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Abstract

There is an increasing interest among scientific communities for sharing data and applications in
order to support research and foster collaborations. Interdisciplinary domains like neurosciences
are particularly eager of solutions providing computing power to achieve large-scale experimenta-
tion. Despite all progresses made in this regard, several challenges related to interoperability, and
scalability of Distributed Computing Infrastructures are not completely resolved though. They face
permanent evolution of technologies, complexity associated to the adoption of production envi-
ronments, and low reliability of these infrastructures at runtime.

This work proposes the modeling and implementation of a service-oriented framework for the
execution of scientific applications on Distributed Computing Infrastructures taking advantage of
High Throughput Computing facilities. The model includes a specification for description of com-
mand-line applications; a bridge to merge service-oriented architectures with Global computing;
and the efficient use of local resources and scaling. A reference implementation is proposed to
demonstrate the feasibility of the approach. It shows its relevance in the context of two applica-
tion-driven research projects executing large experiment campaign on distributed resources. The
framework is an alternative to existing solutions that are often limited to execution consideration
only, as it enables the management of legacy codes as services and takes into account their com-
plete lifecycle. Furthermore, the service-oriented approach helps designing scientific workflows
which are used as a flexible and way of describing application composed with multiple services.

The approach proposed is evaluated both qualitatively and quantitatively using concrete appli-
cations in the area of neuroimaging analysis. The qualitative experiments are based on the opti-
mization of specificity and sensibility of the brain segmentation tools used in the analysis of Mag-
netic Resonance Images of patient affected by Multiple Sclerosis. On the other hand, quantitative
experiments deal with speedup and latency measured during the execution of longitudinal brain

atrophy detection in patients impaired by Alzheimer’s disease.
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Thesis Statement

Introduction

Thereisahigh interestamong scientific communities for the creation and investigation of theoreti-
cal models, and the acquisition and analysis of experimental data. These activities are fundamental
in order to validate previous results, encourage new interpretations, foster collaborations, and en-
able further findings. However, many important challenges, ranging from infrastructure support
to frameworks development passing through modeling, need to be faced to pursue experimental
campaigns.

Distributed computing infrastructures (Dc1) have become a strong driver for scientific innova-
tion because they enable scientists to mutualize resources such as data, computing facilities, and
dataanalysis procedures. These infrastructures pave the way to the emergence of cross-institutional
scientific communities. In addition, DcIs deliver computing and data storage capability needed to
address “big science” challenges. To support longstanding experimental campaigns, DCIs provide
experiment management frameworks with abstraction layers that shield the users from the com-
plexity of the underlying technologies and tools. Large-scale experimentation on such infrastruc-
tures remains difficult to setup and conduct though. Distributing computations related to an ex-
perimental campaign, deploying application components over an infrastructure, and monitoring
applications executions massively distributed are activities requiring skills that most scientists are
not acquainted with. Therefore the amount of work that scientists put to make those infrastruc-
tures suited for their specific interest can be considerable and this work rarely addresses the need
of a wide range of users in this context.

In practice, data analysis tools developed by scientists make intensive use of command-line
interfaced (cr1) applications. The cLI tools are broadly adopted in scientific computation both for
practical and historical reasons. They frequently represent legacy validated implementations. The
cLI applications provide simple but versatile invocation interfaces, and they are commonly avail-
able. However, these applications do not usually follow any standard specification to implement
their invocation interfaces. They are not designed to interact with other applications in order to
build complex data analysis procedures in the form of assembled processing pipelines, or work-
flows. Additionally, the profusion of invocation specifications and the lack of a uniform way to
process data and generate results make their use limited in a distributed environment. These con-
siderations restrict CLI applications sharing across institutions, even if their users belong to the

same scientific community.
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Distributed infrastructures serve cLis through broadly-adopted batch systems. Batches were
initially designed to exploit command-line interfaces in remote tools invocation on local or wide-
area distributed infrastructures. An extended variety of batch systems and workload management
systems have been developed to match the need of different infrastructure scales. Yet, these simple
remote computing environments process computing tasks on-the-fly and they do not address the

problems of application tools deployment nor consider the structure of experiment workflows.

The tools deployment, and data to process in DcIs involves to handle aspects bound to access
and operation of infrastructures, and applications installation. Production infrastructures do not
ensure systematically resilient and reliable services. These infrastructures face well-identified prob-
lems such as high latency, unfair balance between execution tasks, and a non-negligible failure
rate. Furthermore, the deployment is often managed at an administrative level, limiting the au-

tonomy of scientists throughout experimentation.

Efficient scientific experimentation also requires strategies for tools execution and advanced
data manipulation. Despite the progresses made in data-intensive application composition with
the settlement of scientific workflows, this approach stumbles on integration obstacles for the en-
actment of applications. Control structures and iteration strategies, that scientific workflows lan-
guages provide to automate workflows execution, cannot be fully exploited whereas the parame-

ters of cLI applications are not properly described and the results conveniently handled.

The neuroimaging community, for instance, needs to analyze large brain image datasets. Sci-
entists are interested in designing complex workflows combining image analysis tools from dif-
ferent sources. Their activities are often focused on statistical analysis procedures which involve
the processing of large population data. Besides, they deal with sensitive data geographically dis-
tributed. The case studies of this community draw attention to the management of applications,

their composition and enactment as scientific workflows, and fulfillment of external concerns.

In fact, the instrumentation of scientific experiments is not only conditioned to the infrastruc-
ture and the methods that scientists use to conduct their studies. They regularly have to contem-
plate additional concerns during experimentation to fulfill institutional policies, protect informa-
tion, or monitor the execution platform. Thus, the integration of external concerns such as data
access control, users authentication, infrastructure load balancing, or processing validation is nec-

essary all along the process in order to carry out a successful experimentation.

Nowadays, multiple barriers slow advances in applied research because of the lack of appro-
priate working frameworks. Scientists usually have access to local computing resources that com-
monly reach power calculation limits during large experimental campaigns. Although scientists
may also count on distributed computing facilities, hence the combination oflocal and remote het-
erogeneous platforms makes experimentation challenging. The existing platforms partially allow
users to manage the deployment of applications on DcIs, design workflows, and perform efficient

executions in a comprehensive environment.



Objectives

Objectives

Asaresult of the analysis drafted in the previous section the following objectives motivate the work
reported in this manuscript. They aim at improving grid computing experience, specially for neu-

roimaging scientists, by simplifying experiments design, and by providing efficient enactment.

1. Specify an abstraction of cL1applications supporting executions on DCIs.

2. Implement an extensible framework enabling integration of non-functional concerns.
3. Adopt a deployment strategy ensuring scalable and flexible experimentation.

4. Ensure reliable and resilient executions on heterogeneous infrastructures.

5. Design scientific workflows instances of neuroimaging use-cases.

6. Enact scientific workflows efficiently exploiting local and remote computing resources.

Fulfilling these objectives lead to a technical distributed-computing framework implementa-
tion. Exploiting this framework, as part of an interdisciplinary collaboration, the applicative part
of this work also focuses on two neuroimaging use-cases: the automatic brain segmentation, and
the longitudinal atrophy detection in Alzheimer’s disease. These research efforts aim at helping in
the treatment of brain conditions encompassing tools and techniques for analysis, modeling and
simulation. The establishment of links between interdisciplinary domains encourages new sci-
entific insights, makes existing tools and data more valuable, and new studies more reliable and

reproducible.

Contributions

This work is positioned in the field of neuroinformatics, as it deals with the organization of neu-
roscience applications and data with computational models and their implementations. However,
it is not limited to that particular area since the contributions are valid for any domain interested
in software interoperability or production DcIs utilization. This work specifically pays attention to
the way users handle cL1 applications in order to perform large-scale experimentation.

The specification of a scheme to describe cL1applications detailed in Chapter 2 eases their (rejuse.
The details of the interface invocation presented in a uniform manner becomes an expressive in-
strument to work with the data structures and types associated to the application’s parameters.
This abstraction enables the endorsement of applications descriptions to open and compliant im-
plementations of soa like Web services by transforming instances of the cLI application scheme
into standard definitions. Additionally, the introduction of the application’s characteristics related
to the execution into the definition of the application, such as system requisites or environment de-
pendencies, leads to the adoption of heterogeneous infrastructures and multiple platforms. These

characteristics identify clearly the requirement for each execution instance.

Xi
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The exhibition of cLI applications as modular and interoperable components involves the in-
strumentation of the logic concerning the interpretation of the arguments, dependencies configu-
ration, and the execution. This transformation is complex due to the need to respect the applica-
tions nature, and the integration of non-functional concerns associated to platform of execution
or data management. Chapter 3 presents a reference implementation of a SOA approach detailing
the lifecycle of cL1applications as services.

The deployment of cLI applications as Web services also brings together flexibility and scala-
bility. The software development involved in this work carries out the implementation of an end-
to-end framework for applications wrapping, deployment and execution control. This strategy of
deployment engages the manifest replication of services and load balancing of hosting servers in
order to achieve large-scale experimentation. In addition, the extensive use of distributed com-
puting infrastructures is granted seamlessly. The framework offers a single interface to process
services invocations by dynamic reallocation of resources. The execution resilience and reliabil-
ity on such infrastructures is ensured by the implementation of resubmission mechanisms, data
replication, integration of multilevel job scheduling, and control of remote computing sites.

Finally, applications in neuroimaging are proposed in the second part of this thesis. The rep-
resentation of cLI applications as Web services allows their composition as scientific workflows.
This approach describes the interactions and dependencies of applications using a highly expres-
sive language that includes iteration strategies for advanced data manipulation. The design of sci-
entific workflows promotes efficient executions of data-intensive applications. A workflow enact-
ment involves multiple levels of parallelism delegating at the same time data staging to execution
endpoints. In addition, efficiency is enhanced introducing local resources for executions. This in-
clusion, conceived as a modeling to dispatch execution request based on resources availability, be-
comes a vehicle to overcome the latency caused by batch systems overheads. Itis also a mechanism

to reduce the failure rate associated to remote executions.

Context

This work was motivated by and applied to driver projects: NeuroLOG in the area of neurosinfor-
matics, and vIP concerning the improvement aspects of the large-scale experimentation. Both
develop collaborative platforms and are grounded on a translational research view. They make
extensive use of CLI applications and scientific workflows. The NeuroLOG project constitutes the
base context in terms of the reference framework development and use-cases, whereas that the vip

project provides elements to ensure enactment efficiency.

The NeuroLOG project

NeuroLOG" is an applied research project that aims at integrating process, data, and knowledge
in neuroimaging [Montagnat, 2011]. The NeuroLOG project fosters the adoption of health-grids
in a pre-clinical community for supporting multi-centric studies targeting the treatment of four

pathologies: multiple sclerosis, brain tumors, cerebral strokes, and Alzheimer’s disease.

'NeuroLOG project: http://neurolog.i3s.unice.fr/
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Context

The NeuroLOG project has developed a platform in a distributed environment. The platform
interfaces existing neuroinformatics resources (databases and processing tools) without modifica-
tion of the legacy environment implemented at each participating site. The platform is grounded
on a common domain ontology also developed within the project, which provides a reference for
unifying the heterogeneous data representations adopted by the federation of partners. In addition
to the federation of resources, NeuroLOG provides an interface to distributed computing infrastruc-
tures. It enables the bundling of neuroimage processing and their relocation for remote execution
when handling compute intensive tasks. The platform includes a workflow manager used to de-
scribe complex image analysis pipelines, potentially involving large datasets. Federated datasets
and processing tools are semantically annotated. This domain knowledge is used to validate the
coherency of planed processing. The processing is enriched at runtime thanks to the inference of
new facts through the application of semantic rules attached to data processing tool classes. The
NeuroLOG platform is a prototype deployed over several sites (Grenoble, Paris, Rennes, Sophia An-
tipolis) to demonstrate the validity of its federated approach.

NeuroLOG is guided by a prospective vision of biomedical research, where data is:

« commonly available to large user communities,

« described and shared using reference domain ontologies,

« browsable through search engines exploiting knowledge represented in ontologies,

« exploitable in an interdisciplinary framework that facilitates the binding of experimental

facts from different domains and contexts, and
o applied to heavy-processing tasks implying distributed infrastructures.
Similarly, the processing tools are:
« exposed as Web services for easier dissemination and use,

« integrated in processing pipelinesthrough semantic annotations for easier compatibility val-

idation of their linked inputs and outputs, and
« outsourced to distributed infrastructures such as grids for fast and reliable execution.

The NeuroLOG characteristics, specially those concerning the processing tools, become the re-
quirement analysis of this work. They represent the guiding thread for reuse modeling and de-
velopment. Additionally, the use-cases considered in this project are suitable examples of study
and validation support. In fact, neuroimaging tools are typically computational intensive applica-
tions with long execution timespans; work on large-size datasets; and the research teams working
with them are specialized on specific topics. Therefore the collaboration and tools sharing not only
enhance the understanding of integrative aspects in neurosciences. The conducted studies also
provide quantitative information that may be statistically analyzed, corroborated, and compared.
The results may be a product of interdisciplinary efforts concentrated at the same time in involved

methods and available resources.
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The VIP project

The Virtual Imaging Platform (vip) project? targets multi-modality, multi-organ and dynamic (4D)
medicalimages simulation. Integrating proved simulation software of the four main imaging modal-
ities, the platform copes with interoperability challenges among simulators, addresses compati-
bility issues between organ models and provides transparent access to computing and storage re-
sources.

To tackle interoperability issues, the semantics of models and simulation tools are made ex-
plicit. This will be achieved using annotations referring to a set of consistent ontologies describing
the organ models, the simulation data processing, the simulation tools and the simulated images.
Associated repositories and software interfaces will ease experiment design, assisted simulator and
model integration. To address the computational challenge, distributed computing infrastructure
technologies are employed. Yet, to cope with reliability issues of large-scale production environ-
ments, VIP proposes to develop a multi-infrastructure execution environment able to use both local
computing resources (multi-core servers and clusters) and large-scale grids. No heavy code paral-
lelization is involved though: speedup is provided from data and code parallelism only, naturally
expressed in simulations.

Vip includes a strong application aspect to guarantee the adequacy of the resulting environ-
ment with the needs of imaging techniques developers, model designers and image processing re-
searchers. Specifically, vip includes four applicative objectives that are used to demonstrate this
adequacy. These applications are (1) the validation SINBAD CT simulator, (2) the development of a
new US sequence for motion detection, (3) the modelling of inflammation process from MRI simu-
lation, and (4) the evaluation of cardiac segmentation algorithms from multi-modality images.

While the viP project covers a diversified range of simulations, this work focuses on the reuse
and the execution interoperability aspects. Its working environment constitutes an example of the
integrative effort of software development, to provide a comprehensive framework to scientists,

taking into account non-functional concerns and heterogeneous environments of execution.

Organization

The document is composed of seven chapters, organized in two parts. The first part reports the
proposed solution to the challenges identified during the work with cL1applications on distributed
computing infrastructures. The second part addresses the scientific workflows as an efficient al-
ternative raised by neuroimaging experimentation at large-scale. Each part may be read inde-
pendently because it includes the context formulation and the results. However, cross-references
throughout the document make a reading thread inviting to follow the sequence of chapters from
the introduction to the conclusions.

The first part “Command-line Interface Applications as Services” is organized as follows:

Chapter 1: Services as building blocks of scientific experiments. It is a state-of-the-art in the field of

services, distributed computing infrastructures, and tools to manage command-line applica-

2Vip project: http://vip.creatis.insa-1lyon.fr/
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Organization

tions. This chapter is essential to understand the adopted approach in this work, and identify

the technological challenges.

Chapter 2: Models for reuse of command-line applications. It represents the theoretical contribution
of this work. An encompassing model of service-oriented architecture and global comput-
ing is presented. In the same way, a strategy is defined for the efficient use of local resources
during workflow enactment. Finally, a complete specification to describe command-line ap-

plications is defined. This chapter was partially published in [Rojas Balderrama et al., 2010].

Chapter 3: Reference implementation framework. It represents the software development contribu-
tion. A comprehensive working environment for wrapping, deployment, and execution of
scientific applications is detailed from the lifecycle perspective. This chapter was included

in [Ferreira da Silva et al., 2011], and [Rojas Balderrama et al., 2011].

The second part “Scientific Workflows in Neuroimaging” makes extensive use of the develop-
ment efforts for application reuse, and software integration addressed in the first part. It is orga-

nized as follows:

Chapter 4: Scientific workflows. It is a comprehensive summary of concepts about data represen-
tation, the adopted scientific workflow environment and its underlying language specifica-
tion. This chapter represents the conceptual pointers required for workflows design and en-

actment of use-cases introduced in the next chapter.

Chapter 5: Neuroimaging use-cases. It reports on the neuroimaging examples adopted in this work:
the automatic brain segmentation, and the longitudinal atrophy detection in Alzheimer’s
disease. This chapter summarizesthe interdisciplinary work performed in collaboration with
the Asclepios team from INRIA. These use-cases were presented in [Rojas Balderrama et al.,
2008], and [Gibaud et al., 2011].

Chapter 6: Enactment and execution on production distributed computing infrastructures. It details the
scientific workflow instantiation of the neuroimaging use-cases; and the experimentation
focused on qualitative results, and execution scalability on production environments. First
part ofthis chapter was published in [Pernod et al.,2008] and the second one in [Rojas Balder-

rama et al., 2012]

A final chapter recapitulates the conclusions, and states the prospects.

XV
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Chapterl

Services as Building Blocks

of Scientific Experiments

Scientific communities take advantage of SOA principles, as such architectures have forlong demon-
strated their ability to handle interoperability emphasizing on concepts of reusable and autonomous
software components (among others). However SoA does not enable legacy applications reuse per se.
Legacy applications, provided as command lines, are a fundamental part for processing and ana-
lyzing scientific data. There are also “new command-line applications” which are not legacy but
developed as it for simplicity and the ability to use them though regular batch systems. These ap-
plications represent a huge foregoing investment. They encapsulate algorithms that still respond
to the expectations of users, and they are not re-implementable using modern techniques due to
lack resources and time. In addition, the real need to access such applications from other com-
puters, and the requirement of a programmatic way to invoke them, motivate the implementation
of non-intrusive approaches to wrap them as services to enable their reuse. The impact of inten-
sive use of legacy applications also pushed to look for new environments to obtain fast and reliable
frameworks adopting distributed computing infrastructures and preserve those applications as the
building blocks of scientific experiments.

The command-line interface tools, conceived to be executed on console terminals, are consid-
ered legacy applications because they have a simple interface to interact with users and they are not
designed to interoperate with other applications or be executed remotely. These applications are
executed using parameters to provide inputs, and describe outputs in a syntax that is not always
uniform. They depend on system environment variables, and often require additional libraries to
run. Web services can be a solution to reuse command-line applications providing a technology
stack to deliver results over Internet without worrying on installation or configuration because they
can run remotely exchanging information, and interoperating by means of standard mechanisms.

This chapter summarizes the state-of-the-art for the reuse of legacy applications as services,
the adoption of distributed computing infrastructures to overcome the increasing need of power
computation, and a brief review of initiatives that take into account the soA principles in legacy
application transformations. It introduces several technologies involved in reusability, interoper-

ability, and scalability.



SERVICES AS BUILDING BLOCKS OF SCIENTIFIC EXPERIMENTS

1.1 Interoperable applications

There has been a long-standing desire in software engineering for a standard way of collecting
and using software. Initially conventional middleware were developed at a time where the sys-
tems were limited to local private networks or conditioned to the Internet using mere adaptions.
They were conceived to resolve specific problems in a well-defined context. Later, the interactions
between applications, specially when they are located in a distributed environment, were assured
by communication models. Protocols of communication were defined standing out expressive-
ness, convenient combination, and semantic soundness. Technologies implementing such proto-
cols enabled interoperability between programming languages, operative systems, and computer
architectures. Two major examples are the Remote Procedure Call (RPc) systems, and the object

request brokers.

1.1.1 Remote procedure call

The original goal of remote procedure call (Rpc) [Birell and Nelson, 1984] was to provide a transpar-
ent way to call procedures in remote computers based on the client/server architecture. In fact, the
RPC mechanism is the underlying principle of most of current middleware because it introduced
the concept of Interface Definition Language (IDL). An IDL is an abstraction of the procedures rep-
resentation specifying the input/output parameters. The IDL represents the description of the ser-
vice provided by the server. Once the iDLis defined, a compiler generates the client and server stubs.
The stubs are a model of data representation and the references to their implementation. When a
client performs a RPC call, the client stubs are used to ask the execution of the remote procedure.
Next, the server stubs call the procedure itself and send back the results to the client stub. Finally,

the client stub returns the results of the application to the client.

1.1.2 Object request broker

An object request broker [CORBA, 2008] is a middleware supporting the interoperability between
remote objects. This is a natural evolution of the rpc for adapting to the Object Oriented Paradigm.
The goal of thisbrokersis close to the Rpc. They mask the complexity behind the remote invocation.
The most famous implementation is CORBA of the Object Management Group.* It is a specification
and an architecture for the creation and management of distributed and object-oriented applica-
tions over a network. The CORBA specification is independent to any implementation regarding
the programming language or the operative system. CORBA defines the communication interfaces
using IDL-CORBA, a more powerful language compared to RPC because it supports concepts of her-
itage and polymorphism. Moreover, CORBA implements a dynamic invocation based on a discovery
mechanism on the client side that is not possible with rRpc. Other types of object brokers are also
available, such as pcom and its descendant com+ of Microsoft,” and the Java Remote Method Invo-

cation® (RMI). However bcoM and coM+ are specific to Microsoft operating systems, and RMI is a

'Object Management Group: http://www.omg.org/
*Microsoft Component Object Model Technologies: http://www.microsoft.com/com
3Java RMI: http://download.oracle.com/javase/6/docs/technotes/guides/rmi
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Web services

Java-based technology restricted to work from the Java Virtual Machine.

1.1.3 Discussion

The effective reuse of cLI application with RPC or object request brokers is difficult to accomplish
due to the code instrumentation. The CORBA protocol, for instance, despite its independence re-
garding programming languages, requires to implement the objects of the communication inter-
faces. In consequence, this is not practical for widespread use because working with source code is
inevitable.

At the same time, RPC and later the CORBA protocol were incapable to resolve completely inter-
operability problems such as data interchange and execution autonomy in heterogeneous archi-
tectures. Moreover, the consensus of such technologies was limited and alternatives based on XML
formats emerged quickly because of their neutral approach. This initially promoted their cohabi-
tation speaking the same vocabulary but later the industry identified Web services as a promising

implementation to face interoperability.

1.2 Webservices

The notion of service was introduced before the concept of Web service was coined by the Open
Group (formerly Open Software Foundation) for the specification of the Distributed Computing En-
vironment standard.* However, the acquired importance of the concept is associated to the emer-
gence of Web services. The concept of service is defined as an abstract resource representing the
possibilities to perform a task in order to guarantee a given functionality coherent from the point of
view of the provider and the client agent. This service must be implemented by a concrete provider.
Using the base of the service concept, several definitions tried to specify the concept of Web service

(WS), for example Curbera et al. [2001] define it as follows:

A Web service is a networked application that is able to interact using standard applica-
tion-to—application Web protocols over well defined interfaces, and which is described using

a standard functional description language.

Web services describe a distributed computing paradigm that differs from other approaches
such as CORBA in its focus on Internet-based standards to address heterogeneous distributed com-
puting. The use of standard technologies reduces problems related to the heterogeneity, and it is
the key to facilitate the integration of applications. Even more, Web services provide the necessary
support for new architectures such as the Service Component Architecture [SCA, 2007].

Web services may be used for the implementation of the Service-oriented Architecture, but
they have to follow all its properties, so other components are needed to complement that architec-
ture. Namely, uDDI is used for publishing the services, wsDL for the description of the service, and

SOAP for the protocol of communication.

