative tasks. gƻƪƿƲ is more careful providing a complete chain

fromcreation to invocation aswell as ƵƸƷƲPipeline that hides completely the administrative tasks.

Interoperability, scalability, and usability are the desirable properties required to wrap applica-

tions as services. In order to enable the complete life–cycle management of services and provide

themɇexible executionmechanisms, features such as the execution on local resources; high–level

interfaces to create and enable a programmatic invocation; and a public and well–deɃned scheme

for the description of executions are expected. Since none of the reviewed frameworks provide all

these characteristics (see Table 1.1) their adoption is not possible due to the lack of features such

as local execution, client ƪƹƲs, etc. In the same way, extension is diȾcult because implementation

incompatibilities with executionmiddlewares, or copyright limitations.

Lo
ni
Pi
pe
lin

e

G
A
SW

G
EM

LC
A

gR
A
V
I

So
ap
la
b2

Interoperability ✓ ✓ ✓
Scalability ✓ ✓ ✓ ✓
Usability ✓ ✓‵ ✓ ✓‵
Local execution ✓‵ ✓ ✓
Client ƪƹƲ ✓ ✓
Graphical UIs ✓ ✓‵ ✓
Public schema ✓‵ ✓

Table 1.1: On top of the table three high–level properties required from tools sup-
porting command–line applications to wrap CLI applications as services are iden-
tified. On the bottom, the expected technical features are presented. The tick (✓)
represents availability of the feature, and the partial checkmark (✓‵) shows the tool
only covers such feature partially.

1.5 Conclusion

In this chapter a concise state of the art on service–oriented approaches dealing with legacy ap-

plications was presented. The evolution of applications interoperability and software reuse was

described across the chapter taking services as reference. These services represent an invaluable

mean of reusing algorithm implementations resulting fromyears of research. In fact, they become

the building blocks of scientiɃc experimentation because their combination may result in a com-

17

SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

plete processing pipeline. SpeciɃcally, the services are created from ƬƵƲ applications by wrapping

them using ƼƸƪ interfaces. This approach, followed by several initiatives, not only pursue remote

invocation. The eȾcient execution on distributed environments is also considered.

Three main features were identiɃed to create a fully functional framework for the generation

of such services: the interoperability, scalability, and usability. The review presented here shows

some remaining issues that are not completely addressed by the available solutions. This makes

obvious the need of a new approach that provides a complete lifecycle of services support and an

improved description of ƬƵƲ application that integrates all the execution details. Therefore, in the

following chapter a conceptual contribution to resolve the current implementationgapsof existing

tools is proposed.

18

Chapter 2

Models for Efficient Reuse of CLI Applications

TheGrid community has almost unanimously adopted the Service–oriented principles introduced

in chapter 1. The integration of Global computing with ƼƸƪ has been largely addressed with the

adoption of implementations such as the Globus toolkit [Foster, 2005b]. In this approach services

for monitoring resources, discovery and management, security, and Ƀle management are provid-

ing a complete stack of technologies in an integrated environment. Nevertheless, the use of such

technologies is not always possible. The infrastructures based on heterogeneous middleware, like

production grids, do not ensure directly the implementation of Grid services–based on the global

computing model, because they are conditioned to the general adoption of a common underly-

ing technology. In those infrastructures the interface to resources should be integrated through a

non–intrusive component, and the standard interconnection should be enforced with a modular

implementation connected to the target infrastructure.

This chapter presents three models for reusing of ƬƵƲ applications and taking advantage of lo-

cal resources eȾciently. First, a non–intrusive hybrid model merging global computing with ƼƸƪ

to enable the adoption of a service–based framework in production ƭƬƲs. This model aims both

at taking advantage of the ƼƸƪ principles and the existing distributed computing infrastructures.

Second, a model for eȾcient use of local resources combining the adoption of ƭƬƲs. This approach is

deɃned to dispatch jobs for local execution or for submission to a DCI based on the execution be-

havior of services. Finally, amodel usingmetadata to describe command–line applications expose them

as services and enable their execution. This description includes aɃne–grainedmanagement of in-

put/output data structures, dependencies, and execution environment, in order to resolve and use

the described metadata at runtime. These three models together enable the eȾcient execution of

ƬƵƲ applications in order to (re)use them as services.

2.1 Enabling SOA in productionGrid infrastructures

This section outlines the existing gap between the ƼƸƪapproach and the global computingmodel,

identifying the weaknesses of each one, and proposes a practical solution to bridge them together.

In a global computing environment, clients connect to a brokering service that handles the re-

quests on their behalf as illustrated in Figure 2.1. The broker has extensive knowledge on the dis-

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

tributed resources available on the infrastructure. It selects the resource that can best handle each

client request and delegates its actual execution. The applications to be executed are transported

from clients to the broker and then to the computing resources. All managed resources in a global

computingmodel are allocated temporarily to each computation task andhaveminimal system re-

quirements. The broker may act as a proxy caching the requests and corresponding results if the

clients disconnects for a given time. This model is very eȾcient to control and balance the over-

all system workload and therefore addresses well the needs of High Throughput Computing over

long periods. The broker also implements a scheduler and/or resource allocator that optimizes the

usage of the system.

Figure 2.1: Global computingmodel

Global computing implementations suchasGrid infrastructures typically serveƬƵƲs executions

throughbatchprocessing. Batchprocessing involves the executionof a series of programsor “jobs”

dispatching them to distributed resources. Batch systems process ƬƵƲapplicationswhich do not re-

quired user’s interactions. These applications provide versatile invocation interfaces that can be

interpreted on–the–ɇy when a job invocation is sent to the broker. All input data is set as com-

mand–line parameters or an equivalent Ƀle representation like the Job Description Language (ƳƭƵ).

In this operating environment a program processes the data automatically, and produces a set of

output data Ƀles. Despite their long history, batch applications are still critical in most organiza-

tions in large part because many core business processes are inherently batch–oriented (i.e., data

are collected into batches of Ƀles and are processed in batches by the program). Most workload

management systems use batch processing to maximize usage because (i) batch systems allows

sharing of computer resources amongmany users and programs; (ii) they shift the time of job pro-

cessing scheduling large amounts of tasks; and (iii) batch systems avoid idling the computing re-

sources with manual intervention and supervision. Nevertheless, each implementation deɃnes

their job invocation methods, thus the interoperability in global computing environments is re-

stricted tomanaged infrastructures.

Conversely, ina traditionalƼƸƪframework, servicesembedding thebusiness logicarepre–deployed

over a set of resources and invoked remotely though a standardized interface. Clients perform di-

rect connection and invocation to the services as illustrated in Figure 2.2. Before reaching the tar-

get(s) service(s), clients have to query a registry service, that at least provides business services lo-

calization information and possibly implement workloadmanagement strategies.

Interoperability is granted by the standard interfaces and protocols inherited from ƼƸƪ imple-

mentations. DeɃned message channels decrease the complexity of applications, shading light on

functionality rather than communication. However, this model requires to instrument the busi-

ness logic with a service interface, and pre–deployed applications over the computing resources.

20

Enabling ƼƸƪ in production Grid infrastructures

Figure 2.2: Service Oriented Architecture

Management of large–scale applications implies complex and frequent deployment procedures.

Furthermore, clients are directly exposed to the communicationwith various resources and there-

fore they need to integrate complex concerns related to scalability, performance, reliability, fault-

tolerance, security, etc.

To tackle the issues of both approaches a new model is presented proposing the convergence

between global computing and ƼƸƪ as illustrated in Figure 2.3. This solution enables dynamic al-

location of resources encompassing the properties of ƼƸƪwith the interfaces provided with global

computing implementations. The approach integrates the need of intensive computing infrastruc-

tures using standard interfaces of communication. The cycle of deployment and executions should

be integrally taken into account to ensure invocation of services without aȻecting the internal ar-

chitecture of any infrastructure. Clients use ƼƸƪmechanisms for execution requests before deploy-

ing dynamically the services. Then the broker processes those requests as regular tasks and return

results to clients using the samemessaging paths. To describe the tasks delivered to the broker, the

service has to adapt services messages into a language interpreted by the broker. In this work, we

will consider the transformation to ƳƭƵs deɃning the ƬƵƲ invocation.

The dynamic allocation of resources permits the execution of services directly on the deploy-

ment point, or the delegation to a broker for execution on remote resources based on the execu-

tion needs and the work load. There is not intervention of the client for the task dispatch after the

execution request becoming a transparent resolution of resource allocation. Each element of the

hybrid model performs its tasks as an independent module, while coordinatingmessage transfers

to provide Ƀnal results.

The hybrid model proposed here provides an alternative to execute applications as services by

transforming the execution interfaces from broker dispatching to interoperable messages. This

transformation uses the model of Section 2.3 because that deɃnition enables the interpretation of

executions associating input arguments to the commands, and matching the results. That deɃni-

tion also provides the information concerning the artifacts and system environment required for

the allocation and execution. Nevertheless, thismodel does not provide anymechanism to address

salient issues of production ƭƬƲs such as latency and high failure rate of execution. In fact, the use

21

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

Figure 2.3: Hybrid model merging global computing and SOA

of local resources (e.g., mainframes or private clusters) increases the probability of success full ex-

ecution. Normally such resources are synonym of reliability in terms of dedicated and permanent

access. In the next section a complementarymodel is deɃned to combine local resources with ƭƬƲs

in the allocationprocess. However, theproposedmodel doesnot take into account aspects likedata

transfer, or hardware heterogeneity because they are directly associated to the dynamic behavior

of a production distributed infrastructure.

2.2 Efficient use of local resources

Executing large–scale applications on ƭƬƲ faces several well–identiɃed issues often causing poor

applications performance (either under–performing execution time or complete application fail-

ure). In particular, low reliability, high latency, and unfair balance between job executions are re-

currently reported in the literature dealing with large–scale experimentation. The deɃnition of a

model for the eȾcient use resources addresses partially these issues reducing the execution delay

when submitting to distributed infrastructures by the introduction of local resources, andmanag-

ing their load to prevent saturation.

In spite of the large number of computing resources available on ƭƬƲs, the waiting time of a job

to obtain a computing resource may increase considerably with a big number of jobs simultane-

ously submitted to the infrastructure. This latency isparticularlynotnegligible for short–execution

jobs. The use of local resources for executing applications decreases the number of jobs submitted

remotely and therefore reduces the management time of jobs to be processed on the ƭƬƲ. Further-

more, the application performance is improved since local resources aremore reliable and jobs are

executed without latency. However, a strategy is required to ensure that local resources are not

overloaded whenmany jobs are executed. In view of this, a decisionmodel is deɃned below to dis-

22

EȾcient use of local resources

patch incoming jobs for local execution or for submission to a ƭƬƲ relying on execution time and

memory consumption. The proposedmodelmakes it easy to switch between the broker and the lo-

cal resources. The service interface, as shown in Figure 2.3, hides the heterogeneity of computing

infrastructures and delegates execution to diȻerent kind of resources.

The decisionmodel is based on the composition structure of several services in order to create

a complete analysis processing. It makes the assumption that each service i among the k services
used {i ∈ Z+ | i ⩽ k} is consuming a Ƀxed amount of resources when executing (ri memory

space, and ti execution time). It will also be assumed that the execution ƭƬƲs are large enough to

handle simultaneouslyall computation tasks triggeredby the invocationof theapplication services

at runtime.

Let R denote the memory consumed on the local resource for all running services including rj

which would be an incoming service of type j executed locally at a given time. The value of R is

computed according to Equation 2.1, where ni denotes the number of services of type i. The volume

of assigned memory must not exceed Rƶƪǁ, the available memory installed on the local resource

(R ⩽ Rƶƪǁ).

R = rj +

k∑
i=1

ni × ri (2.1)

Making the hypothesis that production infrastructures have suȾcient computing resources

to execute all submitted services, the execution time of a service composition Tƶƪǁ would be the

longest pathof its representation as a graph (i.e., the critical path). Therefore, the execution time in

the local resourcesTmust be shorter than this theoretical threshold inorder to avoidpenalizing the

Ƀnal execution time (T ⩽ Tƶƪǁ). The value of T, as shown in Equation 2.2, represents the sequen-
tial execution time of all services running on local resources distributed on all available processor

units, whereNƬƹƾ denotes the number Ƭƹƾcores.

T =

tj +
k∑

i=1

ni × ti

NƬƹƾ
(2.2)

Algorithm 1 shows the procedure to decide whether a job is executed locally or submitted re-

motely. The estimation of R and T is performed each time an incoming service is enacted by the

workɇowmanager. Meanwhile, the value of nj is updated for accounting.

Theneed tobridge intensive computingmodels andƼƸƪprinciples, and thedeɃnitionof a strat-

egy for the eȾcient use of local resources do not solve challenges of rich characterization of appli-

cations during the execution, including data types and a uniform structure deɃnition of complex

arguments. The adoption of the ƼƸƪis only completewith the existence of a clear contract deɃning

the operations andall the involvedparameters. Most scientiɃc ƬƵƲapplications developed in the re-

search community are neither designed to ease the description in a standard way nor to separate

systematically the invocation interface from the environment requirements or invocation details.

These are the reasons to justify the incorporation of an abstraction of command–line applications

in order to transform this deɃnition in a compliant format as ǀƼƭƵ.

23

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

Algorithm 1 Dispatching of incoming service (rj, tj)
Require: [ri]k memory benchmark of services
Require: [ti]k execution time benchmark of services
Require: [ni]k number of services running by type
Require: Rƶƪǁ, Tƶƪǁ, andNƬƹƾ

for i in {1, . . . , k} do
R = R + ri × ni
T = T + ti × ni

end for
R = R + rj
T = (T + tj)/NƬƹƾ

if R ⩽ Rƶƪǁ and T ⩽ Tƶƪǁ then
service is executed locally
nj = nj + 1

else
service is submitted to a ƭƬƲ

end if

2.3 Abstraction of command–line applications

A formal description of command–line applications ensures their proper (unambiguous) use. The

formal deɃnition promotes portability by characterizing a clear and consistent syntax of common

features and constraints. Such a description also grants the exposition of ƬƵƲ applications as ser-

vices in an ƼƸƪ approach by interpreting the description and creating an interface for invocation.

It enables the construction of commands at runtime once the description is processed in combina-

tion with the invocation input parameters, and it provides the information to draw out the results.

The following of this section details the syntax of a ƬƵƲ application description based on its

metadataasamodel represented inanǁƶƵschema (thecomplete schema is listed inAppendix6.4).

A running example is used below to exemplify several characteristics when performing the formal

description of ƬƵƲapplications. In some cases, additional examples are included in line to better ex-

plain some advanced features of the speciɃcation. A typical neuroimaging application is described

so the invocation details and execution constrains are clearly explicit. It summarizes some of the

characteristics that scientists need to identify and associate with inputs and static parameters for

later execution. The choice of a neuroscience application is deliberated because of the strongmo-

tivations presented in the introduction chapter. In order to facilitate the reading a distinctive ty-

pography convention indicates diȻerent connotation in the text.¹

¹Emphasized text (sample) is used the Ƀrst time annew concept is introduced. Its explanation usually follows directly
after the introduction or it is explicitly deɃned in a subsection. Bold text (sample) is used to refer a deɃnition in the
speciɃcation. Sometimes these elements are used to describe others before they are introduced, therefore they remain
in bold to diȻerentiate from regular content. A monospace typeface (sample) indicates the term is an ǁƶƵ element or
attribute, it also indicates command examples in the systemconsole. Textwritten in this type is always related to coding.
Sans serif typeface (sample) shows examples of concepts deɃned in the schema or possible options of an attribute.

24

Abstraction of command–line applications

Running example

BrainVISA² is a software that allows users to trigger sequences of treatments in series of images.

The treatments are performed by calls to command–lines. One of these applications for calcula-

tion of images is AimsLinearComb. It performs a sum of two brain activationmaps. The AimsLin-

earComb tool performs a linear combination using the formula I1+2 = a ∗ I1/b + c ∗ I2/d + e,
obtaining a fusion of two binary functional–analysis activation in form of a new volume. In spite

of its apparent simplicity, AimsLinearComb is a good example to show some characteristics of the

ƬƵƲ application schema because of the manipulation of special Ƀle formats, implicit arguments or

dependencies, and the interpretation of the resulting outputs. An example of the command–line

required to execute AimsLinearComb is shown in Figure 2.4, where lwlebge.img and lwdupje.img are

the images to combine resulting in the image lwtest.img, and the numerical parameters are used for

adjustment. In practice the application execution is complex due to some assumptions the user

should know:

• The inputandoutputareAnalyze format images. Thiskindof imageconsists in twoɃleswith

the samebasenamebutdiȻerent extensions, namely ƲƶưandƱƭƻ, containing the raw image

data and the header metadata respectively. In the command–line however, only the ƲƶưɃle

nameappears explicitly representing the image. TheɃlenameof theƱƭƻɃle is inferred from

the Ʋƶưone.

• The tool execution produces a text Ƀle with the extensionƶƲƷƯ. This Ƀle is not expressed in

the command–line but it is part of the results alongwith theoutput image inAnalyze format.

• AimsLinearComb needs several libraries for standalone execution. The user should conɃg-

ure the environment to include them in the list of the system. In Unix–like systems is pos-

sible to add to the LD_LIBRARY_PATH environment variable the directory path where those

dependencies are located.

Additionally, the user should be able to retrieve the standard output or error messages gener-

ated by the tool, so all these concerns have to be considered in the description of the tool.

$AimsLinearComb -i lwlebge.img -a 200.0 -b 1.0 \
-j lwdupje.img -c 20.0 -d 1.0 \
-e 0.0 -o lwtest.img

Figure 2.4: CLI invocation of AimsLinearComb application

The proposed ǁƶƵgrammar for the deɃnition of any ƬƵƲ application separates the application

description from its resources (and system environment parameters) in two parts, to ease execu-

tion and deployment [Lacour et al., 2005]: the interface, which provides the detailed information

²BrainVISA: http://brainvisa.info

25

http://brainvisa.info

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

concerning the invocation of the application; and the implementations, which specify all the refer-

ences to the artifacts associated to the application including its conɃguration environment. These

elements are developed in the following subsections.

2.3.1 Interface

Thedescription of the interface {interface} includes all information related to the application and

the ƬƵƲ arguments. Additionally, general data is included describing a version, description, orga-

nization, contact address, a symbolic name, copyright policy, and reference of the application.

2.3.1.1 Service version

The version {version} deɃnes a unique number–based schema to state a declaration of a service

representing the ƬƵƲ application. The version is used for keeping track of possible variants of the

same tool. Typically this identiɃer includes three numbers separated by a period: major version,

minor version, and a build number, this schema may be arbitrary though. This version is used, in

combination with the symbolic name, to declare the ƾƻƵof theWeb service, therefore the version

must always be set. For example:

1.0.0

2.3.1.2 Service description

The service description {description} deɃnes a substantial description of the ƬƵƲapplication. This

section does not deɃne any format or extension. It may include a short description of application

scope, Ƀle formats and conventions, conɃguration or examples of the command invocation. For

example:

AimsLinearComb service performs a sum of two brain activationmaps using Analyze file format.

2.3.1.3 Organization

The organization {organization} contains the information of the ƬƵƲ application author, vendor,

or distributor. Alternatively it may contain the information of the service builder. For example:

BrainVISA

2.3.1.4 Contact address

The contact address {contactAddress} speciɃes an email, phone, or electronic form of the person

in charge to contact in case of feedback about the service is required. For example:

admin@i3s.unice.fr

2.3.1.5 Symbolic name

Thesymbolicname{symbolicName} speciɃesaunique, shortnameof theservice. Thisnameshould

be a representative alias of the servicemaking reference to the ƬƵƲapplication. The symbolic name

26

Abstraction of command–line applications

is used, in combination with the version, to declare the ƾƻƵof theWeb service therefore the sym-

bolic name must always be set. As a reference, the format should respect the Java identiɃer con-

vention.³ For example:

brain_map_sum

2.3.1.6 Copyright policy

The copyright policy {copyright} contains the copyright labeling of the ƬƵƲ application. If the ser-

vice is publicly available, its use supposes the respect of the author’s copyright. For example:

CeCILL licence version 2

2.3.1.7 Reference

The reference {reference} must contain a ƾƻƵ pointing to an external page about the ƬƵƲ applica-

tion, or a unique bibliographic identiɃcation such as the ƭƸƲor the ƹƶƲƭ. For example:

http://brainvisa.info/doc/documents-4.0/shfjcommands/commands.html#aims_AimsLinearComb

2.3.1.8 Arguments

The collection of arguments {arguments}, contains the information of each application’s param-

eter. They are declared respecting the order of appearance in the command–line. This collection

is not required when the application does not include any argument. Otherwise a detailed dec-

laration of parameters should represent syntax of each argument in order to construct the com-

mand–line to execute.

A set of attributes deɃnes the nature of the argument, and the details are deɃned using inde-

pendent elements. The attributes include: an identiɃer, a category, a data type, a mapper, and

boolean attributes to describe the implicitness and the presence of a space. All these attributes

have enumerable values declared explicitly in the schema. The elements enabling the declaration

of the argument are: a label, an option, a hint, and the content and the nesting properties.

Argument identifier The identiɃer {identifier} deɃnes a unique reference to the argument. The

procedure that yields the generation of the identiɃer is based on theƶƭ5algorithm that generates

a Ƀngerprint of the label value. For example:

07cc694b9b3fc636710fa08b6922c42b

Category The category {hookup} identiɃes the stream sense of data used to receive/transmit argu-

ments for/from the application. Arguments should be identiɃed as input, output, or constant (i.e.,

simple ɇag) streams. Hence, input arguments become the required parameters to execute the ƬƵƲ

application. The output arguments are the expected results after the execution. Finally, the con-

stant streams are invariant values required to process the command–line but they are not part of

inputs nor outputs. The possible values of this attribute are:

³Java Code Conventions: http://java.sun.com/docs/codeconv/CodeConventions.pdf

27

http://java.sun.com/docs/codeconv/CodeConventions.pdf

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

• input,

• output, and

• constant

Data type The data type {type} refers to the supported classiɃcation of primitive data deɃnitions

in the schema. This classiɃcation determines the possible values for that type; the operations that

can be done on values of that type; and the meaning of the data. All arguments are typed but they

are not associated to ranges or machine built–in types. The possible values of this attribute are:

• string,

• integer,

• double (for ɇoating–point numbers), and

• URI (references to Ƀles)

Nestingproperties The nesting properties {nesting} contains the information to build collection of

data as arrays. An array stores a number of elements of the same data type in a speciɃc order. They

are accessed using an index to specifywhich element is required. The array–based deɃnition of the

arguments follows the array programming principles [Hellerman, 1964] where data is represented

as simple elements or scalars or collection of elements or arrays. Arraysmaybenested at anydepth

(multidimensional). The elements enabling the declaration of the nesting properties are:

• the dimension of the array {dimension},

• the element separator of arrays {separator},

• the initial character {beginCollection} and the Ƀnal character {endCollection} identify-

ing the array scope.

Arrays are typically used to organize complex structures of data representing arguments. For

example, it is common inneuroimaging to represent an imageas a set ofɃles,where eachɃle corre-

sponds anorderedelement of the collection. In that case, thedimensionof thenestingproperties is

set to 1 and so on. The nesting properties are ignored when the dimension is equal to zero because

it represents a scalar value.

Mapper Themapper {mapper} identiɃes the source of an argument in order to associate a value to

its content respecting thedeclareddata type. Thenotionofmapper is looselybasedonthedeɃnition

found in the Switft system [Zhao et al., 2007]. According to that deɃnition amapper is responsible

of accessing data and converting it to/from a format that conforms the deɃned types. The possible

values of this attribute are:

• console (default for strings, and numbers),

• filesystem (default for ƾƻƲs),

• pattern, and

• archive

28

Abstraction of command–line applications

The consolemapper can be associated to all data types. In this case, the value of the argument

should be taken from the standard input by parsing the value when the argument is declared as

input. Similarly, the value of the argument should be taken from the standard output when the

argument is declared as output transforming the resulting strings in formatted array representa-

tions. As convention, each line of the standard output represents a diȻerent argument value. For

example, the following line represents an three dimensions array of strings for a given output ar-

gument retrieved from the standard console:

[[[a,b]],[[c]],[[]]]

The Ƀle system and patternmappers can only be associated to the ƾƻƲ data type. For both map-

pers the valueof the argument is a simpleɃle referencewhen the argument is declared as input. On

the other hand, the value of the argument is processed diȻerently when the argument is declared

as output. If themapper is deɃned as Ƀle system, the value of the argument is associated directly as

a Ƀle reference with the name declared in the content. This implies that the resulting Ƀle exists in

theɃle system. If themapper is deɃnedaspattern, the valueof the argument is processedmatching

the regular expressiondeclared in the content, returning either theɃrstmatchedɃle reference or a

list of all matched ones. For example, in order to retrieve all Ƀles which name beginwith a number

and have the Ʋƶưextension, the content of the argument is deɃned as follow:

[0-9].*\.{IMG|img}

The archivemapper can be associated to all data types. In this case, the value of the argument

should be taken from an additional conɃguration Ƀle where the structure of the content is deɃned

for inputs and outputs.

Implicitness The implicitness {implicitness} identiɃes if the argument should be interpreted as

implicit (hidden) argument in the command–line or if the argument is explicitly declared on it.

This booleanattributemaybedeclaredonlywithƾƻƲdata types. The valuemust be true to include a

requiredɃle that isnotdeclared in the command–linebut it ismandatory for execution, or toobtain

a resulting Ƀle from the execution that is not declared in the command–line. For instance, the text

Ƀle with the extension ƶƲƷƯ introduced in the running example is not deɃned as argument but it

is required for the execution, therefore the declaration of this extension resolves the requirement.

Space The space {space} identiɃes if the value of the argument is preceded by an option includ-

ing a white space in between. The value must be true to include an space before the content of the

argument.

Label The label {label} or logicalnamespeciɃesaunique, shortnameof theargument. Thisname

should be a human–readable and representative alias. The label is used to declare the argument of

the Web service operation, therefore the label must be set if the argument is declared. As a refer-

ence, the format should respect the Java identiɃer convention. For example:

image_1

29

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

Option Theoption {option} speciɃes theprecedingɇag to the valueof the argument. This element

is not necessary if the command line does not require it. The value of the option should be set as

declared in a terminal console including preceding dashes. For example:

-i

Hint The hint {hint} speciɃes additional human–readable information of the argument. This el-

ementmay be used as short description of the argument. It does not have any eȻect over the com-

mand–line or the execution. For example:

First volume image to combine.

Content The content {content} speciɃes the actual value of the argument. The notion of content

denotes a special interpretation of its attributes and embedded elements because the metadata of

the content should be resolved dynamically in function of the assigned values. For instance, in the

runningexample the content associated to theɃrst argument (-i) denotes a replacement resolution.

It means that the base name of the argument is used to resolve the second Ƀle component of the

image associated with the extension hdr.

A set of attributes deɃnes the nature of the content, and its details are deɃned using indepen-

dent elements. The content is deɃned based on a resolution model attribute, or alternatively on

a boolean attribute to describe the template resolution. Both attributes have enumerable values

declared explicitly in the schema. The elements enabling the declaration of the content are: the

matter and a list of extensions.

Resolution model The resolution model {model} identiɃes the dynamic processing used to re-

solve the values of the argument based on a reference potentially combined with a list comple-

mentary information. This resolution is performed when the content of the argument does not

represent directly the actual value used in the command–line. The possible values of this attribute

are:

• regular (default),

• directory,

• replace, and

• expand,

The regular resolution model can be associated to all data types. In this case, the value of the

argument does not require any dynamic resolution. It should be taken directly as parameter of the

Web service operation and then as part of the command–line, when the argument is declared as

input. If this resolution model is set then the declaration of the list of extensions is ignored. For

example, the image Ƀle lwtest without its header Ƀle can be obtained if the resolution is deɃned

as regular and the content is set to:

lwtest.img

The directory, replacement, and expansion resolution models can only be associated to the ƾƻƲ

data type, performing a dynamic resolution to resolve the real Ƀle references at Ƀle system level.

30

Abstraction of command–line applications

If the resolution model is deɃned as directory, the value of the argument corresponds to the

Ƀle reference’s Ƀle name. The list of Ƀles contained in the Ƀle reference’s Ƀle name are expected

as real values for the application. If this resolution model is set the list of extensions is ignored.

For example, when all Ƀles resulting from the execution including original binaries are expected

as results in a directory the content is set to (the dot character implies current working directory in

Unix–like operative systems):

.