“Distributed Computing Environment: http://www.opengroup.org/dce/
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Service-oriented Architecture

The Service-oriented Architecture (SoA) is a set of design principles used during the phases of sys-
tems development and integration [Erl, 2005]. A system based on soA focuses on the requirements
defined at strategy level, and business process. SoOA is also an architecture of distributed systems

based on the concepts of services and characterized by the following properties:

» Standardized service contract. Services adhere to communication agreements, as defined

collectively by one or more service-description documents.

« Service loose coupling. Services maintain a relationship that minimizes dependencies and

only requires that they maintain an awareness of each other.

« Service abstraction. Services hide logic from the outside world beyond descriptions in the

service contract.
 Service reusability. Logic is divided into services with the intention of promoting reuse.
« Service autonomy. Services have control over the logic they encapsulate.

» Service statelessness. Services minimize resource consumption by deferring the manage-

ment of state information when necessary.

« Service discoverability. Services are supplemented with communicative meta data by which

they can be effectively discovered and interpreted.

» Service composability. Services are effective composition participants, regardless of the size

and complexity of the composition.

The soa services are described using metadata. The provider stores the information of services
in a directory. A client agent can discover a service based on specific criteria published on that

directory. Then the client uses the stored metadata to exchange messages with the service.

1.2.1 Web Services Description Language

The Web Services Description Language (wsbDL) [Christensen et al., 2001] provides a model for de-
scribing Web services using an XML format. WSsDL splits the abstract functionality from the con-
crete details of the service instantiation. Basically a wsDL is composed of definitions. Every defi-
nition includes interfaces (ports), messages, bindings and services. An interface is defined by as-
sociating a network address with a reusable binding, and a collection of ports defines a service.
Messages are abstract descriptions of the data being exchanged, and port types are abstract collec-
tions of supported operations. The concrete protocol and data format specifications for a particular
port type constitutes a reusable binding, where the operations and messages are then bound to a
concrete network protocol and message format. In this way, wSDL describes the public interface to

the Web service. Data types of messages are not always defined inside the service description. An
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additional XML schema actually may be attached to the service description listing types of opera-
tion messages.

WspL is often used in combination with the Simple Object Access protocol (soap). In those
cases, any client program connecting to a Web service can read the description to determine avail-
able operations. The agents interacting with the Web services uses SOAP messages. The client can
then use SOAP to actually call one of the operations listed in the wspL file and exchange messages

with the provider calling the operations declared in the wsbDL.

1.2.2 Simple Object Access Protocol

The Simple Object Access Protocol (soaP) [Gudgin et al., 2007] provides a definition of information
represented in XML format. Itisused to exchange structured information and types in a distributed
and decentralized environment. SOAP is an independent protocol, that is not attached to any plat-
form or programming language.

The specification of SOAP establishes a standard message format. It may be used in rRpc-like
transactions or in document-centric message mechanisms. SoAp facilitates the implementation of
synchronous and asynchronous communication models. It defines a structured communication
protocol containing protocol headers, an envelope section, headers of the message and its body.
The contents of the envelope, headers, and body are not defined by the SoAP specification. They
are dependent on the implementation. However, the SOAP specification defines how to use those
elements. SOAP is not tied to any transfer protocol. It may be used with several protocols such as

HTTP Or SMTP.

1.2.3 Universal Description Discovery and Integration

The Universal Description Discovery and Integration (ubbi) [UDDI, 2004] is a platform-independent
XML-based registry designed to be queried using SOAP messages. It also provides access to WSDL

documents describing the protocol bindings and message formats required to interact with the

Web services listed in its directory. UDDI is conceptually a catalog server of names and addresses.

The information stored by this registry is oriented to human interpretation. For this reason a dy-

namic binding is not possible because an automated client is not capable to discover a service an

build a communication message at execution time.

A upDI business registration consists of three components (i) White Pages, giving information
about the business supplying the service (ii) Yellow Pages, providing a classification of the service
or business, based on standard taxonomies, and (iii) Green Pages used to describe how to access a

WS, with information on the service bindings.

1.2.4 Summary

Web services were conceived to ease interoperability based on standard technologies, reducing the
heterogeneity and providing support for the integration of applications. They are the result of

the consensus of different specifications, namely the w3c® recommendations the wsDL and SOAP

*World Wide Web Consortium: http://www.w3c.org/
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[Christensen et al., 2001; Gudgin et al., 2007]. In principle, the reuse of scientific applications is ef-
fective embracing techniques like wrapping of the cL1applications in WS interfaces. This non-intrusive
approach exposes the applications as services hiding the implementations details, and exhibiting
the functionality.

Although the Web community developed the soA to tackle the challenge raised by software
reuse/distribution, it put alittle effort in improving performance of soa-based applications. Mean-
while, the metacomputing and global computing models were developed revolutionizing the ac-
cess to large-scale infrastructures for optimizing the execution and for promoting the sharing of

storage an power calculation.

1.3 Metacomputing and global computing

Distributed Computing Infrastructures (bc1) have become a strong driver for scientific innovation.
The increasing need for computing power and data federation arising in many international con-
sortia pushed forward the development of unprecedented large-scale infrastructures. High Through-
put Computing (HTC) environments obtained community attention because they deliver large amounts
of processing capacity over long periods of time. The way to the development of HTC [Thain et al.,
2005] was already paved in the nineties, when the outstanding growth of the Internet in terms of
size, reliability, and bandwidth enabled super-computing capability using large amount of regu-
lar computing resources geographically distributed. At that time different architectures were de-
fined proposing the base elements of the current implementations. From those architectures two
models, metacomputing and global computing, encompass most of concepts related to efficient
computation and distributed location.

Computing resources transparently available to the user through networks have been called
a metacomputer [Smarr and Catlett, 1992]. Metacomputers are network of heterogeneous, com-
putational resources linked by software. Indeed, to achieve this level of organization efficiently,
compute resources must be integrated into a seamless resource that can be easily managed within
one framework.

Metacomputing adds another dimension to the configuration management over a potentially
arbitrary collection of heterogeneous resources. The framework must be able to identify available
resources, acquire any such resource, initialize the computation on it, and eventually terminate. A
metacomputing framework must be able to manage resource effectively not only exploiting differ-
ent machines but supporting different types of parallelism, managing both synchronous and asyn-
chronous control flow among compute nodes, allowing control-oriented and data-oriented syn-
chronization, and managing data locality in order to minimize communication and latency. Com-
munication among compute nodes must be controllable by the application to manage the available
bandwidth and tolerance. A metacomputing system allows applications to assemble and use col-
lection of resources on demand, independently from their physical location.

Metacomputing has much in common with both distributed and parallel systems, yet also dif-
fers from these architectures in important ways [Foster and Kesselman, 1997]. Like distributed sys-

tems, metacomputing must integrate resources of widely varying capabilities, connected by po-
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tentially unreliable networks and often located in different administrative domains. However, the
need for high performance can require programming models and interfaces fundamentally differ-
ent from those used in distributed systems. Metacomputing applications, as in parallel computing,
often need to schedule communications carefully to meet performance requirements but the het-
erogeneous and dynamic nature of metacomputing systems limits the applicability of some parallel

computing tools.

Theresource management for metacomputing is typically based onresource brokers [Czajkowski
etal.,1998], involved in servicing single requests. They translate application requirements in more
concreteresource requirements with the assistance of an information service. The information ser-
vice is responsible for providing efficient and pervasive access to information about current avail-
ability and capacity of resource. At low level the management enables remote monitoring and ex-
ecution of processes or jobs created in response to a resource request, and periodically updates the

information service with the current activity.

The metacomputing model was successfully implemented in production environments like the
gLite® middleware providing access to batch systems. However this approach has some drawbacks.
It is inefficient, wasting computational resources while waiting for requests, and it needs to inte-
grate significant mechanisms, techniques and tools to assure allocation of resources, scheduling,

authentication, and authorization.

Almost at the same time, the global computing model emerged as a simple and effective ab-
straction layer to shield the users from the complexity of underlying distributed systems [Foster,
2005b]. Global computing refers to computation over infrastructures available globally, provides
uniform services with variable guarantees for security, reliability, scalability, and self-management
with particular regard to the programmability of these services. In fact, the adoption of soa and
the subsequent use of Web standards defined a more specific model based on services. The global
computing vision requires protocols that are not only open and general-purpose but also standard.
Standards allow institutions to establish resource-sharing arrangements dynamically. Those stan-

dards are also important as a mean of enabling general-purpose services and tools.

Global computing provides the foundations for the development oflarge-scale general-purpose
computer systems that have dependably predictable behavior for the needs of different organiza-
tions. It might be designed to support resource sharing, or services transactions. In essence, global
computing is not just middleware, but goes up to software engineering methods. Furthermore, it

addresses a range of issues such as mobility, ubiquity, and interactivity.

1.3.1 Grid computing

The Grid computing term [Baker et al., 2002; Schwiegelshohn et al., 2010] was adopted to cover the
technologies addressing high performance computing in an heterogeneous environment operated
by cross-institutional and global-scale initiatives. Almost immediately, the need to interoperate

ever more heterogeneous resources led to a paradigm shift.

Sglite: http://glite.cern.ch/
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Grid computing concerns essentially a range of middleware technologies intended to support
resource sharing between groups of computers as virtual organizations (VO), a dynamic set of in-
dividual and/or institutions defined around a set of rules and conditions [Foster, 2001]. Originally,
the research associated to grids was meant to increase computing power by sharing tasks between
computers. The essence of Grid computing can be summarized in a system that coordinates re-
sources that are not subject to centralized control, delivering non-trivial qualities of service. The
strengths of grids include the security architecture and resource management, conversely identi-

fied weaknesses are lack of fault-tolerance and self~-management.

1.3.2 Gridservices

Beyond harnessing computing power, Grid infrastructures provide a flexible and adaptive sup-
port compatible with modern application development methodologies. A convergence took place
between Grid technologies and the Web technologies with the Open Grid Services Architecture
(oGsa). This architecture represents an evolution towards a Grid system architecture based on soa
concepts and technologies. Grid services are presented as an extended version of Web services that
combines specificness of the architecture such as security and decentralization. Their use resulted
in the redesign of grids middleware as collections of collaborative services and the emergence of
the wsrF standard [WSRF, 2006]. On the practical side, after years of experience and refinement,

the Globus Toolkit” (GT) produced a widely used de facto reference implementation.

The Grid services [Foster et al., 2002] are improved Web services that introduce statefulness,
service data, notification mechanisms, groups of services, lifecycle management, and a more pow-
erful addressing scheme called Grid Service Handle. The addressing scheme proposed by the Grid
services implementation uses WSDL as reference format to provide the information about commu-
nication. They are based on the Web Service Resource Framework (WsRF), a standardized archi-
tecture to submit jobs to the Grid organized on virtual organizations for resource sharing. Grid
services also represent the foundations of cLI application reuse on a distributed environment be-
cause many frameworks implement them to enable the execution of legacy application as services

(see section 1.4).

1.3.3 GridRPC

Among existing middleware and application programming approaches, the Remote Procedure Call
over the Grid, or GridRPC model, was developed to ease Grid programming [Seymour et al., 2002].
GridRPC services enable the distributed execution of applications and serve as a communication
layer and an invocation interface for high-level software components. It fills the gap between ser-
vices provided on Grid infrastructures and the programming-level abstraction required to imple-
ment a distributed middleware. This approach is also close to soA because it defines a model where
a service is registered in a registry and a client invokes the service on the server [Nakada et al.,

2007].

’Globus Toolkit: http://www.globus.org/toolkit
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GridRPC focuses on the invocation of remote procedures across a network rather than on a
stack of technologies. For instance, an environment based on independent services involves the
setup of all technologies associated to each service (i.e., configuration, execution, monitoring). In
some cases, those services share technologies such as a Web server, database management system,
etc. However in other cases, the technologies should coexist in the same system independently. In
contrast, GridRPC provides a common interface to perform all the invocations, such as file transfer
or job submissions. GridRPC also preserves performance rather than adopting a protocol based on
XML documents, promoting the direct use of an API. In the same way, GridRPC avoids the reuse of
object technologies like cORBA for several reasons, among witch IDL expressiveness that does not
specify non-functional requirements, to focus on a simple lightweight implementation that meets

the needs of scientific computing [Tanaka et al., 2004].

The adoption of GridRPC promotes interoperability on Dcis without imposing an implemen-
tation in contrast to the Globus Toolkit. However both approaches require the source code in-
strumentation under a reference middleware. Such approaches are, most of the time, designed
to access one type of infrastructure at a time, or they apply when components exclusively allow the
execution of applications on distributed environments ignoring more complex scenarios like the

integration of local resources and heterogeneous platforms.

XtreemOS: Integrated Support of Grid-based Services

In grid computing, physical devices, applications and datasets could all be seen as services. Yet,
they are not considered as a technological commodity due to the complexity associated to the man-
agement of resources. Initiatives as XtreemOS?® aim at resolving transparency, scalability, inter-
operability, and security issues from the user point of view. XtreemOS organizes the access to the
available resources in Virtual Organizations as an integrated support on top of an operative system.
The software architecture of the platform distinguishes two main layers the XtreemOS-F, and the
XtreemOS-G one [Coppola et al., 2008]. They provide, respectively, local support and integration

of different resources into a single computing platform.

While initiatives as Grid Services or GridRPC have been build to resolve the access to Grid en-
vironments using intermediate middlewares, XtreemOS proposes an approach where an underly-
ing operative system is extended for enabling and facilitating Grid computing. Middlewares like
Globus toolkit have been adopted where institutions agree on a reference implementation to com-
mission the operation of the infrastructure. In the same way, the principle of transparent access of
XtreemOS is valid when the same operative system is available everywhere. Nevertheless, neither
of these approaches can be adopted on infrastructures composed by heterogeneous service sources
or operative systems like the European Grid Initiative. Most of the EGI services (i.e., storage, exe-
cution, monitoring) are based on common middleware components, and the resources share the
same system configuration, however the autonomy of each organization imposes to harness ser-

vices according to the provided interfaces independently.

8XtreemOS: http://www.xtreemos.org
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1.3.4 Summary

Grid computing, resulting from the evolution of metacomputing and global computing models,
addresses the permanent need of computing power. To achieve that goal, institutions supply re-
sources, develop middleware, define specifications, charter rules of use, and foster the develop-
ment of tools supporting the existing middleware. For instance, the utilization of batch systems in
the execution of cLI applications were commonly adopted on production grids by means of a uni-
form job description language. Several projects implemented strategies on top of middlewares to
improve the access to the distributed computing infrastructures. Those initiatives were interested
in providing tools letting users execute their applications efficiently on the Dcis. Specifically, they
have been paying attention to implement non-intrusive tools for reusing and executing cLiapplica-
tions because technologies and services such as the Grid services do not pay attention in fine-level
management of applications or they only resolve partially concerns going from interoperability to

usability. Some of these efforts are detailed in next section.

1.4 Survey of tools supporting command-line applications reuse

The idea of software reuse is not new [Rich and Walters, 1983]. Several approaches have been stud-
ied such as the reuse at programming level to build applications directly from several pieces of code
[Bigot et al., 2008] or approaches of reusing executable command-line applications directly [Ma-
teos et al., 2008]. The reuse of such applications still involves important effort in the scientific
community because this facilitates the integration of a wide range of applications in current re-
search. There are several toolkits and environments which use a non-invasive approaches to wrap
the command-line applications as services. They do not create new binary executables or modify
the existing cLI applications. The concept of service in these environments, in most cases associ-
ated with SoA, creates an opportunity for reusing such applications under different circumstances
depending on the target infrastructure, the protocols of communication or the domain of appli-
cation, among others. In this section some relevant examples are presented. This work does not
pretend to be exhaustive, focusing only on recognized initiatives that have proven to be useful and

provide at the same time interesting concepts of service-oriented design.

1.4.1 LONIPipeline

The LonI Pipeline [Dinov et al., 2009] is a graphical environment for construction, validation, and
execution of neuroimaging data analysis applications. Itis a packaged solution to allow distributed
infrastructures utilization, to facilitate data provenance, and to provide a significant library of com-
putational tools including automated data format conversion. As part of its environment, one of
the tools facilitates the integration of heterogeneous applications as modules. These modules rep-
resents well-defined standalone applications, comprising local or remote binary executables and
services with well-defined command-line syntax. The modules are created providing general in-
formation like authors, version, name, description, and detailed information about the syntax of

the parameters. The parameters may be directories, enumerations, files, numbers, strings or flow
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controls that provide a sense of data typing support to the modules. The modules may also include
dependencies to the applications. The LONI Pipeline integrates the modules in pipelines involving
large number of datasets and multiple processing tools.

Data in terms of databases, data services, and file systems, along side with the modules may
be integrated in the environment. This flexibility of integration permits efficient resource man-
agement. The LONI Pipeline environment is focused on neuroimaging data and analysis protocols.
However, by design, it is domain agnostic and its architecture may be used where computationally
intense tasks are performed. Unfortunately, LONI Pipeline modules are not constructed on stan-
dardized bases and the catalog of services is only useful within the environment. Although the
integration to broader distributed infrastructures is supported with the adoption of its Distributed

Pipeline Server (DPs).

1.4.2 GASW

The Generic Application Service Wrapper (GAsw) [Glatard et al., 2006a] is a dynamic service which
aims at enabling the execution of cLI applications as services at runtime. This service is generic,
wrapping an application behind its standard interface, and submitting a job instance to a bcI. The
GASW service simplifies the embedding of applications into services interpreting a description of
the application. Its Legacy Code Descriptor is an xmML-based file which contains the name and lo-
cation of the executable, the access method of the input data, the command-line options of the
parameters, and the name and access method of the libraries or scripts that may be needed for the
execution aside from the target binary executable. The GAsw service leverages external middle-
ware submission methods for the execution. It also implements application grouping service calls
to optimize the execution time.

Gasw does not address the deployment of the applications though. The generic service is not
datatyped and doesnothave a high-level interface to create the descriptions. This later issue makes
the wrapping of applications difficult because it requires in-depth knowledge of the ad-hoc xML
structure and technical concepts associated to the distributed infrastructures. The service exposi-
tion used on GAsSw is based on a factory pattern. This process involves to use a generic interface
to dynamically process the applications arguments. That kind of optimization can be considered
harmful in a contract-first approach because clients trying to execute the original service may be
unable to find it as well defined service loosing qualitative information regarding the types or na-

ture of parameters.

1.4.3 GEMLCA

The Grid Execution Management for Legacy Code Architecture (GEMLCA) [Delaitre et al., 2005] isa
general architecture for deploying crL1applications as Grid services without the need for code mod-
ification. GEMLCA aims at providing an infrastructure to deploy applications as 0Gsa-compliant

services. Its architecture is composed of four basic components:

1. The Compute Server represents hardware resources, such as a single computer or clusters, on
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which applications in form of binary executables are potentially available to make them ac-

cessible through Grid services.

2. The Grid Host Environment implements a service-oriented Grid layer on top of a compliant
middleware. This environment connects the Computer Server with a grid. Current distribu-

tions of GEMLCA support 0Gsa-built Grid services based on the Globus Toolkit.

3. The GEMLcA Resource provides a set of Grid services (i.e., code factory and processor) which
exposes applications as services. Along with the Grid Host Environment, the GEMLCA Re-

source is installed on the Compute Server representing a GEMLCA Grid Resource.

4. The GemLcA Client comprises the client-side software. There are two types of GEMLCA Clients:
(1) a command-line interface, installed on any machine through which a user would like ac-
cess to the GEMLCA resources, and (2) a Web portal based on GridSphere® to provide a graph-

ical interface through which a user can access to the applications as Grid services.

The GEMLcCA Resource is responsible for hiding the native nature of an application by wrapping
it with a Grid service, and processing service requests coming from users. The deployment of such
a service implies that the application may run in its native environment on a Compute Server. The
GEMLCA Resource handles the application using an xmML-based Legacy Code Interface Description
(Lcip) file. This file provides metadata about the application, such as the executable path, the job
manager, the execution environment, and information parameters including name, type, order,
regular expressions for input validation, etc.

GEMLCA does not require coding modification of applications and the effort from clients is min-
imized using the graphical interface. In spite of this, the deployment process of new Grid ser-
vices involves administrative tasks on the server side. Since the current GEMLCA has GT2, GT4, and
gLite submitters, applications can be executed/submitted to all machines with these middleware.
GEMLCA uses stateful services primary to support a multi-user environment, but not for the lifecy-

cle management of cLI applications though.

1.4.4 gRAVI

The Grid Remote Application Virtualisation Interface (gravi) [Chard et al., 2009] is a plug-in ex-
tension to the Introduce toolkit [Hastings et al., 2007]. This toolkit is designed to support the Grid

service development through three identified steps:

1. The creation. The developer describes at highest level basic attributes about the service such
as name and namespace. The implementation of the service is then created with these con-

figuration properties using the Introduce engine.

2. The modification. The developer adds, removes or modifies service methods, properties, re-
sources, and security configuration. In this step, strong typed service interfaces are created
using pre-registered and well-defined schemas. The Introduce toolkit includes the notion

of data repositories that maps defined types to application input parameters.

°GridSphere portal framework: http://www.gridsphere.org/
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3. Thedeployment. The developer deploys the service to a Grid service container after the spec-
ification of deployment and security configuration. A deployment component gathers the
libraries required for the service as well as those files which contain the actual runtime code

of the service.

gRAVI allows users to wrap binary applications as secure WSRF-compliant services without re-
quiring to write any implementation code, description files, or deployment scripts. This plug-in
extends the Introduce toolkit creation and modification steps adding new backend code creation
processes and complementary graphical interface within the Introduce Graphical Development En-
vironment. This interface removes the need for users to run scripts or create/modify description
files. grAVI services offer synchronous and asynchronous invocation methods. They also include
methods to stage data with several encoding formats including GridFTP and base 64 encoded bi-
nary data. Each service also exposes interfaces to monitor the running application via polling or
notifications.

gRAVI provides a way to reduce the cost of creating Grid services by simplifying the develop-
ment and deployment process. Nevertheless, the processing of parameters is based on existing
service type schemas that are not trivial to create and requires the management of repositories. De-
spite its interesting features, the design of gravi forces to use in each service all its dependencies
increasing significantly the packaging size to detriment of library reuse so this method is not advis-
able for a large number of services. Additionally, it supports exclusively execution on distributed

infrastructure, banishing the potential of light or short-term executions on local servers.

1.4.5 Soaplab2

Soaplab2 [Senger et al., 2008] is a framework that allows service providers to make command-line
applications accessible as Web services. It is based on metadata descriptions of the programs that
includes information about the description, type, provider, names and types of input data or com-
mand-line parameters, and names and types of resulting output. Soaplab2 uses AcD, a format orig-
inally created by the European Molecular Biology Open Software Suite'® (EMBOSS) to define in a uni-
form way bioinformatics tools, to create the descriptions, and to transform them in a corresponding
XML format file. The XML description is stored and used by the Soaplab2 server to execute the ap-
plications processing the input data and to retrieve the results. The architecture of Soaplab2 server
can optionally use local databases for keeping results persistently. On the client side, Soaplab2 pro-
vides a rich Web-based interface, which allows users to select a service, specify its inputs, start the
service, and display the results. Soaplab2 has arich client library supporting an extensible protocol
layer to assure interoperability with different Web service standards.

Soaplab2 can automatically generate and deploy Web services on top of existing command-line
applications. It is especially suited for applications with well described input and output param-
eters allowing integration of applications within a single programming interface. Nevertheless,

Soaplab2 does not resolve the build /install /deploy cycle because it uses development tools such as

°EMBOSS: http://www.emboss.org/
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Ant'' and Maven'? to perform these tasks. Soaplab2 does not provide an interface to wrap the appli-
cations as Web services. Thus the work directly with the AcD format is a cumbersome requirement
due to its technical characteristics. Furthermore, Soaplabz2 is not oriented to execute the applica-

tion on distributed infrastructures.

1.4.6 Comparison

The main goal of developing tools like LONI Pipeline, GASW, GEMLCA, gRAVI, or Soaplab2 is to pro-
vide robust and extensible frameworks enabling efficient utilization of resources, and to provide
the means for dissemination and validation of research protocols and scientific innovation. An
important experience has been gained with their development [Krishnan and Bhatia, 2009]. From
this experience common elements are identified to underline their potentialities and remaining

issues:

« Descriptions of applications. The characterization of cLI applications is necessary for bind-
ing the application to a service interface. The elements defined in the definition must fulfill

fine-grained details of arguments, including types, and the target infrastructures.

« Interoperability. Interoperability is assured by open protocols. Web services (and their Grid
variants) mechanisms for describing, accessing, and securing services provide the shared
vocabulary. The value of an exposed service is measured with regards to the capability to

discover, and access it.

o Scalability. The data volumes and computational demands are often beyond the capacity of a
centralized server. Distributed infrastructures, like clusters and grids, and the interconnec-

tion with the services are suitable solutions to respond this challenge.

« Usability. The control of the middleware hosting services and their lifecycle management
play and important role in the use and dissemination of scientific applications. This con-
trol does not have to limit users throughout their experimentation by incorporating complex

technological layers of administration.

From the interoperability point of view, most of the initiatives (with the exception of LoNI Pipe-
line and Gasw) have recognized the undisputed need of Web protocols. These protocols defines
data types and the interfaces of operations. GEMLCA and gravi, work directly during creation of
services to provide the wSRF-based services. This alternative manages security concerns in par-
allel to the functional requirements. Although the implementation behind the resulting services
depend on the installation of the adopted middleware (i.e., Globus Toolkit). On the other hand,
Soaplab2z is focused only on basic standard protocol profiles.

Concerning the scalability, all approaches described but Soaplab2 take into account distributed

infrastructures to delegate the execution of the applications. This adoption has natural advantages

Apache Ant: http://ant.apache.org/
12Apache Maven: http://maven.apache.org/
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Conclusion

over limited computing resources but includes a side-effect. All tools adopting scalability mea-
sures focus on the execution by delegation ignoring the potential benefit of nixed execution both
on local servers and distributed infrastructures.

Usability is covered at different levels. GAsw, only covers the execution of applications but it
does not manage the creation and deployment stages leaving to the user the role of manually cre-
ating the description, deploying the application, and invoking the resulting service. GEMLCA and
Soaplabz includes interfaces for the invocation (graphical or through ApI) but again the creation
and deployment are left as administrative tasks. gravI is more careful providing a complete chain
from creation to invocation as well as LONI Pipeline that hides completely the administrative tasks.

Interoperability, scalability, and usability are the desirable properties required to wrap applica-
tions as services. In order to enable the complete life-cycle management of services and provide
them flexible execution mechanisms, features such as the execution on local resources; high-level
interfaces to create and enable a programmatic invocation; and a public and well-defined scheme
for the description of executions are expected. Since none of the reviewed frameworks provide all
these characteristics (see Table 1.1) their adoption is not possible due to the lack of features such
as local execution, client APIs, etc. In the same way, extension is difficult because implementation

incompatibilities with execution middlewares, or copyright limitations.

g

& = 3 = =

E 223 %

H O O w wn
Interoperability VI Iv|Vv
Scalability AR A RAR
Usability v SV
Local execution | v* | v/ v
Client API v IV
Graphical Uls v VLV
Public schema | V' v

Table 1.1: On top of the table three high-level properties required from tools sup-
porting command-Lline applications to wrap CLI applications as services are iden-
tified. On the bottom, the expected technical features are presented. The tick (v')
represents availability of the feature, and the partial check mark (v") shows the tool
only covers such feature partially.

1.5 Conclusion

In this chapter a concise state of the art on service-oriented approaches dealing with legacy ap-
plications was presented. The evolution of applications interoperability and software reuse was
described across the chapter taking services as reference. These services represent an invaluable
mean of reusing algorithm implementations resulting from years of research. In fact, they become

the building blocks of scientific experimentation because their combination may result in a com-
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plete processing pipeline. Specifically, the services are created from cLI applications by wrapping
them using soA interfaces. This approach, followed by several initiatives, not only pursue remote
invocation. The efficient execution on distributed environments is also considered.

Three main features were identified to create a fully functional framework for the generation
of such services: the interoperability, scalability, and usability. The review presented here shows
some remaining issues that are not completely addressed by the available solutions. This makes
obvious the need of a new approach that provides a complete lifecycle of services support and an
improved description of cLI application that integrates all the execution details. Therefore, in the
following chapter a conceptual contribution to resolve the current implementation gaps of existing

tools is proposed.
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Chapter 2

Models for Efficient Reuse of CLI Applications

The Grid community has almost unanimously adopted the Service-oriented principles introduced
in chapter 1. The integration of Global computing with soA has been largely addressed with the
adoption of implementations such as the Globus toolkit [Foster, 2005b]. In this approach services
for monitoring resources, discovery and management, security, and file management are provid-
ing a complete stack of technologies in an integrated environment. Nevertheless, the use of such
technologies is not always possible. The infrastructures based on heterogeneous middleware, like
production grids, do not ensure directly the implementation of Grid services-based on the global
computing model, because they are conditioned to the general adoption of a common underly-
ing technology. In those infrastructures the interface to resources should be integrated through a
non-intrusive component, and the standard interconnection should be enforced with a modular
implementation connected to the target infrastructure.

This chapter presents three models for reusing of cLI applications and taking advantage of lo-
cal resources efficiently. First, a non-intrusive hybrid model merging global computing with soa
to enable the adoption of a service-based framework in production pcis. This model aims both
at taking advantage of the soA principles and the existing distributed computing infrastructures.
Second, a model for efficient use of local resources combining the adoption of Dcis. This approach is
defined to dispatch jobs for local execution or for submission to a DCI based on the execution be-
havior of services. Finally, a model using metadata to describe command-line applications expose them
as services and enable their execution. This description includes a fine-grained management of in-
put/output data structures, dependencies, and execution environment, in order to resolve and use
the described metadata at runtime. These three models together enable the efficient execution of

cLIapplications in order to (rejuse them as services.

2.1 Enabling SOA in production Grid infrastructures

This section outlines the existing gap between the soA approach and the global computing model,
identifying the weaknesses of each one, and proposes a practical solution to bridge them together.
In a global computing environment, clients connect to a brokering service that handles the re-

quests on their behalf as illustrated in Figure 2.1. The broker has extensive knowledge on the dis-
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tributed resources available on the infrastructure. It selects the resource that can best handle each
client request and delegates its actual execution. The applications to be executed are transported
from clients to the broker and then to the computing resources. All managed resources in a global
computing model are allocated temporarily to each computation task and have minimal system re-
quirements. The broker may act as a proxy caching the requests and corresponding results if the
clients disconnects for a given time. This model is very efficient to control and balance the over-
all system workload and therefore addresses well the needs of High Throughput Computing over
long periods. The broker also implements a scheduler and /or resource allocator that optimizes the

usage of the system.

-

Figure 2.1: Global computing model

Global computing implementations such as Grid infrastructures typically serve cLIs executions
through batch processing. Batch processing involves the execution of a series of programs or “jobs”
dispatching them to distributed resources. Batch systems process cL1applications which do not re-
quired user’s interactions. These applications provide versatile invocation interfaces that can be
interpreted on-the-fly when a job invocation is sent to the broker. All input data is set as com-
mand-line parameters or an equivalent file representation like the Job Description Language (jDL).
In this operating environment a program processes the data automatically, and produces a set of
output data files. Despite their long history, batch applications are still critical in most organiza-
tions in large part because many core business processes are inherently batch-oriented (i.e., data
are collected into batches of files and are processed in batches by the program). Most workload
management systems use batch processing to maximize usage because (i) batch systems allows
sharing of computer resources among many users and programs; (ii) they shift the time of job pro-
cessing scheduling large amounts of tasks; and (iii) batch systems avoid idling the computing re-
sources with manual intervention and supervision. Nevertheless, each implementation defines
their job invocation methods, thus the interoperability in global computing environments is re-
stricted to managed infrastructures.

Conversely, in atraditional soA framework, services embedding the businesslogic are pre-deployed
over a set of resources and invoked remotely though a standardized interface. Clients perform di-
rect connection and invocation to the services as illustrated in Figure 2.2. Before reaching the tar-
get(s) service(s), clients have to query a registry service, that at least provides business services lo-
calization information and possibly implement workload management strategies.

Interoperability is granted by the standard interfaces and protocols inherited from soa imple-
mentations. Defined message channels decrease the complexity of applications, shading light on
functionality rather than communication. However, this model requires to instrument the busi-

ness logic with a service interface, and pre-deployed applications over the computing resources.
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Figure 2.2: Service Oriented Architecture

Management of large-scale applications implies complex and frequent deployment procedures.
Furthermore, clients are directly exposed to the communication with various resources and there-
fore they need to integrate complex concerns related to scalability, performance, reliability, fault-

tolerance, security, etc.

To tackle the issues of both approaches a new model is presented proposing the convergence
between global computing and SoA as illustrated in Figure 2.3. This solution enables dynamic al-
location of resources encompassing the properties of SoA with the interfaces provided with global
computing implementations. The approach integrates the need of intensive computing infrastruc-
tures using standard interfaces of communication. The cycle of deployment and executions should
be integrally taken into account to ensure invocation of services without affecting the internal ar-
chitecture of any infrastructure. Clients use soa mechanisms for execution requests before deploy-
ing dynamically the services. Then the broker processes those requests as regular tasks and return
results to clients using the same messaging paths. To describe the tasks delivered to the broker, the
service has to adapt services messages into a language interpreted by the broker. In this work, we

will consider the transformation to jpLs defining the cL1 invocation.

The dynamic allocation of resources permits the execution of services directly on the deploy-
ment point, or the delegation to a broker for execution on remote resources based on the execu-
tion needs and the work load. There is not intervention of the client for the task dispatch after the
execution request becoming a transparent resolution of resource allocation. Each element of the
hybrid model performs its tasks as an independent module, while coordinating message transfers

to provide final results.

The hybrid model proposed here provides an alternative to execute applications as services by
transforming the execution interfaces from broker dispatching to interoperable messages. This
transformation uses the model of Section 2.3 because that definition enables the interpretation of
executions associating input arguments to the commands, and matching the results. That defini-
tion also provides the information concerning the artifacts and system environment required for
the allocation and execution. Nevertheless, this model does not provide any mechanism to address

salient issues of production DcIs such as latency and high failure rate of execution. In fact, the use
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(" Local )

~

Figure 2.3: Hybrid model merging global computing and SOA

oflocal resources (e.g., mainframes or private clusters) increases the probability of success full ex-
ecution. Normally such resources are synonym of reliability in terms of dedicated and permanent
access. In the next section a complementary model is defined to combine local resources with DcCIs
inthe allocation process. However, the proposed model does not take into account aspects like data
transfer, or hardware heterogeneity because they are directly associated to the dynamic behavior

of a production distributed infrastructure.

2.2 Efficient use of local resources

Executing large-scale applications on DcI faces several well-identified issues often causing poor
applications performance (either under-performing execution time or complete application fail-
ure). In particular, low reliability, high latency, and unfair balance between job executions are re-
currently reported in the literature dealing with large-scale experimentation. The definition of a
model for the efficient use resources addresses partially these issues reducing the execution delay
when submitting to distributed infrastructures by the introduction of local resources, and manag-

ing their load to prevent saturation.

In spite of the large number of computing resources available on DcIs, the waiting time of a job
to obtain a computing resource may increase considerably with a big number of jobs simultane-
ously submitted to the infrastructure. Thislatency is particularly not negligible for short-execution
jobs. The use of local resources for executing applications decreases the number of jobs submitted
remotely and therefore reduces the management time of jobs to be processed on the DcI. Further-
more, the application performance is improved since local resources are more reliable and jobs are
executed without latency. However, a strategy is required to ensure that local resources are not

overloaded when many jobs are executed. In view of this, a decision model is defined below to dis-
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patch incoming jobs for local execution or for submission to a DcI relying on execution time and
memory consumption. The proposed model makes it easy to switch between the broker and the lo-
cal resources. The service interface, as shown in Figure 2.3, hides the heterogeneity of computing
infrastructures and delegates execution to different kind of resources.

The decision model is based on the composition structure of several services in order to create
a complete analysis processing. It makes the assumption that each service i among the k services
used {i € Z" | i < k} is consuming a fixed amount of resources when executing (r; memory
space, and #; execution time). It will also be assumed that the execution DcIs are large enough to
handle simultaneously all computation tasks triggered by the invocation of the application services
at runtime.

Let R denote the memory consumed on the local resource for all running services including r;
which would be an incoming service of type j executed locally at a given time. The value of R is
computed according to Equation 2.1, where n; denotes the number of services of type i. The volume
of assigned memory must not exceed Ryax, the available memory installed on the local resource
(R < Ruax)-

k
R:rj—l—Znixr,- (2.1)
i=1

Making the hypothesis that production infrastructures have sufficient computing resources
to execute all submitted services, the execution time of a service composition 7yax would be the
longest path of its representation as a graph (i.e., the critical path). Therefore, the execution time in
thelocal resources T must be shorter than this theoretical threshold in order to avoid penalizing the
final execution time (T < Tyax). The value of T, as shown in Equation 2.2, represents the sequen-
tial execution time of all services running on local resources distributed on all available processor

units, where Nqpy denotes the number cPU cores.

k
tj—i—Zni X t;

i=1

N CPU

T — (2.2)

Algorithm 1 shows the procedure to decide whether a job is executed locally or submitted re-
motely. The estimation of R and 7 is performed each time an incoming service is enacted by the
workflow manager. Meanwhile, the value of n; is updated for accounting.

The need to bridge intensive computing models and soA principles, and the definition of a strat-
egy for the efficient use of local resources do not solve challenges of rich characterization of appli-
cations during the execution, including data types and a uniform structure definition of complex
arguments. The adoption of the soA is only complete with the existence of a clear contract defining
the operations and all the involved parameters. Most scientific cLiapplications developed in the re-
search community are neither designed to ease the description in a standard way nor to separate
systematically the invocation interface from the environment requirements or invocation details.
These are the reasons to justify the incorporation of an abstraction of command-line applications

in order to transform this definition in a compliant format as wWsDL.
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Algorithm 1 Dispatching of incoming service (r;, #;)

Require: [r;]; memory benchmark of services
Require: [t;]x execution time benchmark of services
Require: [n;]; number of services running by type
Require: Ryx, Tmax, and Nepy

foriin{l,...,k} do
R=R+r xXn;
T=T+1t Xn;

end for

R=R + rj

T= (T+ fi)/NCPU

if R < Ryax and T < Tyax then
service is executed locally
nj = n; +1

else
service is submitted to a Dc1

end if

2.3 Abstraction of command-line applications

A formal description of command-line applications ensures their proper (unambiguous) use. The
formal definition promotes portability by characterizing a clear and consistent syntax of common
features and constraints. Such a description also grants the exposition of cLI applications as ser-
vices in an SOA approach by interpreting the description and creating an interface for invocation.
It enables the construction of commands at runtime once the description is processed in combina-

tion with the invocation input parameters, and it provides the information to draw out the results.

The following of this section details the syntax of a cLI application description based on its
metadataasamodel represented in an XML schema (the complete schemaislisted in Appendix 6.4).
A running example is used below to exemplify several characteristics when performing the formal
description of cLI applications. In some cases, additional examples are included in line to better ex-
plain some advanced features of the specification. A typical neuroimaging application is described
so the invocation details and execution constrains are clearly explicit. It summarizes some of the
characteristics that scientists need to identify and associate with inputs and static parameters for
later execution. The choice of a neuroscience application is deliberated because of the strong mo-
tivations presented in the introduction chapter. In order to facilitate the reading a distinctive ty-

pography convention indicates different connotation in the text.!

'Emphasized text (sample) is used the first time an new concept is introduced. Its explanation usually follows directly
after the introduction or it is explicitly defined in a subsection. Bold text (sample) is used to refer a definition in the
specification. Sometimes these elements are used to describe others before they are introduced, therefore they remain
in bold to differentiate from regular content. A monospace typeface (sample) indicates the term is an XML element or
attribute, it also indicates command examples in the system console. Text written in this type is always related to coding.
Sans serif typeface (sample) shows examples of concepts defined in the schema or possible options of an attribute.
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Running example

BrainVISA? is a software that allows users to trigger sequences of treatments in series of images.
The treatments are performed by calls to command-lines. One of these applications for calcula-
tion of images is AimsLinearComb. It performs a sum of two brain activation maps. The AimsLin-
earComb tool performs a linear combination using the formula /1> = a x I, /b + ¢ x ,/d + e,
obtaining a fusion of two binary functional-analysis activation in form of a new volume. In spite
of its apparent simplicity, AimsLinearComb is a good example to show some characteristics of the
CLI application schema because of the manipulation of special file formats, implicit arguments or
dependencies, and the interpretation of the resulting outputs. An example of the command-line
required to execute AimsLinearComb is shown in Figure 2.4, where lwlebge.img and lwdupje.img are
the images to combine resulting in the image lwtest.img, and the numerical parameters are used for
adjustment. In practice the application execution is complex due to some assumptions the user

should know:

« Theinputand outputare Analyze formatimages. Thiskind ofimage consists in two files with
the same base name but different extensions, namely IMG and HDR, containing the rawimage
data and the header metadata respectively. In the command-line however, only the 1MG file
name appears explicitly representing the image. The file name of the HDRfile is inferred from

the IMG one.

o The tool execution produces a text file with the extension MINF. This file is not expressed in

the command-line butitis part of the results along with the output image in Analyze format.

o AimsLinearComb needs several libraries for standalone execution. The user should config-
ure the environment to include them in the list of the system. In Unix-like systems is pos-
sible to add to the LD_LIBRARY_PATH environment variable the directory path where those

dependencies are located.

Additionally, the user should be able to retrieve the standard output or error messages gener-

ated by the tool, so all these concerns have to be considered in the description of the tool.

$AimsLinearComb -i lwlebge.img -a 200.0 -b 1.0 \
-j lwdupje.img -c 20.0 -d 1.0 \
-e 0.0 -0 lwtest.img

Figure 2.4: CLI invocation of AimsLinearComb application

The proposed XML grammar for the definition of any cLI application separates the application
description from its resources (and system environment parameters) in two parts, to ease execu-

tion and deployment [Lacour et al., 2005]: the interface, which provides the detailed information

2BrainVISA: http://brainvisa.info
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concerning the invocation of the application; and the implementations, which specify all the refer-
ences to the artifacts associated to the application including its configuration environment. These

elements are developed in the following subsections.

2.3.1 Interface

The description of the interface {interface}includesall information related to the application and
the cL1 arguments. Additionally, general data is included describing a version, description, orga-

nization, contact address, a symbolic name, copyright policy, and reference of the application.

2.3.1.1 Serviceversion

The version {version} defines a unique number-based schema to state a declaration of a service
representing the cLI application. The version is used for keeping track of possible variants of the
same tool. Typically this identifier includes three numbers separated by a period: major version,
minor version, and a build number, this schema may be arbitrary though. This version is used, in
combination with the symbolic name, to declare the URL of the Web service, therefore the version
must always be set. For example:

1.0.0

2.3.1.2 Service description

The service description {description} defines a substantial description of the cL1application. This
section does not define any format or extension. It may include a short description of application
scope, file formats and conventions, configuration or examples of the command invocation. For
example:

AimsLinearComb service performs a sum of two brain activation maps using Analyze file format.

2.3.1.3 Organization

The organization {organization} contains the information of the cLI application author, vendor,
or distributor. Alternatively it may contain the information of the service builder. For example:
BrainVISA

2.3.1.4 Contactaddress

The contact address {contactAddress} specifies an email, phone, or electronic form of the person
in charge to contact in case of feedback about the service is required. For example:

admin@i3s.unice.fr

2.3.1.5 Symbolic name

The symbolic name {symbolicName}specifies aunique, short name of the service. This name should

be a representative alias of the service making reference to the cL1application. The symbolic name
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is used, in combination with the version, to declare the URL of the Web service therefore the sym-
bolic name must always be set. As a reference, the format should respect the Java identifier con-
vention.? For example:

brain_map_sum

2.3.1.6 Copyright policy

The copyright policy {copyright} contains the copyright labeling of the cL1 application. If the ser-
vice is publicly available, its use supposes the respect of the author’s copyright. For example:

CeCILL licence version 2

2.3.1.7 Reference

The reference {reference} must contain a URL pointing to an external page about the cLI applica-
tion, or a unique bibliographic identification such as the por1 or the PMID. For example:

http://brainvisa.info/doc/documents-4.0/shfjcommands/commands.html#aims_AimsLinearComb

2.3.1.8 Arguments

The collection of arguments {arguments}, contains the information of each application’s param-
eter. They are declared respecting the order of appearance in the command-line. This collection
is not required when the application does not include any argument. Otherwise a detailed dec-
laration of parameters should represent syntax of each argument in order to construct the com-
mand-line to execute.

A set of attributes defines the nature of the argument, and the details are defined using inde-
pendent elements. The attributes include: an identifier, a category, a data type, a mapper, and
boolean attributes to describe the implicitness and the presence of a space. All these attributes
have enumerable values declared explicitly in the schema. The elements enabling the declaration

of the argument are: a label, an option, a hint, and the content and the nesting properties.

Argument identifier The identifier {identifier} defines a unique reference to the argument. The
procedure that yields the generation of the identifier is based on the MmD5 algorithm that generates
a fingerprint of the label value. For example:

07cc694b9b3fc636710fa08b6922c42b

Category The category {hookup} identifies the stream sense of data used to receive /transmit argu-
ments for/from the application. Arguments should be identified as input, output, or constant (i.e.,
simple flag) streams. Hence, input arguments become the required parameters to execute the cLI
application. The output arguments are the expected results after the execution. Finally, the con-
stant streams are invariant values required to process the command-line but they are not part of

inputs nor outputs. The possible values of this attribute are:

3Java Code Conventions: http://java.sun.com/docs/codeconv/CodeConventions.pdf
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e input,
 output,and

e constant

Datatype The data type {type} refers to the supported classification of primitive data definitions
in the schema. This classification determines the possible values for that type; the operations that
can be done on values of that type; and the meaning of the data. All arguments are typed but they

are not associated to ranges or machine built-in types. The possible values of this attribute are:

 string,

integer,

double (for floating-point numbers), and

« URI (references to files)

Nesting properties The nesting properties {nesting} contains the information to build collection of
data as arrays. An array stores a number of elements of the same data type in a specific order. They
are accessed using an index to specify which element is required. The array-based definition of the
arguments follows the array programming principles [Hellerman, 1964] where data is represented
as simple elements or scalars or collection of elements or arrays. Arrays may be nested at any depth

(multidimensional). The elements enabling the declaration of the nesting properties are:

 the dimension of the array {dimension},
« the element separator of arrays {separator},
« the initial character {beginCollection} and the final character {endCollection} identify-

ing the array scope.

Arrays are typically used to organize complex structures of data representing arguments. For
example, itis common in neuroimaging to represent an image as a set of files, where each file corre-
sponds an ordered element of the collection. In that case, the dimension of the nesting propertiesis
set to 1and so on. The nesting properties are ignored when the dimension is equal to zero because

it represents a scalar value.

Mapper The mapper {mapper} identifies the source of an argument in order to associate a value to
its content respecting the declared data type. The notion of mapper isloosely based on the definition
found in the Switft system [Zhao et al., 2007]. According to that definition a mapper is responsible
of accessing data and converting it to/from a format that conforms the defined types. The possible

values of this attribute are:

« console (default for strings, and numbers),

filesystem (default for URIs),

pattern, and

archive
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The console mapper can be associated to all data types. In this case, the value of the argument
should be taken from the standard input by parsing the value when the argument is declared as
input. Similarly, the value of the argument should be taken from the standard output when the
argument is declared as output transforming the resulting strings in formatted array representa-
tions. As convention, each line of the standard output represents a different argument value. For
example, the following line represents an three dimensions array of strings for a given output ar-

gument retrieved from the standard console:

[[{a, b}, lc]1, 0]

The file system and pattern mappers can only be associated to the URI data type. For both map-
persthevalue of the argument is a simple file reference when the argument is declared as input. On
the other hand, the value of the argument is processed differently when the argument is declared
as output. If the mapper is defined as file system, the value of the argument is associated directly as
a file reference with the name declared in the content. This implies that the resulting file exists in
the file system. If the mapper is defined as pattern, the value of the argument is processed matching
theregular expression declared in the content, returning either the first matched file reference ora
list of all matched ones. For example, in order to retrieve all files which name begin with a number

and have the IMG extension, the content of the argument is defined as follow:
[0-9].\.{IMGlimg}
The archive mapper can be associated to all data types. In this case, the value of the argument

should be taken from an additional configuration file where the structure of the content is defined

for inputs and outputs.