If the resolutionmodel is deɃned as replacement, the value of the argument corresponds to the

Ƀle reference’s Ƀle name (with a base extension). References resulting from the combination of the

Ƀle reference’s Ƀle name (without extension) and each declared extension in the list of extensions

are expected as the actual values for the command–line execution. For example, using the running

example the expected Ƀles for the Ƀrst image have the Ʋƶư and Ʊƭƻ extensions, but only the Ʋƶư

Ƀle should be declared on the command line, so the content is set to:

lwlebge.img

Then the list of extensions includes the value:

hdr

If the resolution model is deɃned as expansion, the value of the argument corresponds to the

combination of the Ƀle reference’s Ƀle name (without extension) and each extension declared in

the list of extensions. References resulting from the combination of the Ƀle reference’s Ƀle name

(without extension) and each declared extensions in the list of extensions are expected as real val-

ues for the command–line execution. For example if a given output or input requires several Ƀles

with the same base Ƀle name but diȻerent extensions and all Ƀles should appear in the Ƀnal com-

mand line, the content is set to:

lwlebge

Then the list of extensions includes the values:

img,hdr

Although last two resolution models map the same image the argument diȻers because the

resulting values is respectively (assuming other values by default):

lwlebge.img

and

lwlebge.img lwlebge.hdr

Matter The matter {matter} contains the raw value of the content. It is represented as a se-

quence of characters but the actual value is denoted by the data type after the content resolution.

For example:

lwtest.img

Extensions list The extensions list {extensions} contains a coma–separated collection of Ƀle

extensions, without extension separator. This element is required for the content resolutionwhen

the data type is deɃned as ƾƻƲ. For example:

img,hdr

31

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

2.3.1.9 Interface example

In order to show the resulting metadata description of the running example, its Ƀrst argument is

set in Figure 2.5. In this case the type of the argument with the label “image_1” is a ƾƻƲ. The con-

tent value will be set after execution because it represents an input argument. It uses a Ƀle system

mapper in combinationwith a replacement resolutionmodel. This enables tomanage the ƱƭƻɃle

associated to theparameter. This argument is explicitly declared anduses an spacebetween theop-

tion “-i”. The argument represents a scalar, it means the dimension is 0 (zero) therefore the nesting

properties are ignored.

1 <ns1:argument ns1:identifier="07cc694b9b3fc636710fa08b6922c42b"
2 ns1:hookup="input"
3 ns1:type="URI"
4 ns1:mapper="filesystem"
5 ns1:implicitness="false"
6 ns1:space="true">
7 <ns1:label>image_1</ns1:label>
8 <ns1:option>-i</ns1:option>
9 <ns1:hint></ns1:hint>
10 <ns1:content ns1:model="replace" ns1:template="false">
11 <ns1:matter></ns1:matter>
12 <ns1:extensions>hdr</ns1:extensions>
13 </ns1:content>
14 <ns1:nesting>
15 <ns1:dimension>0</ns1:dimension>
16 <ns1:separator>","</ns1:separator>
17 <ns1:beginCollection>""</ns1:beginCollection>
18 <ns1:endCollection>""</ns1:endCollection>
19 </ns1:nesting>
20 </ns1:argument>

Figure 2.5: Declaration of an application’s argument

2.3.2 Implementations

The description of the implementations {implementations} includes the conɃguration variables

and the resources of the service that are required to execute the command–line application. This

deɃnition includes the concepts of artifact and environment as part of a hierarchical organization.

This organization endorses the reuse of such variables/resources when they are common in the

deɃnition hierarchy avoiding, at the same time, repetitive deɃnitions or redundant packaging of

Ƀles.

The implementationsaredeɃnedasan implementation list. TheycorrespondtodiȻerentbuilds

of the same application. At least one implementationmust be declared as part of the implementa-

tions. Each implementation {implementation} includes a releaseversion {release}, a collectionof

platforms {platforms}, aglobalenvironment {configuration}, andaglobalartifact {attachment}.

Similarly, the platforms are deɃned asplatform lists. They relate to diȻerent computing infras-

tructures. At leastoneplatformmustbedeclaredaspartof theplatforms. Eachplatform{platform}

32

Abstraction of command–line applications

is deɃned by an infrastructure. The platform includes a collection of proɃles {profiles}, a shared

environment {sharedEnvironment}, and a shared artifact {sharedArtifact}.

At thedeepest level, theproɃlesaredeɃnedasaproɃle list. TheyrepresentdiȻerentcomputing

architectures. At least one proɃlemust be declared as part of the proɃles. Each proɃle {profile} is

deɃnedby aprogrammingmodel. The proɃle includes themain applicationɃle {target}, a bound

environment {boundEnvironment}, and a bound artifact {boundArtifact}.

The Ƀnal composition of implementations, platforms and proɃles should include at least one

artifact by branch because it contains themain application representing the service. The resulting

alternatives of the compositionmay be induced from the syntax diagram shown in Figure 2.6.

release

environment artifact

egi

g5k

pbs

other

environment artifact

normal

mpi-lam

mpi-mpich

mpi-mpich2

target

environment artifact

Figure2.6: Syntax diagramof the implementations. The diagramdescribes possible
paths between elements by going through other non–terminals definitions and the
terminals values. Terminals are represented by round boxeswhile nonterminals are
represented by square boxes.

2.3.2.1 Artifact

The artifacts contains a ƾƻƲ to a compressed Ƀle reference that includes the resources of the appli-

cation such as binary Ƀles, libraries, and conɃguration Ƀles. For example:

file:///usr/local/share/aims-package.zip

2.3.2.2 Environment

Theenvironment speciɃes the conɃgurationvariable(s) needed for the executionof the application

like the PWD variable that represents the current working directory on the Unix–like systems.

33

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

2.3.2.3 Infrastructure

The infrastructure {infrastructure} identiɃes the target computing infrastructure where the ap-

plication may be executed. The default value implies that the application does not require to be

executed on a distributed computing infrastructure. The possible values of this attribute are:

• single (default),

• egi (for the ƮưƲproduction grid),

• g5k (for the Aladdin/Grid’5000 research cluster),

• pbs (for portable batch systems clusters) and,

• other

2.3.2.4 Programmingmodel

The programmingmodel {job} identiɃes the implementation required to execute the application.

It is associated to the communication protocol in parallel computing. The default value implies

that any parallel implementation is required to execute the application. The possible values of this

attribute are:

• normal (default),

• mpi-lam,

• mpi-mpich,

• mpi-mpich2,

2.3.2.5 Implementations example

A complete example of the implementation description is shown in Figure 2.7. It declares one re-

lease 1.0.0 to be executed on the egi production Grid using the default programmingmodel normal.

The executable binary AimslinearComb is set explicitly. All the resources (main binary and system

libraries) needed for execution are grouped on the aims-package.zip artifact. Any commonor shared

artifacts, nor global conɃguration or shared environment are declared.

2.3.3 Relatedwork

Several schemas for the description of ƬƵƲapplications are proposed in the literature. For instance,

the open software description [van HoȻ et al., 1997] was created to distribute applications over the

network but it is more oriented to contexts describing hardware dependencies, and ease the auto-

matic installation/upgrade of software components than describing the application’s invocations.

Other examples are Soaplab2usingƪƬƭ[Senger et al., 2003], andưƮƶƵƬƪusing ƵƬƲƭ[Kiss et al.,

2005]. These approaches focus on domain–speciɃc applications or well–described input/output

parameters. They do not take into account collections of data nor the dependencies associated to

the execution of the application. Moreover, the description of implicit parameters or parameters

linked to multiple data, cannot be described using those formats. Another example of descrip-

tion with a deɃned schema is the ƵƸƷƲ Pipeline. It includes deɃnitions quite similar to the ones

34

Abstraction of command–line applications

1 <ns1:implementations>
2 <ns1:implementation>
3 <ns1:release>1.0.0</ns1:release>
4 <ns1:platforms>
5 <ns1:platform ns1:infrastructure="egee">
6 <ns1:profiles>
7 <ns1:profile ns1:job="normal">
8 <ns1:target>AimsLinearComb</ns1:target>
9 <ns1:boundEnvironment/>
10 <ns1:boundArtifact>file:///aims-package.zip</ns1:boundArtifact>
11 </ns1:profile>
12 </ns1:profiles>
13 </ns1:platform>
14 </ns1:platforms>
15 </ns1:implementation>
16 </ns1:implementations>

Figure 2.7: Declaration of the application’s implementations

presented in the description of ƬƵƲ applications. However, the declaration of applications is done

in combination with the modules compositions therefore they do not represent independent ser-

vices. On the other hand, ưƪƼǀ[Glatard et al., 2006a] does not provide a declared schema. The use

of ad–hoc formats does not allow users to identify all the features and compare them with others

at ǁƶƵ–level because they are interpreted in the business code directly.

Considering the representation of data, the ǁƶƵDataset Typing andMapping (ǁƭƽƶ) [Moreau

et al., 2005] is used in SwiftScript to deɃne amapping between the logical organization of data and

their underlying physical structure. It is used to represent Ƀles as structured collections but other

data types are not considered.

The description of ƬƵƲ applications has also been considered in Grid computing. The Job Def-

inition Language ƳƭƵ [WMS–JDL] is used to submit jobs to the Grid describing an application, its

parameters, input/output data, etc. The diȻerence with themodel presented in this section is that

the ƳƭƵ language speciɃes instances of execution, not applicationsmetadata.

The model presented in this section is comparable to general approaches like ƳƼƸƷ⁴ for repre-

sentingdata collections, assuming thenaturaldiȻerencesof scopeand implementation. First, ƳƼƸƷ

is not domain–speciɃc, in the sense that it is not deɃned to describe ƬƵƲ applications. Otherwise,

ƳƼƸƷdoes not allow to override the separator, or the array identiɃers. However, it declares strings

using quotes, making possible to diȻerentiate between singleton arrays and empty values. This

latter characteristic becomes a feature in the deɃnition of the proposed schema because most of

real cases (i.e., Unix–like tools) do not use quotes to describe the arguments in order to represent

valid strings. For instance, with ƳƼƸƷan array of strings looks like [“one”, “two”, “three”], using the
schema deɃned in this model, the same array looks like [one,two,three], or<one;two;three>, or

even one two three (without braces andwith spaces as separator). However with ƳƼƸƷthe arrays [“”]
and [] have diȻerent meanings, singleton array and empty array of a given value respectively, but

using our proposed schema is only possible to deɃne the second array. Alternatively, ƳƼƸƷor other

⁴JƼƸƷ: http://json.org/

35

http://json.org/

MODELS FOR EFFICIENT REUSE OF CLIAPPLICATIONS

data serialization formats such as ǂƪƵƶ⁵ may replace the default convention used in this work to

deɃne uniform collections of data, letting the possibility of overriding the nesting properties. This

has an important impact in the description of ƬƵƲ applications because most of them use simple

lists separated by spaces to represent simple collections Ƀtting the default command–interface en-

vironment.

2.4 Discussion

Three contributions are presented in this chapter in order to enable the eȾcient reuse of ƬƵƲ appli-

cations. A hybrid approach for the execution of services, a simple model for eȾcient use of local

resources based on composition of services, and a schema for the description of applications.

The hybrid approach provides a bridge between the distributed computing environments and

service–oriented architectures, capitalizing on the features of bothmodels. In combination, the re-

sulting approach takes care of intensive computing availability oȻered by High Throughput Com-

puting environments for eȾcient executions. It addresses technical challenges respecting open

standards and transparency at diȻerent levels. However, there is no intention to specify aspects

tied to any particular solution. Nor to modify the behavior or Ƀx any defects of ƬƵƲ applications by

improving tolerance to invocation errors or security during execution.

The model incorporating local resources as part of the execution environment along with ƭƬƲ

strengthen the hybrid model because it improves the reliability of production environments and

reduce the execution latency by a balanced and scalable integration of servers instances.

ThedeɃnitionof themodel to characterizeƬƵƲapplications is an intermediate layerbetween the

description of applications from an operating system point of view [POSIX.1–2008], and the repre-

sentation of domain–speciɃc knowledge associated to them. In fact, the design of this deɃnition

honors ƼƸƪ speciɃcations like the ǀƼƭƵ of W3C [Christensen et al., 2001]. The resulting ƬƵƲ appli-

cation descriptionmay be considered as a standard representation.

The models presented in this chapter are a natural evolution of ưƪƼǀ [Glatard et al., 2008].

They represent incremental eȻorts to reuse ƬƵƲ applications taking advantage of distributed com-

puting infrastructures and the ƼƸƪprinciples. A Ƀne description of applications is formalized, and

the approach to resolve the allocation of resources is described as well. This conceptual contribu-

tion is the base of a reference implementation detailed in the chapter 3 that shows the relevance of

this approach as a non–intrusive ƬƵƲ–applicationwrapper and dynamic re–allocator on distributed

infrastructures.

⁵YƪƵƶ: http://yaml.org/

36

http://yaml.org/

Chapter 3

Reference Implementation Framework

The Java–based Interoperable Generic Service ApplicationWrapper framework (jigsaw), described

in this chapter, is a Reference Implementation of a modular system that implements the mod-

els detailed in Chapter 2. It generates services wrapping ƬƵƲ applications as services. These ser-

vices have operations to perform the execution of such applications on the host server or on dis-

tributed computing infrastructures. The jigsaw framework also takes into account the integration

of non–functional concerns.

The jigsaw frameworkprovidesmuchmore thanamere invocation interface toƬƵƲapplications.

It provides a complete mechanism to package applications and their dependencies into a service

artifact. It deploys those artifacts on a server and publish them as standard Web services. As an

execution interface, jigsaw is also involved with the remote invocation, including Ƀles transfer for

proper processing of remote resources. Jigsaw therefore provides a full range of functionality,mak-

ing the services autonomous, relocatable and compliant to the target infrastructure for execution.

The framework is composed of three independent but complementarymodules:

1. An end–user interface for creation and deployment of services

2. A resource allocation engine hosted on aWS container

3. A generic programmatic interface for services invocation

The end–user (graphical and command–lined) interfaces are based on the speciɃcation intro-

duced in Section 2.3. Similarly, that speciɃcation is used to implement a library set hosted by a

service container that works as the engine for dynamic resources allocation. This allocation en-

ables the execution of ƬƵƲapplications usingWeb services leveraging the convergence of the global

computing and ƼƸƪprinciples described in Section 2.1. Conversely, the ƪƹƲ for services invocation

represents an independent module in terms of implementation. It enables the standardized and

transparent consumption of Web services. These three modules are detailed below following the

lifecycle of services in the framework.

REFERENCE IMPLEMENTATION FRAMEWORK

3.1 Lifecycle of services

The lifecycle describes the process of creation, deployment, and invocation of services. The jigsaw

framework deɃnes a service as a unitary bundle. A service is created wrapping the ƬƵƲ application

in an artifact along with its description and all the required resources to execute the application

like other binaries or programming scripts, libraries, and conɃguration Ƀles.

Once the service is created, the framework publishes the service deploying the artifact on a ser-

vices container. An interface based on the description, exposing the application as standard Web

service, is generated during this process. At this point, the service is ready to reallocate dynam-

ically all the bundle resources on diȻerent computing infrastructures through the jigsaw engine

conɃgured on the server. The deployment on the services container for the dynamic reallocation

represents the implementation of the hybrid model introduced in Section 2.1.

The invocationof theoperationsdeclaredon theserviceareperformedbyclients implementing

consumers of the Web service. The jigsaw framework provides an ƪƹƲ to carry out this task. Any

Web service contract, derived from the schema deɃned in Section 2.3, may be interpreted and then

invoked with the same methods retrieving the results of the remote execution. A high level view

diagram of the whole lifecycle of services in the jigsaw framework is shown in Figure 3.1.

Figure 3.1: Lifecycle of services in the jigsaw framework. From left to right: (A) the
service is built using a description and generating stubs and configuration files; (B)
the service is deployed on a services container ready for dynamic reallocation on
DCIs or locally; (C) the invocation of services is granted by a generic API or direct
calls using standardWS calls by providing references to the datasets.

3.1.1 Creation anddeployment of services

From the end–user point of view, services are created automatically using the graphical interface

illustrated in Figure 3.2. Theprocedure aimsat being as simple as possible, Ƀlling in thedescription

form that includes the details of all arguments and the execution environment. An artifact repre-

senting the service is generated after the description is done. The transformation mechanism of

the description into the service interface, and the packaging of resources in the artifact are trans-

parent tousers. The resultingɃle is a portable artifact because it canbedeployedonany conɃgured

server. Thus users are only aware of the deployment endpoint reusing the artifact conveniently.

38

Lifecycle of services

Figure 3.2: GUI of client application for generation of services

The description of the ƬƵƲ application represents the metadata. This metadata is modeled us-

ing the ǁƶƵ schema detailed in Section 2.3. That schema is the starting point to create the service

because it provides a data model to express the structure and constrains of the application. The

generation of the service consists in transforming the description into aWS interface.

Data binding gives a useful object view of themetadatawithout losing access to the original in-

formation, anddelivers performance beneɃts usingunmarshalling and eȾcientmethods to access

ǁƶƵ schema build–in data types. Jƪǁƫ,¹ an open source tool, provides a data binding mechanism

by automatically creating amapping between elements of a ǁƶƵschema to bind, and themembers

of a class to be represented as objects inmemory. It takes advantage of the richness and features of

ǁƶƵgiving a full schema support and the corresponding Java classes. Jƪǁƫprovides anǁƶƵɃdelity

keeping the full infoset after unmarshalling in an ǁƶƵ instance, and honors schema constraints.

There are two approaches to createWeb services: the top–down or “contract Ƀrst” based on the

initial declaration of the ǀƼƭƵ document; and the bottom–up or “implementation Ƀrst” working

with the source code and later generating the ǀƼƭƵ associated to that code. The bottom–up ap-

proach is a suitable scenario for the jigsaw framework because the service interface may be gener-

atedas Javacodeusing themetadataof theapplicationand thedatamodel transformation resulting

from the data binding.

Jigsaw implements a scaȻolding approach to transform themetadata into source code [Sellink

and Verhoef, 2000]. The transformation is based on a template engine that provides sources and

the required Ƀles to let the server interpret that code after compilation. This approach of dynamic

generationof code is required because all service interfaces are customized for eachwrapped appli-

cation. The names and data types of all input arguments detailed in the description are preserved

in the resulting Web service description as well as the expected outputs. The generated ǀƼƭƵ de-

clares the ƬƵƲ application metadata asWS–compliant data types. These types are used in the ƼƸƪƹ

messages for the invocation of the service.

Jigsaw internally uses Velocity,² an open source tool that deɃnes a simple template language

used to create and render documents that format and present a data model as macros. Nonethe-

¹Jƪǁƫ: http://jaxb.java.net/
²Apache Velocity: http://velocity.apache.org/

39

http://jaxb.java.net/
http://velocity.apache.org/

REFERENCE IMPLEMENTATION FRAMEWORK

1 #macro(varname) $extra.toLowerCase($argument.type)$argument.label #end
2 #macro(vartype) $extra.toJavaType($argument.type) #end
3 #macro(varspace)
4 @WebParam(name = "$argument.label", targetNamespace = "http://i3s.cnrs.fr/jigsaw") #end
5 #macro(varbracket) $extra.getBrackets($argument.nesting.dimension) #end
6

7 #set($inlength=$extra.getInLength($application))
8 #set($suffixclassname=$extra.getSuffixClassName($application))
9 package jigsaw.ws;

10
...

11 @WebService(serviceName = "$application.getSymbolicName()-$application.version",
12 portName = "jigsawPort", name = "jigsaw", targetNamespace = "http://i3s.cnrs.fr/jigsaw")
13 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.WRAPPED,
14 style = SOAPBinding.Style.DOCUMENT, use = SOAPBinding.Use.LITERAL)
15 public class Jigsaw$suffixclassname {
16 @Resource private WebServiceContext wsContext;
17

18 @WebMethod(operationName = "local")
19 @WebResult(name = "localResult", targetNamespace = "http://i3s.cnrs.fr/jigsaw")
20 public JigsawOutput$suffixclassname local(
21 #if ($inlength > 0)
22 #set($counter=1)
23 #foreach($argument in $application.arguments)
24 #if ($argument.hookup == "INPUT")
25 #if ($counter < $inlength) #varspace() #vartype() #varname()#varbracket(),
26 #else
27 #varspace() #vartype() #varname()#varbracket())
28 throws SOAPException {
29 #end
30 #set($counter=$counter+1)
31 #end
32 #end
33 #else) throws SOAPException {
34 #end
35 JigsawOutput$suffixclassname output = new JigsawOutput$suffixclassname();
36 try {
37 Object[] objects = null;
38 Description description = DescriptionFactory.getInstance(this);

39
...

40 output = (JigsawOutput$suffixclassname) activity.fire(new Object[]{
41 #if ($inlength > 0)
42 #set($counter=1)
43 #foreach($argument in $application.arguments)
44 #if ($argument.hookup == "INPUT")
45 #if ($counter < $inlength) #varname(),
46 #else #varname()});
47 #end
48 #set($counter=$counter+1)
49 #end
50 #end
51 #else objects});
52 #end

53
...

Figure 3.3: Snippet of the Velocity template used to generate the service skeleton

40

Lifecycle of services

1 package jigsaw.ws;

2
...

3 @WebService(serviceName = "brain_map_sum-1.0.0",portName="jigsawPort",
4 name = "jigsaw", targetNamespace = "http://i3s.cnrs.fr/jigsaw")
5 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.WRAPPED,
6 style = SOAPBinding.Style.DOCUMENT, use = SOAPBinding.Use.LITERAL)
7 public class JigsawBrain_map_sum100 {
8 @Resource
9 private WebServiceContext wsContext;
10

11 @WebMethod(operationName = "local")
12 @WebResult(name = "localResult", targetNamespace = "http://i3s.cnrs.fr/jigsaw")
13 public JigsawOutputBrain_map_sum100 local(
14 @WebParam(name = "image_1", targetNamespace = "http://i3s.cnrs.fr/jigsaw") URI uri_image_1,
15 @WebParam(name = "a", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_a,
16 @WebParam(name = "b", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_b,
17 @WebParam(name = "image_2", targetNamespace = "http://i3s.cnrs.fr/jigsaw") URI uri_image_2,
18 @WebParam(name = "c", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_c,
19 @WebParam(name = "d", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_d,
20 @WebParam(name = "e", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_e,
21 @WebParam(name = "o", targetNamespace = "http://i3s.cnrs.fr/jigsaw") URI uri_o)
22 throws SOAPException {
23 JigsawOutputBrain_map_sum100 output = new JigsawOutputBrain_map_sum100();
24 try {
25 Object[] objects = null;
26 Description description = DescriptionFactory.getInstance(this);

27
...

28 output = (JigsawOutputBrain_map_sum100) activity.fire(new Object[]{ uri_image_1,
29 double_a, double_b, uri_image_2, double_c, double_d, double_e, uri_o});

30
...

Figure 3.4: Snippet of the resulting Java source code of the service skeleton

less, the approach described here is valid with any template–based engine. Velocity aims at en-

suring a clean separation between the representation and the business tiers using context objects.

This representation is merged with the template (Figure 3.3 shows an excerpt of the template, de-

tails on the implementation are in Appendix 6.4) to produce the source code of the service and the

conɃguration Ƀles. The context object is a central concept of the engine. It is the carrier of data

between themodel representation of the information layer and the template. Since the datamodel

is represented as objects, Velocity makes them directly accessible via the references deɃned in the

template and substitutes the values with the instance of the description (see also Figure 3.4 for the

corresponding excerpt of the Java code generated from the template code of Figure 3.3 after substi-

tuting object values and processing themacros). The template–based procedure generates:

• aWS interface based on the standard speciɃcation ofWeb services,

• a conɃguration Ƀle of theWS engine, and

• a conɃguration Ƀle of the services container.

41

REFERENCE IMPLEMENTATION FRAMEWORK

DiȻerent speciɃcations exist to build Web services from Java code. Some of them are inde-

pendent eȻorts such as the Apache Axis implementation,³ and others are based on standard Java

SpeciɃcation Requests. The latest speciɃcation for WS applications and clients is the Java ƪƹƲ for

ǁƶƵWeb services⁴ (Ƴƪǁ-ǀƼ). This speciɃcation replaces the Ƴƪǁ-ƻƹƬ ƪƹƲ reɇecting the move away

from ƻƹƬ–style. Jƪǁ-ǀƼ represents the “modern” Java ƼƸƪƹ implementation of Web services mak-

ing extensive use of the annotationsmechanism introduced in Java 5 and strategically aligns itself

with the current trend towards a more document–centric messaging model. The use of annota-

tions simpliɃes the implementation and eases the service development. Based on Plain Old Java

Objects, containing the implementation of the WS interface, the annotations are included in the

code describing details such as service identiɃcation, ƼƸƪƹbinding, namespace and operation de-

scriptions, among others. All these details are instantiated during the merging step of the code

generationand theyareused tobe compiled intobyte–codeensuringbetterplatform independence

for Java applications.

Jƪǁ-ǀƼ uses Ƴƪǁƫ as default data binding to process the message marshalling/unmarshalling.

These operationsmap the Java types into ǀƼƭƵ types and vice versa. The resultingmapping called

WSmethod stubs are part of the Ƀnal service and they are used to communicate with the client all

along the invocation. In termsof solutions supporting Ƴƪǁ-ǀƼ, SunMetro⁵ implements all the spec-

iɃcation and it is distributed on major application servers. Metro needs to be conɃgured on the

basis of Apache Tomcat server,⁶ the stack engine to publish services and supports additional needs

like ƶƽƸƶ, useful for the service attachments manipulation.

The services have to fulɃll a format and conɃguration for deployment. Following the Tomcat

server architecture, all services are deployed in form of a Web Application Archive (ǀƪƻ), a spe-

cial ƳƪƻɃle used to distribute a standardWeb application. In the case of the jigsaw framework this

archive includes conɃgurationɃles (sun-jaxws.xml and web.xml); the description of the resource;

the wrapped ƬƵƲ application; the dependencies, when they are necessary; and the Java classes rep-

resenting theWS interface and the stubs.

Duringdeployment the services container setsupnewservices at runtimewithout interrupting

its normal operation (i.e., there is no need to restart the server). This quality, known as hot deploy-

ment, is a trending feature implemented in current technologies such as ƸƼưi⁷ or Apache Tomcat.

A service is identiɃed by two elements that are unique in the deployment scope. First, the service

name, a combination of the symbolic name and the service version assigned during the character-

ization of the description. Second, a service location, that is interpreted as a ƾƻƵ pointing to the

description (ǀƼƭƵ) of the Web service. Just after the deployment, this description is available be-

coming the service contract. This service is ready for invocation. Removing the deployed services

releases safely the reference to the service from the container; and from the list of services pub-

lished on the server.

³Apache Axis: http://axis.apache.org/
⁴Jƪǁ-ǀƼ: http://jax-ws.java.net/
⁵SunMetro: http://metro.dev.java.net/
⁶Apache Tomcat: http://tomcat.apache.org/
⁷ƸƼưi: http://www.osgi.org/

42

http://axis.apache.org/
http://jax-ws.java.net/
http://metro.dev.java.net/
http://tomcat.apache.org/
http://www.osgi.org/

Lifecycle of services

3.1.2 Runtimedynamics

The core functionality of the jigsaw framework, besides the provision of services, is the instrumen-

tation of the logic related to the interpretation of the arguments, dependencies conɃguration, and

the execution. This operative process is organized in three parts: data marshaling, resource allo-

cation, and datamanagement.

Datamarshaling

Aservicehas arguments describedwithdiȻerent data types and structures. Similarly, the results of

an execution shouldmatch the description of provided outputs. The framework takes the original

results of an execution and forwards them preserving that structure and data typing declared on

the description of the ƬƵƲ application. This interpretation is mandatory to correctly process inputs

and outputs of the service. Although the description of a Web service provides the basic infor-

mation of arguments, this information is not suȾcient to identify implicit ƬƵƲ parameters nor the

special connotation of a unique reference (i.e., ƾƻƲ address) as a group of multiple Ƀles represent-

ing a speciɃc format. Furthermore, when the results are not Ƀles, they are commonly presented in

the standard output as sequences of strings. This is the reason to interpret these outputs after ex-

ecution using the description of the application. This task involves parsing, casting, and mapping

the results into the right structure to Ƀnally return the expected value. The framework reproduces

as much as possible the structure organization resulting from the execution.

In the jigsaw framework the resulting structures are deɃned as (nested) arrays when the out-

put represent more than a simple value. Nevertheless the interpretation of outputs is not trivial

because each application may represent its results organization arbitrarily. If an application pro-

vides such a result, the output should be adapted for being jigsaw–compatible. This is done using

the nesting properties deɃned in the description.

In practice, the interpretation of parameters is done using data marshaling/unmarshaling in

two diȻerent circumstances. First, the transformation between Java native types and ƼƸƪƹ mes-

sages to communicate during service invocations is performed by the servlet engine using Ƴƪǁƫ.