Implicitness The implicitness {implicitness} identifies if the argument should be interpreted as
implicit (hidden) argument in the command-line or if the argument is explicitly declared on it.
Thisboolean attribute may be declared only with URI data types. The value must be true to include a
required file thatis not declared in the command-line but it is mandatory for execution, or to obtain
aresulting file from the execution that is not declared in the command-line. For instance, the text
file with the extension MINF introduced in the running example is not defined as argument but it

is required for the execution, therefore the declaration of this extension resolves the requirement.

Space The space {space} identifies if the value of the argument is preceded by an option includ-
ing a white space in between. The value must be true to include an space before the content of the

argument.

Label Thelabel{label}orlogical name specifiesaunique, short name ofthe argument. Thisname
should be a human-readable and representative alias. The label is used to declare the argument of
the Web service operation, therefore the label must be set if the argument is declared. As a refer-

ence, the format should respect the Java identifier convention. For example:

image_1
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Option The option {option}specifiesthe preceding flag to the value of the argument. This element
is not necessary if the command line does not require it. The value of the option should be set as
declared in a terminal console including preceding dashes. For example:

Hint The hint {hint} specifies additional human-readable information of the argument. This el-
ement may be used as short description of the argument. It does not have any effect over the com-
mand-line or the execution. For example:

First volume image to combine.

Content The content {content} specifies the actual value of the argument. The notion of content
denotes a special interpretation of its attributes and embedded elements because the metadata of
the content should be resolved dynamically in function of the assigned values. For instance, in the
running example the content associated to the first argument (-i) denotes a replacement resolution.
It means that the base name of the argument is used to resolve the second file component of the
image associated with the extension hdr.

A set of attributes defines the nature of the content, and its details are defined using indepen-
dent elements. The content is defined based on a resolution model attribute, or alternatively on
a boolean attribute to describe the template resolution. Both attributes have enumerable values
declared explicitly in the schema. The elements enabling the declaration of the content are: the

matter and a list of extensions.

Resolution model The resolution model {model} identifies the dynamic processing used to re-
solve the values of the argument based on a reference potentially combined with a list comple-
mentary information. This resolution is performed when the content of the argument does not
represent directly the actual value used in the command-line. The possible values of this attribute

are:

« regular (default),
« directory,
« replace, and

e expand,

The regular resolution model can be associated to all data types. In this case, the value of the
argument does not require any dynamic resolution. It should be taken directly as parameter of the
Web service operation and then as part of the command-line, when the argument is declared as
input. If this resolution model is set then the declaration of the list of extensions is ignored. For
example, the image file lwtest without its header file can be obtained if the resolution is defined
asregular and the content is set to:

lwtest.img

The directory, replacement, and expansion resolution models can only be associated to the URI

data type, performing a dynamic resolution to resolve the real file references at file system level.
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If the resolution model is defined as directory, the value of the argument corresponds to the
file reference’s file name. The list of files contained in the file reference’s file name are expected
as real values for the application. If this resolution model is set the list of extensions is ignored.
For example, when all files resulting from the execution including original binaries are expected
as results in a directory the content is set to (the dot character implies current working directory in

Unix-like operative systems):

If the resolution model is defined as replacement, the value of the argument corresponds to the
file reference’s file name (with a base extension). References resulting from the combination of the
file reference’s file name (without extension) and each declared extension in the list of extensions
are expected as the actual values for the command-line execution. For example, using the running
example the expected files for the first image have the IMG and HDR extensions, but only the IMG
file should be declared on the command line, so the content is set to:

lwlebge.img

Then the list of extensions includes the value:

hdr

If the resolution model is defined as expansion, the value of the argument corresponds to the
combination of the file reference’s file name (without extension) and each extension declared in
the list of extensions. References resulting from the combination of the file reference’s file name
(without extension) and each declared extensions in the list of extensions are expected as real val-
ues for the command-line execution. For example if a given output or input requires several files
with the same base file name but different extensions and all files should appear in the final com-
mand line, the content is set to:

lwlebge

Then the list of extensions includes the values:

img,hdr

Although last two resolution models map the same image the argument differs because the
resulting values is respectively (assuming other values by default):

lwlebge.img

and

lwlebge.img lwlebge.hdr

Matter The matter {matter} contains the raw value of the content. It is represented as a se-
quence of characters but the actual value is denoted by the data type after the content resolution.
For example:

lwtest.img

Extensions list The extensions list {extensions} contains a coma-separated collection of file
extensions, without extension separator. This element is required for the content resolution when
the data type is defined as URI. For example:

img,hdr
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2.3.1.9 Interface example

In order to show the resulting metadata description of the running example, its first argument is
set in Figure 2.5. In this case the type of the argument with the label “image_1" is a URI. The con-
tent value will be set after execution because it represents an input argument. It uses a file system
mapper in combination with a replacement resolution model. This enables to manage the HDR file
associated to the parameter. This argument is explicitly declared and uses an space between the op-

u_an
-l

tion “-i". The argument represents a scalar, it means the dimension is 0 (zero) therefore the nesting

properties are ignored.

<nsl:argument nsl:identifier="07cc694b9b3fc636710fa08b6922c42b"
nsl:hookup="input"
nsl:type="URI"
nsl:mapper="filesystem"
nsl:implicitness="false"
nsl:space="true">
<nsl:label>image_1</nsl:label>
<nsl:option>-i</nsl:option>
<nsl:hint></nsl:hint>
<nsl:content nsl:model="replace" nsl:template="false">
<nsl:matter></nsl:matter>
<nsl:extensions>hdr</nsl:extensions>
</nsl:content>
<nsl:nesting>
<nsl:dimension>@</nsl:dimension>
<nsl:separator>&quot;,&quot;</nsl:separator>
<nsl:beginCollection>&quot;&quot;</nsl:beginCollection>
<nsl:endCollection>&quot;&quot;</nsl:endCollection>
</nsl:nesting>
</nsl:argument>

Figure 2.5: Declaration of an application's argument

2.3.2 Implementations

The description of the implementations {implementations} includes the configuration variables
and the resources of the service that are required to execute the command-line application. This
definition includes the concepts of artifact and environment as part of a hierarchical organization.
This organization endorses the reuse of such variables/resources when they are common in the
definition hierarchy avoiding, at the same time, repetitive definitions or redundant packaging of
files.

Theimplementations are defined as an implementation list. They correspond to different builds
of the same application. At least one implementation must be declared as part of the implementa-
tions. Each implementation {implementation}includes arelease version {release}, acollection of
platforms{platforms},aglobal environment{configuration},anda global artifact{attachment}.

Similarly, the platforms are defined as platform lists. They relate to different computing infras-

tructures. Atleast one platform mustbe declared as part of the platforms. Each platform {platform}
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is defined by an infrastructure. The platform includes a collection of profiles {profiles}, a shared
environment {sharedEnvironment}, and a shared artifact {sharedArtifact}.

Atthe deepestlevel, the profiles are defined as a profilelist. They represent different computing
architectures. At least one profile must be declared as part of the profiles. Each profile {profile}is
defined by a programming model. The profile includes the main application file {target}, abound
environment {boundEnvironment}, and a bound artifact {boundArtifact}.

The final composition of implementations, platforms and profiles should include at least one
artifact by branch because it contains the main application representing the service. The resulting

alternatives of the composition may be induced from the syntax diagram shown in Figure 2.6.

o>—] release | L[ environment pJ }

L_ i N
environment p \y
G
G

J

L— normal [ target I <

mpi-mpich2

Figure 2.6: Syntax diagram of the implementations. The diagram describes possible
paths between elements by going through other non-terminals definitions and the
terminals values. Terminals are represented by round boxes while nonterminals are
represented by square boxes.

2.3.2.1 Artifact

The artifacts contains a URI to a compressed file reference that includes the resources of the appli-

cation such as binary files, libraries, and configuration files. For example:

file:///usr/local/share/aims-package.zip

2.3.2.2 Environment

The environment specifies the configuration variable(s) needed for the execution of the application

like the PWD variable that represents the current working directory on the Unix-like systems.
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2.3.2.3 Infrastructure

The infrastructure {infrastructure} identifies the target computing infrastructure where the ap-
plication may be executed. The default value implies that the application does not require to be

executed on a distributed computing infrastructure. The possible values of this attribute are:

single (default),

« egi (for the EGI production grid),
« g5k (for the Aladdin/Grid'5000 research cluster),
« pbs (for portable batch systems clusters) and,

e other

2.3.2.4 Programming model

The programming model {job} identifies the implementation required to execute the application.
It is associated to the communication protocol in parallel computing. The default value implies
that any parallel implementation is required to execute the application. The possible values of this

attribute are:

« normal (default),
e mpi-lam,
e mpi-mpich,

e mpi-mpich2,

2.3.2.5 Implementations example

A complete example of the implementation description is shown in Figure 2.7. It declares one re-
lease 1.0.0 to be executed on the egi production Grid using the default programming model normal.
The executable binary AimslinearComb is set explicitly. All the resources (main binary and system
libraries) needed for execution are grouped on the aims-package.zip artifact. Any common or shared

artifacts, nor global configuration or shared environment are declared.

2.3.3 Related work

Several schemas for the description of cLI applications are proposed in the literature. For instance,
the open software description [van Hoff et al., 1997] was created to distribute applications over the
network but it is more oriented to contexts describing hardware dependencies, and ease the auto-
matic installation /upgrade of software components than describing the application's invocations.

Other examples are Soaplab2 using AcD [Senger et al., 2003], and GEMLcA using LcID [Kiss et al.,
2005]. These approaches focus on domain-specific applications or well-described input/output
parameters. They do not take into account collections of data nor the dependencies associated to
the execution of the application. Moreover, the description of implicit parameters or parameters
linked to multiple data, cannot be described using those formats. Another example of descrip-

tion with a defined schema is the LonNI Pipeline. It includes definitions quite similar to the ones
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<nsl:implementations>
<nsl:implementation>
<nsl:release>1.0.0</nsl:release>
<nsl:platforms>
<nsl:platform nsl:infrastructure="egee">
<nsl:profiles>
<nsl:profile nsl:job="normal">
<nsl:target>AimsLinearComb</nsl:target>
<nsl:boundEnvironment/>
<nsl:boundArtifact>file:///aims-package.zip</nsl:boundArtifact>
</nsl:profile>
</nsl:profiles>
</nsl:platform>
</nsl:platforms>
</nsl:implementation>
</nsl:implementations>

Figure 2.7: Declaration of the application's implementations

presented in the description of cr1 applications. However, the declaration of applications is done
in combination with the modules compositions therefore they do not represent independent ser-
vices. On the other hand, Gasw [Glatard et al., 2006a] does not provide a declared schema. The use
of ad-hoc formats does not allow users to identify all the features and compare them with others
at xML-level because they are interpreted in the business code directly.

Considering the representation of data, the xmrL Dataset Typing and Mapping (xDTM) [Moreau
etal., 2005] is used in SwiftScript to define a mapping between the logical organization of data and
their underlying physical structure. It is used to represent files as structured collections but other
data types are not considered.

The description of cL1 applications has also been considered in Grid computing. The Job Def-
inition Language jpL [WMS-JDL] is used to submit jobs to the Grid describing an application, its
parameters, input/output data, etc. The difference with the model presented in this section is that
the JpL language specifies instances of execution, not applications metadata.

The model presented in this section is comparable to general approaches like jsoN* for repre-
senting data collections, assuming the natural differences of scope and implementation. First, JSON
is not domain-specific, in the sense that it is not defined to describe cLI applications. Otherwise,
JSON does not allow to override the separator, or the array identifiers. However, it declares strings
using quotes, making possible to differentiate between singleton arrays and empty values. This
latter characteristic becomes a feature in the definition of the proposed schema because most of
real cases (i.e., Unix-like tools) do not use quotes to describe the arguments in order to represent
valid strings. For instance, with JSON an array of strings looks like [“one", “two”, “three"], using the
schema defined in this model, the same array looks like [one,two,three], or <one;two;three>, or
even one two three (without braces and with spaces as separator). However with JSoN the arrays [“”]
and [| have different meanings, singleton array and empty array of a given value respectively, but

using our proposed schema is only possible to define the second array. Alternatively, JSON or other

*JsonN: http://json.org/

35


http://json.org/

MODELS FOR EFFICIENT REUSE OF CLI APPLICATIONS

data serialization formats such as YALM® may replace the default convention used in this work to
define uniform collections of data, letting the possibility of overriding the nesting properties. This
has an important impact in the description of cLI applications because most of them use simple
lists separated by spaces to represent simple collections fitting the default command-interface en-

vironment.

2.4 Discussion

Three contributions are presented in this chapter in order to enable the efficient reuse of cLI appli-
cations. A hybrid approach for the execution of services, a simple model for efficient use of local
resources based on composition of services, and a schema for the description of applications.

The hybrid approach provides a bridge between the distributed computing environments and
service-oriented architectures, capitalizing on the features of both models. In combination, the re-
sulting approach takes care of intensive computing availability offered by High Throughput Com-
puting environments for efficient executions. It addresses technical challenges respecting open
standards and transparency at different levels. However, there is no intention to specify aspects
tied to any particular solution. Nor to modify the behavior or fix any defects of cL1 applications by
improving tolerance to invocation errors or security during execution.

The model incorporating local resources as part of the execution environment along with DcCI
strengthen the hybrid model because it improves the reliability of production environments and
reduce the execution latency by a balanced and scalable integration of servers instances.

The definition of the model to characterize cLiapplications is an intermediate layer between the
description of applications from an operating system point of view [POSIX.1-2008], and the repre-
sentation of domain-specific knowledge associated to them. In fact, the design of this definition
honors soA specifications like the wspL of W3C [Christensen et al., 2001]. The resulting cLI appli-
cation description may be considered as a standard representation.

The models presented in this chapter are a natural evolution of Gasw [Glatard et al., 2008].
They represent incremental efforts to reuse cLI applications taking advantage of distributed com-
puting infrastructures and the soa principles. A fine description of applications is formalized, and
the approach to resolve the allocation of resources is described as well. This conceptual contribu-
tion is the base of a reference implementation detailed in the chapter 3 that shows the relevance of
this approach as a non-intrusive cLi-application wrapper and dynamic re-allocator on distributed

infrastructures.

SYALM: http://yaml.org/
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Chapter3

Reference Implementation Framework

The Java-based Interoperable Generic Service Application Wrapper framework (jigsaw), described
in this chapter, is a Reference Implementation of a modular system that implements the mod-
els detailed in Chapter 2. It generates services wrapping CLI applications as services. These ser-
vices have operations to perform the execution of such applications on the host server or on dis-
tributed computing infrastructures. The jigsaw framework also takes into account the integration

of non-functional concerns.

Thejigsaw framework provides much more than a mere invocation interface to cLIapplications.
It provides a complete mechanism to package applications and their dependencies into a service
artifact. It deploys those artifacts on a server and publish them as standard Web services. As an
execution interface, jigsaw is also involved with the remote invocation, including files transfer for
proper processing of remote resources. Jigsaw therefore provides a full range of functionality, mak-
ing the services autonomous, relocatable and compliant to the target infrastructure for execution.

The framework is composed of three independent but complementary modules:

1. An end-user interface for creation and deployment of services
2. Aresource allocation engine hosted on a WS container

3. A generic programmatic interface for services invocation

The end-user (graphical and command-lined) interfaces are based on the specification intro-
duced in Section 2.3. Similarly, that specification is used to implement a library set hosted by a
service container that works as the engine for dynamic resources allocation. This allocation en-
ables the execution of cL1applications using Web services leveraging the convergence of the global
computing and SOA principles described in Section 2.1. Conversely, the API for services invocation
represents an independent module in terms of implementation. It enables the standardized and
transparent consumption of Web services. These three modules are detailed below following the

lifecycle of services in the framework.
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3.1 Lifecycleof services

The lifecycle describes the process of creation, deployment, and invocation of services. The jigsaw
framework defines a service as a unitary bundle. A service is created wrapping the cLI application
in an artifact along with its description and all the required resources to execute the application
like other binaries or programming scripts, libraries, and configuration files.

Once the service is created, the framework publishes the service deploying the artifact on a ser-
vices container. An interface based on the description, exposing the application as standard Web
service, is generated during this process. At this point, the service is ready to reallocate dynam-
ically all the bundle resources on different computing infrastructures through the jigsaw engine
configured on the server. The deployment on the services container for the dynamic reallocation
represents the implementation of the hybrid model introduced in Section 2.1.

The invocation of the operations declared on the service are performed by clients implementing
consumers of the Web service. The jigsaw framework provides an API to carry out this task. Any
Web service contract, derived from the schema defined in Section 2.3, may be interpreted and then
invoked with the same methods retrieving the results of the remote execution. A high level view

diagram of the whole lifecycle of services in the jigsaw framework is shown in Figure 3.1.
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Figure 3.1: Lifecycle of services in the jigsaw framework. From Left to right: (A) the
service is built using a description and generating stubs and configuration files; (B)
the service is deployed on a services container ready for dynamic reallocation on
DCls or Llocally; (C) the invocation of services is granted by a generic API or direct
calls using standard WS calls by providing references to the datasets.

3.1.1 Creation and deployment of services

From the end-user point of view, services are created automatically using the graphical interface
illustrated in Figure 3.2. The procedure aims at being as simple as possible, filling in the description
form that includes the details of all arguments and the execution environment. An artifact repre-
senting the service is generated after the description is done. The transformation mechanism of
the description into the service interface, and the packaging of resources in the artifact are trans-
parent to users. The resulting file is a portable artifact because it can be deployed on any configured

server. Thus users are only aware of the deployment endpoint reusing the artifact conveniently.
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Attachment:  [hin/date
Argument r Environment rDescriptiun |
Executable: date
ime { output: STRING ), w/o command-line option
Service name; oare |
version: Loo |
Organization: [Free Software Foundation, Inc. |
Copyright: lGPL |
Reference: [coreutils | I:'
Address: | bug-coreutils@gnu.org |

Figure 3.2: GUI of client application for generation of services

The description of the cLI application represents the metadata. This metadata is modeled us-
ing the XML schema detailed in Section 2.3. That schema is the starting point to create the service
because it provides a data model to express the structure and constrains of the application. The
generation of the service consists in transforming the description into a WS interface.

Data binding gives a useful object view of the metadata without losing access to the original in-
formation, and delivers performance benefits using unmarshalling and efficient methods to access
xML schema build-in data types. JaxB,' an open source tool, provides a data binding mechanism
by automatically creating a mapping between elements of a XML schema to bind, and the members
of a class to be represented as objects in memory. It takes advantage of the richness and features of
XML giving a full schema support and the corresponding Java classes. JAXB provides an XML fidelity
keeping the full infoset after unmarshalling in an XML instance, and honors schema constraints.

There are two approaches to create Web services: the top—down or “contract first” based on the
initial declaration of the wsDL document; and the bottom-up or “implementation first” working
with the source code and later generating the wsDL associated to that code. The bottom-up ap-
proach is a suitable scenario for the jigsaw framework because the service interface may be gener-
ated as Java code using the metadata of the application and the data model transformation resulting
from the data binding.

Jigsaw implements a scaffolding approach to transform the metadata into source code [Sellink
and Verhoef, 2000]. The transformation is based on a template engine that provides sources and
the required files to let the server interpret that code after compilation. This approach of dynamic
generation of code is required because all service interfaces are customized for each wrapped appli-
cation. The names and data types of all input arguments detailed in the description are preserved
in the resulting Web service description as well as the expected outputs. The generated wsDL de-
clares the cL1 application metadata as WS-compliant data types. These types are used in the soAP
messages for the invocation of the service.

Jigsaw internally uses Velocity,” an open source tool that defines a simple template language

used to create and render documents that format and present a data model as macros. Nonethe-

JaxB: http://jaxb.java.net/
2Apache Velocity: http://velocity.apache.org/
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#tmacro( varname ) $extra.toLowerCase($argument.type)$argument.label #end
#macro( vartype ) $extra.tolavaType($argument.type) #end
#macro( varspace )
@WebParam(name = "$argument.label"”, targetNamespace = "http://i3s.cnrs.fr/jigsaw") #end
#macro( varbracket ) $extra.getBrackets($argument.nesting.dimension) #end

#tset($inlength=$extra.getInLength($application))
#set($suffixclassname=$extra.getSuffixClassName($application))
package jigsaw.ws;

@WebService(serviceName = "$application.getSymbolicName()-$application.version"”,

portName = "jigsawPort", name = "jigsaw", targetNamespace = "http://i3s.cnrs.fr/jigsaw")
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.WRAPPED,

style = SOAPBinding.Style.DOCUMENT, use = SOAPBinding.Use.LITERAL)
public class Jigsaw$suffixclassname {

@Resource private WebServiceContext wsContext;

@webMethod(operationName = "local")
@WebResult(name = "localResult", targetNamespace = "http://i3s.cnrs.fr/jigsaw")
public JigsawOutput$suffixclassname local(
#if ( $inlength > 0)
#set($counter=1)
#foreach($argument in $application.arguments)

#if ($argument.hookup == "INPUT")
#if ($counter < $inlength) #varspace() #vartype() #varname()#varbracket(),
#else

#varspace() #vartype() #varname()#varbracket())
throws SOAPException {
#end
#set($counter=$counter+l)
#end
#end
t#telse ) throws SOAPException {
#end
JigsawOutput$suffixclassname output = new JigsawOutput$suffixclassname();
try {
Object[] objects = null;
Description description = DescriptionFactory.getInstance(this);

output = (JigsawOutput$suffixclassname) activity.fire(new Object[]{
#if ($inlength > 0)
#set($counter=1)
#foreach($argument in $application.arguments)
#if ($argument.hookup == "INPUT")
#if ($counter < $inlength) #varname(),
#else #varname()});
#end
#set($counter=$counter+l)
#end
#end
#telse objects});
#end

Figure 3.3: Snippet of the Velocity template used to generate the service skeleton
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package jigsaw.ws;

@WebService(serviceName = "brain_map_sum-1.0.0",portName="jigsawPort",
name = "jigsaw", targetNamespace = "http://i3s.cnrs.fr/jigsaw")
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.WRAPPED,
style = SOAPBinding.Style.DOCUMENT, use = SOAPBinding.Use.LITERAL)
public class JigsawBrain_map_suml00 {
@Resource
private WebServiceContext wsContext;

@WebMethod(operationName = "local")

@WebResult(name = "localResult", targetNamespace = "http://i3s.cnrs.fr/jigsaw")

public JigsawOutputBrain_map_sum1@@ local(
@WebParam(name = "image 1", targetNamespace = "http://i3s.cnrs.fr/jigsaw") URI uri_image_1,
@WebParam(name = "a", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_a,
@WebParam(name = "b", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_b,
@WebParam(name = "image 2", targetNamespace = "http://i3s.cnrs.fr/jigsaw") URI uri_image_2,
@WebParam(name = "c", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_c,
@WebParam(name = "d", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_d,

@WebParam(name = "e", targetNamespace = "http://i3s.cnrs.fr/jigsaw") Double double_e,
@WebParam(name = "o", targetNamespace = "http://i3s.cnrs.fr/jigsaw") URI uri_o)
throws SOAPException {
JigsawOutputBrain_map_suml00 output = new JigsawOutputBrain_map_sum100();
try {
Object[] objects = null;
Description description = DescriptionFactory.getInstance(this);

output = (JigsawOutputBrain_map_suml00) activity.fire(new Object[]{ uri_image_1,
double_a, double_b, uri_image_2, double_c, double_d, double_e, uri_o});

Figure 3.4: Snippet of the resulting Java source code of the service skeleton

less, the approach described here is valid with any template-based engine. Velocity aims at en-
suring a clean separation between the representation and the business tiers using context objects.
This representation is merged with the template (Figure 3.3 shows an excerpt of the template, de-
tails on the implementation are in Appendix 6.4) to produce the source code of the service and the
configuration files. The context object is a central concept of the engine. It is the carrier of data
between the model representation of the information layer and the template. Since the data model
is represented as objects, Velocity makes them directly accessible via the references defined in the
template and substitutes the values with the instance of the description (see also Figure 3.4 for the
corresponding excerpt of the Java code generated from the template code of Figure 3.3 after substi-

tuting object values and processing the macros). The template-based procedure generates:

o a WS interface based on the standard specification of Web services,
« aconfiguration file of the WS engine, and

« aconfiguration file of the services container.
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Different specifications exist to build Web services from Java code. Some of them are inde-
pendent efforts such as the Apache Axis implementation,® and others are based on standard Java
Specification Requests. The latest specification for WS applications and clients is the Java Ap1 for
xML Web services® (jax-ws). This specification replaces the jax-Rpc API reflecting the move away
from RPC-style. JAX-wS represents the “modern” Java SOAP implementation of Web services mak-
ing extensive use of the annotations mechanism introduced in Java 5 and strategically aligns itself
with the current trend towards a more document-centric messaging model. The use of annota-
tions simplifies the implementation and eases the service development. Based on Plain Old Java
Objects, containing the implementation of the WS interface, the annotations are included in the
code describing details such as service identification, SOAP binding, namespace and operation de-
scriptions, among others. All these details are instantiated during the merging step of the code
generation and they are used to be compiled into byte-code ensuring better platform independence

for Java applications.

Jax-ws uses JAXB as default data binding to process the message marshalling /Junmarshalling.
These operations map the Java types into WsDL types and vice versa. The resulting mapping called
WS method stubs are part of the final service and they are used to communicate with the client all
along the invocation. In terms of solutions supporting jax-ws, Sun Metro® implements all the spec-
ification and it is distributed on major application servers. Metro needs to be configured on the
basis of Apache Tomcat server,® the stack engine to publish services and supports additional needs

like mTOM, useful for the service attachments manipulation.

The services have to fulfill a format and configuration for deployment. Following the Tomcat
server architecture, all services are deployed in form of a Web Application Archive (WAR), a spe-
cial jARr file used to distribute a standard Web application. In the case of the jigsaw framework this
archive includes configuration files (sun-jaxws . xm1 and web . xm1); the description of the resource;
the wrapped cL1 application; the dependencies, when they are necessary; and the Java classes rep-

resenting the WS interface and the stubs.

During deployment the services container sets up new services at runtime without interrupting
its normal operation (i.e., there is no need to restart the server). This quality, known as hot deploy-
ment, is a trending feature implemented in current technologies such as 0sGi” or Apache Tomcat.
A service is identified by two elements that are unique in the deployment scope. First, the service
name, a combination of the symbolic name and the service version assigned during the character-
ization of the description. Second, a service location, that is interpreted as a URL pointing to the
description (wsbDL) of the Web service. Just after the deployment, this description is available be-
coming the service contract. This service is ready for invocation. Removing the deployed services
releases safely the reference to the service from the container; and from the list of services pub-

lished on the server.

3Apache Axis: http://axis.apache.org/
YJax-ws: http://jax-ws.java.net/

5Sun Metro: http://metro.dev.java.net/
6Apache Tomcat: http://tomcat.apache.org/
70sGi: http://www.osgi.org/

42


http://axis.apache.org/
http://jax-ws.java.net/
http://metro.dev.java.net/
http://tomcat.apache.org/
http://www.osgi.org/

Lifecycle of services

3.1.2 Runtime dynamics

The core functionality of the jigsaw framework, besides the provision of services, is the instrumen-
tation of the logic related to the interpretation of the arguments, dependencies configuration, and
the execution. This operative process is organized in three parts: data marshaling, resource allo-

cation, and data management.

Data marshaling

A service has arguments described with different data types and structures. Similarly, the results of
an execution should match the description of provided outputs. The framework takes the original
results of an execution and forwards them preserving that structure and data typing declared on
the description of the cL1 application. This interpretation is mandatory to correctly process inputs
and outputs of the service. Although the description of a Web service provides the basic infor-
mation of arguments, this information is not sufficient to identify implicit CLI parameters nor the
special connotation of a unique reference (i.e., URI address) as a group of multiple files represent-
ing a specific format. Furthermore, when the results are not files, they are commonly presented in
the standard output as sequences of strings. This is the reason to interpret these outputs after ex-
ecution using the description of the application. This task involves parsing, casting, and mapping
the results into the right structure to finally return the expected value. The framework reproduces
as much as possible the structure organization resulting from the execution.

In the jigsaw framework the resulting structures are defined as (nested) arrays when the out-
put represent more than a simple value. Nevertheless the interpretation of outputs is not trivial
because each application may represent its results organization arbitrarily. If an application pro-
vides such a result, the output should be adapted for being jigsaw-compatible. This is done using
the nesting properties defined in the description.

In practice, the interpretation of parameters is done using data marshaling/unmarshaling in
two different circumstances. First, the transformation between Java native types and SOAP mes-
sages to communicate during service invocations is performed by the servlet engine using JAXB.
All parameters of the description are represented in Java source code and then compiled in order to
be interpreted by the Java Virtual Machine. This transformation is exhibited in the wsbL document
and the schemes of the service messages. Second, internally the framework also performs other
transformations to interpret the description of the application at runtime associating the correct
types and structures of the incoming input data, and matching the results. This dynamic transfor-
mation associates non-typed data into Java objects before and after the dynamic resource alloca-

tion.

Resource allocation

The execution instrumentation interprets the description of the application building the complete
command-line to execute, resolving the inputs, and setting up the environment of execution. On

the execution endpoint, an isolated sandbox is created and then all necessary data is retrieved on it
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before execution. This execution can be performed directly on the services container host as a lo-
cal execution or it can be strategically delegated using distributed computing infrastructures. The
local execution is the simplest and the default jigsaw runtime instrumentation. Since the applica-
tion runs in the same place where the service is hosted, multiple instances of heavy-demanding

applications are not suitable and a remote relocation should be contemplated for these cases.

Following the proposed hybrid model introduced in Chapter 2, a remote execution of an appli-
cation may be performed transparently but it requires relocation of the resources on remote end-
points and additional management of the infrastructure components. On the EGI production grid,
for example, this execution implies using several components of the grid infrastructure such as
the Workload Management System (wMs), file Storage Elements (SE), the Logging and Bookkeep-
ing (LB) service, and Computer Elements (CE). The correct execution on the grid involves strategies
from the submission to monitoring procedure or alternative mechanisms of execution like pilot
jobs [Casajus et al., 2010]. A sequence diagram of the steps during grid execution is presented in

Figure 3.5. The diagram shows a simplified sequence of the jigsaw operation invocation:

1. The client invokes the execution operation of the Web service.
2. The application is submitted to the grid using a wMms.
3. The actual execution is delegated to a CE and a job identifier is registered on the LB service.
4. The Web service, acting as submitter, receives a job identifier to trace the progress.
5. The input data is staged from a source. This source may be a database, and SE, etc.
6. The command line is built with the fetched data.
7. The cLIapplication is fired.
8. The Web service ask the status of the execution periodically (loop).
9. The LB service check the status of execution on the CE (loop).

10. The CE provides the updated status of the execution (loop).

11. The status is returned to the Web service until it is done (loop).

12. After a successful execution the results are saved on a SE.

13. The Web service obtains the references of the results.

14. The references to those results are returned to the Web service.

15. The client receives the results of the execution.
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Figure 3.5: Execution sequence on production grids

Data management

Part of the instrumentation process involves the data transfer resulting from the file manipulation
during execution of services. The data management is necessary to provide inputs to services, store
results and return them to the client. Indeed, for performance reasons, the files themselves are
never transferred as part of the service invocation messages; a dedicated data transfer mechanism
is used instead. Furthermore, on distributed infrastructures, files are directly transferred between
nodes and they never transit through the jigsaw engine which would become a potential bottleneck
in data-intensive applications. On the other hand, if the service receives references to files, they
are staged to the execution place managing the different protocols such as grid FTP or HTTP, and
file schemes like the grid LFN or local FILEs.

Two scenarios are figured out regarding data transfer after the execution of an application. In
the first scenario, jigsaw publishes into a public space all the resulting files if they are inaccessible
to the remote client. Usually this case happens in a local execution when the outputs are defined

using local file references. For this case, a translation of the reference location is performed in
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favor of a suitable protocol, by means of data transfer between the execution point and the final
storage place. In the second scenario, jigsaw registers all resulting file produced during the execu-
tion on a remote storage resource, then reports the file references to the client. In both cases files
are delivered to the client using additional data transfer operations. This scenarios guarantees the
permanent availability of results as well as scalability. In fact, scalability is never affected because
data is processed during the metadata resolution without explicit data transfers. This implies data
is never associated to the application, and the final results stay persistent contrary to the execution

instance.

3.1.3 Invocation of services

The generic client ApI to invoke services is the third module of the jigsaw framework. The ApI pro-
vides methods to interpret a WS description, and invoke an operation with the input arguments.
Besides, it is possible to use the same AP1 to invoke third-party Web services aslong as such services
meet the JAX-ws specification, and the declared data does not define personalized messages.

The ap1defines parsers for interpreting the wspL and their associated schemes; and consumers
for dispatching the messages to the server and obtaining the results. The parsers define several

signatures of the following methods:

» getServices, to obtain the endpoints on the service,

» getPorts, to obtain the implemented ports of the endpoint,

« getOperations, to obtain the declared operations of a port,

» getRequestSequence, to obtain the elements expected by an operation, and

» getResponseSequence, to obtain the elements expected as the result of an execution.

The consumer may reuse the information provided by the parsers to consume a WS operation.

It also defines several signatures of the following methods:

« dispatch, to invoke an operation synchronously,
» invoke, to submit an input request asynchronously, and

» getResponse, to obtain the results from an asynchronous dispatch.

Using Web services the interoperability is granted between clients and servers thanks to the
messaging protocol independence. Consumers dispatch a well-defined message and wait for the
result. This action is possible creating messages with the references retrieved from the description
associated to their corresponding values and send them to the server. The jigsaw API client imple-
ments a dynamic method to consume Web services. This method involves a generic dispatch client
that offers flexibility to reuse the same operations to perform the marshaling/unmarshalling and
invoke different Web services. The dynamic method is a pure XML messaging-oriented client and

requires advanced use of SOAP message construction and interpretation because each operation
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provides a different response message. Despite the different SOAP messages, since each server im-
plements the same definitions with different formats, the processing of the server response is per-
formed transforming the SOAP messages into objects that can be interpreted by the data binding
of the framework. Nevertheless, it is necessary to pay special attention to the format specificness
of the soAP messages because in practice is not possible to test all types of SOAP message imple-
mentations. In the case of jigsaw the support of Metro messages is granted to parse and execute
the services based on the JAX-ws specification. Description of services can be interpreted for other
types of services but the dispatch and processing of incoming messages is not possible due to po-

tential implementation incompatibilities.

3.2 Non-functional concerns integration

Non-functional concerns define the expected qualities of a system that are not associated directly
to the business logic of the framework. They are constraints, requirements or goals observable in
parallel to the normal behavior of the system. Several non-functional concerns can be integrated
within the jigsaw framework. For example, we developed support for three non-functional con-
cerns to address the needs of the NeuroLOG and vIP projects: (i) a strong and distributed access
control policy to prevent unauthorized invocations, including logging and accounting, (ii) seman-

tic annotations support, and (iii) multi-platforms execution.

3.2.1 Access control, logging and accounting

The support of access control, logging and accounting are optional in the framework like all non-
functional concerns. However access control plays a different role compared to logging and ac-
counting. Access control is a major concern for authentication and authorization that must be en-
forced permanently in distributed environments [Gaignard and Montagnat, 2009]. Itis alow-level
architecture layer based on the management of user credentials validated by external certification
authorities [RFC 5280]. Therefore, access control must be implemented within a system environ-
ment accordingly to reference standards (e.g, X.509 for public key infrastructure or the TLS/SSL
secured transport layer). Conversely, the logging and accounting are only integrated for monitor-
ing the execution of services though an ad-hoc implementation. They are not used to accomplish
the executions however these concerns are required in the context of the system deployment. Log-
ging and accounting provide a mean to track services across the framework during the complete
lifecycle but their introduction into the framework or their absence is up to the manager.

These concerns canbe integrated within the jigsaw framework without impacting the data mod-
eling nor the core application. The access control introduction involves to manage user'’s creden-
tials before the execution of the cLI application. The credentials are passed to the service provider
as part of the headers of the SOAP message to invoke transparently an operation. Thus the execu-
tion processing is not modified with the inclusion of credentials validation. On the other hand, a
similar code integration to access control, logging and accounting is reflected during the service
generation. The source code of both kind of concerns can be inserted into the template in order to

be merged with a description instance. This process generates the final Java code used to create the
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WS interface, as is shown in Figure 3.6. Finally, each concern is automatically enabled at runtime

once the libraries implementing these requirements are added to the framework dependencies.

package jigsaw.ws;

@Resource private WebServiceContext wsContext;

private boolean checkAuthentication() throws ServerException {
AuthorizationManager authorizationManager = null;
try {
authorizationManager = AuthorizationManager.getInstance();
} catch (IllegalAccessException e) {
throw new ServerException("User authentication failed");
}
return authorizationManager.isAuthorized(wsContext, "exec",
"$application.getSymbolicName()-$application.version");

@WebMethod(operationName = "local")
@WebResult(name = "localResult", targetNamespace = "http://i3s.cnrs.fr/jigsaw")

JigsawOutput$suffixclassname output = new JigsawOutput$suffixclassname();
try {
if (checkAuthentication()) {
AuthorizationManager authorizationManager = AuthorizationManager.getInstance();
String callerDN = authorizationManager.retrieveCallerDN(wsc);
TraceManager.getInstance().genTrace(callerDN, "Invocation of service :
"$application.getSymbolicName()-$application.version");

+

Object[] objects = null;
Description description = DescriptionFactory.getInstance(this);

t#telse objects});
#end
} else {

TraceManager.getInstance().genTrace(
AuthorizationManager.getInstance().retrieveCallerDN(wsc),
"Unauthorized invocation of service : "
"$application.getSymbolicName()-$application.version");

throw new ServerException("Your are not authorized to invoke this tool");

}

+

Figure 3.6: Snapshot of the modified template listed in Figure 3.3 including in bold
the code snippets for access control (checkAuthentication operation) and ac-
counting management (TraceManager)

3.2.2 Semantic annotations

Semantic representation of information has become broadly used to enhance platforms with do-
main-specific knowledge. This representation aims at facilitating platform usage, sharing of ex-

perimental data and results, and experiments themselves fostering collaborations. Ontologies, in
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domain knowledge conceptualization, became a cornerstone for the underlying information sys-
tems, as they are built upon controlled vocabularies, logical constrains and inference rules. Soa,
generally relates to those platforms, provides dedicated tools for the publication, the identification,
and the invocation of services. However the technical description of services, like wspLs and data
schemes, does not provide any understanding on the nature of the information processed nor on
the applied operations. Therefore, the exploitation of catalogs of data processing services requires
a clear understanding of how data is processed and the nature of the data transformation imple-
mented by the services.

Generating semantic annotations, before execution to validate inputs, during processing or
even after execution to add the new information to the knowledge base, implies matching tech-
nological concepts like elements of the service messages with concepts specific to the application
domain that represents high level characteristics. This generation may reuse the wspL information
and the intrinsic information of the cLI application contained in the jigsaw description published
as part of the Web service. The use of the cLI description tends to explicit the understanding of
the nature of processed data, and the nature of the information of the applied processing to bene-
fit, both at experiment design-time and runtime. This approach tackles three aspects of semantic
services, leveraging existing ontologies to describe generic information as well as domain-specific
nature of data and processing tools [Batrancourt et al., 2010]: (1) it clarifies the binding between ser-
vice descriptions and domain concepts through a taxonomy; (2) it enables the coherency of service
composition design; and (3) it makes possible to infer new knowledge along the platform exploita-
tion. This last point is achieved by describing reusable domain-specific knowledge inference rules
associated to specific natures of processing. The application of these rules on a semantic database
containing traces of services invocations enriches the platform with new valuable expert informa-
tion.

In the context of the VIP project, the semantic annotation of jigsaw services were integrated
through a dedicated user interface of the client application, while the record of provenance infor-
mation is stored at runtime by the service invoker. Conversely, queries of the provenance infor-
mation enable to retrieve all available annotations in order to define explicitly the semantics of its
models and simulations. The integration also provides the formal description of those applications

to be referenced semantically.

3.2.3 Multipleinfrastructures execution

To support multiple infrastructures, the model described in Chapter 2 distinguishes the applica-
tion description from the implementation(s). Each implementation may be defined for several plat-
forms. At the same time, a platform includes execution profiles, and holds information about the
artifacts and the target application. In addition, the customizable execution environments may be
defined for a specific profile or shared among the platforms of the declared application releases.
At programming level the jigsaw framework defines a general interface to implement the exe-
cution binding for each computing infrastructure such as the default local execution provided by
its core module. This represents an intermediate layer for a developer and the core framework.

The developer is interested in creating a connexion with a new infrastructure. Complementary,
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the framework processes the invocation parameters of the application (before performing the sub-
mission) and provides the results after the execution. This interface is defined as a set of proce-
dures that should be overwritten to implement: access to the target infrastructure, job instance
submission, and application execution monitoring. The resulting execution strategy also involves
to modify the service template to define an operation representing the invocation to the infrastruc-
ture. Both, the template and the implementation code, are then included into the framework as
an additional library for the generation of the service and its execution. Following this approach
other bindings like Gasw, as part of the vip platform [Ferreira da Silva et al., 2011], were success-
fully integrated in the framework. In this case, VIP reuses transparently the jigsaw data binding,
and the user’s interfaces to build services while the generation of the business code is overridden
along with the implementation of the cL1applications executor. Thanks to this extension, users not
only can dispatch executions on multiple infrastructures like pBS clusters or production environ-
ments like the European Grid Infrastructure (EGI), but they also can continue to process the input
arguments and output results with jigsaw. The instrumentation of new execution strategies does
not require extensive development because the jigsaw design abstracts the notion of independent
execution strategies without affecting the rest of the framework organization. However, the im-
plementation of a new strategy is not very common once a suitable execution method of a given

platform is defined.

3.3 Frameworkintegration into third—party software

The jigsaw framework was designed to cover stringent data flow manipulation capabilities as those
enacted by a demanding scientific workflow engine. In fact, the adoption of a standard WS inter-
faces makejigsaw completely independent from any platform. It can be used with any WS-compliant
engine (e.g., Taverna [Oinn et al., 2004], Triana [Taylor et al., 2005],BPEL [WS-BPEL, 2007]) or even
standalone applications through a generic WS client. In this perspective the jigsaw framework has
been integrated into third-party software at several levels: development API, and comprehensive
integration. As development API the integration reuses exclusively the provided operations of the
framework. The comprehensive integration, on the other hand, assemblies several projects to pro-

vide a end-to-end framework to users.

3.3.1 DevelopmentAPI

The modular conception of the framework allows developers to reuse the graphical interface, the
set of libraries implementing the runtime dynamics, or the generic invocation client as indepen-
dent modules in their own software. As a matter of fact, jigsaw is integrated in this way in the
NeuroLOG middleware. The components for the generation of services and execution are em-
bedded into the client interface, and the libraries of the jigsaw framework are configured on the
server side for the correct execution of cr1 applications and processing of results. The framework
also handles the sensitive data used as input of those applications through the data management

module. Finally, non-functional concerns are integrated in accordance with its requirements of

50



Framework integration into third-party software

non-centralized and secured platform by a personalization of the template that is used during gen-

eration of WS interfaces.

3.3.2 Comprehensive integration

Clients such as the MOTEUR workflow enactor [Glatard et al., 2008] interface with the application
tools through the jigsaw client Ap1 that facilitates the WS interface parsing and invocation. In addi-
tion, new execution strategies are included like external concerns in larger frameworks. Through
jigsaw, a client application is shielded both from details of the cLI tools invocation and from the
grid invocation interface, including data handling and Grid security credentials management. Its
role stays focused on analyzing the data flow and enforcing the coherent execution of the applica-
tion in a distributed environment by delegation to the jigsaw system. Specifically, an end-to-end
framework that facilitates the gridification of applications and their executions on different ncis
has been implemented as a natural follow-up of the implementation in combination with other

relevant projects, namely VL-e Toolkit, MyProxy, and DIRAC.

The overall framework architecture is depicted in Figure 3.7. The MOTEUR client is the front-end
component that connects the user to the rest of the framework. It is also the working environment
where users manipulate their applications at design time. A MOTEUR client interacts with the mo-
TEUR server at runtime to execute the applications with a specific dataset. The MOTEUR server is
responsible for invoking each application deployed locally or remotely through generic interfaces.
The final cL1 application, encapsulated by jigsaw, is submitted to a Dc1 by means of an intermediate
middleware such as DIRAc. During the execution, a user’s credentials may be needed for authenti-
cation with the infrastructure, thus all of framework components can connect to a MyProxy server
to fetch a proxy certificate. Finally, data transfers between executions are enabled through the VL-e

Toolkit[Olabarriaga et al., 2010] because it provides a unified view of heterogeneous file systems.

X App. Service
VLET PP 1
1
ngt) MéTEuR —
Moteur Server
Client
—
[}
) MyProxy Server

Figure 3.7: Architecture of the integration of jigsaw in a comprehensive framework
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MOTEUR, targets a coherent integration of a data-driven approach to achieve transparent par-
allelism and manipulate complex data structures. The MOTEUR client provides to users a graph-
ical interface to configure services and describe the semantics of data flows. The description is
represented by the GWENDIA workflow language [Montagnat et al., 2009], that supports the re-
quired expressiveness to represent services composition. While the MOTEUR client offers design
tools to build workflows and configure an environment of execution, the MOTEUR server provides
asynchronous invocation and orchestration of services, and improves the execution of large-scale,
data-intensive workflows. The integration of jigsaw with MOTEUR provides to final users a full
range of functionality, facilitating the reuse of scientific applications, their composition, and large-
scale experimentation.

Addressing the credentials management task, the framework supports two alternatives to cre-
ate and renew proxy certificates. The first one is to create a proxy directly from the user’s certifi-
cate file and private key granted by any Certification Authority (CA). The proxy may be used in the
MOTEUR client where the user’s credentials are available. Since at runtime services are invoked re-
motely from the MOTEUR server or a Web services container, a second alternative is used to down-
load a proxy from any MyProxy server [Kouril and Basney, 2005]. The user isjustrequired to provide
the login and password of the credential stored on the MmyProxy server. The validity of the proxy is
checked each time a connection is performed. An expired proxy will be automatically renewed
without interrupting the entirely execution of the application.

The MOTEUR client uses the operations implemented by the VL-e Toolkit to download services
descriptions and upload artifacts required for service execution. It is also used for file staging on
the services container to provide the data inputs to the application.

In summary, the integration of each tool is effective at several levels. At the front-end level,
this integration provides an interface to gridify scientific applications, and to invoke the deployed
services by means of standard Web services mechanisms or convenient bindings accessing the dis-
tributed infrastructure directly. At the back-end level, the integration gives a transparent access
to multiple Dcis. It brings to the user the ability to execute the applications on those Dcis with the

same execution and enactment engine.

3.4 Implementation outcomes

In spite of the reference implementation, some pitfalls are not resolved consistently. The jobs sub-
mission API delivered by EGI is not mature enough to be used directly in the framework in the sub-
mission of jobs or in the implementation of fault tolerance mechanisms. For this reason, the execu-
tion on distributed infrastructures is not natively introduced because there is no interface available
to work directly at the programming language level. It means that external bindings to connect the
execution manager with the framework are implemented overriding the default submission mech-
anism as an external execution strategy using third-party tools like the DIRAC pilot framework and
workload manager system.