All parameters of the description are represented in Java source code and then compiled in order to

be interpreted by the JavaVirtualMachine. This transformation is exhibited in theǀƼƭƵdocument

and the schemes of the service messages. Second, internally the framework also performs other

transformations to interpret the description of the application at runtime associating the correct

types and structures of the incoming input data, andmatching the results. This dynamic transfor-

mation associates non–typed data into Java objects before and after the dynamic resource alloca-

tion.

Resource allocation

The execution instrumentation interprets the description of the application building the complete

command–line to execute, resolving the inputs, and setting up the environment of execution. On

the execution endpoint, an isolated sandbox is created and then all necessary data is retrieved on it

43

REFERENCE IMPLEMENTATION FRAMEWORK

before execution. This execution can be performed directly on the services container host as a lo-

cal execution or it can be strategically delegated using distributed computing infrastructures. The

local execution is the simplest and the default jigsaw runtime instrumentation. Since the applica-

tion runs in the same place where the service is hosted, multiple instances of heavy–demanding

applications are not suitable and a remote relocation should be contemplated for these cases.

Following the proposed hybridmodel introduced in Chapter 2, a remote execution of an appli-

cation may be performed transparently but it requires relocation of the resources on remote end-

points and additional management of the infrastructure components. On the ƮưƲproduction grid,

for example, this execution implies using several components of the grid infrastructure such as

theWorkload Management System (ǀƶƼ), Ƀle Storage Elements (SE), the Logging and Bookkeep-

ing (LB) service, and Computer Elements (CE). The correct execution on the grid involves strategies

from the submission to monitoring procedure or alternative mechanisms of execution like pilot

jobs [Casajus et al., 2010]. A sequence diagram of the steps during grid execution is presented in

Figure 3.5. The diagram shows a simpliɃed sequence of the jigsaw operation invocation:

1. The client invokes the execution operation of theWeb service.

2. The application is submitted to the grid using aǀƶƼ.

3. The actual execution is delegated to a CE and a job identiɃer is registered on the LB service.

4. TheWeb service, acting as submitter, receives a job identiɃer to trace the progress.

5. The input data is staged from a source. This sourcemay be a database, and SE, etc.

6. The command line is built with the fetched data.

7. The ƬƵƲ application is Ƀred.

8. TheWeb service ask the status of the execution periodically (loop).

9. The LB service check the status of execution on the CE (loop).

10. The CE provides the updated status of the execution (loop).

11. The status is returned to theWeb service until it is done (loop).

12. After a successful execution the results are saved on a SE.

13. TheWeb service obtains the references of the results.

14. The references to those results are returned to theWeb service.

15. The client receives the results of the execution.

44

Lifecycle of services

Figure 3.5: Execution sequence on production grids

Datamanagement

Part of the instrumentation process involves the data transfer resulting from the Ƀlemanipulation

during executionof services. Thedatamanagement is necessary toprovide inputs to services, store

results and return them to the client. Indeed, for performance reasons, the Ƀles themselves are

never transferred as part of the service invocationmessages; a dedicated data transfer mechanism

is used instead. Furthermore, on distributed infrastructures, Ƀles are directly transferred between

nodes and theynever transit through the jigsaw enginewhichwould becomeapotential bottleneck

in data–intensive applications. On the other hand, if the service receives references to Ƀles, they

are staged to the execution place managing the diȻerent protocols such as grid Ưƽƹ or Ʊƽƽƹ, and

Ƀle schemes like the grid ƵƯƷor local ƯƲƵƮs.

Two scenarios are Ƀgured out regarding data transfer after the execution of an application. In

the Ƀrst scenario, jigsaw publishes into a public space all the resulting Ƀles if they are inaccessible

to the remote client. Usually this case happens in a local execution when the outputs are deɃned

using local Ƀle references. For this case, a translation of the reference location is performed in

45

REFERENCE IMPLEMENTATION FRAMEWORK

favor of a suitable protocol, by means of data transfer between the execution point and the Ƀnal

storage place. In the second scenario, jigsaw registers all resulting Ƀle produced during the execu-

tion on a remote storage resource, then reports the Ƀle references to the client. In both cases Ƀles

are delivered to the client using additional data transfer operations. This scenarios guarantees the

permanent availability of results as well as scalability. In fact, scalability is never aȻected because

data is processed during themetadata resolutionwithout explicit data transfers. This implies data

is never associated to the application, and the Ƀnal results stay persistent contrary to the execution

instance.

3.1.3 Invocation of services

The generic client ƪƹƲ to invoke services is the third module of the jigsaw framework. The ƪƹƲ pro-

vides methods to interpret a WS description, and invoke an operation with the input arguments.

Besides, it is possible touse the sameƪƹƲto invoke third–partyWeb services as long as such services

meet the Ƴƪǁ-ǀƼ speciɃcation, and the declared data does not deɃne personalizedmessages.

TheƪƹƲdeɃnes parsers for interpreting theǀƼƭƵand their associated schemes; and consumers

for dispatching the messages to the server and obtaining the results. The parsers deɃne several

signatures of the followingmethods:

• getServices, to obtain the endpoints on the service,

• getPorts, to obtain the implemented ports of the endpoint,

• getOperations, to obtain the declared operations of a port,

• getRequestSequence, to obtain the elements expected by an operation, and

• getResponseSequence, to obtain the elements expected as the result of an execution.

The consumermay reuse the information provided by the parsers to consume aWS operation.

It also deɃnes several signatures of the followingmethods:

• dispatch, to invoke an operation synchronously,

• invoke, to submit an input request asynchronously, and

• getResponse, to obtain the results from an asynchronous dispatch.

Using Web services the interoperability is granted between clients and servers thanks to the

messaging protocol independence. Consumers dispatch a well–deɃned message and wait for the

result. This action is possible creatingmessageswith the references retrieved from the description

associated to their corresponding values and send them to the server. The jigsaw ƪƹƲ client imple-

ments a dynamicmethod to consumeWeb services. Thismethod involves a generic dispatch client

that oȻers ɇexibility to reuse the same operations to perform the marshaling/unmarshalling and

invoke diȻerent Web services. The dynamic method is a pure ǁƶƵmessaging–oriented client and

requires advanced use of ƼƸƪƹ message construction and interpretation because each operation

46

Non–functional concerns integration

provides a diȻerent response message. Despite the diȻerent ƼƸƪƹmessages, since each server im-

plements the same deɃnitions with diȻerent formats, the processing of the server response is per-

formed transforming the ƼƸƪƹmessages into objects that can be interpreted by the data binding

of the framework. Nevertheless, it is necessary to pay special attention to the format speciɃcness

of the ƼƸƪƹ messages because in practice is not possible to test all types of ƼƸƪƹ message imple-

mentations. In the case of jigsaw the support of Metro messages is granted to parse and execute

the services based on the Ƴƪǁ-ǀƼ speciɃcation. Description of services can be interpreted for other

types of services but the dispatch and processing of incoming messages is not possible due to po-

tential implementation incompatibilities.

3.2 Non–functional concerns integration

Non–functional concerns deɃne the expected qualities of a system that are not associated directly

to the business logic of the framework. They are constraints, requirements or goals observable in

parallel to the normal behavior of the system. Several non–functional concerns can be integrated

within the jigsaw framework. For example, we developed support for three non–functional con-

cerns to address the needs of the NeuroLOG and ƿƲƹ projects: (i) a strong and distributed access

control policy to prevent unauthorized invocations, including logging and accounting, (ii) seman-

tic annotations support, and (iii) multi–platforms execution.

3.2.1 Access control, logging and accounting

The support of access control, logging and accounting are optional in the framework like all non-

functional concerns. However access control plays a diȻerent role compared to logging and ac-

counting. Access control is amajor concern for authentication and authorization thatmust be en-

forced permanently in distributed environments [Gaignard andMontagnat, 2009]. It is a low–level

architecture layer based on themanagement of user credentials validated by external certiɃcation

authorities [RFC 5280]. Therefore, access control must be implemented within a system environ-

ment accordingly to reference standards (e.g, X.509 for public key infrastructure or the ƽƵƼ/ƼƼƵ

secured transport layer). Conversely, the logging and accounting are only integrated for monitor-

ing the execution of services though an ad–hoc implementation. They are not used to accomplish

the executions however these concerns are required in the context of the systemdeployment. Log-

ging and accounting provide a mean to track services across the framework during the complete

lifecycle but their introduction into the framework or their absence is up to themanager.

Theseconcernscanbe integratedwithin the jigsaw frameworkwithout impacting thedatamod-

eling nor the core application. The access control introduction involves to manage user’s creden-

tials before the execution of the ƬƵƲ application. The credentials are passed to the service provider

as part of the headers of the ƼƸƪƹmessage to invoke transparently an operation. Thus the execu-

tion processing is not modiɃed with the inclusion of credentials validation. On the other hand, a

similar code integration to access control, logging and accounting is reɇected during the service

generation. The source code of both kind of concerns can be inserted into the template in order to

bemergedwith a description instance. This process generates the Ƀnal Java code used to create the

47

REFERENCE IMPLEMENTATION FRAMEWORK

WS interface, as is shown in Figure 3.6. Finally, each concern is automatically enabled at runtime

once the libraries implementing these requirements are added to the framework dependencies.

1 package jigsaw.ws;

2
...

3 @Resource private WebServiceContext wsContext;
4

5 private boolean checkAuthentication() throws ServerException {
6 AuthorizationManager authorizationManager = null;
7 try {
8 authorizationManager = AuthorizationManager.getInstance();
9 } catch (IllegalAccessException e) {
10 throw new ServerException("User authentication failed");
11 }
12 return authorizationManager.isAuthorized(wsContext, "exec",
13 "$application.getSymbolicName()-$application.version");
14 }
15

16 @WebMethod(operationName = "local")
17 @WebResult(name = "localResult", targetNamespace = "http://i3s.cnrs.fr/jigsaw")

18
...

19 JigsawOutput$suffixclassname output = new JigsawOutput$suffixclassname();
20 try {
21 if (checkAuthentication()) {
22 AuthorizationManager authorizationManager = AuthorizationManager.getInstance();
23 String callerDN = authorizationManager.retrieveCallerDN(wsc);
24 TraceManager.getInstance().genTrace(callerDN, "Invocation of service : " +
25 "$application.getSymbolicName()-$application.version");
26

27 Object[] objects = null;
28 Description description = DescriptionFactory.getInstance(this);

29
...

30 #else objects});
31 #end
32 } else {
33 TraceManager.getInstance().genTrace(
34 AuthorizationManager.getInstance().retrieveCallerDN(wsc),
35 "Unauthorized invocation of service : " +
36 "$application.getSymbolicName()-$application.version");
37 throw new ServerException("Your are not authorized to invoke this tool");
38 }

39
...

Figure 3.6: Snapshot of the modified template listed in Figure 3.3 including in bold
the code snippets for access control (checkAuthentication operation) and ac-
countingmanagement (TraceManager)

3.2.2 Semantic annotations

Semantic representation of information has become broadly used to enhance platforms with do-

main–speciɃc knowledge. This representation aims at facilitating platform usage, sharing of ex-

perimental data and results, and experiments themselves fostering collaborations. Ontologies, in

48

Non–functional concerns integration

domain knowledge conceptualization, became a cornerstone for the underlying information sys-

tems, as they are built upon controlled vocabularies, logical constrains and inference rules. SƸƪ,

generally relates to those platforms, provides dedicated tools for the publication, the identiɃcation,

and the invocation of services. However the technical description of services, like ǀƼƭƵs and data

schemes, does not provide any understanding on the nature of the information processed nor on

the applied operations. Therefore, the exploitation of catalogs of data processing services requires

a clear understanding of how data is processed and the nature of the data transformation imple-

mented by the services.

Generating semantic annotations, before execution to validate inputs, during processing or

even after execution to add the new information to the knowledge base, implies matching tech-

nological concepts like elements of the service messages with concepts speciɃc to the application

domain that representshigh level characteristics. This generationmay reuse theǀƼƭƵinformation

and the intrinsic information of the ƬƵƲ application contained in the jigsaw description published

as part of the Web service. The use of the ƬƵƲ description tends to explicit the understanding of

the nature of processed data, and the nature of the information of the applied processing to bene-

Ƀt, both at experiment design–time and runtime. This approach tackles three aspects of semantic

services, leveraging existing ontologies to describe generic information aswell as domain–speciɃc

natureofdata andprocessing tools [Batrancourt et al., 2010]: (1) it clariɃes thebindingbetweenser-

vice descriptions and domain concepts through a taxonomy; (2) it enables the coherency of service

composition design; and (3) it makes possible to infer new knowledge along the platform exploita-

tion. This last point is achieved by describing reusable domain–speciɃc knowledge inference rules

associated to speciɃc natures of processing. The application of these rules on a semantic database

containing traces of services invocations enriches the platformwith new valuable expert informa-

tion.

In the context of the ƿƲƹ project, the semantic annotation of jigsaw services were integrated

through a dedicated user interface of the client application, while the record of provenance infor-

mation is stored at runtime by the service invoker. Conversely, queries of the provenance infor-

mation enable to retrieve all available annotations in order to deɃne explicitly the semantics of its

models and simulations. The integration also provides the formal descriptionof those applications

to be referenced semantically.

3.2.3 Multiple infrastructures execution

To support multiple infrastructures, the model described in Chapter 2 distinguishes the applica-

tiondescription fromthe implementation(s). Each implementationmaybedeɃned for several plat-

forms. At the same time, a platform includes execution proɃles, and holds information about the

artifacts and the target application. In addition, the customizable execution environmentsmay be

deɃned for a speciɃc proɃle or shared among the platforms of the declared application releases.

At programming level the jigsaw framework deɃnes a general interface to implement the exe-

cution binding for each computing infrastructure such as the default local execution provided by

its core module. This represents an intermediate layer for a developer and the core framework.

The developer is interested in creating a connexion with a new infrastructure. Complementary,

49

REFERENCE IMPLEMENTATION FRAMEWORK

the framework processes the invocation parameters of the application (before performing the sub-

mission) and provides the results after the execution. This interface is deɃned as a set of proce-

dures that should be overwritten to implement: access to the target infrastructure, job instance

submission, and application executionmonitoring. The resulting execution strategy also involves

tomodify the service template to deɃne an operation representing the invocation to the infrastruc-

ture. Both, the template and the implementation code, are then included into the framework as

an additional library for the generation of the service and its execution. Following this approach

other bindings like ưƪƼǀ, as part of the ƿƲƹ platform [Ferreira da Silva et al., 2011], were success-

fully integrated in the framework. In this case, ƿƲƹ reuses transparently the jigsaw data binding,

and the user’s interfaces to build services while the generation of the business code is overridden

alongwith the implementationof theƬƵƲapplications executor. Thanks to this extension, usersnot

only can dispatch executions on multiple infrastructures like ƹƫƼ clusters or production environ-

ments like the European Grid Infrastructure (ƮưƲ), but they also can continue to process the input

arguments and output results with jigsaw. The instrumentation of new execution strategies does

not require extensive development because the jigsaw design abstracts the notion of independent

execution strategies without aȻecting the rest of the framework organization. However, the im-

plementation of a new strategy is not very common once a suitable execution method of a given

platform is deɃned.

3.3 Framework integration into third–party software

The jigsaw frameworkwas designed to cover stringent data ɇowmanipulation capabilities as those

enacted by a demanding scientiɃc workɇow engine. In fact, the adoption of a standard WS inter-

facesmake jigsawcompletely independent fromanyplatform. It canbeusedwithanyWS–compliant

engine (e.g., Taverna [Oinn et al., 2004], Triana [Taylor et al., 2005],ƫƹƮƵ [WS–BPEL, 2007]) or even

standalone applications through a genericWS client. In this perspective the jigsaw framework has

been integrated into third–party software at several levels: development ƪƹƲ, and comprehensive

integration. As development ƪƹƲ the integration reuses exclusively the provided operations of the

framework. The comprehensive integration, on the other hand, assemblies several projects to pro-

vide a end–to–end framework to users.

3.3.1 DevelopmentAPI

The modular conception of the framework allows developers to reuse the graphical interface, the

set of libraries implementing the runtime dynamics, or the generic invocation client as indepen-

dent modules in their own software. As a matter of fact, jigsaw is integrated in this way in the

NeuroLOG middleware. The components for the generation of services and execution are em-

bedded into the client interface, and the libraries of the jigsaw framework are conɃgured on the

server side for the correct execution of ƬƵƲ applications and processing of results. The framework

also handles the sensitive data used as input of those applications through the data management

module. Finally, non–functional concerns are integrated in accordance with its requirements of

50

Framework integration into third–party software

non–centralized and secured platformby a personalization of the template that is used during gen-

eration ofWS interfaces.

3.3.2 Comprehensive integration

Clients such as the ƶƸƽƮƾƻworkɇow enactor [Glatard et al., 2008] interface with the application

tools through the jigsaw client ƪƹƲ that facilitates theWS interface parsing and invocation. In addi-

tion, new execution strategies are included like external concerns in larger frameworks. Through

jigsaw, a client application is shielded both from details of the ƬƵƲ tools invocation and from the

grid invocation interface, including data handling and Grid security credentials management. Its

role stays focused on analyzing the data ɇow and enforcing the coherent execution of the applica-

tion in a distributed environment by delegation to the jigsaw system. SpeciɃcally, an end–to–end

framework that facilitates the gridiɃcation of applications and their executions on diȻerent ƭƬƲs

has been implemented as a natural follow–up of the implementation in combination with other

relevant projects, namely VL-e Toolkit, ƶyƹroxy, and ƭƲƻƪƬ.

Theoverall frameworkarchitecture isdepicted inFigure3.7. TheƶƸƽƮƾƻclient is the front–end

component that connects the user to the rest of the framework. It is also theworking environment

where users manipulate their applications at design time. AƶƸƽƮƾƻclient interacts with the ƶƸ-

ƽƮƾƻ server at runtime to execute the applications with a speciɃc dataset. The ƶƸƽƮƾƻ server is

responsible for invoking each application deployed locally or remotely through generic interfaces.

The Ƀnal ƬƵƲapplication, encapsulated by jigsaw, is submitted to a ƭƬƲbymeans of an intermediate

middleware such as ƭƲƻƪƬ. During the execution, a user’s credentials may be needed for authenti-

cation with the infrastructure, thus all of framework components can connect to aƶyƹroxy server

to fetch a proxy certiɃcate. Finally, data transfers between executions are enabled through theVL-e

Toolkit[Olabarriaga et al., 2010] because it provides a uniɃed view of heterogeneous Ƀle systems.

Figure 3.7: Architecture of the integration of jigsaw in a comprehensive framework

51

REFERENCE IMPLEMENTATION FRAMEWORK

MƸƽƮƾƻ, targets a coherent integration of a data–driven approach to achieve transparent par-

allelism and manipulate complex data structures. The ƶƸƽƮƾƻ client provides to users a graph-

ical interface to conɃgure services and describe the semantics of data ɇows. The description is

represented by the ưǀƮƷƭƲƪ workɇow language [Montagnat et al., 2009], that supports the re-

quired expressiveness to represent services composition. While the ƶƸƽƮƾƻ client oȻers design

tools to build workɇows and conɃgure an environment of execution, the ƶƸƽƮƾƻ server provides

asynchronous invocation and orchestration of services, and improves the execution of large–scale,

data–intensive workɇows. The integration of jigsaw with ƶƸƽƮƾƻ provides to Ƀnal users a full

range of functionality, facilitating the reuse of scientiɃc applications, their composition, and large-

scale experimentation.

Addressing the credentials management task, the framework supports two alternatives to cre-

ate and renew proxy certiɃcates. The Ƀrst one is to create a proxy directly from the user’s certiɃ-

cate Ƀle and private key granted by any CertiɃcation Authority (CA). The proxymay be used in the

ƶƸƽƮƾƻclient where the user’s credentials are available. Since at runtime services are invoked re-

motely from the ƶƸƽƮƾƻ server or aWeb services container, a second alternative is used to down-

loadaproxy fromanyƶyƹroxyserver [Kouril andBasney, 2005]. Theuser is just required toprovide

the login and password of the credential stored on the ƶyƹroxy server. The validity of the proxy is

checked each time a connection is performed. An expired proxy will be automatically renewed

without interrupting the entirely execution of the application.

The ƶƸƽƮƾƻ client uses the operations implemented by the VL-e Toolkit to download services

descriptions and upload artifacts required for service execution. It is also used for Ƀle staging on

the services container to provide the data inputs to the application.

In summary, the integration of each tool is eȻective at several levels. At the front–end level,

this integration provides an interface to gridify scientiɃc applications, and to invoke the deployed

services bymeans of standardWeb servicesmechanisms or convenient bindings accessing the dis-

tributed infrastructure directly. At the back–end level, the integration gives a transparent access

to multiple ƭƬƲs. It brings to the user the ability to execute the applications on those ƭƬƲs with the

same execution and enactment engine.

3.4 Implementation outcomes

In spite of the reference implementation, some pitfalls are not resolved consistently. The jobs sub-

mission ƪƹƲdelivered by ƮưƲ is not mature enough to be used directly in the framework in the sub-

missionof jobs or in the implementationof fault tolerancemechanisms. For this reason, the execu-

tion ondistributed infrastructures is not natively introduced because there is no interface available

towork directly at the programming language level. Itmeans that external bindings to connect the

executionmanagerwith the framework are implementedoverriding the default submissionmech-

anism as an external execution strategy using third–party tools like the ƭƲƻƪƬpilot framework and

workloadmanager system.

At the data model level some arrangements Ƀx the serialization of Ƀle references, because the

serializer of the server does not resolve the use of ƾƻƵs as expected. In fact, the implementation of

52

Conclusion

the framework represents a challenging endeavor facing defects of external components that are

out of the scope of the implementation but should bemanaged and consolidated.

The implementation of submission strategies on other distributed computing infrastructures

are potential extensions of the framework in futuremilestones. Nevertheless, this implementation

eȻort is barely proɃtable where the relocation of resources is not exclusively yielded to jigsaw and

it depends on the conɃguration of additional technological layers. For example, the ƭƲƮƽ toolbox,⁸

requires the deployment of several agents for operation, so themanagement of such elements rep-

resents more than an external concern directly associated to the execution of the ƬƵƲ application.

The long–term goal of jigsaw is to provide an automatic execution mode where users without

technical skills could Ƀnd diȾcult the selection of execution strategies (local or remote) because

they do not always have a clear idea about the implications of the application execution on dis-

tributed computing infrastructures. Moreover, users do not know the load endured by the server

nor the status of such infrastructures. These arguments show the necessity to provide an strategy

to choose automatically the type of execution on behalf of the user. The explicit operations still

remain relevant though.

3.5 Conclusion

The reference implementation framework presented in this chapter is not only a proof of concept

showing the feasibility and the relevance of the model merging the ƼƸƪ principles and the global

computing implementations incombinationwithenhancedƬƵƲapplicationdescriptions. This frame-

work meets real requirements of users facing complex issues to resolve their needs of reuse, fast

and reliable execution. jigsaw is the result of a requirements analysis trying to guarantee the use

of compelling ƬƵƲ applications, embracing at the same time lead technological evolutions such as

ƼƸƪ and the distributed infrastructures. The proposed framework is a ɇexible solution to execute

legacy tools while delivering the following features:

• complete lifecycle of services providing amanageable work environment,

• transparent execution resulting from dynamic resource allocation,

• remote execution by direct invocation or delegation,

• compliance with standard protocols duringmessage transactions,

• data staging for execution and results processing,

• comprehensivemanagement of I/O arguments,

• awareness of application dependencies,

• integration of non–functional concerns, and

• reuse of components in third–party infrastructures.

⁸ƭƲƮƽ toolbox: http://graal.ens-lyon.fr/~diet/

53

http://graal.ens-lyon.fr/~diet/

REFERENCE IMPLEMENTATION FRAMEWORK

The jigsaw frameworkwas implemented toaddress speciɃc requirementsof theNeuroLOGproject.

Nevertheless it is used in various external projects such as ưǀƮƷƭƲƪor ƿƲƹexhibiting their generic

approach. This approach also enables compositions of scientiɃc workɇows using ƶƸƽƮƾƻ with

strong type mapping and complex structures as described in the second part of this document.

This solution is a step forward thebridgeof ƬƵƲapplicationswithmodernservice–orientedarchitec-

tures providing a clean and simple set of tools to assist scientists that are not computer specialists

to build, run, combine, and share their work.

54

Part II

ScientificWorkflows inNeuroimaging

Chapter 4

ScientificWorkflows

Nowadays, the reuse of software components has an important impact in e–Science [Pagni et al.,

2008; Geddes et al., 2005]. Thanks toWeb standards, applications can run in distributed locations

exchanging information and being combined more readily than ever before. Web services have

been successfullyused in the scientiɃcdomains suchasbioinformatics andmedical imageprocess-

ing [Labarga et al., 2007; Glatard et al., 2006b]. In fact the need of interoperability and increasing

demandof computingpower enforced the implementationof frameworks to assist in the reuse and

distributed accessing of services as shown in Chapter 3.

Users also often describe and enact their applications by orchestrating multiple services into

pipelines. This process involves choosing a set of appropriate services based mainly on functional

properties, to arrange them in sequence according to the application logic by solving the connec-

tivity between services, and to convert the complex process into a target workɇow languagewhich

can be executed on a computing platform.

ScientiɃc processing pipelines are often composed of many applications dealing with large

datasets running in speciɃc environments. Among the involved applications, some cannot be exe-

cuted before the termination of its precedences due to control or data dependencies. On the other

hand, several applications are independent which means they can be executed in parallel. These

features impose to take advantage of parallelism, and execution interoperability.

This chapter presents the salient features of scientiɃc workɇows. It also introduces a work-

ɇow deɃnition language, and a workɇow enactor engine suitable for the eȾcient composition of

services and parallelism exploitation in the perspective of software reusability.

4.1 Elements of scientificworkflows

AscientiɃcworkɇow (akadata intensiveworkɇow) is an orchestration of coarse–grainedprocesses

[Bharathi et al., 2008]. ScientiɃc workɇows are designed to support the automation of complex,

service–based and data–intensive applications. They combine a dataɇowmodel, whereby a work-

ɇow consists of a set nodes (activities) that are connected through data dependencies links, with a

functionalmodel that accounts for collection–oriented processing [Missier et al., 2010]. This com-

bination of models is designed to strike a balance between expressively and simplicity.

SCIENTIFICWORKFLOWS

ScientiɃcworkɇows, as data–driven languages, separate explicitly the deɃnition of data to pro-

cess from the processing logic. This separation is convenient because the same workɇow can be

reusedwith diȻerent datasetswithout any change. This separation is commonly observed because

applications are made available independently to the data to process. The data driven approach

is also appealing to the Grid community because of implicit parallelism. Indeed, a workɇow ap-

plication graph expresses parallel enactment, and the data parallelism is expressed through the

multiple input datasets pushed into the workɇow.

Several abstractionswere introduced toexpress thedata representation in scientiɃcworkɇows.

For instance, theSwiftscript language [Zhaoet al., 2007]deɃnesarrays—indexedcollectionsofdata

items with homogeneous type, as Ƀrst–class entities. In an analogous way, the Simple Conceptual

UniɃed Flow Language¹ (ƼƬƾƯƵ) used in the Taverna workɇow management system [Oinn et al.,

2006b] refers to list of data items to represent indexedand typedcollectionsof elements. This latter

deɃnition corresponds to an equivalent concept of array. The use of arrays represents a practical

way to exploit data parallelism based on array programming principles.

The introduction of array programming concepts eases the description of mathematical pro-

cesses involving arrays [Hellerman, 1964]. Array programming aims at simplifying the manipula-

tion of data structures at formal level. In array programming, originally an array is considered as

Ƀrst–class entity. It is thus used directly with traditional operations like the addition. These oper-

ations are deɃned natively to operate on arrays or on combinations of scalar values and arrays. For

instance, X + Y and k × Z are valid expressions operating on each array element, where X, Y, and
Z denotes arrays and k any numerical value. Therefore, array operations are a convenient way to

explicitly working without loops for iterating operations over collections. In fact, they reduce the

use of control structures inside the formalization.

Operationsonarraysmaybeextended toobject–oriented languages [MouginandDucasse, 2005].

This extension introduces the application of methods on arrays of object, and/or the application

of methods to arrays of parameters. Array may be expanded into its elements and each element

is treated as an individual item in further processing. Hence, this processing applies to individ-

ual elements of the expanded array. In the same way, other array operators may also be deɃned

such as reduction of an array into a resulting scalar; compression as form of evaluation of a test over

all elements of the array; transposition to rearrange the array elements or re–size it; join to search

for indexes of selected elements; or sorting to obtain an array in a deɃned order [Montagnat et al.,

2009].