At the data model level some arrangements fix the serialization of file references, because the

serializer of the server does not resolve the use of URLs as expected. In fact, the implementation of
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the framework represents a challenging endeavor facing defects of external components that are
out of the scope of the implementation but should be managed and consolidated.

The implementation of submission strategies on other distributed computing infrastructures
are potential extensions of the framework in future milestones. Nevertheless, this implementation
effort is barely profitable where the relocation of resources is not exclusively yielded to jigsaw and
it depends on the configuration of additional technological layers. For example, the DIET toolbox,®
requires the deployment of several agents for operation, so the management of such elements rep-
resents more than an external concern directly associated to the execution of the cLI application.

The long-term goal of jigsaw is to provide an automatic execution mode where users without
technical skills could find difficult the selection of execution strategies (local or remote) because
they do not always have a clear idea about the implications of the application execution on dis-
tributed computing infrastructures. Moreover, users do not know the load endured by the server
nor the status of such infrastructures. These arguments show the necessity to provide an strategy
to choose automatically the type of execution on behalf of the user. The explicit operations still

remain relevant though.

3.5 Conclusion

The reference implementation framework presented in this chapter is not only a proof of concept
showing the feasibility and the relevance of the model merging the soaA principles and the global
computing implementations in combination with enhanced cLiapplication descriptions. This frame-
work meets real requirements of users facing complex issues to resolve their needs of reuse, fast
and reliable execution. jigsaw is the result of a requirements analysis trying to guarantee the use
of compelling cL1 applications, embracing at the same time lead technological evolutions such as
S0A and the distributed infrastructures. The proposed framework is a flexible solution to execute

legacy tools while delivering the following features:

« complete lifecycle of services providing a manageable work environment,
« transparent execution resulting from dynamic resource allocation,

« remote execution by direct invocation or delegation,

« compliance with standard protocols during message transactions,

« data staging for execution and results processing,

« comprehensive management of I/O arguments,

« awareness of application dependencies,

« integration of non-functional concerns, and

« reuse of components in third-party infrastructures.

8DIET toolbox: http://graal.ens-1lyon.fr/~diet/
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Thejigsaw framework wasimplemented to address specific requirements of the NeuroLOG project.
Nevertheless it is used in various external projects such as GWENDIA or VIP exhibiting their generic
approach. This approach also enables compositions of scientific workflows using MOTEUR with
strong type mapping and complex structures as described in the second part of this document.
This solution is a step forward the bridge of cL1applications with modern service-oriented architec-
tures providing a clean and simple set of tools to assist scientists that are not computer specialists

to build, run, combine, and share their work.
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Chapter 4

Scientific Workflows

Nowadays, the reuse of software components has an important impact in e-Science [Pagni et al.,
2008; Geddes et al., 2005]. Thanks to Web standards, applications can run in distributed locations
exchanging information and being combined more readily than ever before. Web services have
been successfully used in the scientific domains such as bioinformatics and medical image process-
ing [Labarga et al., 2007; Glatard et al., 2006b]. In fact the need of interoperability and increasing
demand of computing power enforced the implementation of frameworks to assist in the reuse and
distributed accessing of services as shown in Chapter 3.

Users also often describe and enact their applications by orchestrating multiple services into
pipelines. This process involves choosing a set of appropriate services based mainly on functional
properties, to arrange them in sequence according to the application logic by solving the connec-
tivity between services, and to convert the complex process into a target workflow language which
can be executed on a computing platform.

Scientific processing pipelines are often composed of many applications dealing with large
datasets running in specific environments. Among the involved applications, some cannot be exe-
cuted before the termination of its precedences due to control or data dependencies. On the other
hand, several applications are independent which means they can be executed in parallel. These
features impose to take advantage of parallelism, and execution interoperability.

This chapter presents the salient features of scientific workflows. It also introduces a work-
flow definition language, and a workflow enactor engine suitable for the efficient composition of

services and parallelism exploitation in the perspective of software reusability.

4.1 Elements of scientific workflows

A scientific workflow (aka data intensive workflow) is an orchestration of coarse-grained processes
[Bharathi et al., 2008]. Scientific workflows are designed to support the automation of complex,
service-based and data-intensive applications. They combine a dataflow model, whereby a work-
flow consists of a set nodes (activities) that are connected through data dependencies links, with a
functional model that accounts for collection-oriented processing [Missier et al., 2010]. This com-

bination of models is designed to strike a balance between expressively and simplicity.
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Scientific workflows, as data-driven languages, separate explicitly the definition of data to pro-
cess from the processing logic. This separation is convenient because the same workflow can be
reused with different datasets without any change. This separation is commonly observed because
applications are made available independently to the data to process. The data driven approach
is also appealing to the Grid community because of implicit parallelism. Indeed, a workflow ap-
plication graph expresses parallel enactment, and the data parallelism is expressed through the
multiple input datasets pushed into the workflow.

Several abstractions were introduced to express the data representation in scientific workflows.
Forinstance, the Swiftscript language [Zhao et al.,2007] defines arrays—indexed collections of data
items with homogeneous type, as first-class entities. In an analogous way, the Simple Conceptual
Unified Flow Language® (SCUFL) used in the Taverna workflow management system [Oinn et al.,
2006b] refers to list of data items to represent indexed and typed collections of elements. This latter
definition corresponds to an equivalent concept of array. The use of arrays represents a practical
way to exploit data parallelism based on array programming principles.

The introduction of array programming concepts eases the description of mathematical pro-
cesses involving arrays [Hellerman, 1964]. Array programming aims at simplifying the manipula-
tion of data structures at formal level. In array programming, originally an array is considered as
first-class entity. It is thus used directly with traditional operations like the addition. These oper-
ations are defined natively to operate on arrays or on combinations of scalar values and arrays. For
instance, X + Y and k X Z are valid expressions operating on each array element, where X, Y, and
Z denotes arrays and k any numerical value. Therefore, array operations are a convenient way to
explicitly working without loops for iterating operations over collections. In fact, they reduce the
use of control structures inside the formalization.

Operations on arrays may be extended to object-oriented languages [Mougin and Ducasse, 2005].
This extension introduces the application of methods on arrays of object, and/or the application
of methods to arrays of parameters. Array may be expanded into its elements and each element
is treated as an individual item in further processing. Hence, this processing applies to individ-
ual elements of the expanded array. In the same way, other array operators may also be defined
such as reduction of an array into a resulting scalar; compression as form of evaluation of a test over
all elements of the array; transposition to rearrange the array elements or re-size it; join to search
for indexes of selected elements; or sorting to obtain an array in a defined order [Montagnat et al.,
2009].

Arrays may be nested at any depth defining new data types of array of objects. Any given data
item is therefore always associated with a type, and its corresponding (multi-dimensional) inte-
ger index with a dimension per nesting level. For example, the array W = [[[a, b]], [[c]], [[]]] is a
3-nested levels array of characters and wyg; designates the character b. It is possible to represent
elements of arrays with the special value @ as the absence of data. This value is particularly impor-
tant to represent placeholders in an array preserving indexes.

The data-driven definition of scientific workflows through high level interfaces empowersusers,

who may have limited understanding of programming, to assemble advanced applications pipelines

!scurLlanguage: http://www.mygrid.org.uk/usermanuall.7/scufl_language_wb_features.html
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involving complex data structures. Although, scientific workflow enactors are in principle similar
to traditional programming environments. They are based on a language specification that is then
interpreted. Nevertheless, traditional environments do not deal with parallelism and dataflow as-
pects, and they are not oriented to work with large scale of data or a high computation abstraction.
In this section is presented a representation of the dataflow during the enactment of workflows, as

well as the elements that define their structure.

4.1.1 Activities and dependencies

A workflow activity is an atomic process that is bound to an arbitrary number of input and output
ports. The ports represent data buffers where data items to process are received or produced data
items are stored after firing an activity. Input and output ports are typed. The output port types
define the activity type. The activities have input/output ports with a defined depth. The depth of
a port determines the number of nesting levels the input port will collect or the output port will
produce. It impacts the number of firings of the activity considered. Activities may receive inputs
with different nesting levels. The usual behavior of an activity receiving a nested array is to fire
once for each scalar value embedded in the nested structure. However, there are cases where the
semantics of the activity is to process a complete array as a single item rather than each scalar value
individually. An important property of activities invocation in an asynchronous execution is that
multiple invocations of an activity on array items preserve the array indexing scheme.

The dependencies between activities are defined with links. Data links interconnect one activ-
ity output port with one activity input port defining data dependency between two activities. In
some cases, there is no data dependency explicitly but an execution order should be preserved. A
control link interconnecting processors may then be defined.

Scientific workflows are composed by many activities with inter-dependencies which define
ordering constraints at execution time. Activities may be instrumented as services processing data
at programming level (i.e., Java beanshells or R scripts) or invoking operations of standard imple-
mentations such as Web services. Each workflow data link is associated to a service argument. For
instance, a WS message may represent the collection of input ports of an activity, where the data
structure and types are defined in the WS description. The expressiveness of the activities compo-
sition depends on the availability description of services, thus the more complete is the description
of involved applications, the more precise is the service composition. The emphasis put on the de-
scription model of applications in Chapter 2, and the implementation as standard Web services de-
scribed in Chapter 3 represent the effort of this work to provide the suitable information of services

for their composition.

4.1.2 Iteration strategies and control structures

The concept of iteration strategies [Oinn et al., 2004; Sroka et al., 2009] defines the combination
mechanism for input data items received on several input ports of a same activity. They define
the number of activities fires and the input data sequence for each invocation. Iteration strategies

are also responsible for defining an indexing scheme that describes the items from multiple input
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nested array resulting in an nested output array. Iteration strategies were first introduced in the
SCUFL language to combine complete iteration expression trees. Hence they produce complex iter-

ation patterns without requiring to define any explicit loop.

Data parallelism is completely hidden through the use of arrays. Advanced data composition
operators are available through activity port depth definitions, representing the dimension of the
array, and iteration strategies. Complex data parallelisation patterns and data synchronization
can therefore be expressed without additional control structures. Only conditionals and loops ex-
pressions are needed to control the dataflow across the workflow. Conditionals represent an ar-
ray-compliant if-then—else kind of structure. Alike, a loop represents a while or a for kind of control

structure. The syntax associated to these structures is detailed in [Montagnat et al., 2009].

4.2 GWENDIA & MOTEUR

Among the existing scientific workflow environments (e.g., Taverna,” Triana,* Pegasus,* Kepler®)
the use of the GWENDIA language on MOTEUR targets a coherent integration of a data-driven ap-
proach to achieve transparent parallelism in a comprehensive framework by manipulating arrays.
GWENDIA conditionals and loop control structures provides the required expressiveness to repre-
sent services composition and data manipulation; and the asynchronous invocation of services of
MOTEUR optimizes executions on a distributed infrastructure. These characteristics make GWEN-

DIA and MOTEUR suitable for the purpose of reuse of software components and interoperability.

4.2.1 GWENDIA: a workflow definition language

The Grid Workflow Efficient Enactment for Data Intensive Applications specification (GWENDIA)
[Montagnat et al., 2009] is a data-driven language for the description of complex application data-
flows. It targets the coherent integration of array manipulation, control structures, and efficient
asynchronous representation for execution of workflows. GWENDIA defines data types, processors,
ports, links, iteration strategies, and control structures in a compact XML format inspired by SCUFL.

The syntax of the most relevant elements are detailed below.

Processor

A processor is a workflow activity representing a service. Several types of processors are defined:
bean shells, Web services, etc. Special cases of processors are: source, without inbound connectiv-
ity delivering external data values as inputs; sink, without outbound connectivity receiving final

workflow results as outputs; and constant, delivering a single constant value.

2Taverna workflow management system: http://www.taverna.org.uk/
3Triana project: http://www.trianacode.org/

*Pegasus workflow management system: http://pegasus.isi.edu/
5Kepler project: https://kepler-project.org/
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Port

Ports are the inputs and outputs of processors. Ports are identified with a name, type and depth.
Since data manipulated in the language is typed, four basic types are defined: integer, double, string,
and file (i.e., uris referencing files). Scalar items have depth equal to zero. Data with homogeneous

types may be grouped in arrays.

Iteration strategies

Four types of iteration strategies are defined:

1. Thedot product {®} matches data items with exactly the same index in an arbitrary number of
input ports. The activity fires once for each common index, and produces an output indexed

with the same index.

2. The cross product {®} matches all possible data items combinations in an arbitrary number
of input ports. The activity fires once for each possible combination and produces an output

indexed such that all indexes of all inputs are concatenated into a multi-dimensional array.

3. The flat cross product {©} matches inputs identically to a regular cross product with a differ-
ence in the indexing scheme of the data items produced. It is computed as a unique index

value by flattering the nesting-array structure of the regular cross product.

4. The match product {6} matches data items carrying one or more identical user-defined tags,
independently of their indexing scheme. Its output is indexed in a multiple nesting levels

array which index is the concatenation of the input indexes.

Conditionals

A conditional has an arbitrary name of inputs, a test expression to evaluate for each data received
from the input ports, and an arbitrary number of paired outputs corresponding to the then and else

branches.

Loops

Two types of loops are defined:

1. Thewhilekind of structure. Itis composed by an expression used to stop the evaluation; input
ports receiving the loop initialization value, and the values that loop back tho the activity
after the iteration; and the output ports receiving a value when the condition become false,

and all values from either the initialization or the looping part.

2. Thefor kind of iteration structure. It has the same elements of the other loop but the number

of iterations is the same for all initialization value.
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Filters

Filters are particular manipulation activities that modify nested array structures. It is useful to dis-
card results that have not passed a condition, whereas the indexing of resulting items does not
need to be preserved, or to combine content of two complementary arrays with the same structure.

Examples of filters are the split, merge, and concat operations.

Links

Links are simple data dependency declaration connecting input and output ports.

4.2.2 MOTEUR: aworkflow enactor

MOTEUR [Glatard et al., 2008] is an enactor engine designed for executing workflows consisting of
standard services or customizable processors embarking user-defined source code. MOTEUR ex-
ploits service parallelism at workflow level and data parallelism for multiple datasets. It responds

to requirements of a suitable scientific workflow environment [Maheshwari, 2011]:

o Scalability and optimization. The performance remains constant albeit the number of tasks
without considering issues related to a distributed infrastructure such as network latency or
protocol offsets. In terms of optimization, MOTEUR performs service grouping leading sig-

nificant speed-ups, especially on infrastructures that introduce high overheads.

« Datadescriptionand management. Dataisdescribed ina grammarallowing types and multi-
dimensional arrays. MOTEUR only uses references to files providing implicitly access to shared
data repositories. The use of references simplifies the data management avoiding potential

bottlenecks of data staging. Additionally MOTEUR may trace the provenance of data.

« Interface to Distributed Computing Infrastructures. Seamless access to remote infrastruc-
tures is granted by the service processing model. MOTEUR acts as a client executing applica-
tions on production grids (e.g., EGI), research clusters (e.g., Aladdin/Grid'5000) [Montagnat
etal., 2010], and it is also interfaced with the HiPerNET cloud [Truong Huu et al., 2011].

« Expressiveness. A rich semantic of the workflow specifications simplifies handling of activ-
ities and data. It represents the interface between the enactor an the user as a transforma-
tion language. MOTEUR implements control mechanisms and iteration strategies defined in

GWENDIA.

« Usability. It enables an easy and convenient composition of workflows through the graphi-
cal interface. MOTEUR is compatible with workflows written for Taverna. Finally, the archi-
tecture of the enactor facilitates the extensibility of the environment by implementing new

types of activities or linking to new application types.

MOTEUR is also a graphical environment for the design of scientific workflows. The user inter-
face provides all the elements to create, enact, and trace the provenance of data. Figure 4.1 shows a

screenshot of the environment.
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Figure 4.1: Graphical interface of MOTEUR

4.3 Summary

In this chapter, scientific workflows were presented as an expressive and efficient approach to de-
scribe complex data processing based on reusable modules. As a result of this study, the separa-
tion of data and processing logic in combination with the parallelism exploitation are identified as
salient elements to grant an easy enactment of data-intensive applications on service-oriented ar-
chitectures. MOTEUR and GWENDIA were also selected as a promising implementation of scientific
workflows because they respond to the requirements of a suitable workflow environment. Both
initiatives adopt an advanced representation of data using array programming and they integrate
transparently the use of distributed computing infrastructures.
Starting from the wrapping of cLI applications as services detailed in the fist part of this doc-
ument, in the following chapters scientific workflows are used in the service composition of neu-
roimaging analysis use-cases. In those experiments the focus is put on the expressiveness and the

grid computing exploitation to obtain time execution improvements and to contribute in qualita-

tive analysis of neuroscience studies. ¢
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Chapter5

Neuroimaging Use-cases

This chapter introduces the descriptions of two neuroscience use-cases: the automatic brain seg-
mentation, and a robust measure of changes applied to brain structures by the Alzheimer’s disease.
These use-cases make extensive use of image processing algorithms. Their heterogeneous source,
combined to complex nature made them suitable candidates for a representation, and enactment

following the scientific workflows paradigm explained in chapter 4.

5.1 MRIneuroimagingataglance

Neuroimaging techniques have changed the way neuroscientists address questions about struc-
tural and functional anatomy, specially in relation to behavior, clinical disorders, or diseases like
cerebro-vascular, neoplastic, degenerative, inflammatory, infectious, etc. Functional neuroimag-
ing is used to indirectly measure the brain functions (e.g., neural activity), whereas structural neu-
roimaging deals with the brain compartments identification (e.g., shows contrast between differ-
ent tissues). Among other imaging modalities such as computer tomography (CT), positron emis-
sion tomography (PET), and single photon emission computed tomography (SPECT), the magnetic
resonance imaging (MRI) became largely used due to its low invasiveness, lack of radiation expo-

sure, and relatively wide availability.

Anatomy of the brain

The central nervous system (cNs) includes the brain, protected by the skull, and the spinal cord,
protected by the vertebrae. The cNSisimmersed in the cerebro-spinal fluid (cSF) which is a solution
acting as a buffer for the cortex, providing also a basic mechanical and immunological protection
to the brain inside the skull.

The human brain consists of three main structures (see Figure 5.1):

1. The cerebrum. It is the largest part of the brain, and it is divided into two hemispheres (left
and right). Its surface, named the central cortex, is composed of six thin layers of neurons
(gray matter) which sit on top of a large collection of white matter pathways. The cerebrum

directs perception, thought, judgment, decision, and imagination.
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)/
tem”

i
Brains N

v\
Spinal cord \ .\Cerebellum

Figure 5.1: Human central nervous system. Source: Scientific American 199, 58

2. The cerebellum. It is found at the base of the brain and its composition is similar to the cere-
brum. The cerebellum is the part of the cNs that regulates sensory perception, coordination

and motor control.

3. Thebrain stem. Itisthelower part of the brain, creating the link between the cerebral cortex,
white matter and the spinal cord. It contributes to the control of breathing, sleeping and

blood circulation.

The gray matter (GM) and the white matter (WM) are components of the brain, as it is shown
in Figure 5.2. The GM consists of nerve cell bodies or neurons, and glial cells. It has a gray color
because of the capillary blood vessels and the neuronal cell bodies. The WM is composed of nerve
fiber (axons) covered up by myelinated nerve cells. The GM treats the nervous information in order
to create response to the stimulus whereas the WM cells connect gray matter areas of the brain to

each other, carrying on nerve impulses between neurons.

Skull
Cortical sulci

Lateral ventricle

T

White matter
Crerebro-spinal fluid

Gray matter

Figure5.2: Brain tissues visualization on MRI
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MRI neuroimaging at a glance

5.1.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a medical imaging technique based on nuclear magnetic reso-
nance (NMR) used in radiology to visualize detailed internal structures. The physical phenomenon
was described by Bloch et al. [1946] and Purcell et al. [1946]. The technique was then refined by
Lauterbur [1973]. MRI makes use of the property of NMR to image hydrogen protons which are
found in water molecules inside the human body. Thus, these protons may be assimilated to small
magnets. In practice, a patient is placed in an electromagnetic field in order to displace the spin
of protons from their steady state. Then, after passing of an electromagnetic wave with the reso-
nance frequency, protons tend to return to their steady position. This relaxation generates another
electromagnetic wave which is measured. This measure corresponds to the time of relaxation of
the signal. The time depends on the intensity of the field and the nature of the tissue [Liang and

Lauterbur, 1999].

(c) DPsequence (d) T2-FLAIR sequence

Figure 5.3: MRI sequences from differences modalities

An MRI is processed as an image in three dimensions. That is to say a matrix in 3D on which
values are assimilated to the intensity. In these 3D images, a voxel is the smallest volume unit,
analogous to a pixel in 2D images. MRI provides good contrast resolution between the different
soft tissues of the body, which makes it especially useful to image the brain. A typical MRI exam-
ination consists of a set of sequences, each of which are chosen to provide a different type of in-

formation about the subject tissues (Figure 5.3). For example, with particular values of the echo
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time (TE) and the repetition time (TR), which are basic parameters of image acquisition, a sequence
on a T1-weighted scan, water- and fluid-containing tissues are dark and fat-containing tissues are
bright. The reverse is true for T2-weighted images. Damaged tissues tend to develop edema, which
makes a T2-weighted sequence sensitive for pathology, and generally able to distinguish patholog-
ical tissue from normal tissue. With the inclusion of an additional radio frequency pulse and addi-
tional manipulation of the magnetic gradients, a T2-weighted sequence can be converted to a fluid
attenuated inversion recovery sequence (FLAIR), in which free water is now dark, but edematous
tissues remain bright. The FLAIR sequence is used to suppress CSF so as to bring out hyperintense
lesions. By carefully choosing the inversion time T1, the signal from any particular tissue can be
suppressed as well. In the same way, a proton density-weighted (PD) image can be produced by
controlling the selection of scan parameters to minimize the effects of T1 and T2.

The remaining of this chapter describes two neuroimaging pipelines. Resulting from the Neu-

roLOG project, they represent a contribution of the presented work.

5.2 Automatic brain segmentation

In this section is described the process of automatic segmentation of brain tissues, developed at the
Asclepios Research Project,' towards the detection of multiple sclerosis lesions [Dugas-Phocion,
2006]. Automatic brain segmentation is suitable in neuroscience for diagnosis purpose. In par-
ticular, this method consists in a pretreatment of images for system robustness followed by the
brain segmentation. It begins with a normalization of images (spatially and in intensity) and the
skull-stripping. Afterwards, the segmentation into different healthy compartments classes is per-
formed using a statistical algorithm. The method works under the assumption of a consistent
database of patient’s image. The input dataset is composed of multi-spectral MRI sequences T1,
T2, PD and images from a reference atlas of the brain. The resulting outputs includes the binary

classes and partial volumes.

5.2.1 Spatial normalization

The simultaneous use of different multi-modal MRI sequences implies to align them in the same
reference frame (i.e., registered). T2 and PD sequences are acquired simultaneously and therefore
intrinsically co-registered (i.e., they are in the same reference frame). This is not the case of T1
which also has higher resolution. The difference of reference frame is explained by the fact that
sequences are not acquired at the same time. To correct the variations a registration method is
used computing the displacement between two images and registering them in the same reference
as shown in Figure 5.4. Different kind of registration methods exist. They either use geometric
pattern to find correspondence between the images, or the intensity of the voxels [Hill et al., 2001].

In this pipeline, a rigid registration of T1 on T2 sequence is performed using the Baladin algo-
rithm [Ourselin et al., 2000]. The algorithm considers T2 as a reference image (fixed) and T1 as a

floating (moving) image. The output will be the transformation 7, which transforms T1 frame into

!Asclepios Research Project: http://www-sop.inria.fr/asclepios/
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(a) Referenceimage (b) Targetimage (c) Image after registration

Figure 5.4: Example of a RMI image registration

T2 frame, and the image T1', which is aligned with T2. The whole process follows from an iterative
scheme where, at each step, two successive tasks are performed. The first stage consists in finding
for each block of the floating image, the most similar sub-region in the other image, using a sim-
ilarity criterion which depends on the nature of the images. The second stage consists in finding
the global rigid transformation which best explains most of these local correspondences. This is
done with a robust procedure which allows up to 50% of false matches. Besides its simplicity, this
method provides a robust and efficient way to rigidly register images in various situations. This
shows a significant improvement of the robustness, for a comparable final accuracy. Although it is

more expensive in terms of computational requirements compared to other methods.