Arrays may be nested at any depth deɃning new data types of array of objects. Any given data

item is therefore always associated with a type, and its corresponding (multi–dimensional) inte-

ger index with a dimension per nesting level. For example, the array W = [[[a, b]], [[c]], [[]]] is a
3–nested levels array of characters and w001 designates the character b. It is possible to represent
elements of arrays with the special value∅ as the absence of data. This value is particularly impor-

tant to represent placeholders in an array preserving indexes.

Thedata–drivendeɃnitionof scientiɃcworkɇows throughhigh level interfacesempowersusers,

whomayhave limitedunderstandingofprogramming, toassembleadvancedapplicationspipelines

¹ƼƬƾƯƵ language: http://www.mygrid.org.uk/usermanual1.7/scufl_language_wb_features.html

58

http://www.mygrid.org.uk/usermanual1.7/scufl_language_wb_features.html

Elements of scientiɃc workɇows

involving complex data structures. Although, scientiɃc workɇow enactors are in principle similar

to traditional programming environments. They are based on a language speciɃcation that is then

interpreted. Nevertheless, traditional environments do not deal with parallelism and dataɇow as-

pects, and they are not oriented toworkwith large scale of data or a high computation abstraction.

In this section is presented a representation of the dataɇow during the enactment of workɇows, as

well as the elements that deɃne their structure.

4.1.1 Activities and dependencies

Aworkɇow activity is an atomic process that is bound to an arbitrary number of input and output

ports. The ports represent data buȻers where data items to process are received or produced data

items are stored after Ƀring an activity. Input and output ports are typed. The output port types

deɃne the activity type. The activities have input/output ports with a deɃned depth. The depth of

a port determines the number of nesting levels the input port will collect or the output port will

produce. It impacts the number of Ƀrings of the activity considered. Activities may receive inputs

with diȻerent nesting levels. The usual behavior of an activity receiving a nested array is to Ƀre

once for each scalar value embedded in the nested structure. However, there are cases where the

semantics of the activity is to process a complete array as a single item rather than each scalar value

individually. An important property of activities invocation in an asynchronous execution is that

multiple invocations of an activity on array items preserve the array indexing scheme.

The dependencies between activities are deɃned with links. Data links interconnect one activ-

ity output port with one activity input port deɃning data dependency between two activities. In

some cases, there is no data dependency explicitly but an execution order should be preserved. A

control link interconnecting processors may then be deɃned.

ScientiɃc workɇows are composed by many activities with inter–dependencies which deɃne

ordering constraints at execution time. Activitiesmay be instrumented as services processing data

at programming level (i.e., Java beanshells or R scripts) or invoking operations of standard imple-

mentations such asWeb services. Each workɇow data link is associated to a service argument. For

instance, a WS message may represent the collection of input ports of an activity, where the data

structure and types are deɃned in theWS description. The expressiveness of the activities compo-

sition depends on the availability description of services, thus themore complete is the description

of involved applications, themore precise is the service composition. The emphasis put on the de-

scriptionmodel of applications in Chapter 2, and the implementation as standardWeb services de-

scribed in Chapter 3 represent the eȻort of thiswork to provide the suitable information of services

for their composition.

4.1.2 Iteration strategies and control structures

The concept of iteration strategies [Oinn et al., 2004; Sroka et al., 2009] deɃnes the combination

mechanism for input data items received on several input ports of a same activity. They deɃne

the number of activities Ƀres and the input data sequence for each invocation. Iteration strategies

are also responsible for deɃning an indexing scheme that describes the items frommultiple input

59

SCIENTIFICWORKFLOWS

nested array resulting in an nested output array. Iteration strategies were Ƀrst introduced in the

ƼƬƾƯƵ language to combine complete iteration expression trees. Hence they produce complex iter-

ation patterns without requiring to deɃne any explicit loop.

Data parallelism is completely hidden through the use of arrays. Advanced data composition

operators are available through activity port depth deɃnitions, representing the dimension of the

array, and iteration strategies. Complex data parallelisation patterns and data synchronization

can therefore be expressed without additional control structures. Only conditionals and loops ex-

pressions are needed to control the dataɇow across the workɇow. Conditionals represent an ar-

ray–compliant if–then–else kind of structure. Alike, a loop represents awhile or a for kind of control

structure. The syntax associated to these structures is detailed in [Montagnat et al., 2009].

4.2 GWENDIA&MOTEUR

Among the existing scientiɃc workɇow environments (e.g., Taverna,² Triana,³ Pegasus,⁴ Kepler⁵)

the use of the ưǀƮƷƭƲƪ language on ƶƸƽƮƾƻ targets a coherent integration of a data–driven ap-

proach to achieve transparent parallelism in a comprehensive framework bymanipulating arrays.

GǀƮƷƭƲƪ conditionals and loop control structures provides the required expressiveness to repre-

sent services composition and data manipulation; and the asynchronous invocation of services of

ƶƸƽƮƾƻ optimizes executions on a distributed infrastructure. These characteristics make ưǀƮƷ-

ƭƲƪandƶƸƽƮƾƻsuitable for the purpose of reuse of software components and interoperability.

4.2.1 GWENDIA: aworkflowdefinition language

The Grid Workɇow EȾcient Enactment for Data Intensive Applications speciɃcation (ưǀƮƷƭƲƪ)

[Montagnat et al., 2009] is a data–driven language for the description of complex application data-

ɇows. It targets the coherent integration of array manipulation, control structures, and eȾcient

asynchronous representation for execution ofworkɇows. GǀƮƷƭƲƪdeɃnes data types, processors,

ports, links, iteration strategies, and control structures in a compact ǁƶƵformat inspired by ƼƬƾƯƵ.

The syntax of themost relevant elements are detailed below.

Processor

A processor is a workɇow activity representing a service. Several types of processors are deɃned:

bean shells, Web services, etc. Special cases of processors are: source, without inbound connectiv-

ity delivering external data values as inputs; sink, without outbound connectivity receiving Ƀnal

workɇow results as outputs; and constant, delivering a single constant value.

²Taverna workɇowmanagement system: http://www.taverna.org.uk/
³Triana project: http://www.trianacode.org/
⁴Pegasus workɇowmanagement system: http://pegasus.isi.edu/
⁵Kepler project: https://kepler-project.org/

60

http://www.taverna.org.uk/
http://www.trianacode.org/
http://pegasus.isi.edu/
https://kepler-project.org/

GǀƮƷƭƲƪ&MƸƽƮƾƻ

Port

Ports are the inputs and outputs of processors. Ports are identiɃed with a name, type and depth.

Since datamanipulated in the language is typed, four basic types are deɃned: integer, double, string,

and Ƀle (i.e., ƾƻƲs referencing Ƀles). Scalar items have depth equal to zero. Datawith homogeneous

typesmay be grouped in arrays.

Iteration strategies

Four types of iteration strategies are deɃned:

1. The dot product {⊙}matches data itemswith exactly the same index in anarbitrarynumber of

input ports. The activity Ƀres once for each common index, and produces an output indexed

with the same index.

2. The cross product {⊗} matches all possible data items combinations in an arbitrary number

of input ports. The activity Ƀres once for each possible combination and produces an output

indexed such that all indexes of all inputs are concatenated into amulti–dimensional array.

3. The ɇat cross product {⊖} matches inputs identically to a regular cross product with a diȻer-

ence in the indexing scheme of the data items produced. It is computed as a unique index

value by ɇattering the nesting–array structure of the regular cross product.

4. Thematch product {⊕} matches data items carrying one or more identical user–deɃned tags,

independently of their indexing scheme. Its output is indexed in a multiple nesting levels

array which index is the concatenation of the input indexes.

Conditionals

A conditional has an arbitrary name of inputs, a test expression to evaluate for each data received

from the input ports, and an arbitrary number of paired outputs corresponding to the then and else

branches.

Loops

Two types of loops are deɃned:

1. Thewhilekindof structure. It is composedbyanexpressionused to stop theevaluation; input

ports receiving the loop initialization value, and the values that loop back tho the activity

after the iteration; and the output ports receiving a value when the condition become false,

and all values from either the initialization or the looping part.

2. The for kind of iteration structure. It has the same elements of the other loop but the number

of iterations is the same for all initialization value.

61

SCIENTIFICWORKFLOWS

Filters

Filters are particularmanipulation activities thatmodify nested array structures. It is useful to dis-

card results that have not passed a condition, whereas the indexing of resulting items does not

need to be preserved, or to combine content of two complementary arrayswith the same structure.

Examples of Ƀlters are the split,merge, and concat operations.

Links

Links are simple data dependency declaration connecting input and output ports.

4.2.2 MOTEUR: aworkflowenactor

MƸƽƮƾƻ [Glatard et al., 2008] is an enactor engine designed for executing workɇows consisting of

standard services or customizable processors embarking user–deɃned source code. MƸƽƮƾƻ ex-

ploits service parallelism at workɇow level and data parallelism for multiple datasets. It responds

to requirements of a suitable scientiɃc workɇow environment [Maheshwari, 2011]:

• Scalability and optimization. The performance remains constant albeit the number of tasks

without considering issues related to a distributed infrastructure such as network latency or

protocol oȻsets. In terms of optimization, ƶƸƽƮƾƻ performs service grouping leading sig-

niɃcant speed–ups, especially on infrastructures that introduce high overheads.

• Datadescriptionandmanagement. Data isdescribed inagrammarallowing typesandmulti–

dimensionalarrays. MƸƽƮƾƻonlyuses references toɃlesproviding implicitlyaccess to shared

data repositories. The use of references simpliɃes the data management avoiding potential

bottlenecks of data staging. Additionally ƶƸƽƮƾƻmay trace the provenance of data.

• Interface to Distributed Computing Infrastructures. Seamless access to remote infrastruc-

tures is granted by the service processingmodel. MƸƽƮƾƻacts as a client executing applica-

tions on production grids (e.g., ƮưƲ), research clusters (e.g., Aladdin/Grid’5000) [Montagnat

et al., 2010], and it is also interfaced with the HiPerNET cloud [Truong Huu et al., 2011].

• Expressiveness. A rich semantic of the workɇow speciɃcations simpliɃes handling of activ-

ities and data. It represents the interface between the enactor an the user as a transforma-

tion language. MƸƽƮƾƻ implements control mechanisms and iteration strategies deɃned in

ưǀƮƷƭƲƪ.

• Usability. It enables an easy and convenient composition of workɇows through the graphi-

cal interface. MƸƽƮƾƻ is compatible with workɇows written for Taverna. Finally, the archi-

tecture of the enactor facilitates the extensibility of the environment by implementing new

types of activities or linking to new application types.

MƸƽƮƾƻ is also a graphical environment for the design of scientiɃc workɇows. The user inter-

face provides all the elements to create, enact, and trace the provenance of data. Figure 4.1 shows a

screenshot of the environment.

62

Summary

Figure 4.1: Graphical interface of MOTEUR

4.3 Summary

In this chapter, scientiɃc workɇows were presented as an expressive and eȾcient approach to de-

scribe complex data processing based on reusable modules. As a result of this study, the separa-

tion of data and processing logic in combinationwith the parallelism exploitation are identiɃed as

salient elements to grant an easy enactment of data–intensive applications on service–oriented ar-

chitectures. MƸƽƮƾƻand ưǀƮƷƭƲƪwere also selected as a promising implementation of scientiɃc

workɇows because they respond to the requirements of a suitable workɇow environment. Both

initiatives adopt an advanced representation of data using array programming and they integrate

transparently the use of distributed computing infrastructures.

Starting from the wrapping of ƬƵƲ applications as services detailed in the Ƀst part of this doc-

ument, in the following chapters scientiɃc workɇows are used in the service composition of neu-

roimaging analysis use–cases. In those experiments the focus is put on the expressiveness and the

grid computing exploitation to obtain time execution improvements and to contribute in qualita-

tive analysis of neuroscience studies. ♢

63

Chapter 5

NeuroimagingUse–cases

This chapter introduces the descriptions of two neuroscience use–cases: the automatic brain seg-

mentation, and a robustmeasure of changes applied to brain structures by theAlzheimer’s disease.

These use–casesmake extensive use of image processing algorithms. Their heterogeneous source,

combined to complex nature made them suitable candidates for a representation, and enactment

following the scientiɃc workɇows paradigm explained in chapter 4.

5.1 MRI neuroimaging at a glance

Neuroimaging techniques have changed the way neuroscientists address questions about struc-

tural and functional anatomy, specially in relation to behavior, clinical disorders, or diseases like

cerebro–vascular, neoplastic, degenerative, inɇammatory, infectious, etc. Functional neuroimag-

ing is used to indirectlymeasure the brain functions (e.g., neural activity), whereas structural neu-

roimaging deals with the brain compartments identiɃcation (e.g., shows contrast between diȻer-

ent tissues). Among other imaging modalities such as computer tomography (CT), positron emis-

sion tomography (ƹƮƽ), and single photon emission computed tomography (ƼƹƮƬƽ), the magnetic

resonance imaging (ƶƻƲ) became largely used due to its low invasiveness, lack of radiation expo-

sure, and relatively wide availability.

Anatomyof the brain

The central nervous system (ƬƷƼ) includes the brain, protected by the skull, and the spinal cord,

protectedby thevertebrae. TheƬƷƼis immersed in the cerebro–spinalɇuid (ƬƼƯ)which is a solution

acting as a buȻer for the cortex, providing also a basic mechanical and immunological protection

to the brain inside the skull.

The human brain consists of threemain structures (see Figure 5.1):

1. The cerebrum. It is the largest part of the brain, and it is divided into two hemispheres (left

and right). Its surface, named the central cortex, is composed of six thin layers of neurons

(gray matter) which sit on top of a large collection of white matter pathways. The cerebrum

directs perception, thought, judgment, decision, and imagination.

NEUROIMAGINGUSE–CASES

Figure 5.1: Human central nervous system. Source: Scientific American 199, 58

2. The cerebellum. It is found at the base of the brain and its composition is similar to the cere-

brum. The cerebellum is the part of the ƬƷƼ that regulates sensory perception, coordination

andmotor control.

3. Thebrain stem. It is the lower part of the brain, creating the link between the cerebral cortex,

white matter and the spinal cord. It contributes to the control of breathing, sleeping and

blood circulation.

The gray matter (GM) and the white matter (WM) are components of the brain, as it is shown

in Figure 5.2. The GM consists of nerve cell bodies or neurons, and glial cells. It has a gray color

because of the capillary blood vessels and the neuronal cell bodies. TheWM is composed of nerve

Ƀber (axons) covered up bymyelinated nerve cells. TheGM treats the nervous information in order

to create response to the stimulus whereas the WM cells connect gray matter areas of the brain to

each other, carrying on nerve impulses between neurons.

Figure 5.2: Brain tissues visualization onMRI

66

ƶƻƲneuroimaging at a glance

5.1.1 Magnetic resonance imaging

Magnetic resonance imaging (ƶƻƲ) is amedical imaging techniquebasedonnuclearmagnetic reso-

nance (Ʒƶƻ) used in radiology to visualize detailed internal structures. The physical phenomenon

was described by Bloch et al. [1946] and Purcell et al. [1946]. The technique was then reɃned by

Lauterbur [1973]. MƻƲ makes use of the property of Ʒƶƻ to image hydrogen protons which are

found in water molecules inside the human body. Thus, these protonsmay be assimilated to small

magnets. In practice, a patient is placed in an electromagnetic Ƀeld in order to displace the spin

of protons from their steady state. Then, after passing of an electromagnetic wave with the reso-

nance frequency, protons tend to return to their steady position. This relaxation generates another

electromagnetic wave which is measured. This measure corresponds to the time of relaxation of

the signal. The time depends on the intensity of the Ƀeld and the nature of the tissue [Liang and

Lauterbur, 1999].

(a) T1 sequence (b) T2 sequence

(c) DP sequence (d) T2-FLAIR sequence

Figure 5.3:MRI sequences from differences modalities

An ƶƻƲ is processed as an image in three dimensions. That is to say a matrix in 3D on which

values are assimilated to the intensity. In these 3D images, a voxel is the smallest volume unit,

analogous to a pixel in 2D images. MƻƲ provides good contrast resolution between the diȻerent

soft tissues of the body, which makes it especially useful to image the brain. A typical ƶƻƲ exam-

ination consists of a set of sequences, each of which are chosen to provide a diȻerent type of in-

formation about the subject tissues (Figure 5.3). For example, with particular values of the echo

67

NEUROIMAGINGUSE–CASES

time (TE) and the repetition time (TR), which are basic parameters of image acquisition, a sequence

on a T1–weighted scan, water– and ɇuid–containing tissues are dark and fat–containing tissues are

bright. The reverse is true for T2–weighted images. Damaged tissues tend to develop edema,which

makes a T2–weighted sequence sensitive for pathology, and generally able to distinguish patholog-

ical tissue fromnormal tissue. With the inclusion of an additional radio frequency pulse and addi-

tionalmanipulation of themagnetic gradients, a T2–weighted sequence can be converted to a ɇuid

attenuated inversion recovery sequence (ƯƵƪƲƻ), in which free water is now dark, but edematous

tissues remain bright. The ƯƵƪƲƻ sequence is used to suppress ƬƼƯ so as to bring out hyperintense

lesions. By carefully choosing the inversion time T1, the signal from any particular tissue can be

suppressed as well. In the same way, a proton density–weighted (PD) image can be produced by

controlling the selection of scan parameters tominimize the eȻects of T1 and T2.

The remaining of this chapter describes two neuroimaging pipelines. Resulting from the Neu-

roLOG project, they represent a contribution of the presented work.

5.2 Automatic brain segmentation

In this section is described the process of automatic segmentation of brain tissues, developed at the

Asclepios Research Project,¹ towards the detection of multiple sclerosis lesions [Dugas-Phocion,

2006]. Automatic brain segmentation is suitable in neuroscience for diagnosis purpose. In par-

ticular, this method consists in a pretreatment of images for system robustness followed by the

brain segmentation. It begins with a normalization of images (spatially and in intensity) and the

skull–stripping. Afterwards, the segmentation into diȻerent healthy compartments classes is per-

formed using a statistical algorithm. The method works under the assumption of a consistent

database of patient’s image. The input dataset is composed of multi–spectral ƶƻƲ sequences T1,

T2, PD and images from a reference atlas of the brain. The resulting outputs includes the binary

classes and partial volumes.

5.2.1 Spatial normalization

The simultaneous use of diȻerent multi–modal ƶƻƲ sequences implies to align them in the same

reference frame (i.e., registered). T2 and PD sequences are acquired simultaneously and therefore

intrinsically co–registered (i.e., they are in the same reference frame). This is not the case of T1

which also has higher resolution. The diȻerence of reference frame is explained by the fact that

sequences are not acquired at the same time. To correct the variations a registration method is

used computing the displacement between two images and registering them in the same reference

as shown in Figure 5.4. DiȻerent kind of registration methods exist. They either use geometric

pattern to Ƀnd correspondence between the images, or the intensity of the voxels [Hill et al., 2001].

In this pipeline, a rigid registration of T1 on T2 sequence is performed using the Baladin algo-

rithm [Ourselin et al., 2000]. The algorithm considers T2 as a reference image (Ƀxed) and T1 as a

ɇoating (moving) image. The output will be the transformation T, which transforms T1 frame into

¹Asclepios Research Project: http://www-sop.inria.fr/asclepios/

68

http://www-sop.inria.fr/asclepios/

Automatic brain segmentation

(a) Reference image (b) Target image (c) Image after registration

Figure 5.4: Example of a RMI image registration

T2 frame, and the image T1’, which is aligned with T2. The whole process follows from an iterative

scheme where, at each step, two successive tasks are performed. The Ƀrst stage consists in Ƀnding

for each block of the ɇoating image, the most similar sub–region in the other image, using a sim-

ilarity criterion which depends on the nature of the images. The second stage consists in Ƀnding

the global rigid transformation which best explains most of these local correspondences. This is

done with a robust procedure which allows up to 50% of false matches. Besides its simplicity, this

method provides a robust and eȾcient way to rigidly register images in various situations. This

shows a signiɃcant improvement of the robustness, for a comparable Ƀnal accuracy. Although it is

more expensive in terms of computational requirements compared to other methods.

5.2.2 Atlas registration

The probability of each voxel to belong to one of the healthy tissue compartments is needed in fur-

ther steps of the pipeline. The process of segmentation is based on a statistical analysis of voxels

in the multi–sequence space. The atlas of the Montreal Neurological Institute² (ƶƷƲ) [Evans et al.,

1992] provides such probabilities. This stereotactic brain atlas provides T1, T2, PD modalities, and

tissue probabilities maps, illustrating the standard patient.

Inorder touse the atlas, subject imageshave tobe in the same reference frame. The registration

is performed using the Baladin algorithm. However, since the subject images do not Ƀt perfectly

the images of the atlas generating complications in the registration, a rigid registration followed

by an aȾne registration of the atlas T2 sequence on the T2 of the subject is performed. Once the

transformationmatrix has been generated, it is applied to all atlas images.

5.2.3 Skull–stripping

This step extracts the intracranial space from the image. It is preferable to isolate the brain healthy

compartments, as shown in Figure 5.6, from the rest of the brain images (tissues, skull, eyes, etc) be-

cause keeping all the brainmay disorder the classiɃcation step. Severalmethods of skull–stripping

²ƶƷƲ atlas: http://www.bic.mni.mcgill.ca/ServicesAtlases

69

http://www.bic.mni.mcgill.ca/ServicesAtlases

NEUROIMAGINGUSE–CASES

Figure 5.5: Non-linear asymmetric template of MNI atlas. Source: http://www.
bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

are found in the literature [Dugas-Phocionetal., 2004b]. In this case, theExpectation—Maximization

method is used for the skull–stripping.

Expectation—Maximizationmethod

The Expectation—Maximization algorithm [Dugas-Phocion et al., 2004a] is divided into two steps.

First the expectation step corresponds to calculate the probability of each voxel belonging to each

class in function of the parameters’ class and a prior atlas. This step is also known as labelization of

the image. Second, themaximization step consists in the estimation of the Gaussian parameters

for eachhealthy tissue compartment classusing theprobabilities computedduring theexpectation

step.

(a) T2 sequence (b) Skull stripped sequence

Figure 5.6: Brain skull-stripping

5.2.4 Intensity normalization

Mƻ images are often aȻected by bias [Sled et al., 1998]. It means that two voxels belonging to the

samebrain compartment classmayhave diȻerent intensity. To correct this bias, a Ƀst classiɃcation

70

http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

Automatic brain segmentation

of the brain intoWM,GM, andƬƼƯclasses is preformedusing the EMmethodwith themulti–modal

ƶƻƲ sequences. The method consists in uniforming the intensity of the sequence for the same tis-

sue, alternating the segmentation and bias correction. These segmentations are then used to cal-

culate a polynomialƶƻƲsequence, which is used to correct the bias [Prima et al., 2001] as shown in

Figure 5.7.

The extraction of the bias in the T2–ƯƵƪƲƻ sequence using the general form of the EMmethod

does not work very well though. The low contrast WM/GM in this kind of sequences grows to use

a speciɃc spatial bias in case of T2–ƯƵƪƲƻ. A slice–by–slice cut to alleviate the problems of the pres-

ence of bones is done. Since the segmentation includes Ƀxed tissues, this bias is calculated in one

step obtaining a simply minimization of low–frequency variations of intensity within each of the

three classesWM, GM, and ƬƼƯ.

(a) Uncorrected image (b) Uncorrected image
with calculated bias field
superpossed

(c) Bias corrected image

Figure 5.7: Brain intensity normalization. Soure: Tustison et al. [2010]

Following the treatments presented in the previous section, all images have been placed in a

single spatial reference frame (i.e., the reference statistical atlas to allow the use during the la-

belization). The major problem at this step is to segment the images, in order to obtain a mapping

of tissues.

The EM framework is used again to classify the brainƶƻƲvoxels from the unbiased sequences.

InƶƻƲ the distribution of voxels intensity can bemodeled by a gathering of Gaussian curves. Each

brain class will be deɃned by a mean and a covariance matrix. Therefore, the brain tissues are di-

vided intoWM, GM, ƬƼƯ, and partial volume eȻect (ƹƿƮ) classes.

5.2.5 Brainmask segmentation

The segmentation mask of the brain is the Ƀrst stages of segmentation. It is therefore essential to

have a good quality of the result. The method is in fact an EM algorithm to the sequences T2/DP.

In the presence of a statistical atlas, the convergence is rapid. The ƶƷƲ atlas provides these prob-

abilities. The segmentation operation just requires to move from a the probabilities of the atlas

(a priori) to a posteriori probability. Operations of mathematical morphology are simple enough to

71

NEUROIMAGINGUSE–CASES

obtain amask of brain parenchyma (neurons and glial cells). However, this operationmust be con-

ducted carefully. Two issues may be identiɃed: over–segmentationmask in the oily areas between

the parenchyma and skull, and a sub–segmentation mask. Additional operations of erosion and

expansion give good results to overcome the segmentation issues. The mask is clear, even on sec-

tions of the cerebellum (see Figure 5.8. It may have some deɃciencies, which will require attention

in the model of tissue segmentation. This mask allows us, however, identify irregularities such as

outliers, which facilitates their treatment in a statistical process like the EM.

(a) T2 sequence (b) DP sequence (c) Brain mask

Figure 5.8: Brain mask obtained with the EM algorithm after mathematical mor-
phology. Source: Dugas-Phocion [2006]

5.2.6 Segmentation of tissues

In its simplest formulation, the segmentation process takes T2 and PD sequences, in which the bi-

narymaskof the brainhas been applied providing three outputs: whitematter, graymatter andƬƼƯ

[Dugas-Phocion et al., 2004a]. The EM algorithm gives twomajor results: the labeling of segmen-

tation and the estimation of model parameters. These segmentations are illustrated in Figure 5.9.

Some assumption of uniformity of signal within the class are performed through the process

of segmentation. It is established, for example, that the signal of the basal ganglia is not exactly

the same as the signal of the cortex. In the same way, the image resolution is not inɃnite so the

sample image is coupled to signiɃcant spaces in inter–tissue boundaries, especially in the cortex.

This distorts the estimation classes, and invalidates the Gaussian noisemodel. The introduction of

apartial volumemodel coupled toa segmentationof thevessels isused tovalidate the initialmodel.

The ƹƿƮdoes not refer to a brain compartment. In fact, voxels of ƹƿƮ are on the limit between two

tissues. It means, the intensity of those voxels are a mixture of two intensities. In a brain ƶƻƲ this

eȻect appears, for example, along the limit between the ƬƼƯand graymatter.

Afterwards, ƶƻƲ voxels are classiɃed to the most probable class using the computed Gaussian

parameters. This provides the segmentation of WM, GM, ƬƼƯ, and ƹƿƮ. During the maximization

stepof theEMalgorithm, outliersmaybedetected. Anoutlier is a labeled voxelwhichMahalanobis

distance is grater thana threshold. This distance is obtainedbetween the intensity vector (intensity

of the voxel in the diȻerent sequence) of each voxel and the mean vector of each class. Finally, to

72

Automatic brain segmentation

(a) White matter (b) Graymatter (c) Cerebro-spinal fluid

(d) Partial volumes (e) Outliers

Figure 5.9: Brain binary compartment segmentations

solve the problem of ƹƿƮ and thus obtain the real segmentations of healthy brain compartments,

ƹƿƮvoxels are dispatched betweenGMand ƬƼƯin function of their intensity. All segmentations are

then binarized.

In the EMmethod, a ratio parameter deɃnes the faction of voxel to be used (i.e., to be labelized

and then provide probabilities for themaximization step). The relation between ration value r, and
the percentage of considered voxels p is given by the Equation 5.1. This parameter is important

because the EM is a computationally intensive tool, so working only on a percentage of the voxel

imagemay be interesting if, and only if, this does not aȻect the results.

p = 100 ∗ r−1 (5.1)

In the pipeline the inɇuence of the ratio parameter, used by the EMmethod, is targeted to as-

sess the Ƀnal results. In fact, by taking only a part of the image voxel the speed of the algorithm

is improved but it also aȻects the accuracy of the resulting segmentations. The study of the re-

lationship between the percentage of considered voxels, and the trade–oȻ between accuracy and

speed is interesting for further works. To quantitatively evaluate this impact, WM segmentations

are generated using diȻerent percentage of the voxel. The segmentations are compared to a refer-

ence generated with 100% of the voxels by computing their sensitivity and speciɃcity.

Sensitivity and speciɃcity are performance statistical measures of binary classiɃcation tests.