5.2.2 Atlas registration

The probability of each voxel to belong to one of the healthy tissue compartments is needed in fur-
ther steps of the pipeline. The process of segmentation is based on a statistical analysis of voxels
in the multi-sequence space. The atlas of the Montreal Neurological Institute? (Mni1) [Evans et al.,
1992] provides such probabilities. This stereotactic brain atlas provides T1, T2, PD modalities, and
tissue probabilities maps, illustrating the standard patient.

In order to use the atlas, subjectimages have to be in the same reference frame. The registration
is performed using the Baladin algorithm. However, since the subject images do not fit perfectly
the images of the atlas generating complications in the registration, a rigid registration followed
by an affine registration of the atlas T2 sequence on the T2 of the subject is performed. Once the

transformation matrix has been generated, it is applied to all atlas images.

5.2.3 Skull-stripping

This step extracts the intracranial space from the image. It is preferable to isolate the brain healthy
compartments, as shown in Figure 5.6, from the rest of the brain images (tissues, skull, eyes, etc) be-

cause keeping all the brain may disorder the classification step. Several methods of skull-stripping

2MnI atlas: http://www.bic.mni.mcgill.ca/ServicesAtlases
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Figure 5.5: Non-linear asymmetric template of MNI atlas. Source: http://www.
bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009

arefound intheliterature [Dugas-Phocion etal.,2004b]. In this case, the Expectation—Maximization

method is used for the skull-stripping.

Expectation—Maximization method

The Expectation—Maximization algorithm [Dugas-Phocion et al., 2004a] is divided into two steps.
First the expectation step corresponds to calculate the probability of each voxel belonging to each
class in function of the parameters’ class and a prior atlas. This step is also known as labelization of
the image. Second, the maximization step consists in the estimation of the Gaussian parameters
for each healthy tissue compartment class using the probabilities computed during the expectation

step.

(a) T2sequence (b) Skull stripped sequence

Figure 5.6: Brain skull-stripping

5.2.4 Intensity normalization

MR images are often affected by bias [Sled et al., 1998]. It means that two voxels belonging to the

same brain compartment class may have different intensity. To correct this bias, a fist classification
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Automatic brain segmentation

ofthe brain into WM, GM, and cSF classes is preformed using the EM method with the multi-modal
MRI sequences. The method consists in uniforming the intensity of the sequence for the same tis-
sue, alternating the segmentation and bias correction. These segmentations are then used to cal-
culate a polynomial MRI sequence, which is used to correct the bias [Prima et al., 2001] as shown in
Figure 5.7.

The extraction of the bias in the T2-FLAIR sequence using the general form of the EM method
does not work very well though. The low contrast WM/GM in this kind of sequences grows to use
a specific spatial bias in case of T2-FLAIR. A slice-by-slice cut to alleviate the problems of the pres-
ence of bones is done. Since the segmentation includes fixed tissues, this bias is calculated in one
step obtaining a simply minimization of low-frequency variations of intensity within each of the
three classes WM, GM, and CSF.

(a) Uncorrected image (b) Uncorrected  image (c) Bias corrected image
with calculated bias field
superpossed

Figure5.7: Brain intensity normalization. Soure: Tustison et al. [2010]

Following the treatments presented in the previous section, all images have been placed in a
single spatial reference frame (i.e., the reference statistical atlas to allow the use during the la-
belization). The major problem at this step is to segment the images, in order to obtain a mapping
of tissues.

The EM framework is used again to classify the brain MRI voxels from the unbiased sequences.
In mR1the distribution of voxels intensity can be modeled by a gathering of Gaussian curves. Each
brain class will be defined by a mean and a covariance matrix. Therefore, the brain tissues are di-

vided into WM, GM, csF, and partial volume effect (PVE) classes.

5.2.5 Brain mask segmentation

The segmentation mask of the brain is the first stages of segmentation. It is therefore essential to
have a good quality of the result. The method is in fact an EM algorithm to the sequences T2/DP.
In the presence of a statistical atlas, the convergence is rapid. The MNI atlas provides these prob-
abilities. The segmentation operation just requires to move from a the probabilities of the atlas

(a priori) to a posteriori probability. Operations of mathematical morphology are simple enough to
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obtain a mask of brain parenchyma (neurons and glial cells). However, this operation must be con-
ducted carefully. Two issues may be identified: over-segmentation mask in the oily areas between
the parenchyma and skull, and a sub-segmentation mask. Additional operations of erosion and
expansion give good results to overcome the segmentation issues. The mask is clear, even on sec-
tions of the cerebellum (see Figure 5.8. It may have some deficiencies, which will require attention
in the model of tissue segmentation. This mask allows us, however, identify irregularities such as

outliers, which facilitates their treatment in a statistical process like the EM.

(a) T2sequence (b) DP sequence (c) Brain mask

Figure 5.8: Brain mask obtained with the EM algorithm after mathematical mor-
phology. Source: Dugas-Phocion [2006]

5.2.6 Segmentation of tissues

In its simplest formulation, the segmentation process takes T2 and PD sequences, in which the bi-
nary mask of the brain has been applied providing three outputs: white matter, gray matter and cSF
[Dugas-Phocion et al., 2004a]. The EM algorithm gives two major results: the labeling of segmen-
tation and the estimation of model parameters. These segmentations are illustrated in Figure 5.9.

Some assumption of uniformity of signal within the class are performed through the process
of segmentation. It is established, for example, that the signal of the basal ganglia is not exactly
the same as the signal of the cortex. In the same way, the image resolution is not infinite so the
sample image is coupled to significant spaces in inter-tissue boundaries, especially in the cortex.
This distorts the estimation classes, and invalidates the Gaussian noise model. The introduction of
apartial volume model coupled to a segmentation of the vessels is used to validate the initial model.
The pvE does not refer to a brain compartment. In fact, voxels of PVE are on the limit between two
tissues. It means, the intensity of those voxels are a mixture of two intensities. In a brain MRI this
effect appears, for example, along the limit between the cSF and gray matter.

Afterwards, MRI voxels are classified to the most probable class using the computed Gaussian
parameters. This provides the segmentation of WM, GM, cSF, and pVE. During the maximization
step ofthe EM algorithm, outliers may be detected. An outlier is alabeled voxel which Mahalanobis
distance is grater than a threshold. This distance is obtained between the intensity vector (intensity

of the voxel in the different sequence) of each voxel and the mean vector of each class. Finally, to
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(a) White matter (b) Gray matter (c) Cerebro-spinal fluid

(d) Partial volumes (e) Outliers

Figure 5.9: Brain binary compartment segmentations

solve the problem of PVE and thus obtain the real segmentations of healthy brain compartments,
PVE voxels are dispatched between GM and csFin function of their intensity. All segmentations are
then binarized.

In the EM method, a ratio parameter defines the faction of voxel to be used (i.e., to be labelized
and then provide probabilities for the maximization step). The relation between ration value r, and
the percentage of considered voxels p is given by the Equation 5.1. This parameter is important
because the EM is a computationally intensive tool, so working only on a percentage of the voxel

image may be interesting if, and only if, this does not affect the results.

=100 % ! (5.1)

In the pipeline the influence of the ratio parameter, used by the EM method, is targeted to as-
sess the final results. In fact, by taking only a part of the image voxel the speed of the algorithm
is improved but it also affects the accuracy of the resulting segmentations. The study of the re-
lationship between the percentage of considered voxels, and the trade-off between accuracy and
speed is interesting for further works. To quantitatively evaluate this impact, WM segmentations
are generated using different percentage of the voxel. The segmentations are compared to a refer-
ence generated with 100% of the voxels by computing their sensitivity and specificity.

Sensitivity and specificity are performance statistical measures of binary classification tests.

In this case, given a segmentation of reference and a generated segmentation, sensitivity measures
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the proportion of points segmented which belongs to the segmentation of reference and specificity
measures the proportion of points not segmented which does not belong to the segmentation ref-
erence. Both measures are calculated using Equations 5.2 and 5.3 where a true positive 7" is a
voxel segmented and belonging to the segmentation of reference; a true negative 7~ is a voxel not
segmented and not belonging to the segmentation of reference; a false positive F is a voxel seg-
mented but not belonging to the segmentation of reference; and a false negative F~ is a voxel not

segmented but belonging to the segmentation of reference.

Tt

Senslblllty = W (52)
T

specificity = = FF (5.3)

5.2.7 Towards the detection of multiple sclerosis lesions

The processing of brain MRI in particular for monitoring patients with multiple sclerosis (MS) is
useful because it is positioned as additional test in the diagnosis of this disease. It also plays a
key role in monitoring the patient’s condition and quantification of a response to a medication.
Automatic extraction of quantifiers for multiple sclerosis has many potential applications in both
clinical and pharmaceutical tests. Nevertheless, the processing of those images is difficult due to
variability in size, contrast and location of lesions, so automatic segmentation of MS lesions in MRI
is a difficult task. Brain compartments segmentation may be used in further step like the lesions

segmentation or the evaluation of brain atrophy.

Multiple sclerosis disease

Multiple sclerosis is a nervous system disease affecting the cNs, leading to demyelination. Demyeli-
nation is the term used for aloss of myelin, a substance in the white matter that insulates nerve end-
ings. Myelin helps the nerves receive and interpret messages from the brain at maximum speed.
When nerve endings lose this substance they cannot function properly, leading to patches of scar-
ring, or sclerosis, occurring where nerve endings have lost myelin. It is these areas of scarring that
give multiple sclerosis its name. The characterization of MS has been done by Charcot [1872], how-
ever its causes are still unknown.

The symptoms of MS may completely vary from one subject to another because lesions may
appear everywhere in the cNS. These can go from difficulty in moving to problems in speech or
weakness and visual deficiencies. This is the reason of the difficulty of the diagnosis. The diagnosis

of MS is done using:

 Clinical data, using visual evoked potentials to measure the speed of the brain responses.
« Laboratory data, testing the cSF to provide evidence of chronic inflammation of the cNs.
« Radiologic data, using magnetic resonance imaging to detect lesions.
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Multiple sclerosis is a lifelong illness following different patterns either in discrete attacks (re-
lapsing forms) or slowly accumulating (progressive forms). Most subjects are first diagnosed with a
relapsing-remitting form which progress throws a secondary-progressive form after several years.
Between attacks, symptoms may completely disappear but permanent neurological problems often

persist.

5.2.8 MS lesions segmentation

In brain tissue, atrophy describes a loss of neurons, and the connections between them. Thus, the
volume of WM and GM decreases in favor of csr. In MS patients brain atrophy is identified ob-
serving larger ventricles, and cortical sulci than normal subjects (Figure 5.10). Multiple sclerosis is
identified in MRI showing areas of demyelination as bright spots of the image. Indeed, visualiza-
tion and position criterion of lesions in the brain have been established to determine the presence
of MS [Polman et al., 2005]. MR is superior to other imaging modalities in the imaging of demyeli-
nating diseases because it is possible to visualize WM lesions with suitable definition (2-5 mm) and
contrast resolution, and compare their progress over time. Lesions may have different shapes and
localizations in the brain, hopefully they are particularly visible in the T2-FLAIR sequence where
they appear with a high signal intensity. However, bony and flow artefacts are also present in the

image, that is why multi-modal MRI sequences are used to isolate these artefacts.

(a) Normal T1sequence (b) MS affected T1 sequence

Figure 5.10: Brain atrophy effects. Increase of ventricles and cortical sulci volumes.
Source: Database of the MICCAI'08 MS Lesion segmentation challenge

The T2-FLAIR sequence is the most appropriate to visualize lesions. Different methods are avail-
able in the literature to segment these lesions. They can either be manual, semi-automatic or com-
pletely automatic [Souplet et al., 2009]. With the MRI segmentation, parameters of brain classes
in the T2-FLAIR sequence are identified using he EM method. This method identifies borders of the
tissues. Besides, keeping only the voxels, which have an intensity value upper than a threshold,
isolates the lesions because they are hyperintense signals in that section. However, artefacts are
also segmented. To isolate only lesions, a region of interest into the brain is defined. This region

correspond to the WM if no lesions were present [Souplet et al., 2008].
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5.3 Longitudinal atrophy detection in Alzheimer's disease

Neuro-degenerative pathologies like Alzheimer's disease (AD), is another example of neuroimag-
ing processing. Alzheimer’s disease is characterized by a co-occurrence of different phenomena,
starting from the deposition of amyloid plaques and neurofibrillary tangles, to the development of
functional loss and finally to cell deaths [Jack et al., 2010]. In particular, although the loss of cells
is one of the final results of the pathological process taking place in the brain, it has been shown
that the monitoring of structural changes provides a way to track the evolution of the disease, even
at the incipient or pre-symptomatic stages [Ridha et al., 2006]. Structural MR images represent
a feasible and reproducible instrument for the study of the brain’s integrity. The recent availabil-
ity of public studies like the “Alzheimer Disease Neuroimaging Initiative” (ADNI) [Mueller et al.,
2005] provides the research of data representing the complete history of the pathological process
of Alzheimer's: from the healthy condition to mild cognitive impairment (MCI), and finally to the
advanced stages of the disease.

In the recent past, computational anatomy acquired increasing weight in the analysis of medi-
cal data and several methods were developed to study the brain in the cross-sectional (evaluating dif-
ferences between different subjects) and longitudinal (evaluating changes in time from serial data
of the same subject acting as his own control) settings. While the cross-sectional approach high-
lights the main differences between clinical groups, the longitudinal perspective is more useful in
detecting the subtle changes related to the biological processes. A consistent integration of the
longitudinal approach into a group-wise analysis represents the final goal for the development of
a comprehensive model of disease evolution.

The non-rigid registration aims to measure the anatomical differences (like atrophy) between
pairs of images as local geometric differences, and has been widely used in the past for the mea-
surement of local and global anatomical changes [Boyes et al., 2006]. However, most of the present
approachesare based on the assessment ofimage-to-image changes, a 3D problem, while the study
of measurements on time-series was less explored, possibly due to the historical difficulties to col-
lectlarge longitudinal dataset. Most importantly, the consistent evaluation of changes across serial
images is a fundamental requirement to gain in stability and robustness of the measurements, as
well as in higher accuracy in detecting biological phenomena like pathological trends.

In this section is described, step by step, a robust framework to evaluate the changes of patient’s
brain in time, also developed at the Asclepios Research Project [Lorenzi et al., 2010]. The pipeline
develops a computationally efficient framework for the registration of serial MR1 data providing a

stable longitudinal atrophy measurements.

5.3.1 Timeseries alignment

Initially, the reorientation matches the images to the orientation of the standard template images
of the FsL software library® [Smith et al., 2004]. It requires that the image labels are correct. It is

not a registration method, so it will not align the image to standard space, it will only apply 90, 180

3FSL: http://www.fmrib.ox.ac.uk/fsl/
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or 270 degree rotations about the different axes as necessary to get the labels in the same position

as the standard template.

Given a time series I, . . . , I, of raw MRIs belonging to a specific subject, the first step consists
in the rigid alignment of the follow-up sequence /i, . . . I, to the baseline Iy, and in the re-sampling
the series into a reference space for the subsequent analysis. Linear registration is an important
component of structural and functional brain image analysis. It removes the spatial variability due

to the differences in translations and rotations among the different scans.

The framework uses the Flirt algorithm [Jenkinsonn et al., 2002], which robustly registers the
images by maximizing their correlation ratio. For each image /; in the time series, the final affine
registration matrix is obtained by composing the longitudinal rigid transformation M;, which matches
I; to Iy, to the subject-to-template transformation Mg ,computed by affinely registering the baseline

Ty to the reference space provided by the anatomical Mn1 atlas.

5.3.2 Biascorrection

Magneticresonance signal intensity measured from homogeneous tissue is seldom uniform. Rather
it varies smoothly across an image. This intensity nonuniformity is usually attributed to poor ra-
dio frequency coil uniformity. gradient-driven eddy currents, and patient anatomy both inside and
outside the field of view. The performance of automatic segmentation techniques which assume
homogeneity of intensity can be significantly degraded due the impact of the intensity variations.

Therefore, and approach a means of correcting this issue is essential for such processing.

The used approach to correcting the intensity nonuniformity [Tustison et al., 2010] does not
requires a model of the tissue classes. Described as nonparametric nonuniform intensity normal-
ization (N3), the method is independent of pulse sequence and insensitive to pathological data that
might otherwise violate model assumptions. To eliminate the dependence of the field estimate on
anatomy, an iterative approach is employed to estimate both the multiplicative bias field and the
distribution of the true tissue intensities. This pre-processing step is central for the stability of the

subsequent analysis, such as the brain mask segmentation and the non-rigid registration.

5.3.3 Baseline brain mask estimation

Since all the longitudinal changes are evaluated with respect to the baseline image, an accurate
probabilistic segmentation of the baseline brain mask is required. After the initial brain extraction
from the image [Smith, 2002], the probabilistic tissue segmentation (gray matter, white matter and
CSF) is performed in order to obtain a probabilistic mask of the brain.

The method first removes non-brain tissue using a combination of anisotropic diffusion fil-
tering, edge detection, and mathematical morphology [Shattuck et al., 2001]. The image is com-
pensated for non-uniformities due to magnetic field inhomogeneities. The local estimates are
computed by fitting a partial volume tissue measurement model to histograms of neighborhoods
around each estimate point. The measurement model uses mean tissue intensity and noise vari-

ance values computed from the global image and a multiplicative bias parameter that is estimated
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for each region during the histogram fit. Voxels in the intensity-normalized image are then clas-
sified into six tissue types using a maximum a posteriori classifier. This classifier combines the
partial volume tissue measurement model with a Gibbs prior that models the spatial properties of

the brain. Finally gray and white matters are combined to obtain the mask of the image.

5.3.4 Non-linear registration: the Demons algorithm

The anatomical changes between the baseline and the follow-up images are evaluated through
non-rigid registration. The non-rigid registration aims to describe the anatomical differences be-
tween the pairs of images Iy and /; by looking for the deformation ¢ which maximizes their simi-
larity. The deformation field represents a local measure of changes at the voxel level, and can be
integrated in region of interest to provide a measure of the regional (global) volume change.
Thenon-rigid registration is derived from the log-Demons algorithm [Vercauteren et al., 2008].
In the standard log-Demons algorithm, the deformation field is given by the minimization of the
sum of squared difference (SSD) between the intensities of the two images. However, the SSD is
usually very sensitive to the intensity biases and does not represent a robust measure of changes. In
order to avoid spurious intensity variations for morphological differences, the local correlation co-
efficient criteria (LCC) proposed in [Cachier, 2002] was integrated in the Demons algorithm. Given
a fixed image / and a moving image J, the deformation field ¢ required to match the two images is
computed by minimizing voxel-wise a functional which accounts for local additive and multiplica-
tive scaling factors for the intensities. In this way the registration automatically estimates local

spurious intensity differences and provides a more robust assessment of the anatomical changes.

5.3.5 Measure of the brain changesintime

This step aims to consistently measure the longitudinal changes in the time series of images by
implementing a 4D registration algorithm based on the temporal regularization of the estimated
deformations [Lorenzi et al., 2011b].

It relies on a hierarchical construction:

o Spatial registration. The deformations ¢; ,i = 1 .. .n, are estimated to match each image /; to

the baseline /; (brain mask estimation before).

o Temporalregression. The spatial deformations are used to estimate a subject-specific temporal
trajectory for the longitudinal changes, for example by using a linear model in time on the

deformation space.

« Spatio/Temporal registration. The temporal trajectory is then reintroduced in a second regis-
tration procedure, and is used as prior to drive the re-estimation of the deformations at each

time point. The temporal trajectory introduces the information on longitudinal progression.

Thus, the final series of deformations are estimated by taking into account both spatial and
temporal variations and will then provide a more stable and regular estimation of the longitudinal

anatomical changes.
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5.3.6 Quantification of the longitudinal brain atrophy

The quantification of the amount of warping applied at each voxel by the dense deformation field
is usually derived from the Jacobian matrix J of the deformation in terms of the determinant. This
is an average measure of volume change. Moreover, the Demons algorithm allows to consistently
compute the flux of the vector field across surfaces (i.e., the shift of the boundaries required to the
surface to match the homologous points during the registration process). This measure is consis-
tent within the registration framework and is mathematically equivalent to the integration of the
log-Jacobian determinant in the region of interest [Lorenzi et al., 2011a]. The framework provides
both the measures of longitudinal changes evaluated in the brain mask, as well as the spatial maps
of the brain’s local anatomical changes, that can be used for further analysis and statistical assess-

ment of the group-wise changes.

5.4 Summary

The use-cases presented in this chapter represent examples of the current efforts of the neuroimag-
ing community towards a better comprehension of brain illnesses and their treatments. Their het-
erogeneous source and complex nature made them suitable case study candidates because they
may benefit from jigsaw the enactment as scientific workflow, and use of DcIs. Jigsaw may help to
provide access to these applications as compliant Web services respecting the nature of their in-
terface invocation including inputs/outputs, parameters, and types. In addition, they may benefit
from scientific workflows because the complete processing involves the execution of independent
services. From the design point of view, their definition as workflows enables a higher level of ab-
straction showing the interactions between applications. At runtime, the resulting service compo-
sition as workflow provides three different levels of parallelism (i.e., data, service, pipeline). The
parallelism grants an efficient execution. Moreover, both use-cases may benefit from distributed
computing infrastructures. The computing power and the facilities of DcIs provide resources to
ensure scalable executions. Additionally, the applications involved in these use-cases are hetero-
geneous, in terms of execution time and memory consumption making them ideal candidates for
the exploitation of models of efficient use of local resources presented in Chapter 2.

Despite the specificity of each use-case, the possibility of exhibiting each application as a ser-
vice shows they can be reused in order to create new scientific workflows or replace equivalent ser-
vices. For instance, several registration, or skull stripping algorithms may be tested by replacing
only one processor of the workflow. A more ambitious scenario may be designed to create a com-
mon set of services or sub-workflows for pretreatment of images that later can be reused in other
case studies. This second scenario underlines the advantages of scientific workflows as a software

modularization approach for large-scale experimentation.
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Chapter 6

Enactment of Scientific Workflows on Production

Distributed Computing Infrastructures

Distributed computing Infrastructures are being increasingly exploited for tackling the computa-
tion needs of large-scale applications. Grid middleware helps users in exploiting seamlessly large
amounts of computing resources. However, executing large-scale applications on DcIs faces sev-
eral well-identified problems often causing poor applications performance, either underperform-
ing execution time or complete application failure. This chapter describes the methods and results
obtained with the reference implementation detailed in Chapter 3, that addresses these perfor-
mance problems. Results on actual neuroimaging applications show (i) the application optimiza-
tion that can be performed on complex application pipelines as scientific workflows, and (ii) the
impact of a production environment while performing a large-scale experiment campaign.

We assume the execution of the use-cases detailed in previous chapter as scientific workflows.
The workflows are composed of multiple activities with inter-dependencies which define ordering
constraints at execution time. The input datasets are composed of a large number of independent
images, thus implying a high level of data parallelism. The workflow activities are fired multiple
times for each data segment and the execution tests are done on production environments condi-
tions.

In particular, we are interested in optimizing the performance of workflow enactment taking
advantage of Dcis. On the other hand, we also address four issues dealing with large-scale dis-

tributed applications enactment:

1. Lowreliability of the infrastructure causing high failure rates [Dabrowski, 2009; Huedo et al.,
2006]. The larger the system used and the number of computation tasks manipulated, the
more likely a failure. Failures may cause sever performance loss and in some cases stop com-

pletely the execution of an application.