In this case, given a segmentation of reference and a generated segmentation, sensitivitymeasures

73

NEUROIMAGINGUSE–CASES

the proportion of points segmented which belongs to the segmentation of reference and speciɃcity

measures the proportion of points not segmented which does not belong to the segmentation ref-

erence. Both measures are calculated using Equations 5.2 and 5.3 where a true positive T+ is a

voxel segmented and belonging to the segmentation of reference; a true negative T− is a voxel not

segmented and not belonging to the segmentation of reference; a false positive F+ is a voxel seg-

mented but not belonging to the segmentation of reference; and a false negative F− is a voxel not

segmented but belonging to the segmentation of reference.

sensibility =
T+

T+ + F− (5.2)

specificity =
T−

T− + F+ (5.3)

5.2.7 Towards the detection ofmultiple sclerosis lesions

The processing of brain ƶƻƲ in particular for monitoring patients with multiple sclerosis (MS) is

useful because it is positioned as additional test in the diagnosis of this disease. It also plays a

key role in monitoring the patient’s condition and quantiɃcation of a response to a medication.

Automatic extraction of quantiɃers for multiple sclerosis has many potential applications in both

clinical and pharmaceutical tests. Nevertheless, the processing of those images is diȾcult due to

variability in size, contrast and location of lesions, so automatic segmentation ofMS lesions inƶƻƲ

is a diȾcult task. Brain compartments segmentation may be used in further step like the lesions

segmentation or the evaluation of brain atrophy.

Multiple sclerosis disease

Multiple sclerosis is anervous systemdisease aȻecting theƬƷƼ, leading todemyelination. Demyeli-

nation is the termused for a loss ofmyelin, a substance in thewhitematter that insulatesnerve end-

ings. Myelin helps the nerves receive and interpret messages from the brain at maximum speed.

When nerve endings lose this substance they cannot function properly, leading to patches of scar-

ring, or sclerosis, occurring where nerve endings have lost myelin. It is these areas of scarring that

givemultiple sclerosis its name. The characterization ofMS has been done by Charcot [1872], how-

ever its causes are still unknown.

The symptoms of MS may completely vary from one subject to another because lesions may

appear everywhere in the ƬƷƼ. These can go from diȾculty in moving to problems in speech or

weakness andvisual deɃciencies. This is the reasonof thediȾculty of thediagnosis. Thediagnosis

of MS is done using:

• Clinical data, using visual evoked potentials tomeasure the speed of the brain responses.

• Laboratory data, testing the ƬƼƯ to provide evidence of chronic inɇammation of the ƬƷƼ.

• Radiologic data, usingmagnetic resonance imaging to detect lesions.

74

Automatic brain segmentation

Multiple sclerosis is a lifelong illness following diȻerent patterns either in discrete attacks (re-

lapsing forms) or slowly accumulating (progressive forms). Most subjects areɃrst diagnosedwith a

relapsing–remitting formwhich progress throws a secondary–progressive formafter several years.

Betweenattacks, symptomsmaycompletelydisappearbutpermanentneurological problemsoften

persist.

5.2.8 MS lesions segmentation

In brain tissue, atrophy describes a loss of neurons, and the connections between them. Thus, the

volume of WM and GM decreases in favor of ƬƼƯ. In MS patients brain atrophy is identiɃed ob-

serving larger ventricles, and cortical sulci than normal subjects (Figure 5.10). Multiple sclerosis is

identiɃed in ƶƻƲ showing areas of demyelination as bright spots of the image. Indeed, visualiza-

tion and position criterion of lesions in the brain have been established to determine the presence

ofMS [Polman et al., 2005]. MƻƲ is superior to other imagingmodalities in the imaging of demyeli-

nating diseases because it is possible to visualizeWM lesionswith suitable deɃnition (2–5mm) and

contrast resolution, and compare their progress over time. Lesions may have diȻerent shapes and

localizations in the brain, hopefully they are particularly visible in the ƽ2-ƯƵƪƲƻ sequence where

they appear with a high signal intensity. However, bony and ɇow artefacts are also present in the

image, that is whymulti–modal ƶƻƲ sequences are used to isolate these artefacts.

(a) Normal T1 sequence (b) MS affected T1 sequence

Figure 5.10: Brain atrophy effects. Increase of ventricles and cortical sulci volumes.
Source: Database of the MICCAI’08 MS lesion segmentation challenge

The ƽ2-ƯƵƪƲƻsequence is themost appropriate to visualize lesions. DiȻerentmethods are avail-

able in the literature to segment these lesions. They can either bemanual, semi–automatic or com-

pletely automatic [Souplet et al., 2009]. With the ƶƻƲ segmentation, parameters of brain classes

in the ƽ2-ƯƵƪƲƻsequence are identiɃed using he EMmethod. Thismethod identiɃes borders of the

tissues. Besides, keeping only the voxels, which have an intensity value upper than a threshold,

isolates the lesions because they are hyperintense signals in that section. However, artefacts are

also segmented. To isolate only lesions, a region of interest into the brain is deɃned. This region

correspond to theWM if no lesions were present [Souplet et al., 2008].

75

NEUROIMAGINGUSE–CASES

5.3 Longitudinal atrophy detection inAlzheimer’s disease

Neuro–degenerative pathologies like Alzheimer’s disease (AD), is another example of neuroimag-

ing processing. Alzheimer’s disease is characterized by a co–occurrence of diȻerent phenomena,

starting from the deposition of amyloid plaques and neuroɃbrillary tangles, to the development of

functional loss and Ƀnally to cell deaths [Jack et al., 2010]. In particular, although the loss of cells

is one of the Ƀnal results of the pathological process taking place in the brain, it has been shown

that themonitoring of structural changes provides away to track the evolution of the disease, even

at the incipient or pre–symptomatic stages [Ridha et al., 2006]. Structural MR images represent

a feasible and reproducible instrument for the study of the brain’s integrity. The recent availabil-

ity of public studies like the “Alzheimer Disease Neuroimaging Initiative” (ADNI) [Mueller et al.,

2005] provides the research of data representing the complete history of the pathological process

of Alzheimer’s: from the healthy condition to mild cognitive impairment (MCI), and Ƀnally to the

advanced stages of the disease.

In the recent past, computational anatomy acquired increasing weight in the analysis of medi-

cal data andseveralmethodsweredeveloped to study thebrain in the cross–sectional (evaluatingdif-

ferences between diȻerent subjects) and longitudinal (evaluating changes in time from serial data

of the same subject acting as his own control) settings. While the cross–sectional approach high-

lights the main diȻerences between clinical groups, the longitudinal perspective is more useful in

detecting the subtle changes related to the biological processes. A consistent integration of the

longitudinal approach into a group–wise analysis represents the Ƀnal goal for the development of

a comprehensivemodel of disease evolution.

The non–rigid registration aims to measure the anatomical diȻerences (like atrophy) between

pairs of images as local geometric diȻerences, and has been widely used in the past for the mea-

surement of local and global anatomical changes [Boyes et al., 2006]. However,most of the present

approaches arebasedon theassessmentof image–to–imagechanges, a 3Dproblem,while the study

ofmeasurements on time–series was less explored, possibly due to the historical diȾculties to col-

lect large longitudinal dataset. Most importantly, the consistent evaluationof changes across serial

images is a fundamental requirement to gain in stability and robustness of the measurements, as

well as in higher accuracy in detecting biological phenomena like pathological trends.

In this section is described, step by step, a robust framework to evaluate the changes of patient’s

brain in time, also developed at the Asclepios Research Project [Lorenzi et al., 2010]. The pipeline

develops a computationally eȾcient framework for the registration of serial ƶƻƲ data providing a

stable longitudinal atrophymeasurements.

5.3.1 Time series alignment

Initially, the reorientation matches the images to the orientation of the standard template images

of the ƯƼƵ software library³ [Smith et al., 2004]. It requires that the image labels are correct. It is

not a registrationmethod, so it will not align the image to standard space, it will only apply 90, 180

³ƯƼƵ: http://www.fmrib.ox.ac.uk/fsl/

76

http://www.fmrib.ox.ac.uk/fsl/

Longitudinal atrophy detection in Alzheimer’s disease

or 270 degree rotations about the diȻerent axes as necessary to get the labels in the same position

as the standard template.

Given a time series I0, . . . , In of rawƶƻƲs belonging to a speciɃc subject, the Ƀrst step consists

in the rigid alignment of the follow–up sequence I1, . . . In to the baseline I0, and in the re–sampling

the series into a reference space for the subsequent analysis. Linear registration is an important

component of structural and functional brain image analysis. It removes the spatial variability due

to the diȻerences in translations and rotations among the diȻerent scans.

The framework uses the Flirt algorithm [Jenkinsonn et al., 2002], which robustly registers the

images by maximizing their correlation ratio. For each image Ii in the time series, the Ƀnal aȾne

registrationmatrix isobtainedbycomposing the longitudinal rigid transformationMi,whichmatches

Ii to I0, to the subject–to–template transformationMT
0 , computedbyaȾnely registering thebaseline

T0 to the reference space provided by the anatomical ƶƷƲ atlas.

5.3.2 Bias correction

Magnetic resonancesignal intensitymeasured fromhomogeneous tissue is seldomuniform. Rather

it varies smoothly across an image. This intensity nonuniformity is usually attributed to poor ra-

dio frequency coil uniformity. gradient–driven eddy currents, andpatient anatomyboth inside and

outside the Ƀeld of view. The performance of automatic segmentation techniques which assume

homogeneity of intensity can be signiɃcantly degraded due the impact of the intensity variations.

Therefore, and approach ameans of correcting this issue is essential for such processing.

The used approach to correcting the intensity nonuniformity [Tustison et al., 2010] does not

requires a model of the tissue classes. Described as nonparametric nonuniform intensity normal-

ization (N3), themethod is independent of pulse sequence and insensitive to pathological data that

might otherwise violate model assumptions. To eliminate the dependence of the Ƀeld estimate on

anatomy, an iterative approach is employed to estimate both the multiplicative bias Ƀeld and the

distribution of the true tissue intensities. This pre–processing step is central for the stability of the

subsequent analysis, such as the brainmask segmentation and the non–rigid registration.

5.3.3 Baseline brainmask estimation

Since all the longitudinal changes are evaluated with respect to the baseline image, an accurate

probabilistic segmentation of the baseline brainmask is required. After the initial brain extraction

from the image [Smith, 2002], the probabilistic tissue segmentation (graymatter, whitematter and

CSF) is performed in order to obtain a probabilistic mask of the brain.

The method Ƀrst removes non–brain tissue using a combination of anisotropic diȻusion Ƀl-

tering, edge detection, and mathematical morphology [Shattuck et al., 2001]. The image is com-

pensated for non–uniformities due to magnetic Ƀeld inhomogeneities. The local estimates are

computed by Ƀtting a partial volume tissue measurement model to histograms of neighborhoods

around each estimate point. The measurement model uses mean tissue intensity and noise vari-

ance values computed from the global image and amultiplicative bias parameter that is estimated

77

NEUROIMAGINGUSE–CASES

for each region during the histogram Ƀt. Voxels in the intensity–normalized image are then clas-

siɃed into six tissue types using a maximum a posteriori classiɃer. This classiɃer combines the

partial volume tissue measurement model with a Gibbs prior that models the spatial properties of

the brain. Finally gray and white matters are combined to obtain themask of the image.

5.3.4 Non–linear registration: theDemons algorithm

The anatomical changes between the baseline and the follow–up images are evaluated through

non–rigid registration. The non–rigid registration aims to describe the anatomical diȻerences be-

tween the pairs of images I0 and Ii by looking for the deformation φ which maximizes their simi-

larity. The deformation Ƀeld represents a local measure of changes at the voxel level, and can be

integrated in region of interest to provide ameasure of the regional (global) volume change.

Thenon–rigid registration isderived fromthe log–Demonsalgorithm[Vercauterenetal., 2008].

In the standard log–Demons algorithm, the deformation Ƀeld is given by the minimization of the

sum of squared diȻerence (SSD) between the intensities of the two images. However, the SSD is

usually very sensitive to the intensity biases anddoesnot represent a robustmeasureof changes. In

order to avoid spurious intensity variations formorphological diȻerences, the local correlation co-

eȾcient criteria (LCC) proposed in [Cachier, 2002] was integrated in the Demons algorithm. Given

a Ƀxed image I and amoving image J, the deformation Ƀeldφ required tomatch the two images is

computed byminimizing voxel–wise a functionalwhich accounts for local additive andmultiplica-

tive scaling factors for the intensities. In this way the registration automatically estimates local

spurious intensity diȻerences and provides amore robust assessment of the anatomical changes.

5.3.5 Measure of the brain changes in time

This step aims to consistently measure the longitudinal changes in the time series of images by

implementing a 4D registration algorithm based on the temporal regularization of the estimated

deformations [Lorenzi et al., 2011b].

It relies on a hierarchical construction:

• Spatial registration. The deformations ϕi , i = 1 . . . n, are estimated tomatch each image Ii to

the baseline I0 (brainmask estimation before).

• Temporal regression. Thespatial deformationsareused toestimatea subject–speciɃc temporal

trajectory for the longitudinal changes, for example by using a linear model in time on the

deformation space.

• Spatio/Temporal registration. The temporal trajectory is then reintroduced in a second regis-

tration procedure, and is used as prior to drive the re–estimation of the deformations at each

timepoint. The temporal trajectory introduces the informationon longitudinal progression.

Thus, the Ƀnal series of deformations are estimated by taking into account both spatial and

temporal variations andwill then provide amore stable and regular estimation of the longitudinal

anatomical changes.

78

Summary

5.3.6 Quantification of the longitudinal brain atrophy

The quantiɃcation of the amount of warping applied at each voxel by the dense deformation Ƀeld

is usually derived from the Jacobianmatrix J of the deformation in terms of the determinant. This

is an average measure of volume change. Moreover, the Demons algorithm allows to consistently

compute the ɇux of the vector Ƀeld across surfaces (i.e., the shift of the boundaries required to the

surface to match the homologous points during the registration process). This measure is consis-

tent within the registration framework and is mathematically equivalent to the integration of the

log–Jacobian determinant in the region of interest [Lorenzi et al., 2011a]. The framework provides

both themeasures of longitudinal changes evaluated in the brainmask, as well as the spatial maps

of the brain’s local anatomical changes, that can be used for further analysis and statistical assess-

ment of the group–wise changes.

5.4 Summary

Theuse–casespresented in this chapter represent examplesof the current eȻorts of theneuroimag-

ing community towards a better comprehension of brain illnesses and their treatments. Their het-

erogeneous source and complex nature made them suitable case study candidates because they

may beneɃt from jigsaw the enactment as scientiɃc workɇow, and use of ƭƬƲs. Jigsawmay help to

provide access to these applications as compliant Web services respecting the nature of their in-

terface invocation including inputs/outputs, parameters, and types. In addition, they may beneɃt

from scientiɃc workɇows because the complete processing involves the execution of independent

services. From the design point of view, their deɃnition as workɇows enables a higher level of ab-

straction showing the interactions between applications. At runtime, the resulting service compo-

sition as workɇow provides three diȻerent levels of parallelism (i.e., data, service, pipeline). The

parallelism grants an eȾcient execution. Moreover, both use–cases may beneɃt from distributed

computing infrastructures. The computing power and the facilities of ƭƬƲs provide resources to

ensure scalable executions. Additionally, the applications involved in these use–cases are hetero-

geneous, in terms of execution time and memory consumption making them ideal candidates for

the exploitation of models of eȾcient use of local resources presented in Chapter 2.

Despite the speciɃcity of each use–case, the possibility of exhibiting each application as a ser-

vice shows they can be reused in order to create new scientiɃcworkɇows or replace equivalent ser-

vices. For instance, several registration, or skull stripping algorithms may be tested by replacing

only one processor of the workɇow. A more ambitious scenario may be designed to create a com-

mon set of services or sub–workɇows for pretreatment of images that later can be reused in other

case studies. This second scenario underlines the advantages of scientiɃc workɇows as a software

modularization approach for large–scale experimentation.

79

Chapter 6

Enactment of ScientificWorkflows onProduction

DistributedComputing Infrastructures

Distributed computing Infrastructures are being increasingly exploited for tackling the computa-

tion needs of large–scale applications. Grid middleware helps users in exploiting seamlessly large

amounts of computing resources. However, executing large–scale applications on ƭƬƲs faces sev-

eral well–identiɃed problems often causing poor applications performance, either underperform-

ing execution time or complete application failure. This chapter describes themethods and results

obtained with the reference implementation detailed in Chapter 3, that addresses these perfor-

mance problems. Results on actual neuroimaging applications show (i) the application optimiza-

tion that can be performed on complex application pipelines as scientiɃc workɇows, and (ii) the

impact of a production environment while performing a large–scale experiment campaign.

We assume the execution of the use–cases detailed in previous chapter as scientiɃcworkɇows.

Theworkɇows are composed ofmultiple activitieswith inter–dependencieswhich deɃne ordering

constraints at execution time. The input datasets are composed of a large number of independent

images, thus implying a high level of data parallelism. The workɇow activities are Ƀred multiple

times for each data segment and the execution tests are done on production environments condi-

tions.

In particular, we are interested in optimizing the performance of workɇow enactment taking

advantage of ƭƬƲs. On the other hand, we also address four issues dealing with large–scale dis-

tributed applications enactment:

1. Lowreliabilityof the infrastructurecausinghigh failure rates [Dabrowski, 2009;Huedoetal.,

2006]. The larger the system used and the number of computation tasks manipulated, the

more likely a failure. Failuresmay cause sever performance loss and in some cases stop com-

pletely the execution of an application.

2. High latency of computing tasks submitted to production batch systems causing low perfor-

mance [Lingrand et al., 2009b]. The splitting of an application computation logic in many

tasks lends towards more parallelism but the gain may be easily compensated by the time

needed to handle all tasks generated in a competitive production batch system. In the case

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

of workɇow–based applications with inter–dependencies between tasks, the sequential sub-

mission of tasks to long–queue batches will be highly penalizing.

3. Unfair balance between shorter and longer computation tasks [Isard et al., 2009]. The very

complex tuningof large–scale submissionsystems, involvingmeta–brokersandmanysched-

ulers, makes extremely diȾcult to achieve fair balance between short and long tasks in a

computation process. The larger the computing time discrepancy between tasks, the higher

the impact.

4. Complexdeployment&scalabilityofdistributedcomputingapplications [KrishnanandBha-

tia, 2009]. Beyondmiddlewareparametrization, thedeploymentof servicesmayhaveastrong

impact on application performance as servers easily become overloaded in large–scale runs.

Appropriate deployment is also the key to achieving good scalability.

The chapter is structured as follows. First, the principles to design the scientiɃc workɇows of

both case studies are introduced. Then, materials and methods for the experimentation are de-

scribed. We later present the experimental results. Finally, a discussion derived from the experi-

ments is developed, focusing on the four issues previously mentioned.

6.1 Workflowdesign

The twoneuroimaginguse–cases described in Chapter 5 have been enacted as scientiɃcworkɇows.

Both are represented in Figures 6.1 and 6.2 respectively. This section details an example of service

composition involved in the process of building a workɇow.

The pipelines of automatic brain segmentation and longitudinal atrophy detection in Alzhei-

mer’s disease from sections 5.2 and 5.3 are described as scientiɃc workɇows for enabling their en-

actmentusingƶƸƽƮƾƻ. Their serviceshavebeen linked together and iteration strategieshavebeen

selected, according thedeɃnitions of Section4.1.2, to produce the appropriate dataɇow for process-

ing the inputs.

Each service input has been composedwith iteration operators. For example, in the case of the

rigid registration of the automatic segmentation workɇow shown in Figure 6.1, data concerning

patients has been composed with a dot product to avoid cross–road composition, and then com-

posedwith a cross productwith other data. Tags have been used in the inputs to refer images of the

samepatients. Considering the registration ofT1 onT2 sequence, three diȻerent cases are possible
with patients A and B, and a conɃguration Ƀle including the execution parameters:

1. All inputs are identiɃed with the same tag. So they are composed by dot products. In this

case, with inputs {T1A, T1B}; {T2A, T2B} and {parametersA, parametersB} the results from
the composition are:

{T1A, T2A, parametersA}; and

{T1B, T2B, parametersB}.

82

Materials andmethods

2. Only the images T1 and T2 are identiɃed with a tag. So they have to be composed by a dot

product and then are composedwith a cross product with the input parameters. In this case,

with inputs {T1A, T1B}; {T2A, T2B} and {parameters} the results from the composition are:

{T1A, T2A, parameters}; and

{T1B, T2B, parameters}.

3. All inputs are composed by cross products. In this case with inputs {T1A, T1B}; {T2A, T2B};
and {parametersA, parametersB} the results from the composition are:

{T1A, T2A, parametersA}; {T1A, T2A, parametersB};

{T1A, T2B, parametersA}; {T1A, T2B, parametersB};

{T1B, T2A, parametersA}; {T1B, T2A, parametersB}; and

{T1B, T2B, parametersA}; {T1B, T2B, parametersB}.

These conɃgurations have been used to test diȻerent values of the ratio parameter of the EM

service. Indeed, for the Ƀrst invocation of EM in the skull stripping, we combine common param-

eters to all patients. It means, the second composition case was performed with dot and cross

products tagging the images but not the parameters. Whereas, for the following EM invocation,

in the classiɃcation performed before the bias estimation, the ratio parameters vary for each pa-

tient therefore just a dot product is performed. Acting this way allows users to put two times the

same patient but with two diȻerent Ƀle parameters.

Initially,wecompleted thedesignof thisɃrstworkɇowusing theƼƬƾƯƵlanguageofTaverna [Oinn

et al., 2004]workɇowmanager. Theworkɇowdoesnot requires high level abstractionof data com-

position because it is executed using the same datasets requiring only parameters modiɃcations.

Therefore, simple iteration strategies are required. On the other hand, the enactment of the lon-

gitudinal atrophy detection in Alzheimer’s disease requiresmore complex iteration strategies due

to the number of services inputs. Moreover, the workɇow composition in this second use–case in-

volves the treatment of several patients at the same time. It is necessary to take into account the

modiɃcation of parameter as well as complex data composition. Thus the resulting workɇow re-

quires design elements as the ɇat cross product provided only by the ưǀƮƷƭƲƪ language. Beyond

this composition requirement diȻerences the design of both workɇows includes the same con-

struction steps: wrap the ƬƵƲ tools as services using the jigsaw wrapper, deploy the applications

asWeb services, and Ƀnally compose the services bymeans of theƶƸƽƮƾƻworkɇowmanager.

6.2 Materials andmethods

This section details the experimental conditions in terms of the execution environment. This de-

scription is followed by the deɃnition of the reference evaluationmeasures in order to evaluate the

application optimization of the automatic brain segmentation case study, and the performance for

the Alzheimer’s disease use–case.

83

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

Figure6.1: Simplified schematic representationof the automatic brain segmentation
workflow where ellipses represent services and trapezoids represent input/output
data

6.2.1 Execution environment

Weperformed the experiments using the framework detailed in Section 3.3.2. Weuse a serverwith

2 quad-core processors at 2.67GHz and 16GBofmemory for local executions. This resource is used

to implement the decision model described in Section 2.2 in combination with the European Grid

Infrastructure detailed bellow. To complete the framework we also take advantage of the ƭƲƻƪƬ

pilot jobs management systemwhich improves experiments performance.

EuropeanGrid Infrastructure

The European Grid Infrastructure (ƮưƲ) is a collaborative eȻort involving more than 10,000 users

over 50 countries. Its objectives are to enable a sustainable production infrastructure of resource

providers; to support structured international research; to manage virtual organizations; and to

84

Materials andmethods

Figure 6.2: Simplified scientific workflow representation of atrophy rate from longi-
tudinal analysis at Alzheimer’s disease where ellipses represent services and trape-
zoids represent input/output data

provide middleware and training services through the federation of national and domain speciɃc

resource providers [Newhouse, 2011]. The infrastructure includes in excess of 300 sites oȻering

around 340,000 processor cores, and more than 100 Petabytes of storage. The infrastructure is

85

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

available tousers around theworld achievinga sustainedworkloadofhalf amillion computer tasks

or jobs every day.

DIRAC

The Distributed Infrastructure with Remote Agent Control (ƭƲƻƪƬ) project is a complete Grid solu-

tion for a community of users needing access to distributed computing resources.¹ It is designed to

be a generic datamanagement and job submission systemprovidingmeans formanaging tasks on

Grid resources taking over the workload management functions. The ƭƲƻƪƬ architecture consists

of numerous cooperating distributed services and light agents built within the same framework

following the Grid security standards.

DƲƻƪƬ introduced the now widely used concept of pilot jobs. Pilot job is a type of multilevel

scheduling, in which a resource is acquired by sending pilots before and then the application can

schedule work into that resource directly, rather than going through a local job scheduler which

would lead to queuewaiting time for eachwork unit. Pilot jobs aremost often used on systems that

have queues to avoidmultiple waits during scheduling. Pilot jobs allows ƭƲƻƪƬto build an eȾcient

WorkloadManagement Systems optimized in a central task queue.

6.2.2 Measures of evaluation

Application optimization

We are interested in reproducing the work performed by neuroscientists while experimenting to

underline the advantages of working with the proposed experimental framework and ƮưƲ. A ser-

vice–oriented approach execution based on a workɇow enactment oȻers the possibility of autom-

atizemanual tasks such as data staging and scripting development, reduce potential errors of data

and execution management, and improves the Ƀnal execution timespans. These advantages have

an impact during experimentation becausemore detailed experiments can be performed with the

same datasets or early conclusions can be validated with larger–scale executions. We focus in the

qualitative results without measuring aspects related to the infrastructure performance. SpeciɃ-

cally we try to evaluate parameters of an experiment in order to optimize the application.

Scalability performance

Another set of experimental trials aims at quantifying the latency endured by, and the speedup of

the entire workɇow. We are mainly interested in the average latency x̄ of all job submissions, and

the Ƀnal workɇow execution timespan for the speedup S calculation. In addition, the execution

failure rate and the maximum number of theoretical concurrent executions of submitted jobs are

also studied as they are important indicators in the scalability analysis. Three execution types are

considered:

1. Execution on grids. The workɇow is executed by submitting jobs directly to the ǀƶƼ. This

is the default behavior when working on the Grid.

¹ƭƲƻƪƬ: http://diracgrid.org/

86

http://diracgrid.org/

Results

2. Multilevel scheduling execution. The workɇow is executed using ƭƲƻƪƬ. This represents a

basic environment considering pilot jobs.

3. EȾcient execution: The workɇow is executed implementing the decision model for eȾ-

cient use of local resources deɃned in section 2.2 in combination with themultilevel schedul-

ing execution.

6.3 Results

Experiments have been designed to validate the approach modeled in Chapter 2 and the resulting

reference implementation detailed in Chapter 3. The framework proposed is stress tested using

real applications related to the treatment of brain conditions. In case of the automatic brain seg-

mentation, an application optimization is performed presenting results of a typical execution of a

neuroimaging study. We are interested to tune the parameters of the EM execution in order to ob-

tain a valid threshold range of the ratio parameter for a suitable brain segmentation. In case of the

atrophy rate measurement from the longitudinal analysis at Alzheimer’s disease, we focus on the

qualitative evaluation of the execution platform to estimate the performance improvement while

using a production ƭƬƲ as ƮưƲ.

6.3.1 Results on application optimization

The workɇow of the automatic brain segmentation uses twice the EM algorithm to perform the

skull stripping and the classiɃcation of tissues for the bias estimation. The ratio parameter of the

EM service is evaluated according its sensibility and speciɃcity according to Equations 5.2, and 5.3.

The EM step consists in the estimation of the Gaussian parameters for each healthy tissue com-

partment class. These assessments are computed from the voxels intensities of the ƶƻƲ. A ratio

parameter deɃne the fraction of voxel to be used (e.g., if the ratio is equal to 1 then all voxels are

considered). In this part, we use the percentage of considered voxels.

The experiment assesses the inɇuence of the ratio parameter on the workɇow results. In fact,

by taking only a part of the image voxel, the speed of the algorithm could be improved but it could

also aȻect the accuracy of the resulting segmentations. Therefore the relationship between this

parameter and the compromise between accuracy and speed is studied for use in further works.

To quantitatively evaluate this impact,WM segmentations have been generated for diȻerent ratios

and have been compared to a reference segmentation (i.e., segmentation with ratio equal to 1) by

computing the algorithm’s sensitivity and the speciɃcity.

It is important to underline that voxels are chosen randomly in the 3D image. Consequently,

diȻerent results can be obtained for a same ratio parameter. Tominimize the inɇuence of this ran-

domization,many executionshave beendone andmeanvalues of the sensitivity and the speciɃcity

have been computed. Figure 6.3 displays these values as a function of the percentage of voxel con-

sideredwith the variations aroundmeanvalues. For this application, thepowerof thegridprovides

an eȾcient help to generate all the results (9 executions per ratio value). Indeed, the ratio parame-

87

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

ter was written in an input parameter text Ƀle and has been assimilated as a relative to the patient.

Acting this way allows us to test all the diȻerent ratio parameters with each patient’s ƶƻƲ.

 0

 0.2

 0.4

 0.6

 0.8

 1

0
.0

10
0

%
0

.0
13

3
%

0
.0

2
0

0
%

0
.0

4
0

0
%

0
.1

0
0

0
%

0
.1

3
0

0
%

0
.2

0
0

0
%

0
.4

0
0

0
%

1.
0

0
0

0
%

2
.0

0
0

0
%

5
.0

0
0

0
%

10
.0

0
0

%

2
0

.0
0

0
%

10
0

.0
0

%

M
e

a
n

0
.0

0
10

%
0

.0
0

11
%

0
.0

0
12

%

0
.0

0
14

%

0
.0

0
17

%

0
.0

0
2

0
%

0
.0

0
2

5
%

0
.0

0
3

3
%

0
.0

0
5

0
%

0
.0

10
0

%

Percentage of voxels

sensibility
specificity

Figure6.3:Meansensibilityandspecificityofwhitematter segmentations in function
of the percentage voxel

Due to the skull–stripping step, the segmentation of the diȻerent healthy compartments is

done on approximately 830,000 voxels. On Figure 6.3, we observe that the sensibility is decreasing

while the percentage of voxels considered is decreasing. The speciɃcity is more stable but those

two quantities are increasingly variable. Taking less than 1% of the voxels in our algorithm leads

to results with too high variability: we cannot accept that diȻerent execution (with random voxel

selections) lead to diȻerent results.

First, in this case, a WM segmentation with a speciɃcity of 100% would mean that each voxel

deɃned as belonging to (resp. not to) the whitematter is really belonging to (resp. not to) the white

matter in the segmentation of reference. But this doesn’t mean that our segmentation results are

accurate for low percentage ratio. Indeed, in our case, speciɃcity and accuracy should not be con-

fused because there are far more true negatives (voxels out of brain) than true positives (voxels

really belonging toWM).

Secondly, the drastic decrease of the sensibilitymeans an increase of the number of false nega-

tivewhich corresponds to thevoxel really belonging to theWMbutnot labeled as such. This reveals

that after a certain threshold value of the ratio, there are not enough voxels anymore in order to be

able to deɃne the Gaussian class parameter from the class estimation step of the EM. Finally, these

88

Results

results reveal that using only 1% of the voxels of the image in the EMmethod would divide its exe-

cution time by 3 or 4 (compared to the execution with 100% of the voxels), without impacting the

WM segmentation quality (Figure 6.4).

(a) 100% (b) 2% (c) 0.02%

Figure 6.4: White matter binary segmentation from the workflow for different ratio
percentage values

6.3.2 Results on scalability performance

The workɇow execution on a production environment as ƮưƲ is confronted to a constant workload

variation of the infrastructure. Therefore, is not possible to reproduce similar conditions between

diȻerent executions. Moreover, these executionsareperformed indistinctlyoncomputer elements

with diȻerent performance capacities resulting in some cases very diȻerent execution timespans.

These are the reasons to be interested in the variations of the submission latency and the overall

workɇow speedup instead of absolute values of the latency and Ƀnal timespans.

The longitudinal atrophy detection in Alzheimer’s disease workɇow is a good example to test

scalability, to validate the decision model presented in Section 2.2, and to evaluate the execution

environment setup. Services composing the workɇow shown in Figure 6.2 are heterogeneous in

terms of average execution time and memory consumption as shown in Table 6.1. A benchmark

of the average execution time of each service on the target ƭƬƲwas previously done to estimate the

values of ti, ri, and TMax required in Equations 2.1 and 2.2.

Several patients could be processed in parallel without performance loss assuming availabil-

ity of resources on the ƭƬƲ. For each experiment type, the workɇow was executed with patients

datasets which size grows exponentially from 1 to 256 (see Table 6.2), andwith 2 to 5 images associ-

ated to each patient. This leads to an average of 25 service executions per patient. The experiments

were performedusing inputs of theAlzheimer’s DiseaseNeuroimaging Initiative (ƪƭƷƲ) database.²

Latency

The average latency in minutes (x̄), the standard deviation (σ), the minimum (min) and maximum

(Max) registered latencies, the median absolute deviation of the latency (ƶƪƭ), the range (Max −

²ƪƭƷƲ: http://adni.loni.ucla.edu/

89

http://adni.loni.ucla.edu/

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

Services Average time Memory
[min] [MB]

images reorientation 1.450 150
reference reorientation 1.450 150
rigid registration 3.217 250
registration toMNI atlas 4.183 250
matrix composition 1.333 150
applying parameters 2.317 200
bias correction 7.167 500
mask creation 14.350 1,000
nonrigid registration 174.783 6,500
Jacobian computation 3.300 1,000
average 1.333 150

Table 6.1: Benchmark of average services execution on EGI

Patients Concurrent Total
Services Executions

1 5 35
2 10 70
4 16 108
8 32 216
16 64 432
32 123 824
64 243 1,624
128 481 2,852
256 962 6,416

Table 6.2: Summary of services executions

min), and the interquartile range (Ʋƺƻ) are calculated for the three workɇow executionsmodes as it

is shown in Table 6.3. We are mainly interested to the values of the ƶƪƭ and Ʋƺƻ because they are

robust statistics that are not aȻected by outliers. In the context of executions on ƮưƲ, such outliers

have exhibited a high impact on latency due to load variability [Lingrand et al., 2009a] making

diȾcult the interpretation of the execution results.

Weobserve ingraphically inFigure6.5asustained increaseof the latencywhenthe inputdataset

size increases in grid executions. The values ofσ andMax increase aswell in all types of executions
as shown in Table 6.3. This behavior is expected as the increasing number of jobs loads the ǀƶƼ

submission queues and ƭƲƻƪƬwhen using pilot jobs. For instance, in Table 6.2 we show the incre-

ment from 25 concurrent executions for one patient up to 962 executions for 256 patients. Con-

versely, themultilevel and eȾcient optimizationmethods reduce the average latency signiɃcantly

due to the reuse of worker nodes passing by the scheduler mechanisms obtained with pilot jobs.

Focusing on the largest dataset runs, we verify that the latency is lower for a same number of pa-

tientswithmultilevel scheduling thanwith grid execution, and even lowerwith eȾcient execution

showing the relevance of executionwithoutwaiting times thanks to theuse of local resources. This

90

Results

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7

La
te

nc
y

(s
ec

)

Number of patients (2n)

mean

Figure 6.5: Latency variability on grid executions

behavior is veriɃedwith theƶƪƭ, a variabilitymeasure comparable to the standard deviation. The

ƶƪƭ shows the dispersion reduction among all latencies when the optimization methods are im-

plemented (see Figure 6.6). Similarly, the Ʋƺƻshows a tendency for gradual increment of the range

as increasing the number of patients, however the optimizationmethods signiɃcantly lowers these

values exhibiting the attenuation eȻect obtained initially with the pilot jobs and then reinforced

with the implementation of decision model for submission on local resources. The use of limited

local resources showsupwith large datasets obtaining similar Ʋƺƻvalues inmultilevel and eȾcient

executions.

In Figure 6.8 (page 99), we present an example of the timeline diagrams for the three experi-

ment types. Graphically, we can observe on the top of the diagram the time evolution of a saturated

ǀƶƼduring a Grid execution that results in all tasks having a similar waiting time delaying the in-

vocation of last services by all accumulated latency. This latency is reduced once the multilevel

method is implemented. Finally, we can observe that latency is reduced in the same proportion

with the eȾcient execution type; evenmore in some cases there is no latency at all. Nevertheless,

the use of local resources potentially reduces the Ƀnal execution timespan as we can observe in

Table 6.4.

91

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

Patients x̄ σ min Max ƶƪƭ Range Ʋƺƻ

grid 1 1.815 1.712 0.283 6.100 0.433 5.817 2.883
2 2.783 3.180 0.233 11.117 0.667 10.884 3.700
4 2.871 4.049 0.167 20.617 0.675 20.450 3.284
8 12.251 13.836 0.283 84.150 5.208 83.867 10.134
16 35.141 33.672 0.333 164.983 11.467 164.650 28.666
32 39.841 29.903 0.250 189.200 10.500 188.950 29.850
64 52.237 145.353 0.200 1,194.117 13.583 1,193.917 43.484
128 107.185 53.747 0.250 774.233 27.417 773.983 78.367
256 178.289 101.185 0.217 1,661.483 51.008 1,661.266 100.467

multilevel 1 1.525 1.112 0.467 5.300 0.400 4.833 1.066
2 2.049 2.354 0.425 13.409 0.504 12.984 1.367
4 3.558 6.031 0.350 26.217 0.350 25.867 2.084
8 2.428 2.750 0.383 12.400 0.408 12.017 2.267
16 5.349 10.609 0.289 93.011 0.880 92.722 3.867
32 10.017 24.844 0.284 174.142 1.138 173.858 5.142
64 6.637 8.637 0.242 84.842 1.846 84.600 9.825
128 14.134 17.741 0.175 161.517 7.896 161.342 19.350
256 26.293 40.736 0.100 349.783 8.269 349.683 32.389

eȾcient 1 0.304 1.019 0.000 4.372 0.000 4.372 0.000
2 0.582 1.954 0.000 9.350 0.000 9.350 0.000
4 0.477 1.349 0.000 7.117 0.000 7.117 0.000
8 0.460 1.152 0.000 7.067 0.000 7.067 0.000
16 1.559 5.174 0.000 52.975 0.000 52.975 0.950
32 5.470 17.212 0.000 121.125 0.171 121.125 3.463
64 6.205 11.644 0.000 52.767 0.900 52.767 6.000
128 10.279 16.120 0.000 193.667 1.517 193.667 15.350
256 24.730 48.920 0.000 393.467 2.900 393.467 29.217

Table 6.3: Latency statistics in minutes for all executionmodes

Speedup

Three diȻerent types of speedup are considered to evaluate the impact of the execution framework

on application performance as shown in Table 6.4. The traditional speedup S is deɃned as the ratio
of a reference, the sequential running time of the application, over the timespanmeasured during

a parallel run. The speedup measures the improvement with regard to the total Ƭƹƾ consumption

that may vary signiɃcantly between computing elements. In addition, we determine the workɇow

speedup Sw = p×T1/Tp where p is the number of patients, and Ti is theworkɇow execution times-

pan for ipatients in a given executionmode. Sw measures the globalworkɇow improvement rather

than execution time. The Sw shows the speedup evolutionwithin an executionmode as a function

of the number of patients (and datasets). Finally, the relative workɇow speedup S′w is computed as

Sw but taking T1 of the grid execution type for all cases. The value of S′w shows the execution im-

provement with regard to a constant reference of executions on the Grid and represents a good

comparator between executionmodes.

We observe for all execution types in Table 6.4 that the speedups is eȻective from one patient

(S > 1). The increasing speedup demonstrates all levels of parallelism (i.e., data, service, pipeline)

92

Results

Figure 6.6: MAD of average latency. Grid execution in blue, multilevel execution in
red, and efficient execution in yellow

implementedwith theworkɇowenactment. The speedup increases signiɃcantly even if the latency

increases showing the success of the resources acquisition on the ƭƬƲ. The workɇow enactment

enables concurrent executions improving the Ƀnal execution timespan, specially in case of pilot

jobs use for large numbers of patients.

Figure 6.7 shows theworkɇow speedup evolution for each executionmode. We can observe that

pilot jobs play an important role in the speedup improvement. Moreover, the higher values of Sw

in the eȾcient execution veriɃes the cumulative eȻect of including pilot jobs, and the use of the

submission decision model. Although, this behavior is marginal with large number of patients

because of the limited number of local resources.

According to the results, while the implementation of the optimizationmethods improves the

speedup, the Ƀnal execution timespanmay not diȻer signiɃcantly between the implementation of

themultilevel execution and eȾcient execution. Similarly, the number of failures has the same order

of magnitude across the executions using pilot jobs due to the heterogeneity of the computing el-

ements on ƮưƲ. It means that even if the use of local resources attenuates the failure rate it does

not represent a safeguard to reduce the Ƀnal execution timespan but its use has a clear inɇuence

on latency in absolute terms (ƶƪƭand Ʋƺƻ). In fact, the almost constant failure rate present along

all reported experiments is due to several factors on the production environment, namely full stor-

age elements, temporal unavailability of middleware services such as the Ƀle catalog server or the

proxy certiɃcatesmanager, unexpected timeouts while storing data, or speciɃc applications errors

resulting of incompatibilities with OS computing elements and/ormissing system libraries.

93

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

Patients Timespan Total CPU Failure S Sw S′
w

[hours] [hours] rate

grid 1 8.024 14.037 0.00% 1.749 1.000 1.000
2 6.556 20.047 25.00% 3.058 2.448 2.448
4 7.326 29.651 14.29% 4.047 4.381 4.381
8 14.394 83.656 31.86% 5.812 4.460 4.460
16 21.144 223.438 17.46% 10.567 6.072 6.072
32 22.442 358.608 27.77% 15.979 11.441 11.441
64 33.619 572.193 11.31% 17.020 15.275 15.275
128 35.863 1,328.756 14.83% 37.051 28.639 28.639
256 41.531 2,388.036 11.36% 57.500 49.460 49.460

multilevel 1 3.382 11.631 0.00% 3.439 1.000 2.373
2 4.569 21.448 10.26% 4.694 1.480 3.512
4 4.484 37.047 1.82% 8.262 3.017 7.158
8 4.478 69.354 2.26% 15.488 6.042 14.335
16 6.200 104.168 1.51% 16.800 8.727 20.706
32 8.614 227.472 2.02% 26.407 12.564 29.808
64 12.831 698.307 13.71% 54.423 16.869 40.023
128 20.528 1,160.384 9.09% 56.527 21.088 50.033
256 19.959 1,857.050 1.99% 93.043 43.379 102.918

eȾcient 1 3.152 10.155 2.78% 3.222 1.000 2.546
2 3.574 20.263 1.41% 5.670 1.764 4.490
4 3.461 32.010 0.00% 9.249 3.643 9.274
8 3.354 56.137 0.46% 16.737 7.518 19.139
16 4.048 115.145 0.92% 28.445 12.458 31.715
32 7.750 219.229 1.02% 28.288 13.015 33.131
64 9.560 388.227 6.13% 40.610 21.101 53.717
128 12.536 962.033 6.95% 76.742 32.184 81.930
256 18.655 2,255.662 7.42% 120.915 43.254 110.112

Table 6.4: Timespan statistics for all executionmodes

In summary, these quantitative results complywith the behavior of a productionƭƬƲas ƮưƲ that

is reported in literature reporting a dynamic working load, and heterogeneous resources availabil-

ity. The implementation of the decision model and the optimization methods show a signiɃcant

reduction of invocation latency, and an execution speedup improvement. It is important to notice

the independence between the use of local resources and the data size used as input. It means,

the local execution may also involve large amounts of data even if these are processed by a short

execution job. At the same time, the storage elements are considered distributed across the infras-

tructure therefore, the execution using the eȾcient model it is not associated in any case to local

storage.

6.4 Discussion

A lot of research eȻorts have been invested in dealing more or less independently with the four

well–known issues of large–scale infrastructures mentioned in the introduction chapter (low re-

liability, high latency, unfair balance, complex deployment and scalability). We face them with

94

Discussion

Figure6.7: Execution speedupasa functionof thenumberof patients. Grid execution
in blue, multilevel execution in red, and efficient execution in yellow

the design of an end–to–end execution framework in which ƼƸƪ principles are adopted to enable

the execution of distributedworkɇowapplications on large–scale datasets. Using an ƼƸƪapproach

allows users to scale the execution of their applications, and ɇexibly extend the execution frame-

work according to their computation needs. Besides, in ƼƸƪ various optimization strategies can

easily be integrated to improve the application performance as shown through experiments cam-

paign reported here. Following we resume howwe tackled (and veriɃed during experiments) each

problem as part of the goals of the thesis.

Failure recovery. Networking and computing infrastructures are subject to random resource fail-

ures. The likeliness of failures increaseswith the number of physical entities, as seen in large–scale

distributed systems today [Dabrowski, 2009; Huedo et al., 2006]. Recovering from failures be-

comesa critical issue to improve the reliability of the infrastructure, preventing the correct comple-

tion of many application runs. Numerous works addressing this issue have been proposed in the

literature including the check–pointing, live migration [Kangarloun et al., 2009; Koslovski et al.,

2010], job replications [Casanova, 2007] and submission strategies [Lingrand et al., 2009b]. On

general purpose production infrastructures, job resubmission is often the only general failure re-

covering solution available, as check–pointing and migration usually either make restrictive as-

sumptions on the computational processes or they require application instrumentation. The Ƀ-

nal makespan could be increased, speciɃcally with longer applications, but resubmission ensures

that the application execution can always continue andɃnish successfully. This approach is imple-

mented in the framework by controlling the status of submitted jobs and deɃning a resubmission

policy when a failure occurs.

95

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

Lowering latency. The splitting of an application’s computation logic in many tasks lends towards

more parallelism but the gain may be easily compensated by the time needed to handle all tasks

generated in a competitive production batch system. In the case of a workɇow–based application

with inter–dependencies between tasks, the sequential submission of tasks to long batch queues

will be highly penalizing. Addressing the high latency issue, many works study multiple submis-

sions approaches [Subramani et al., 2002; Casanova, 2007; Lingrand et al., 2009b]. The results of

these studies conɃrmthat submitting tasks several times increases applicationperformance. How-

ever, users who do not use multiple submission are penalized. Furthermore, without considering

the capacity of batch schedulers, high number of submissions can overload the batch schedulers

and then degrade the overall system performance.

Alternatively, pilot jobs systems help users in reserving a pool of computing resources during

the execution of the application [Casajus et al., 2010], being considered as a bridge between batch

systems and systems supporting resources reservation. Apilot job is submitted to aworkloadman-

ager to reserve a computing resource. User jobs are then pulled from the job queue to computing

nodes by successfully started pilot jobs. Each pilot job can thus process sequentially several user

jobs without introducing delay between two of them. Each pilot is subject once to the workload

manager queuing time but the jobs they process are not. Another advantage of pilot jobs to the

classical submissionapproach include the sanity checksof the runningenvironmentbefore assign-

ing resources for execution. They also allow users to create a virtual private network of computing

resources reserved for executing their tasks, and they implement eȻectively the pull scheduling

paradigm. Our execution framework extensively uses pilot jobs reducing latency andmaking exe-

cutionsmore reliable because broken resources are Ƀltered by the pilot jobs.

Taskfairness. Thevery complex tuningof large–scale submission systems, involvingmeta–brokers

and many schedulers, makes it extremely diȾcult to achieve fair balance between short and long

tasks in a computation process. Yet, production infrastructures are not only used for long running

jobsprocessingdata–intensive applications but they are also frequentlyused for processing shorter

jobs. Statistical results shows that more than 50% of the jobs take less than 30minutes for execu-

tion [Isard et al., 2009]. While the high latency has less impact on long running jobs, short jobs

are heavily penalized if they have long waiting times before execution. The larger the computing

time discrepancy between tasks, the higher the impact. Users therefore require a mechanism of

resource fair sharing to avoid that long jobsmonopolize thewhole computing resources, and delay

the completion of other users (short) jobs.

Pilot jobsalso improvehandlingof short jobsas they reduce individual jobsqueuing time. How-

ever, although dedicated to a speciɃc user, pilot job systems usually do not implement fairness

among the user’s jobs and pilots may be overloaded by the processing of longer jobs similarly to

a Grid meta–scheduler. Therefore, our approach combines more dedicated resources out of a dis-

tributed infrastructurewith the capacity of ƭƬƲs to improve handling of short jobs. Local resources

aremore reliable since theuser is administrator of computingnodes, thus failures coming from the

software dependencies are lowered. Executing applications locally reduces the number of job sub-

missions remotely removing the submission phase and delays of middleware initialization. This

96

Discussion

then reduces the waiting time of other jobs in the queue for obtaining computing resources on re-

mote infrastructures. Nevertheless, as the number of computing resources in the local server is

limited, the more jobs submitted locally, the longer the execution time needed to Ƀnish all jobs.

We deɃne a decision model in Section 2.2 to decide whether a task is executed on local resources

or submitted to a ƭƬƲ.

Deployment & scalability. Beyond middleware parametrization, the deployment of application ser-

vicesmay have a strong impact on application performance as servers easily become overloaded in

large–scale runs [Krishnan and Bhatia, 2009]. Some initiatives like ưƪƼǀ [Ferreira da Silva et al.,

2011] or ƵƸƷƲPipeline [Dinov et al., 2009] propose tools to reuse scientiɃc applications on ƭƬƲs but

they have scalability limitations or interoperability constraints respectively. ConcerningWeb ser-

vice–related projects, tools such as ưƮƶƵƬƪ [Delaitre et al., 2005], and gƻƪƿƲ [Chard et al., 2009]

manage services lifecycle at diȻerent levels, enabling dynamic deployment and/or supporting of

non–functional concerns. However, their adoption involves the use of an homogeneous middle-

ware. Our execution framework relies on a legacy application code wrapper that both provides a

standardWeb service interface to all application computing components, and helpsmanaging the

complete lifecycle of the resulting services.

In practice multiple services containers, acting as a proxy between users and the production

ƭƬƲ, may be conɃgured in the framework. Each container naturally has a limited capacity to pro-

cess concurrent services. When the size of input dataset increases, the number of services submit-

ted concurrently may exceed its capacity. The replication of servers into the system (scaling out)

resolves this limitation. It increases the performance without modifying the framework architec-

ture.

Addressingallconcernstogether. The execution frameworkusedduring this experimental campaign

addresses simultaneously the production ƭƬƲs shortcomings by combining advanced job submis-

sionstrategies, services replication, and including theuseof local resourcesduringworkɇowenact-

ment. The implementation of job resubmission improves the reliability by instantiating a system

capable of error overcoming from remote executions. Then the adoption of pilot jobs for multi-

level scheduling ensures the reduction of latency. Pilot jobs represent a new approach to overcome

long queues of batch schedulers reusing computing resources eȾciently. In order to tackle the

unfair balancing resulting from the competition of short/lightweight application tasks with the

long/heavyweight ones, a decision model dispatching tasks among local and remote resources is

implemented. The deployment of services provides transparent mechanisms of applications real-

location, over local and remote resources, holding back technical details far from Ƀnal users. Fi-

nally, the scalability heedfulness ensures large–scale experiment campaigns by enabling services

resiliency.

The delivery of an integrated execution environment is eased by the application of ƼƸƪ prin-

ciples, made possible by the workɇow formalism used to model distributed applications. SƸƪhas

been adopted to a large extent in middleware design [Foster, 2006]. For instance, the Swift work-

ɇow management system [Zhao et al., 2007] provides an integrated working environment for job

97

ENACTMENT OF SCIENTIFICWORKFLOWSON PRODUCTION DCIS

scheduling, data transfer, and job submission. It is built on top of a uniform implementation based

on Globus toolkit. Yet, production infrastructures hardly ever comply to a homogeneous middle-

ware stack, nor adopt a single communication standard for all core and community services. Con-

versely, traditionalworkɇowmanagement systems like Taverna [Oinn et al., 2006a], or Triana [Tay-

lor et al., 2005] support service invocation enabling interoperability but they do not natively exe-

cute code on ƭƬƲs. In our architecture, bothmiddleware and application components are deployed

as services. The application code is instrumented non invasively to comply to this model through

a Web service builder aware of ƭƬƲs computing capability. Using an ƼƸƪ approach allows users to

scale the execution of their applications and ɇexibly extend the execution framework according to

the computation needs.

98

Discussion

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20000 40000 60000 80000 100000 120000 140000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000 70000 80000

Figure6.8: Timeline diagrams (execution time [seconds] as a function of the number
of services) for the workflow executions of 128 patients on EGI. From top to down:
grid execution, multilevel execution, and efficient execution. Each service is repre-
sented by ahorizontal bar composed of twoparts: the first (in red) is the latency time
between submission and acquisition of a computing resource, the second (in green)
is the execution time including data transfers.

99

Conclusions andPerspectives

Conclusions

This work aims at improving the Grid users experience, specially among the neuroimaging scien-

tiɃc community, by simplifying experiments and enacting scientiɃc applications eȾciently.

The need for a uniform and generic characterization of legacy applications led to a formal ab-

straction of ƬƵƲ tools to describe their invocation, taking into account the execution context. It pro-

vides a set of deɃnitions to identify details concerning invocation arguments. This abstraction en-

ables the deɃnition of the application interface independently from the conɃguration required for

execution. In addition, several infrastructure conɃguration environments can be included within

the deɃnition, supporting the execution in heterogeneous platforms. The abstraction of ƬƵƲ ap-

plications, deɃned in chapter 2, is used in a reference implementation framework to expose those

tools as services.

The study of the dataɇow and computing requirements of two neuroimaging use–cases, de-

scribed inchapter5, led tomodel themasscientiɃcworkɇowscomposedof services inadata–driven

approach. A coordinated work with neuroimaging experts was needed to understand completely

the details of applications involved in complex pipelines and transform them into scientiɃc work-

ɇows. We took advantage of two scientiɃc workɇow deɃnition languages to describe the data it-

eration strategies and control structures of the dataɇow. In the case of the automatic brain seg-

mentation, we deɃned theworkɇowusing the ƼƬƾƯƵ language. This Ƀrst composition revealed the

limitations of ƼƬƾƯƵwhenworkingwith high data dimensionality. Therefore, the seconduse–case,

ameasure of changes applied to brain structures by theAlzheimer’s disease, was designedwith the

ưǀƮƷƭƲƪ language. This later deɃnition enabled the representation of a more complex dataɇow.

In both cases, the use of ƶƸƽƮƾƻ led a proper enactment on heterogeneous platforms.

We identiɃed the requirements to enact the designed workɇows and we highlighted the need

to fulɃll non–functional concerns associated to work with sensitive data in a distributed working

environment. Jigsaw, an extensible framework integrating external concerns,was developed in the

context of two driver projects to enable the execution of services that compose theworkɇows. This

reference implementation manages the complete lifecycle of services from creation stage to invo-

cation, passing through deployment and instrumentation on the executing infrastructure. Some

salient characteristics of the framework include the implementation of a ƬƵƲ application wrapper

asWeb service and a generic consumerƪƹƲ; an embeddable ưƾƲin third–party software; and the ex-

tension support fornewexecution strategiesonalternativedistributed infrastructures. This frame-

CONCLUSIONS AND PERSPECTIVES

work not only represents a proof–of–concept of the feasibility of our approach. Nowadays, jigsaw

is successfully used in production environments by external research projects.

Weadopteda service–orientedapproachduring the implementationof the jigsaw framework to

ensure scalable andɇexible experimentation. The implementation takes advantage of service con-

tainers enabling execution scalability. The use of an open and production tested container, such

as Apache Tomcat, eases the services management with mechanisms like hot deployment. It also

grants more advances procedures of server–side administration such as clustering, load balancing

and servers farming. The possibility of a transparent deployment of several containers ensures to

serve a larger number of service invocations. In addition, the implementation of a compatible ser-

vice–oriented framework based on Web standards extends the number of potential users by pro-

viding interoperable interfaces. In fact, the access to heterogeneous platforms through a single

standard–based interface simpliɃes the experimentation of scientists.

In addition, we handled some strategies to ensure reliable and resilient executions on hetero-

geneous infrastructures. The use of ƭƲƻƪƬ, aworkloadmanaged system supportingmultilevel jobs

scheduling execution by the instrumentation of “pilot jobs” on the target infrastructure, allows us

to tackle high failure rates commonly found in production environments such as ƮưƲ. The perfor-

mance loss of job submission was signiɃcantly reduced in combination with two more pragmatic

solutions: job resubmission policies and data replication. The modular implementation of jigsaw

oȻered the possibility to integrate ƭƲƻƪƬinto the framework improving the executions extensively.

On the other hand, the implementation of resubmission policies was resolved as a simple exten-

sionwithout compromising the rest of the framework. We also noticed the beneɃcial eȻect of data

replication in order to avoid storage servers unavailability that can completely stop a workɇow ex-

ecution.

FinallywedeɃned aworkɇow–orientedmodel to exploit eȾciently local and remote resources.

The adoption of production ƭƬƲs ensures access to a large number of computing resources. How-

ever, it often implies high latencies and failure rates. In the case of scientiɃcworkɇows, the latency

and failures are ampliɃed because of the enactment of several levels of parallelism. Moreover, the

unfair balance of short and long–term executions makes extremely diȾcult to achieve an opti-

mized execution due to the very complex tuning of large–scale submission systems. Conversely,

the use of local resources oȻers reactive andmore reliable resources but often brings resource lim-

itations with large experimentation. The deɃnition and implementation of a simple and eȻective

decision model to combine both types of resources showed a non negligible global improvement

in terms of failure rate and submission latency reduction.

The conceptual contributions and development presented throughout this work addressed si-

multaneously ƬƵƲapplications lifecyclemanagement in distributed environments, and production

ƭƬƲs shortcomings. The implementation of a reference standard–based framework, combined to

the adoption of eȾcient mechanism to overcome resource unavailability, and the formal deɃni-

tion of a decisionmodel for job submissions provide an alternative to tackle issues of data intensive

experimentation.

102

Perspectives

Perspectives

Towards an open and standard description of CLI applications

Many speciɃcations to describe ƬƵƲ applications execution have been presented in the literature.

A majority of them share the same principles and concepts. Some abstractions are also geared

towards speciɃc Ƀelds of science like bioinformatics [Senger et al., 2008] or chemistry [Krishnan

et al., 2009]. However, these initiatives are not consensual eȻorts, thus the speciɃcations are likely

ignored or inadvertently recreated outside of their original purpose. Moreover, they do not include

systematically a formal data schemamaking it diȾcult to fully exploit the features of the abstrac-

tion.

The abstraction of ƬƵƲ applications developed in this workmay be the starting point for an en-

hanced version. The experience gained from interactions with neuroscientists, and the feedback

received during the development of the jigsaw framework resulted in somepotentialmodiɃcations

and extensions towards an open and standard speciɃcation for the description of ƬƵƲ applications

interfaces and execution contexts. New resolution models (e.g., cross references between argu-

ments, or support for arguments that are input and output simultaneously) and mappers in the

declaration of arguments, may introduce a cleaner and more ɇexible description of tools. The

deɃnition of additional schemes for domain–speciɃc tools support may also promote a uniform

description of ƬƵƲ applications for better dissemination. This kind of extensionsmay beneɃt to se-

mantic abstractionof applications aswell, because the resultingdescriptions canbedirectly reused

for the generation of semantic annotations or the deɃnition of ontologies. The integration of ex-

ecution environment conɃguration in the description would represent an additional contribution

to the standardized abstraction of ƬƵƲ applications description addressing heterogeneous infras-

tructures.

Forthcoming development paths

As part of the permanent goal of improving the user experience, multiple development paths are

considered. First, we can integrate ƳƼƪưƪ [Reynaud, 2010], an open initiative of the Grid commu-

nity, to enable a uniform data and execution management across heterogeneous infrastructures.

This integrationwould reduce themanagement ofmultiple sources of libraries and dependencies.

The use of ƳƼƪưƪ can also lead the reuse of jigsaw components as ƳƼƪưƪ adapters (i.e., program-

matic interfaces designed to minimize coding eȻort for integrating support of new technologies)

to release features of our framework like the result processing as data–typed collections. In the

same direction as the adoption of solutions that support a wide range of technologies, we can in-

tegrate natively ƭƲƻƪƬ through its ƪƹƲs allowing users to aggregate, in a single management sys-

tem, resources of diȻerent nature. This represents the inclusion of a new layer into the framework

supporting the infrastructure management. The inclusion may simplify the implementation of

the framework removing the need of extending new executors for additional infrastructures. Fur-

thermore, ƭƲƻƪƬmay bring to the framework additional control and auditingmechanisms for dis-

tributed infrastructures.

103

CONCLUSIONS AND PERSPECTIVES

Second, planning the executions of applications as scientiɃc workɇows, we can enhance the

interfaces of the framework to ensure a modular cohesion with workɇow management systems.

In fact, one goal of the European ƼƱƲǀƪproject is to address the Ƀne–grained interoperability exe-

cution of workɇows [Plankensteiner, 2010]. Fine–grained interoperability focuses on the transfor-

mation of workɇow representations in order to achieve workɇows migration from one system to

another. The power of theɃne–grainedworkɇow interoperability stands in exploiting themost ap-

propriate enactor for a certain workɇow application, independently from the language in which it

was created. The use of technological–neutral mechanisms to provide access to application execu-

tions would deɃnitely reduce the integration eȻort between application execution and workɇow

enactment. The jigsaw framework becomes an interesting tool for achieving that goal since the

Ƀrst–class entities in scientiɃc workɇows are services, and they must be interoperable to enable

the execution on diȻerent ƭƬƲs. Part of this initiative is already achievedwith the integration of the

jigsaw ƪƹƲ in theƶƸƽƮƾƻworkɇow engine.

Complementarily, we are convinced that we can make an important improvement to the jig-

saw framework joining new technological trends like autonomic computing. The framework, for

example, would take advantage of ongoing eȻorts of self–management of distributed computing

resources [Krikava et al., 2011] incorporating mechanisms to adapt the responsiveness of applica-

tion executions according to the infrastructure status.

Prospects in neuroinformatics

Neuroinformatics merges the power of computational analysis with neuroscience evolving from a

simple use of computers for data organization to the current development and application of so-

phisticated computational tools for large–scale data and imagemanagement, analysis andmodel-

ingofbrain function. Thisdisciplinecontinuously searches formethods that facilitatenewinsights

through the integration and analysis of large and diverse datasets.

ScientiɃcworkɇows becomeapotential catalyst to transform theway experimental campaigns

are conducted in neuroinformatics. Their adoption in bioinformatics, for instance, has become a

driver in the creation of a dynamic community to Ƀnd, share, and exchange data, models, and pro-

cesses [De Roure et al., 2009]. Yet, the use of distributed workɇows, enacting services deployed

over remote sites, remains infrequent in neuroinformatics. Several factors inɇuence negatively a

broader development of neuroinformatics. The cumbersome access to data due to legal policies

restricts sharing. Frequently tools are not fully developed requiring long iterative process of test

before reachingmature stages. Unlike bioinformaticians, only speciɃc collaborations between re-

search teams have been established. Moreover, there is still some reluctance to change working

practices even if they are error–prone or take longer to perform large–scale experimentation.

The evolution of neuroinformatics today has to be based on a broad dissemination of exist-

ing tools and continuous development. This multidisciplinary approach involves advanced con-

cepts and technologies that are not easy to assimilate and handle. Nevertheless, the advantages at-

tached to the adoption of high–level abstraction applications and the automation of previousman-

ual data-processing and analysis tasks may represent a trigger. The promotion of scientiɃc work-

ɇows can accelerate the development of neuroinformatics by a separationof concerns betweendis-

104

Perspectives

cipline–speciɃc content and domain–independent software. Neuroscientists understand the im-

pact of interactions between tools in the creation of analysis methods supporting disciplinary re-

search. Therefore, the development and utilization of the jigsaw framework become a step forward

in this context butmuchmore eȻort in dissemination of concepts such as scientiɃcworkɇows and

developmentof similar frameworks isneededbefore initiatives like jigsawmaybeapplied routinely

across many disciplines.

Outlook on service–oriented science

We strongly advocate for service–oriented science [Foster, 2005a]. This approach has the poten-

tial to increase scientiɃc productivity bymaking tools available, and thus enabling the widespread

automation of data analysis and computation. Service–oriented science enables publishing and

accessing data and scientiɃc applications. The deɃnition of standard interfaces and protocols al-

lowsusers to encapsulate data andapplications as interoperable services. Therefore, tools formerly

accessible only to restricted communities now can bemade available to all. Service–oriented archi-

tectures resolve past data interchange and execution autonomy issues, and their implementations

are bridged successfully to external infrastructures opening the door to scalable experimentation.

Service–oriented science takes advantage of distributed computing infrastructures enabling

large–scale experimentation in remote and cross–institutional contexts. Analogously, cloud com-

puting can also foster the development of service–oriented science. Cloud computing is a comput-

ing model providing software, middleware and computer resources on demand where the phys-

ical location, scale, and maintenance remains transparent to users. Cloud computing can be a

key beneɃt in service–oriented science, despite the challenges that cloud computing carry on in

scientiɃc environments: external providers raising security issues, commercial strategies of busi-

ness–oriented operations, or throughput computing incompatibilities. It harnesses the rapidly in-

creasing computingpoweraswell as virtualization technologies to create a resourcedeliverymodel

“as a service” at diȻerent levels, namely, infrastructure as a service (IaaS), platform as a service

(PaaS), or software as a service (SaaS). This emerging approach, adopted into the strategy of most

industries nowadays, deɃnes the concept of “elasticity” as the feature of automated, dynamic, ɇexi-

ble and frequent resizingof resources that areprovided toanapplicationby theexecutionplatform.

This elasticity provides dynamicity and adaptivity to the eȾcient experimentation and honors the

service–oriented science approach.

105

Appendices

Schemaof the CLI application description

The deɃnition of the schema uses the ƻƮƵƪǁ-Ʒư compact syntax [ISO/IEC 19757-2:2008]. The no-

tation convention is as follows:

• Reserved keywords are in italics.

• DeɃnitions are in sans serif.

• Values are in monospace.

• Data types include their namespace preɃx in ƼƶƪƵƵƬƪƹƲƽƪƵƼ.

start = bundle1

bundle = element bundle { interface , implementations }2

interface = element interface { version , symbolicName , description? ,3

organization? , copyright? , reference? , contactAddress? , arguments? }4

implementations = element implementations { implementation+ }5

version = element version { ǁƼƭ:ƷƶƽƸƴƮƷ{ pattern = '\c+' } }6

symbolicName = element symbolicName { ǁƼƭ:ƷƬƷame{ pattern = '\s' } }7

description = element description { ǁƼƭ:token }8

organization = element organization { ǁƼƭ:token }9

copyright = element copyright { ǁƼƭ:token }10

reference = element reference { ǁƼƭ:token }11

contactAddress = element contactAddress { ǁƼƭ:ƷƶƽƸƴƮƷ }12

arguments = element arguments { argument+ }13

argument = element argument { identifier , stream , type ,mapper ,14

implicitness , space , label , option? , hint? , content , nesting }15

identifier = attribute identifier { ǁƼƭ:Ʋƭ }16

stream = attribute stream { streamType }17

type = attribute type { typeType }18

SCHEMAOF THE CLIAPPLICATION DESCRIPTION

mapper = attributemapper {mapperType }19

implicitness = attribute implicitness { ǁƼƭ:boolean }20

space = attribute space { ǁƼƭ:boolean }21

label = element label { ǁƼƭ:ƷƶƽƸƴƮƷ }22

option = element option { ǁƼƭ:ƷƬƷame }23

hint = element hint { ǁƼƭ:ƷƬƷame }24

content = element content {model , crossRef ,matter? , extensions? , template? }25

model = attributemodel {modelType }26

crossRef = attribute crossRef { ǁƼƭ:boolean }27

matter = elementmatter { text }28

extensions = element extensions { extension+ }29

extension = element extension { ǁƼƭ:ƷƶƽƸƴƮƷ }30

template = element template { basePath & baseName & baseExtension }31

basePath = attribute basePath { ǁƼƭ:ƲƭƻƮƯ }?32

baseName = attribute baseName { ǁƼƭ:ƲƭƻƮƯ }?33

baseExtension = attribute baseExtension { ǁƼƭ:ƲƭƻƮƯ }?34

nesting = element nesting { dimension , separator , beginCollection , endCollection }35

dimension = element dimension { ǁƼƭ:nonNegativeInteger }36

separator = element separator { text }37

beginCollection = element beginCollection { text }38

endCollection = element endCollection { text }39

implementation = element implementation { release ,40

platforms , configuration? , attachment? }41

release = element release { ǁƼƭ:ƷƬƷame }42

platforms = element platforms { platform+ }43

configuration = element configuration { variable+ }44

attachment = element attachment { ǁƼƭ:anyƾƻƲ }45

platform = element platform { infrastructure , profiles ,46

sharedEnvironment? , sharedArtifact? }47

infrastructure = attribute infrastructure { infrastructureType }48

profiles = element profiles { profile+ }49

sharedEnvironment = element sharedEnvironment { variable+ }50

110

Appendix

sharedArtifact = element sharedArtifact { ǁƼƭ:anyƾƻƲ }51

profile = element profile { job , target , boundEnvironment? , boundArtifact? }52

job = attribute job { jobType }53

target = element target { ǁƼƭ:ƷƶƽƸƴƮƷ }54

boundEnvironment = element boundEnvironment { variable+ }55

boundArtifact = element boundArtifact { ǁƼƭ:anyƾƻƲ }56

variable = element variable { category , name , value }57

category = attribute category { categoryType }58

name = element name { ǁƼƭ:ƷƬƷame }59

value = element value { text }60

streamType = ("input"61

| "none"62

| "output")63

typeType = ("boolean"64

| "double"65

| "integer"66

| "string"67

| "URI")68

mapperType = ("archive"69

| "console"70

| "filesystem"71

| "regexp")72

modelType = "regular"73

modelType |= ("directory"74

| "expansion"75

| "replacement")76

infrastructureType = "single"77

infrastructureType |= ("egi"78

| "g5k"79

| "other"80

| "pbs")81

jobType = "normal"82

jobType |= ("mpi-lam"83

| "mpi-mpich"84

| "mpi-mpich2")85

categoryType = ("infrastructure"86

| "internal"87

| "system")88

111

Template–based source code generation

ApacheVelocity is a Java–based template engine. It is a simple and powerful development tool that

allowsusers toeasily createanddocuments (sourcecode) that formatandpresentdata. Whenusing

Velocity in an application program, the following steps are performed:

1. Initialize Velocity.

2. Create a Context object.

3. Add data objects to the Context.

4. Set a base template.

5. Merge the template and data to produce the output.

The “context object” is a common technique for moving a container of data around between

parts of a system [ApacheVelocity]. The idea is that the context is a carrier of data between the Java

layer and the template layer. Objects, and their methods and properties, are accessible via tem-

plate elements called references. The language uses references deɃned through statements to em-

bed content in the resulting code. There are three types of references in the language: variables,

properties andmethods.

An statement is meant to incorporate dynamic content by replacing the reference in the tem-

plate. It is identiɃedwith the “#” character. The shorthand notation of a variable consists of a lead-

ing “$” character followed by an identiɃer. The notation of a property consists of a leading “$” char-

acter followed an followed by a dot character (“.”) and another identiɃer. Finally, the notation of a

methodconsist of a leading “$” character followeda identiɃer, followedbyamethodbody. Amethod

body consists of a identiɃer followed by an left parenthesis character (“(”), followed by an optional

parameter list, followed by right parenthesis character (“)”).

Several directives are deɃned as script elements in the template language. They can be used to

creatively manipulate the output of the Java code. They include statements, conditionals, loops,

andmacros. Themacro script element allows template designers to deɃne a repeated segment of a

template. They are very useful in a wide range of scenarios because they are saving keystrokes and

minimizes typographic errors.

Bibliography

Apache Velocity. Apache Velocity Developer’s Guide. The Apache Software Foundation, January 2010. URL
https://velocity.apache.org/engine/devel/developer-guide.html.

Mark Baker, Rajkumar Buyya, and Domenico Laforenza. Grids and Grids Technologies for Wide–area Dis-
tributed Computing. Software: Practice and Experience, 32(15):1437–1466, 2002. doi: 10.1002/spe.488.

BénédicteBatrancourt,MichelDojat, BernardGibaud, andGillesKassel. Acoreontologyof instrumentsused
for neurological, behavioral and cognitive assessments. In International Conference on Formal Ontology in
Information Systems, FOIS 2010, Toronto ON, Canada, May 2010. doi: 10.3233/978-1-60750-535-8-185.

Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su, and Karan Vahi. Characteri-
zation of ScientiɃc Workɇows. InWorkshop onWorkɇows in Support of Large–scale Science, WORKS 2008,
Marina del Rey (CA), USA, November 2008. doi: 10.1109/works.2008.4723958.

Julien Bigot, Hinde Lilia Bouiziane, Christian Pérez, and Thierry Priol. On Abstractions of Software Compo-
nent Models for ScientiɃc Applications. In EuroPar Workshop on Abstractions for Distributed Systems, DPA
2008, Las Palmas de Gran Canaria, Spain, August 2008. doi: 10.1007/978-3-642-00955-6_49.

AndrewD.Birell andBruce JayNelson. ImplementingRemoteProcedureCalls.ACMTransactionsonComputer
Systems, 2(1):39–59, 1984. doi: 10.1145/2080.357392.

Felix Bloch, WilliamW. Hansen, andMartin Packard. Nuclear Induction. Physical Review, 69(3–4):127, 1946.
doi: 10.1103/physrev.69.127.

Richard G. Boyes, Daniel Rueckert, Paul Aljabar, Jennifer Whitwell, Jonathan M. Schott, Derek L.G. Hill,
and Nicholas C. Fox. Cerebral Atrophy Measurements Using Jacobian Integration: Comparison with the
Boundary Shift Integral. NeuroImage, 32(1):159–169, 2006. doi: 10.1016/j.neuroimage.2006.02.052.

Pascal Cachier. Recalage non rigide d’images médicales volumiques — Contribution aux approches iconiques et
géométriques. PhDthesis, ÉcoleCentraledesArts etManufactures, SophiaAntipolis, France, January2002.

Adrian Casajus, Ricardo Graciani, Stuart Paterson, Andrei Tsaregorodtsev, and the Lhcb Dirac Team. DIRAC
Pilot Framework and the DIRACWorkload Management System. Journal of Physics: Conference Series, 219
(1–6), 2010. doi: 10.1088/1742-6596/219/6/062049.

Henri Casanova. BeneɃts and Drawbacks of Redundant Batch Requests. Journal of Grid Computing, 2(5):
235–250, 2007. doi: 10.1007/s10723-007-9068-6.

Jean-Martin Charcot. Leçons sur les maladies du système nerveux faites à la Salpêtrière, volume 1. A. Delahaye,
Paris, France, 1872.

Kyle Chard, Wei Tan, Joshua Boverhof, Ravi Madduri, and Ian Foster. Wrap ScientiɃc Applications asWSRF
Grid Services Using gRAVI. In International Conference onWeb Services, ICWS’09, Los Angeles (CA), USA,
July 2009. doi: 10.1109/icws.2009.110.

Erik Christensen, Francisco Curbera, GregMeredith, and SanjivaWeerawarana. Web Service DeɃnition Lan-
guage (WSDL). W3C, March 2001. URL http://www.w3.org/TR/wsdl.

https://velocity.apache.org/engine/devel/developer-guide.html
http://www.w3.org/TR/wsdl

BIBLIOGRAPHY

Massimo Coppola, Yvon Jégou, Brian Matthews, Christine Morin, Lucas Pablo Prieto, Oscar David Sánchez,
Erica Y. Yang, and Haiyan Yu. Virtual Organization Support within a Grid-Wide Operating System. IEEE
Internet Computing, 12(2):20–28, 2008. doi: 10.1109/mic.2008.47.

CORBA. The CommonObject Request BrokerArchitecture. Version 3.1. ObjectManagement Group, January
2008. URL http://www.omg.org/spec/CORBA/3.1.

Francisco Curbera, William A. Nagy, and Sanjiva Weerawarana. Web Services: Why and How. InWorkshop
on Object–orientedWeb Services, OOPSLA 2001, Tamba Bay (FL), USA, October 2001.

Karl Czajkowski, Ian Foster, Nicholas T. Karonis, Carl Kesselman, Stuart Martin, Warren Smith, and Steven
Tuecke. AResourceManagementArchitecture forMetacomputingSystems. InWorkshopon JobScheduling
Strategies for Parallel Processing, IPPS/SPDP’98, Orlando (FL), USA, April 1998. doi: 10.1007/bfb0053981.

Christopher Dabrowski. Reliability in Grid Computing Systems. Concurrency and Computation: Practice and
Experience, 21(8):923–1108, 2009. doi: 10.1002/cpe.v21:8.

David De Roure, Carole Goble, and Robert Stevens. The Design and Realisation of themyExperiment Virtual
ResearchEnvironment forSocial SharingofWorkɇows. FutureGenerationComputerSystems, 25(5):561–567,
2009. doi: 10.1016/j.future.2008.06.010.

Thierry Delaitre, Tamas Kiss, Ariel Goyeneche, Gabor Terstyanszky, Stephen Winter, and Peter Kacsuk.
GEMLCA:Running LegacyCodeApplications asGrid services. Journal ofGridComputing, 3(1):75–90, 2005.
doi: 10.1007/s10723-005-9002-8.

Ivo D. Dinov, John D. Van Horn, Kamen M. Lozev, Rico Magsipoc, Petros Petrosyan, Zhizhong Liu, Allan
MacKenzie-Graham, Paul Eggert, Douglas S. Parker, and Arthur W. Toga. EȾcient, Distributed and In-
teractive Neuroimaging Data Analysis Using the LONI Pipeline. Frontiers in Neuroinformatics, 3(22):1–10,
2009. doi: 10.3389/neuro.11.022.2009.

GuillaumeDugas-Phocion. Segmentationd’IRMcérébralesmulti–séquences etapplicationà la sclérose enplaques.
PhD thesis, École des Mines de Paris, Sophia Antipolis, France, March 2006.

Guillaume Dugas-Phocion, Miguel Angel González Ballester, Malandain Grégoire, Christine Lebrun, and
Nicholas Ayache. Improved EM–based Tissue Segmentation and Partial Volume EȻect QuantiɃcation in
Multi–sequence Brain MRI. In International Conference on Medical Image Computing and Computer Assisted
Intervention, MICCAI 2004, Saint–Malo, France, September 2004a. doi: 10.1007/978-3-540-30135-6_4.

Guillaume Dugas-Phocion, Miguel Angel González Ballester, Christine Lebrun, Stéphane Chanalet, Caro-
line Bensa, Grégoire Malandain, and Nicholas Ayache. Hierarchical Segmentation of Multiple Sclerosis
Lesions in Multi–sequence MRI. In International Symposium on Biomedical Imaging: From Nano to Macro,
ISBI’04, Arlington (VA), USA, April 2004b. doi: 10.1109/isbi.2004.1398498.

Thomas Erl. Service–oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR, Upper Saddle
River (NJ), USA, 2005.

Alan C. Evans, D. Louis Collins, and BrendaMilner. AnMRI–based Stereotactic Brain Atlas from 300 Young
Normal Subjects. In The 22nd Annual Meeting of the Society for Neuroscience, Anaheim (CA), USA, October
1992.

Rafael Ferreira da Silva, Sorina Camarasu-Pop, Baptiste Grenier, Vanessa Hamar, DavidManset, JohanMon-
tagnat, Jérôme Revillard, Javier Rojas Balderrama, Andrei Tsaregorodtsev, and Tristan Glatard. Multi-
infrastructureWorkɇow Execution for Medical Simulation in the Virtual Imaging Platform. In The Ninth
Healthgrid Conference, HealthGrid 2011, Bristol, UK, June 2011.

Ian Foster. TheAnatomyof theGrid: Enabling ScalableVirtualOrganizations. InEuro–Par 2001,Manchester,
UK, August 2001. doi: 10.1007/3-540-44681-8_1.

Ian Foster. Service-Oriented Science. Science, 308(5723):814–817, 2005a. doi: 10.1126/science.1110411.

116

http://www.omg.org/spec/CORBA/3.1

BIBLIOGRAPHY

Ian Foster. Globus Toolkit Version 4: Software for Service–oriented Systems. In IFIP International Conference
onNetwork and Parallel Computing, NPC 2005, Beijing, China, November 2005b. doi: 10.1007/11577188_2.

Ian Foster. Globus Toolkit Version 4: Software for Service–oriented Systems. Journal of Computer Science and
Technology, 21(4):513–520, 2006. doi: 10.1007/s11390-006-0513-y.

Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal of
High Performance Computing Applications, 11(2):115–128, 1997. doi: 10.1177/109434209701100205.

IanFoster, CarlKesselman, JeȻreyM.Nick, andStevenTuecke. ThePhysiologyof theGrid: AnOpenGridSer-
vices Architecture for Distributed Systems Integration. In Global Grid Forum, GGF4, Toronto ON, Canada,
February 2002.

Alban Gaignard and Johan Montagnat. A Distributed Security Policy for Neuroradiological Data Shar-
ing. In The Seventh Healthgrid Conference, HealthGrid 2009, Berlin, Germany, June 2009. doi: 10.3233/
978-1-60750-027-8-257.

JohnGeddes, SharonLloyd, AndrewSimpson,Martin Rossor, Nick Fox, DerekHill, JosephV.Hajnal, Stephen
Lawrie, Andrew Mclntosh, Eve Johnstone, Joanna Wardlaw, Dave Perry, Rob Procter, Philip Bath, and
Ed Bullmore. NeuroGrid: Using Grid Technology to Advance Neuroscience. In Symposium on Com-
puter–basedMedical Systems, CBMS 2005, Dublin, Ireland, June 2005. doi: 10.1109/cbms.2005.76.

Bernard Gibaud, Farooq Ahmad, Christian Barillot, Franck Michel, Wali Bacem, Bénédicte Batrancourt,
Michel Dojat, Pascal Girard, Alban Gaigard, Diane Lingrand, Johan Montagnat, Javier Rojas Balderrama,
Grégoire Malandian, Xavier Pennec, David Godard, Gilles Kassel, and Mélanie Pélégrini-Issac. A Feder-
ated System for Sharing and Reuse of Images and Image Processing Tools in Neuroimaging. In Computed
Assisted Radiology and Surgery, CARS 2011, Berlin, Germany, June 2011.

Tristan Glatard, David Emsellem, and JohanMontagnat. GenericWeb ServiceWrapper for EȾcient Embed-
ding of Legacy Codes in Service–based Workɇows. In Grid–Enabling Legacy Applications and Supporting
End UsersWorkshop, GELA’06, Paris, France, June 2006a.

TristanGlatard, Xavier Pennec, and JohanMontagnat. PerformanceEvaluationofGrid–enabledRegistration
AlgorithmsUsing Bronze–standards. In International Conference onMedical ImageComputing andComputer
Assisted Intervention, MICCAI 2006, Copenhagen, Denmark, October 2006b. doi: 10.1007/11866763_19.

Tristan Glatard, JohanMontagnat, Diane Lingrand, and Xavier Pennec. Flexible and EȾcientWorkɇow De-
ployment ofData–intensiveApplications onGridswithMOTEUR. International Journal ofHighPerformance
Computing Applications, 22(3):347–360, 2008. doi: 10.1177/1094342008096067.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Frystyk Nielsen, Anish Karmarkar,
and Yves Lafon. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). W3C, April 2007. URL
http://www.w3.org/TR/soap12-part1.

Shannon Hastings, Scott Oster, Stephen Langella, David Ervin, Tahsin Kurc, and Joel Saltz. Introduce: An
Open Source Toolkit for Rapid Development of Strongly Typed Grid Services. Journal of Grid Computing, 5
(4):407–427, 2007. doi: 10.1007/s10723-007-9074-8.

Herbert Hellerman. Experimental Personalized Array Translator System. Communications of the ACM, 7(7):
433–438, 1964. doi: 10.1145/364520.364573.

DerekL.G.Hill, PhilippG.Batchelor,MarkHolden, andDavid J.Hawkes.Medical ImageRegistration. Physics
inMedicine and Biology, 46(3):R1–R45, 2001. doi: 10.1088/0031-9155/46/3/201.

Eduardo Huedo, Ruben S. Montero, and Ignacio M. Llorente. Evaluating the Reliability of Computational
Grids from the End User’s Point of View. Journal of Systems Architecture, 52(12):727–736, 2006. doi: 10.
1016/j.sysarc.2006.04.003.

Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal Talwar, and Andrew Goldberg. Quincy:
Fair Scheduling for Distributed Computing Clusters. In Symposium on Operating Systems Principles,
SOSP’09, Big Sky (MT), USA, 2009. doi: 10.1145/1629575.1629601.

117

http://www.w3.org/TR/soap12-part1

BIBLIOGRAPHY

ISO/IEC 19757-2:2008. Information technology—Document SchemaDeɃnition Language (DSDL)—Part 2: Regu-
lar–grammar–basedvalidation—RELAXNG. ISO/IEC19757-2:2008(E). InternationalOrganization forStan-
dardization, December 2008.

CliȻord R. Jack, Jr., David S. Knopman, William J. Jagust, Leslie M. Shaw, Paul S. Aisen, Michael W.
Weiner, Ronald C. Petersen, and John Q. Trojanowski. Hypothetical Model of Dynamic Biomarkers of the
Alzheimer’s Pathological Cascade. The Lancet Neurology, 9(1):119–128, 2010. doi: 10.1016/S1474-4422(09)
70299-6.

Mark Jenkinsonn, Peter Bannister, Michael Brady, and Stephen Smith. Improved Optimization for the Ro-
bust andAccurate Linear Registration andMotionCorrection of Brain Images. NeuroImage, 17(2):825–841,
2002. doi: 10.1006/nimg.2002.1132.

Ardalan Kangarloun, Patrick Eugster, and Dongyan Xu. VNsnap: Taking Snapshots of Virtual Networked
Environments with Minimal Downtime. In International conference onf Dependable Systems and Networks,
DSN’09, Lisbon, Portugal, September 2009. doi: 10.1109/DSN.2009.5270298.

Tamas Kiss, Gabor Terstyanszky, Gabor Kecskemeti, Szabolcs Illes, Thierry Delaitre, Stephen Winter, Peter
Kacsuk, and Gergely Sipos. Legacy Code Support for Production Grids. In International Workshop on Grid
Computing, Grid 2005, Seattle (WA), USA, November 2005. doi: 10.1109/grid.2005.1542754.

Guilherme Koslovski, Wai-Leong Yeow, Cédric Westphal, Tram Truong Huu, Johan Montagnat, and Pascale
Vicat-Blanc Primet. Reliablility Support in Virtual Infrastructures. In International Conference on Cloud
Computing Technology and Science, CloudCom2010, Indianapolis (IN), USA, November 2010. doi: 10.1109/
CloudCom.2010.23.

DanielKouril and JimBasney. ACredentialRenewalService forLong–running Jobs. In InternationalWorkshop
on Grid Computing, Grid 2005, Seattle (WA), USA, November 2005. doi: 10.1109/grid.2005.1542725.

Filip Krikava, Philippe Collet, andMireille Blay-Fornarino. Uniform andModel–driven Engineering of Feed-
backControl Systems. In InternationalConference onAutonomicComputing, ICAC2011, Karlsruhe, Germany,
June 2011. doi: 10.1145/1998582.1998616.

Sriram Krishnan and Karan Bhatia. SOAs for ScientiɃc Applications: Experiences and Challenges. Future
Generation Computer Systems, 25(4):466–473, 2009. doi: 10.1016/j.future.2008.09.001.

Sriram Krishnan, Luca Clementi, Jingyuan Ren, Philip Papadopoulos, and Wilfred Li. Design and Evalua-
tion of Opal2: A Toolkit for ScientiɃc Software as a Service. InWorld Congress on Services, Services–I, Los
Angeles (CA), USA, July 2009. doi: 10.1109/services-i.2009.52.

AlbertoLabarga, FranckValentin,MikaelAnderson, andRodrigoLopez.WebServices at theEuropeanBioin-
formatics Institute. Nucleic Acids Research, 35(2):1–6, 2007. doi: 10.1093/nar/gkm291.

Sébastien Lacour, Christian Pérez, and Thierry Priol. Generic Application DescriptionModel: Toward Auto-
matic Deployment of Applications on Computational Grids. In InternationalWorkshop on Grid Computing,
Grid 2005, Seattle (WA), USA, November 2005. doi: 10.1109/GRID.2005.1542755.

Paul C. Lauterbur. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic
Resonance. Nature, 242:190–191, 1973. doi: 10.1038/242190a0.

Zhi-Pei Liang and Paul C. Lauterbur. Principles ofMagnetic Resonance Imaging: A Signal Processing Perspective.
Biomedical Engineering.Wiley–IEEE Press, October 1999.

Diane Lingrand, Tristan Glatard, and Johan Montagnat. Modeling the Latency on Production Grids with
Respect to the Execution Context. Parallel Computing, 35(10-11):493–511, 2009a. doi: 10.1016/j.parco.
2009.07.003.

Diane Lingrand, JohanMontagnat, andTristanGlatard. ModelingUser SubmissionStrategies onProduction
Grids. In Symposium onHigh–Performance Parallel andDistributed Computing, HPDC’09, Munich, Germany,
June 2009b. doi: 10.1145/1551609.1551633.

118

BIBLIOGRAPHY

Marco Lorenzi, Nicholas Ayache, Giovanni B. Frisoni, and Xavier Pennec. 4D Registration of Serial Brain’s
MR Images: A Robust Measure of Changes Applied to Alzheimer’s Disease. InMICCAIWorkshop on Spa-
tio–temporal ImageAnalysis for Longitudinal and Time–series ImageData, STIA’10, Beijing, China, September
2010.

Marco Lorenzi, NicholasAyache, Giovanni B. Frisoni, andXavier Pennec. Mapping the EȻects ofAβ1−42 Lev-
els on the Longitudinal Changes in Healthy Aging: Hierarchical Modeling Based on Stationary Velocity
Fields. In International Conference onMedical Image Computing and Computer Assisted Intervention, MICCAI
2011, Toronto ON, Canada, September 2011a. doi: 10.1007/978-3-642-23629-7_81.

Marco Lorenzi, Nicholas Ayache, and Xavier Pennec. Schild’s Ladder for the Parallel Transport of Deforma-
tions inTimeSeries of Images. In InternationalConference on InformationProcessing inMedical Imaging, IPMI
2011, Kloster Irsee, Germany, July 2011b. doi: 10.1007/978-3-642-22092-0_38.

Ketan Maheshwari. Data–intensive ScientiɃc Workɇows: Representations of Parallelism and Enactment on Dis-
tributed Systems. PhD thesis, University of Nice–Sophia Antipolis, 2011, February 2011.

CristianMateos, Alejandro Zunino, andMarcelo Campo. A Survey onApproaches to GridiɃcation. Software:
Practice and Experience, 38(5):523–556, 2008. doi: 10.1002/spe.847.

Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Alexandra Nenadic, Ian Dunlop, Alan Williams,
Tom Oinn, and Carole Goble. Taverna, Reloaded. In International Conference on ScientiɃc and Statistical
DatabaseManagement, SSDBM’10, Heidelberg, Germany, June 2010. doi: 10.1007/978-3-642-13818-8_33.

Johan Montagnat. NeuroLOG: Compte–rendu de Ƀn de projet. Technical Report NeuroLOG–L12, CNRS, I3S
Laboratory. MODALIS Team, Sophia Antipolis, France, February 2011.

Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ketan Maheshwari, and Mireille Blay-Fornarino. A
Data–drivenWorkɇowLanguage forGrids Based onArray ProgrammingPrinciples. InWorkshop onWork-
ɇows in Support of Large–scale Science, WORKS’09, Portland (OR), USA, November 2009. doi: 10.1145/
1645164.1645171.

Johan Montagnat, Tristan Glatard, Damien Reimert, Ketan Maheshwari, Eddy Caron, and Frédéric Desprez.
Workɇow–based Comparison of TwoDistributed Computing Infrastructures. InWorkshop onWorkɇows in
Support of Large–scale Science,WORKS2010,NewOrleans (LA), USA,November 2010. doi: 10.1109/works.
2010.5671856.

LucMoreau, Yong Zhao, Ian Foster, Jens Vöeckler, andMichaelWilde. XDTM: The XMLData Type andMap-
ping for SpecifyingDatasets. InEuropeanGridConference, EGC 2005, Amsterdam, TheNetherlands, Febru-
ary 2005. doi: 10.1007/11508380_51.

Philippe Mougin and Stéphane Ducasse. OOPAL: Integrating Array Programming in Object–oriented Pro-
gramming. In Conference on Object–oriented Programming, Systems, Languages, and Applications, OOP-
SLA’03, Anaheim (CA), USA, October 2005. doi: 10.1145/949343.949312.

Susanne G. Mueller, Michael W. Weiner, Leon J. Thal, Ronald C. Petersen, CliȻord Jack, William Jagust,
John Q. Trojanowski, Arthur W. Toga, and Laurel Beckett. The Alzheimer’s Disease Neuroimaging Ini-
tiative. Neuroimaging Clinics of North America, 15(4):869–877, 2005. doi: 10.1016/j.nic.2005.09.008.

Hidemoto Nakada, Satoshi Matsuoka, Keith Seymour, Jack Dongarra, Craig Lee, and Henri Casanova. A
GridRPCModel and API for End-User Applications. Open Grid Forum, June 2007.

Steven Newhouse. European Grid Infrastructure—An Integrated Sustainable Pan-European Infrastructure
for Researchers in Europe. EGI–InSPIRE, April 2011. URL https://documents.egi.eu/document/201.

Thomas Oinn, Mark Greenwood, Matthew J. Addis, Nedim Alpdemir, Justin Ferris, Kevin Glover, Carole
Goble, Antoon Goderis, Duncan Hull, Darren Marvin, Peter Li, Phillip Lord, Matthew R. Pocock, Martin
Senger, Robert Stevens, AnilWipat, and ChristopherWroe. Taverna: Lessons in Creating aWorkɇow En-
vironment for the Life Sciences. Concurrency and Computation: Practice and Experience, 18(10):1067–1100,
2006a. doi: 10.1002/cpe.993.

119

https://documents.egi.eu/document/201

BIBLIOGRAPHY

Tom Oinn, Matthew J. Addis, Justin Ferris, Darrent Marvin, MMartin Senger, Mark Greenwood, Tim Carver,
KevinGlover,MatthewR.Pocock,AnilWipat, andPeterLi. Taverna: ATool for theCompositionandEnact-
mentofBioinformaticsWorkɇows. Bioinformatics, 17(20):3045–3054, 2004. doi: 10.1093/bioinformatics/
bth361.

TomOinn,Mark Greenwood,MatthewAddis, M. NedimAlpdemir, Justin Ferris, Kevin Glover, Carole Goble,
Antoon Goderis, Duncan Hull, Darren Marvin, Peter Li, Phillip Lord, Matthew R. Pocock, Martin Senger,
Robert Stevens, Anil Wipat, and Chris Wroe. Taverna: Lessons in Creating a Workɇow Environment for
the Life Sciences. Concurrency and Computation: Practice and Experience, 18(10):1067–1100, 2006b. doi:
10.1002/cpe.v18:10.

Silvia D. Olabarriaga, Tristan Glatard, and Piter T. de Boer. A Virtual Laboratory forMedical Image Analysis.
IEEE Transactions on Information Technology in Biomedicine, 14(4):979–985, 2010. doi: 10.1109/titb.2010.
2046742.

Sébastien Ourselin, Alexis Roche, Sylvain Prima, and Nicholas Ayache. Block Matching: A General Frame-
work to ImproveRobustness ofRigidRegistrationofMedical Images. In InternationalConference onMedical
Image Computing and Computer Assisted Intervention, MICCAI 2000, Pittsburgh (PA), USA, October 2000.
doi: 10.1007/978-3-540-40899-4_57.

MarcoPagni, JörgHau, andHeinz Stockinger. AMulti–protocol BioinformaticsWebService: Use SOAP, Take
aRESTorGowithHTML. In InternationalSymposiumonClusterComputingandtheGrid, CCGRID’2008, Lyon,
France, May 2008. doi: 10.1109/ccgrid.2008.28.

ErikPernod, Jean-ChristopheSouplet, JavierRojasBalderrama,DianeLingrand, andXavierPennec. Multiple
Sclerosis Brain MRI Segmentation Workɇow Deployment on the EGEE Grid. InMICCAI–Grid Workshop,
New York (NY), USA, September 2008.

Kassian Plankensteiner. Fine–grainedWorkɇow Interoperability Using an Intermediate Representation. In
Open Grid Forum, OGF30, Brussels, Belgium, October 2010.

Chris H. Polman, Stephen C. Reingold, Gilles Edan, Massimo Filippi, Hans–Peter Hartung, Ludwig Kappos,
Fred D. Lublin, Luanne M. Metz, Henry F. McFarland, Paul W. O’Connor, Magnhild Sandberg–Wollheim,
Alan J. Thompson, BrianG.Weinshenker, and JerryS.Wolinsky. DiagnosticCriteria forMultiple Sclerosis:
2005 Revisions to the “McDonald Criteria”. Annals of Neurology, 58(6):840–846, 2005. doi: 10.1002/ana.
20703.

POSIX.1–2008. IEEE Standard for Information Technology — Portable Operating System Interface (POSIX) Base
SpeciɃcations, Issue 7. IEEE Std 1003.1–2008 (Revisionof IEEEStd 1003.1–2004). IEEE andTheOpenGroup,
December 2008. doi: 10.1109/ieeestd.2008.4694976.

Sylvain Prima,NicholasAyache, TomBarrick, andNeil Roberts. MaximumLikelihoodEstimation of theBias
Field inMRBrain Images: Investigating DiȻerentModelings of the Imaging Process. In International Con-
ference onMedical Image Computing and Computer Assisted Intervention, MICCAI 2001, Utrecht, The Nether-
lands, October 2001. doi: 10.1007/3-540-45468-3_97.

Edward M. Purcell, Henry C. Torrey, and Robert V. Pound. Resonance Absorption by Nuclear Magnetic Mo-
ments in a Solid. Physical Review, 69(1–2):37–38, 1946. doi: 10.1103/physrev.69.37.

Sylvain Reynaud. Production Grids in Asia, chapter Uniform Access to Heterogeneous Grid Infrastructures
with JSAGA, pages 185–196. Springer, New York (NY), 2010. doi: 10.1007/978-1-4419-0046-3_15.

RFC 5280. Internet X.509 Public Key Infrastructure CertiɃcate and CertiɃcate Revocation List (CRL) ProɃle.
The Internet Engineering Task Force (IETF), 2008. URL https://www.ietf.org/rfc/rfc5280.txt.

Charles Rich and Richard W. Walters. Formalizing Reusable Software Components. In ITT Workshop on
Reusability in Programming, Newport (RI), USA, September 1983.

Basil H. Ridha, Josephine Barnes, JonathanW. Bartlett, AlisonGodbolt, Tracey Pepple,MartinN. Rossor, and
NickC. Fox. TrackingAtrophyProgression in FamilialAlzheimer’sDisease: ASerialMRI Study. TheLancet
Neurology, 5(10):828–834, 2006. doi: 10.1016/S1474-4422(06)70550-6.

120

https://www.ietf.org/rfc/rfc5280.txt

BIBLIOGRAPHY

Javier Rojas Balderrama, Diane Lingrand, Johan Montagnat, Erik Pernod, Jean-Christophe Souplet, and
Xavier Pennec. NeuroLog: Neuroscience Application Workɇows Execution on the EGEE Grid. In EGEE
Conference, Istanbul, Turkey, September 2008.

Javier Rojas Balderrama, Johan Montagnat, and Diane Lingrand. jGASW: A Service-Oriented Framework
Supporting High Throughput Computing and Non-functional Concerns. In International Conference on
Web Services, ICWS 2010, Miami (FL), USA, July 2010. doi: 10.1109/icws.2010.59.

Javier Rojas Balderrama, Tram Truong Huu, and JohanMontagnat. A Comprehensive Framework for Scien-
tiɃcApplications Execution onDistributed Computing Infrastructures. In EGI Technical Forum2011, Lyon,
France, September 2011.

Javier Rojas Balderrama, Tram Truong Huu, and Montagnat Johan. Scalable and Resilient Workɇow Exe-
cutions on Production Distributed Computing Infrastructures. In 11th International Symposium on Parallel
and Distributed Computing, ISPDC 2012, Munich, Germany, June 2012. doi: 10.1109/ispdc.2012.24.

SCA. Service Component Architecture SpeciɃcation. Version 1.0. Open SOA, March 2007. URL http://
www.osoa.org/display/Main/Service+Component+Architecture+Specifications.

Uwe Schwiegelshohn, Rosa M. Badia, Marian Bubak, Marco Danelutto, Schahram Dustdar, Fabrizio
Gagliardi, Alfred Geiger, Ladislav Hluchy, Dieter Kranzlmüller, Erwin Laure, Thierry Priol, Alexander
Reinefeld, Michael Resch, Andreas Reuter, Otto RienhoȻ, Thomas Rüter, Peter Sloot, Domenico Talia,
Klaus Ullmann, Ramin Yahyapour, and Gabriele von Voigt. Perspectives on Grid Computing. Future Gen-
eration Computer Systems, 26(8):1104–1115, 2010. doi: 10.1016/j.future.2010.05.010.

Alex Sellink and Chris Verhoef. ScaȻolding for Software Renovation. In European Conference on Software
MaintenanceandReengineering, CSMR2000, Zurich, Switzerland, February 2000. doi: 10.1109/csmr.2000.
827324.

Martin Senger, Peter Rice, and Tom Oinn. Soaplab — A UniɃed Sesame Door to Analysis Tools. In UK
e–Science, All HandsMeeting, Nottingham, UK, September 2003.

Martin Senger, Peter Rice, Alan Bleasby, Tom Oinn, and Mahmut Uludag. Soaplab2: More Reliable Sesame
Door toBioinformatics Programs. InBioinformaticsOpenSourceConference, BOSC’08, TorontoON,Canada,
July 2008.

Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra, Craig Lee, and Henri Casanova.
Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In Proceedings of the Third In-
ternationalWorkshop on Grid Computing, GRID 2002, Baltimore (MD), USA, November 2002. doi: 10.1007/
3-540-36133-2_25.

David W. Shattuck, Stephanie R. Sandor-Leahy, Kirt A. Schaper, David A. Rottenberg, and Richard M.
Leahy. Magnetic Resonance Image Tissue ClassiɃcation Using a Partial Volume Model. NeuroImage, 13
(5):856–876, 2001. doi: 10.1006/nimg.2000.0730.

John G. Sled, Alex P. Zijdenbos, and Alan C. Evans. A Nonparametric Method for Automatic Correction of
Intensity Nonuniformity in MRI Data. IEEE Transactions on Medical Imaging, 17(1):87–97, 1998. doi: 10.
1109/42.668698.

Larry Smarr and Charles E. Catlett. Metacomputig. Communications of the ACM, 35(6):45–52, 1992. doi: 10.
1145/129888.129890.

Stephen M. Smith. Fast Robust Automated Brain Extraction. Human Brain Mapping, 17(3):143––155, 2002.
doi: 10.1002/hbm.10062.

StephenM. Smith, Mark Jenkinson, MarkW.Woolrich, Christian F. Beckmann, Timothy E. J. Behrens, Heidi
Johansen-Berg, Peter R. Bannister, Marilena De Luca, Ivana Drobnjak, David E. Flitney, Rami K. Niazy,
James Saunders, JohnVickers, YongyueZhang,NicolaDeStefano, J.Michael Brady, andPaulM.Matthews.
Advances inFunctional andStructuralMR ImageAnalysis and Implementationas FSL.NeuroImage, 2004.
doi: 10.1016/j.neuroimage.2004.07.051.

121

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

BIBLIOGRAPHY

Jean-Christophe Souplet, Christine Lebrun, Nicholas Ayache, and Grégoire Malandain. An Automatic Seg-
mentationof T2–FLAIRMultiple Sclerosis Lesions. InMICCAIMSLesionSegmentationChallenge, NewYork
(NY), USA, September 2008.

Jean-Christophe Souplet, Christine Lebrun, Nicholas Ayache, Stéphane Chanalet, and Grégoire Malandain.
Revue des approches de segmentation des lésions de sclérose en plaques dans les séquences convention-
nelles IRM. Revue Neurologique, 165(1):7–14, 2009. doi: 10.1016/j.neurol.2008.04.009.

Jacek Sroka, Jan Hidders, Paolo Missier, and Carole Goble. A Formal Semantics for the Taverna 2Workɇow
Model. Journal of Computer and System Sciences, 76(6):490–508, 2009. doi: 10.1016/j.jcss.2009.11.009.

Vijay Subramani, Rajkumar Kettimuthu, Srividya Srinivasan, and Ponnuswamy Sadayappan. Distributed
Job Scheduling on Computational Grids using Multiple Simultaneous Requests. In Symposium on
High–Performance Parallel and Distributed Computing, HPDC–11, Edimburgh, UK, July 2002. doi: 10.1109/
HPDC.2002.1029936.

Yoshio Tanaka, Hiroshi Takemiya, Hidemoto Nakada, and Satoshi Sekiguchi. Design, Implementation and
Performance Evaluation of GridRPC ProgrammingMiddleware for a Large–Scale Computational Grid. In
Proceedings of the Fifth InternationalWorkshop onGridComputing, GRID 2004, Pittsburgh (PA), USA,Novem-
ber 2004. doi: 10.1109/GRID.2004.20.

Ian Taylor, IanWand,Matthew Shields, and Shalil Majithia. Distributed Computingwith Triana on the Grid.
Concurrency and Computation: Practice and Experience, 17(9):1197–1214, 2005. doi: 10.1002/cpe.v17:9.

Douglas Thain, ToddTannenbaum, andMironLivny. DistributedComputing in Practice: TheCondor Experi-
ence. Concurrency and Computation: Practice and Experience, 17(2–4):323––356, 2005. doi: 10.1002/cpe.938.

Tram Truong Huu, Guilherme Koslovski, Fabienne Anhalt, Johan Montagnat, and Pascale Vicat-
Blanc Primet. Joint Elastic Cloud and Virtual Network Framework for Application Performance–cost Op-
timization. Journal of Grid Computing, 9(1):27–47, 2011. doi: 10.1007/s10723-010-9168-6.

Nicholas J. Tustison, BrianB.Avants, PhilipA.Cook, YuanjieZheng,AlexanderEgan, PaulA.Yushkevich, and
JamesC.Gee. N4ITK: ImprovedN3Bias Correction. IEEETransactions onMedical Imaging, 29(6):1310–1320,
2010. doi: 10.1109/tmi.2010.2046908.

UDDI. Universal Description Discovery & Integration. Version 3.0.2. OASIS, October 2004. URL http:
//uddi.org/pubs/uddi_v3.htm.

Arthur van HoȻ, Hadi Partovi, and Tom Thai. The Open Software Description Format, August 1997. URL
http://www.w3.org/TR/NOTE-OSD.

Tom Vercauteren, Xavier Pennec, Aymeric Perchant, and Nicholas Ayache. Symmetric Log–domain Dif-
feomorphic Registration: A Demons–based Approach. In International Conference on Medical Image Com-
puting and Computer Assisted Intervention, MICCAI 2008, New York (NY), USA, September 2008. doi:
10.1007/978-3-540-85988-8_90.

WMS–JDL. Job Description Language — Attributes SpeciɃcation for the gLite Workload Management Sys-
tem. EGEE, November 2010. URL https://edms.cern.ch/document/590869.

WS–BPEL. Web Services Business Process Execution Language Version 2.0. OASIS, April 2007. URL http:
//docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

WSRF. Web Services Resource Framework. Version 1.2. OASIS, May 2006. URL http://www.oasis-open.
org/committees/wsrf.

Yong Zhao, Mihael Hategan, Ben CliȻord, Ian Foster, Gregor von Laszewski, Veronika Nefedova, Ioan Raicu,
Tiberiu Stef-Praun, and Michael Wilde. Swift: Fast, Reliable, Loosely Coupled Parallel Computation. In
Congress on Services, Services 2007, Salt Lake City (UT), USA, July 2007. doi: 10.1109/services.2007.63.

122

http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/NOTE-OSD
https://edms.cern.ch/document/590869
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.oasis-open.org/committees/wsrf
http://www.oasis-open.org/committees/wsrf

Colophon

This document was typeset using X ELATEX.
Composed inMitja Miklavcic’s FF Tisa,
José Scaglione &Veronika Burian’s Ronnia,
Lucas de Groot’s Consolas, and
STI Pub Companies’s ƼƽƲǁ typefaces.

Gestion du cycle de vie de services déployés sur une infrastructure
de calcul distribuée en neuroinformatique

L’intérêt va croissant parmi les communautés scientiɃques pour le partage de données et d’applications qui
facilitent les recherches et l’établissement de collaborations fructueuses. Les domaines interdisciplinaires
tels que lesneurosciencesnécessitent particulièrementdedisposer d’unepuissancede calcul suȾsantepour
l’expérimentation à grande échelle. Malgré les progrès réalisés dans la mise en œuvre de telles infrastruc-
tures distribuées, de nombreux déɃs sur l’interopérabilité et le passage à l’échelle ne sont pas complètement
résolus. L’évolution permanente des technologies, la complexité intrinsèque des environnements de pro-
duction et leur faible Ƀabilité à l’exécution sont autant de facteurs pénalisants.

Ce travail porte sur la modélisation et l’implantation d’un environnement orienté services qui permet
l’exécution d’applications scientiɃques sur des infrastructures de calcul distribué, exploitant leur capacité
de calcul haut débit. Le modèle comprend une spéciɃcation de description d’interfaces en ligne de com-
mande; un pont entre les architectures orientées services et le calcul globalisé; ainsi que l’utilisation eȾcace
de ressources locales et distantes pour le passage à l’échelle. Une implantation de référence est réalisée pour
démontrer la faisabilité de cette approche. Sa pertinence et illustrée dans le contexte de deux projets de
recherche dirigés par des campagnes expérimentales de grande ampleur réalisées sur des ressources dis-
tribuées. L’environnement développé se substitue aux systèmes existants dont les préoccupations se con-
centrent souvent sur la seule exécution. Il permet la gestion de codes patrimoniaux en tant que services,
prenant en compte leur cycle de vie entier. De plus, l’approche orientée services aide à la conception de ɇux
de calcul scientiɃque qui sont utilisés en tant que moyen ɇexible pour décrire des applications composées
de services multiples.

L’approche proposée est évaluée à la fois qualitativement et quantitativement en utilisant des applica-
tions réelles en analyse de neuroimages. Les expériences qualitatives sont basées sur l’optimisation de la
spéciɃcité et la sensibilité des outils de segmentation du cerveau utilisés pour traiter des Image par Raison-
nanceMagnétiquedepatients atteints de sclérose enplaques. Les expériences quantitative traitent de l’accé-
lération et de la latencemesurées pendant l’exécution d’études longitudinales portant sur la mesure d’atro-
phie cérébrale chez des patients aȻectés de la maladie d’Alzheimer.

Services LifecycleManagementUsingDistributedComputing Infrastructures
inNeuroinformatics

There is an increasing interest among scientiɃc communities for sharing data and applications in order to
support researchand foster collaborations. Interdisciplinarydomains likeneurosciences areparticularly ea-
ger of solutions providing computing power to achieve large–scale experimentation. Despite all progresses
made in this regard, several challenges related to interoperability, and scalability of Distributed Computing
Infrastructures are not completely resolved though. They face permanent evolution of technologies, com-
plexity associated to the adoption of production environments, and low reliability of these infrastructures
at runtime.

This work proposes the modeling and implementation of a service–oriented framework for the execu-
tion of scientiɃc applications on Distributed Computing Infrastructures taking advantage of High Through-
put Computing facilities. Themodel includes a speciɃcation for description of command–line applications;
a bridge to merge service–oriented architectures with Global computing; and the eȾcient use of local re-
sources and scaling. A reference implementation is proposed to demonstrate the feasibility of the approach.
It shows its relevance in the context of two application–driven research projects executing large experiment
campaign on distributed resources. The framework is an alternative to existing solutions that are often lim-
ited to execution consideration only, as it enables the management of legacy codes as services and takes
into account their complete lifecycle. Furthermore, the service–oriented approachhelps designing scientiɃc
workɇows which are used as a ɇexible and way of describing application composed withmultiple services.

The approach proposed is evaluated both qualitatively and quantitatively using concrete applications in
the area of neuroimaging analysis. The qualitative experiments are based on the optimization of speciɃcity
and sensibility of the brain segmentation tools used in the analysis ofMagnetic Resonance Images of patient
aȻected by Multiple Sclerosis. On the other hand, quantitative experiments deal with speedup and latency
measured during the execution of longitudinal brain atrophy detection in patients impaired byAlzheimer’s
disease.

	Abstract
	Abbreviations
	Thesis statement
	I Command–line interface applications as services
	Services as building blocks of scientific experiments
	Interoperable applications
	Web services
	Metacomputing and global computing
	Survey of tools supporting command–line applications reuse
	Conclusion

	Models for efficient reuse of cli applications
	Enabling soa in production Grid infrastructures
	Efficient use of local resources
	Abstraction of command–line applications
	Discussion

	Reference implementation framework
	Lifecycle of services
	Non–functional concerns integration
	Framework integration into third–party software
	Implementation outcomes
	Conclusion

	II Scientific workflows in neuroimaging
	Scientific workflows
	Elements of scientific workflows
	Gwendia & Moteur
	Summary

	Neuroimaging use–cases
	mri neuroimaging at a glance
	Automatic brain segmentation
	Longitudinal atrophy detection in Alzheimer's disease
	Summary

	Enactment of scientific workflows on production dcis
	Workflow design
	Materials and methods
	Results
	Discussion

	Conclusions and perspectives
	Appendix Schema of the cli application description
	Appendix Template–based source code generation
	Bibliography