2. High latency of computing tasks submitted to production batch systems causing low perfor-
mance [Lingrand et al., 2009b]. The splitting of an application computation logic in many
tasks lends towards more parallelism but the gain may be easily compensated by the time

needed to handle all tasks generated in a competitive production batch system. In the case
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of workflow-based applications with inter-dependencies between tasks, the sequential sub-

mission of tasks to long-queue batches will be highly penalizing.

3. Unfair balance between shorter and longer computation tasks [Isard et al., 2009]. The very
complex tuning of large-scale submission systems, involving meta-brokers and many sched-
ulers, makes extremely difficult to achieve fair balance between short and long tasks in a
computation process. The larger the computing time discrepancy between tasks, the higher

the impact.

4. Complex deployment & scalability of distributed computing applications [Krishnan and Bha-
tia,2009]. Beyond middleware parametrization, the deployment of services may have a strong
impact on application performance as servers easily become overloaded in large-scale runs.

Appropriate deployment is also the key to achieving good scalability.

The chapter is structured as follows. First, the principles to design the scientific workflows of
both case studies are introduced. Then, materials and methods for the experimentation are de-
scribed. We later present the experimental results. Finally, a discussion derived from the experi-

ments is developed, focusing on the four issues previously mentioned.

6.1 Workflow design

The two neuroimaging use-cases described in Chapter 5 have been enacted as scientific workflows.
Both are represented in Figures 6.1 and 6.2 respectively. This section details an example of service
composition involved in the process of building a workflow.

The pipelines of automatic brain segmentation and longitudinal atrophy detection in Alzhei-
mer’s disease from sections 5.2 and 5.3 are described as scientific workflows for enabling their en-
actment using MOTEUR. Their services have been linked together and iteration strategies have been
selected, according the definitions of Section 4.1.2, to produce the appropriate dataflow for process-
ing the inputs.

Each service input has been composed with iteration operators. For example, in the case of the
rigid registration of the automatic segmentation workflow shown in Figure 6.1, data concerning
patients has been composed with a dot product to avoid cross-road composition, and then com-
posed with a cross product with other data. Tags have been used in the inputs to refer images of the
same patients. Considering the registration of 71 on 72 sequence, three different cases are possible

with patients A and B, and a configuration file including the execution parameters:

1. All inputs are identified with the same tag. So they are composed by dot products. In this
case, with inputs {714, T1g}; {T24, T2} and {parameters,, parametersg} the results from

the composition are:

{T14, T2, parameters, }; and

{T1p, T2, parametersp}.
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2. Only the images 71 and 72 are identified with a tag. So they have to be composed by a dot
product and then are composed with a cross product with the input parameters. In this case,

with inputs {T14, T1g}; {124, T2p} and {parameters} the results from the composition are:

{T14, T24, parameters}; and

{T1p, T2, parameters}.

3. Allinputs are composed by cross products. In this case with inputs {714, T1g}; {124, T25};

and {parameters,, parametersg } the results from the composition are:

{T1a, 24, parametersa }; {T1a, T24, parametersp };
{T14, T2, parametersy }; {T1a, T2, parametersp};
{T1p, 24, parametersp }; {Tlp, T24, parametersg }; and

{T1p, T2, parametersy }; {T1p, T2, parametersp}.

These configurations have been used to test different values of the ratio parameter of the EM
service. Indeed, for the first invocation of EM in the skull stripping, we combine common param-
eters to all patients. It means, the second composition case was performed with dot and cross
products tagging the images but not the parameters. Whereas, for the following EM invocation,
in the classification performed before the bias estimation, the ratio parameters vary for each pa-
tient therefore just a dot product is performed. Acting this way allows users to put two times the
same patient but with two different file parameters.

Initially, we completed the design of this first workflow using the scurLlanguage of Taverna [Oinn
etal., 2004] workflow manager. The workflow does not requires high level abstraction of data com-
position because it is executed using the same datasets requiring only parameters modifications.
Therefore, simple iteration strategies are required. On the other hand, the enactment of the lon-
gitudinal atrophy detection in Alzheimer’s disease requires more complex iteration strategies due
to the number of services inputs. Moreover, the workflow composition in this second use-case in-
volves the treatment of several patients at the same time. It is necessary to take into account the
modification of parameter as well as complex data composition. Thus the resulting workflow re-
quires design elements as the flat cross product provided only by the GWENDIA language. Beyond
this composition requirement differences the design of both workflows includes the same con-
struction steps: wrap the CLI tools as services using the jigsaw wrapper, deploy the applications

as Web services, and finally compose the services by means of the MOTEUR workflow manager.

6.2 Materials and methods

This section details the experimental conditions in terms of the execution environment. This de-
scription is followed by the definition of the reference evaluation measures in order to evaluate the
application optimization of the automatic brain segmentation case study, and the performance for

the Alzheimer's disease use-case.
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Figure 6.1: Simplified schematic representation of the automatic brain segmentation
workflow where ellipses represent services and trapezoids represent input/output
data

6.2.1 Execution environment

We performed the experiments using the framework detailed in Section 3.3.2. We use a server with
2 quad-core processors at 2.67 GHz and 16 GB of memory for local executions. This resource is used
to implement the decision model described in Section 2.2 in combination with the European Grid
Infrastructure detailed bellow. To complete the framework we also take advantage of the DIRAC

pilot jobs management system which improves experiments performance.

European Grid Infrastructure

The European Grid Infrastructure (EGI) is a collaborative effort involving more than 10,000 users
over 50 countries. Its objectives are to enable a sustainable production infrastructure of resource

providers; to support structured international research; to manage virtual organizations; and to
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Figure 6.2: Simplified scientific workflow representation of atrophy rate from longi-
tudinal analysis at Alzheimer's disease where ellipses represent services and trape-
zoids represent input/output data

provide middleware and training services through the federation of national and domain specific
resource providers [Newhouse, 2011]. The infrastructure includes in excess of 300 sites offering

around 340,000 processor cores, and more than 100 Petabytes of storage. The infrastructure is
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available to users around the world achieving a sustained workload of halfa million computer tasks

or jobs every day.

DIRAC

The Distributed Infrastructure with Remote Agent Control (DIRAC) project is a complete Grid solu-
tion for a community of users needing access to distributed computing resources." It is designed to
be a generic data management and job submission system providing means for managing tasks on
Grid resources taking over the workload management functions. The DIRAC architecture consists
of numerous cooperating distributed services and light agents built within the same framework
following the Grid security standards.

Dirac introduced the now widely used concept of pilot jobs. Pilot job is a type of multilevel
scheduling, in which a resource is acquired by sending pilots before and then the application can
schedule work into that resource directly, rather than going through a local job scheduler which
would lead to queue waiting time for each work unit. Pilot jobs are most often used on systems that
have queues to avoid multiple waits during scheduling. Pilot jobs allows DIRAC to build an efficient

Workload Management Systems optimized in a central task queue.

6.2.2 Measures of evaluation
Application optimization

We are interested in reproducing the work performed by neuroscientists while experimenting to
underline the advantages of working with the proposed experimental framework and EGI. A ser-
vice-oriented approach execution based on a workflow enactment offers the possibility of autom-
atize manual tasks such as data staging and scripting development, reduce potential errors of data
and execution management, and improves the final execution timespans. These advantages have
an impact during experimentation because more detailed experiments can be performed with the
same datasets or early conclusions can be validated with larger-scale executions. We focus in the
qualitative results without measuring aspects related to the infrastructure performance. Specifi-

cally we try to evaluate parameters of an experiment in order to optimize the application.

Scalability performance

Another set of experimental trials aims at quantifying the latency endured by, and the speedup of
the entire workflow. We are mainly interested in the average latency x of all job submissions, and
the final workflow execution timespan for the speedup S calculation. In addition, the execution
failure rate and the maximum number of theoretical concurrent executions of submitted jobs are
also studied as they are important indicators in the scalability analysis. Three execution types are

considered:

1. Execution on grids. The workflow is executed by submitting jobs directly to the wms. This

is the default behavior when working on the Grid.

IDIRAC: http://diracgrid.org/
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2. Multilevel scheduling execution. The workflow is executed using DIRAC. This represents a

basic environment considering pilot jobs.

3. Efficient execution: The workflow is executed implementing the decision model for effi-
cient use of local resources defined in section 2.2 in combination with the multilevel schedul-

ing execution.

6.3 Results

Experiments have been designed to validate the approach modeled in Chapter 2 and the resulting
reference implementation detailed in Chapter 3. The framework proposed is stress tested using
real applications related to the treatment of brain conditions. In case of the automatic brain seg-
mentation, an application optimization is performed presenting results of a typical execution of a
neuroimaging study. We are interested to tune the parameters of the EM execution in order to ob-
tain a valid threshold range of the ratio parameter for a suitable brain segmentation. In case of the
atrophy rate measurement from the longitudinal analysis at Alzheimer’s disease, we focus on the
qualitative evaluation of the execution platform to estimate the performance improvement while

using a production DCI as EGI.

6.3.1 Results on application optimization

The workflow of the automatic brain segmentation uses twice the EM algorithm to perform the
skull stripping and the classification of tissues for the bias estimation. The ratio parameter of the
EM service is evaluated according its sensibility and specificity according to Equations 5.2, and 5.3.
The EM step consists in the estimation of the Gaussian parameters for each healthy tissue com-
partment class. These assessments are computed from the voxels intensities of the MRI. A ratio
parameter define the fraction of voxel to be used (e.g., if the ratio is equal to 1 then all voxels are

considered). In this part, we use the percentage of considered voxels.

The experiment assesses the influence of the ratio parameter on the workflow results. In fact,
by taking only a part of the image voxel, the speed of the algorithm could be improved but it could
also affect the accuracy of the resulting segmentations. Therefore the relationship between this
parameter and the compromise between accuracy and speed is studied for use in further works.
To quantitatively evaluate this impact, WM segmentations have been generated for different ratios
and have been compared to a reference segmentation (i.e., segmentation with ratio equal to 1) by
computing the algorithm’s sensitivity and the specificity.

It is important to underline that voxels are chosen randomly in the 3D image. Consequently,
different results can be obtained for a same ratio parameter. To minimize the influence of this ran-
domization, many executions have been done and mean values of the sensitivity and the specificity
have been computed. Figure 6.3 displays these values as a function of the percentage of voxel con-
sidered with the variations around mean values. For this application, the power of the grid provides

an efficient help to generate all the results (9 executions per ratio value). Indeed, the ratio parame-
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ter was written in an input parameter text file and has been assimilated as a relative to the patient.

Acting this way allows us to test all the different ratio parameters with each patient’s MRI.
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Figure 6.3: Mean sensibility and specificity of white matter segmentationsin function
of the percentage voxel

Due to the skull-stripping step, the segmentation of the different healthy compartments is
done on approximately 830,000 voxels. On Figure 6.3, we observe that the sensibility is decreasing
while the percentage of voxels considered is decreasing. The specificity is more stable but those
two quantities are increasingly variable. Taking less than 1% of the voxels in our algorithm leads
to results with too high variability: we cannot accept that different execution (with random voxel

selections) lead to different results.

First, in this case, a WM segmentation with a specificity of 100% would mean that each voxel
defined as belonging to (resp. not to) the white matter is really belonging to (resp. not to) the white
matter in the segmentation of reference. But this doesn't mean that our segmentation results are
accurate for low percentage ratio. Indeed, in our case, specificity and accuracy should not be con-
fused because there are far more true negatives (voxels out of brain) than true positives (voxels

really belonging to WM).

Secondly, the drastic decrease of the sensibility means an increase of the number of false nega-
tive which corresponds to the voxel really belonging to the WM but not labeled as such. This reveals
that after a certain threshold value of the ratio, there are not enough voxels any more in order to be

able to define the Gaussian class parameter from the class estimation step of the EM. Finally, these
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results reveal that using only 1% of the voxels of the image in the EM method would divide its exe-
cution time by 3 or 4 (compared to the execution with 100% of the voxels), without impacting the

WM segmentation quality (Figure 6.4).

(a) 100% (b) 2% (c) 0.02%

Figure 6.4: White matter binary segmentation from the workflow for different ratio
percentage values

6.3.2 Results on scalability performance

The workflow execution on a production environment as EGI is confronted to a constant workload
variation of the infrastructure. Therefore, is not possible to reproduce similar conditions between
different executions. Moreover, these executions are performed indistinctly on computer elements
with different performance capacities resulting in some cases very different execution timespans.
These are the reasons to be interested in the variations of the submission latency and the overall
workflow speedup instead of absolute values of the latency and final timespans.

The longitudinal atrophy detection in Alzheimer's disease workflow is a good example to test
scalability, to validate the decision model presented in Section 2.2, and to evaluate the execution
environment setup. Services composing the workflow shown in Figure 6.2 are heterogeneous in
terms of average execution time and memory consumption as shown in Table 6.1. A benchmark
of the average execution time of each service on the target DcI was previously done to estimate the
values of t;, r;, and Ty, required in Equations 2.1 and 2.2.

Several patients could be processed in parallel without performance loss assuming availabil-
ity of resources on the Dc1. For each experiment type, the workflow was executed with patients
datasets which size grows exponentially from 1to 256 (see Table 6.2), and with 2 to 5 images associ-
ated to each patient. This leads to an average of 25 service executions per patient. The experiments

were performed using inputs of the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.?

Latency

The average latency in minutes (x), the standard deviation (), the minimum (mir) and maximum

(Max) registered latencies, the median absolute deviation of the latency (MAD), the range (Max —

2ADNI: http://adni.loni.ucla.edu/
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Services Average time Memory

[min] [MB]

images reorientation 1.450 150
reference reorientation 1.450 150
rigid registration 3.217 250
registration to MNI atlas 4.183 250
matrix composition 1.333 150
applying parameters 2.317 200
bias correction 7.167 500
mask creation 14.350 1,000
nonrigid registration 174.783 6,500
Jacobian computation 3.300 1,000
average 1.333 150

Table 6.1: Benchmark of average services execution on EGI

Patients Concurrent Total
Services Executions

1 5 35

2 10 70

4 16 108

8 32 216
16 64 432
32 123 824
64 243 1,624
128 481 2,852
256 962 6,416

Table 6.2: Summary of services executions

min), and the interquartile range (1QR) are calculated for the three workflow executions modes as it
is shown in Table 6.3. We are mainly interested to the values of the MAD and 1QR because they are
robust statistics that are not affected by outliers. In the context of executions on EGI, such outliers
have exhibited a high impact on latency due to load variability [Lingrand et al., 2009a] making

difficult the interpretation of the execution results.

We observein graphicallyin Figure 6.5 a sustained increase of the latency when the input dataset
size increases in grid executions. The values of o and Max increase as well in all types of executions
as shown in Table 6.3. This behavior is expected as the increasing number of jobs loads the wms
submission queues and DIRAC when using pilot jobs. For instance, in Table 6.2 we show the incre-
ment from 25 concurrent executions for one patient up to 962 executions for 256 patients. Con-
versely, the multilevel and efficient optimization methods reduce the average latency significantly
due to the reuse of worker nodes passing by the scheduler mechanisms obtained with pilot jobs.
Focusing on the largest dataset runs, we verify that the latency is lower for a same number of pa-
tients with multilevel scheduling than with grid execution, and even lower with efficient execution

showing the relevance of execution without waiting times thanks to the use of local resources. This
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Figure 6.5: Latency variability on grid executions

behavior is verified with the MAD, a variability measure comparable to the standard deviation. The
MAD shows the dispersion reduction among all latencies when the optimization methods are im-
plemented (see Figure 6.6). Similarly, the 1Qr shows a tendency for gradual increment of the range
asincreasing the number of patients, however the optimization methods significantly lowers these
values exhibiting the attenuation effect obtained initially with the pilot jobs and then reinforced
with the implementation of decision model for submission on local resources. The use of limited
local resources shows up with large datasets obtaining similar 1Qr values in multilevel and efficient

executions.

In Figure 6.8 (page 99), we present an example of the timeline diagrams for the three experi-
ment types. Graphically, we can observe on the top of the diagram the time evolution of a saturated
wMs during a Grid execution that results in all tasks having a similar waiting time delaying the in-
vocation of last services by all accumulated latency. This latency is reduced once the multilevel
method is implemented. Finally, we can observe that latency is reduced in the same proportion
with the efficient execution type; even more in some cases there is no latency at all. Nevertheless,
the use of local resources potentially reduces the final execution timespan as we can observe in
Table 6.4.
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Patients X o min Max MAD Range IQR

grid 1 1.815 1.712  0.283 6.100 0.433 5.817 2.883
2 2.783 3.180 0.233 11.117 0.667 10.884 3.700

4 2.871 4.049 0.167 20.617 0.675 20.450 3.284

8 12.251 13.836  0.283 84.150 5.208 83.867 10.134

16 35.141 33.672  0.333 164.983  11.467 164.650 28.666

32 39.841 29.903 0.250 189.200 10.500 188.950 29.850

64 52.237 145.353 0.200  1,194.117 13.583 1,193.917 43.484

128 107.185 53.747 0.250 774.233 27.417 773.983 78.367

256 178.289 101.185 0.217 1,661.483 51.008 1,661.266 100.467

multilevel 1 1.525 1112  0.467 5.300  0.400 4.833 1.066
2 2.049 2.354 0.425 13.409 0.504 12.984 1.367

4 3.558 6.031 0.350 26.217 0.350 25.867 2.084

8 2.428 2.750 0.383 12.400 0.408 12.017 2.267

16 5.349 10.609 0.289 93.011 0.880 92.722 3.867

32 10.017 24.844  0.284 174.142 1.138 173.858 5.142

64 6.637 8.637 0.242 84.842 1.846 84.600 9.825

128 14.134 17.741  0.175 161.517 7.896 161.342 19.350

256 26.293 40.736 0.100 349.783 8.269 349.683 32.389
efficient 1 0.304 1.019 0.000 4.372 0.000 4.372 0.000
2 0.582 1.954 0.000 9.350 0.000 9.350 0.000
4 0.477 1.349 0.000 7.117 0.000 7.117 0.000
8 0.460 1.152 0.000 7.067 0.000 7.067 0.000

16 1.559 5.174  0.000 52.975 0.000 52.975 0.950

32 5.470 17.212  0.000 121.125 0.171 121.125 3.463
64 6.205 11.644 0.000 52.767 0.900 52.767 6.000

128 10.279 16.120 0.000 193.667 1.517 193.667 15.350

256  24.730  48.920 0.000 393.467 2.900 393.467 29.217

Table 6.3: Latency statistics in minutes for all execution modes
Speedup

Three different types of speedup are considered to evaluate the impact of the execution framework
on application performance as shown in Table 6.4. The traditional speedup S is defined as the ratio
of a reference, the sequential running time of the application, over the timespan measured during
a parallel run. The speedup measures the improvement with regard to the total cPU consumption
that may vary significantly between computing elements. In addition, we determine the workflow
speedup S,, = p X T; /T, where p is the number of patients, and 7} is the workflow execution times-
pan fori patientsin a given execution mode. S,, measures the global workflow improvement rather
than execution time. The S, shows the speedup evolution within an execution mode as a function
of the number of patients (and datasets). Finally, the relative workflow speedup S, is computed as
S, but taking T} of the grid execution type for all cases. The value of S|, shows the execution im-
provement with regard to a constant reference of executions on the Grid and represents a good

comparator between execution modes.

We observe for all execution types in Table 6.4 that the speedups is effective from one patient

(S > 1). The increasing speedup demonstrates all levels of parallelism (i.e., data, service, pipeline)
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Figure 6.6: MAD of average latency. Grid execution in blue, multilevel execution in
red, and efficient execution in yellow

implemented with the workflow enactment. The speedup increases significantly even ifthe latency
increases showing the success of the resources acquisition on the pci. The workflow enactment
enables concurrent executions improving the final execution timespan, specially in case of pilot

jobs use for large numbers of patients.

Figure 6.7 shows the workflow speedup evolution for each execution mode. We can observe that
pilot jobs play an important role in the speedup improvement. Moreover, the higher values of S,,
in the efficient execution verifies the cumulative effect of including pilot jobs, and the use of the
submission decision model. Although, this behavior is marginal with large number of patients

because of the limited number of local resources.

According to the results, while the implementation of the optimization methods improves the
speedup, the final execution timespan may not differ significantly between the implementation of
the multilevel execution and efficient execution. Similarly, the number of failures has the same order
of magnitude across the executions using pilot jobs due to the heterogeneity of the computing el-
ements on EGI. It means that even if the use of local resources attenuates the failure rate it does
not represent a safeguard to reduce the final execution timespan but its use has a clear influence
on latency in absolute terms (MAD and 1QR). In fact, the almost constant failure rate present along
all reported experiments is due to several factors on the production environment, namely full stor-
age elements, temporal unavailability of middleware services such as the file catalog server or the
proxy certificates manager, unexpected timeouts while storing data, or specific applications errors

resulting of incompatibilities with OS computing elements and /or missing system libraries.
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Patients Timespan Total CPU Failure S Sw S
[hours] [hours] rate
grid 1 8.024 14.037 0.00% 1.749 1.000 1.000
2 6.556 20.047 25.00% 3.058 2.448 2.448
4 7.326 29.651 14.29% 4.047 4.381 4.381
8 14.394 83.656  31.86% 5.812 4.460 4.460
16  21.144 223.438 17.46% 10.567 6.072 6.072
32 22.442 358.608  27.77% 15.979 11.441 11.441
64 33.619 572.193 11.31% 17.020  15.275 15.275
128 35.863 1,328.756 14.83% 37.051 28.639 28.639
256  41.531 2,388.036  11.36% 57.500 49.460 49.460
multilevel 1 3.382 11.631 0.00% 3.439 1.000 2.373
2 4.569 21.448 10.26% 4.694 1.480 3.512
4 4.484 37.047 1.82% 8.262 3.017 7.158
8 4.478 69.354 2.26% 15.488 6.042 14.335
16 6.200 104.168 1.51% 16.800 8.727 20.706
32 8.614 227.472 2.02% 26.407 12.564 29.808
64 12.831 698.307 13.71% 54.423 16.869 40.023
128 20.528 1,160.384 9.09% 56.527 21.088 50.033
256  19.959 1,857.050 1.99% 93.043 43.379  102.918
efficient 1 3.152 10.155 2.78% 3.222 1.000 2.546
2 3.574 20.263 1.41% 5.670 1.764 4.490
4 3.461 32.010 0.00% 9.249 3.643 9.274
8 3.354 56.137 0.46% 16.737 7.518 19.139
16 4.048 115.145 0.92% 28.445  12.458 31.715
32 7.750 219.229 1.02% 28.288  13.015 33.131
64 9.560 388.227 6.13% 40.610  21.101 53.717
128 12.536 962.033 6.95% 76.742  32.184 81.930
256  18.655 2,255.662 7.42%  120.915  43.254 110.112

Table 6.4: Timespan statistics for all execution modes

In summary, these quantitative results comply with the behavior of a production Dc1 as EGI that
isreported in literature reporting a dynamic working load, and heterogeneous resources availabil-
ity. The implementation of the decision model and the optimization methods show a significant
reduction of invocation latency, and an execution speedup improvement. It is important to notice
the independence between the use of local resources and the data size used as input. It means,
the local execution may also involve large amounts of data even if these are processed by a short
execution job. At the same time, the storage elements are considered distributed across the infras-
tructure therefore, the execution using the efficient model it is not associated in any case to local

storage.

6.4 Discussion

A lot of research efforts have been invested in dealing more or less independently with the four
well-known issues of large-scale infrastructures mentioned in the introduction chapter (low re-

liability, high latency, unfair balance, complex deployment and scalability). We face them with
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Figure 6.7: Execution speedup as a function of the number of patients. Grid execution
in blue, multilevel execution in red, and efficient execution in yellow

the design of an end-to-end execution framework in which soA principles are adopted to enable
the execution of distributed workflow applications on large-scale datasets. Using an SOA approach
allows users to scale the execution of their applications, and flexibly extend the execution frame-
work according to their computation needs. Besides, in SOA various optimization strategies can
easily be integrated to improve the application performance as shown through experiments cam-
paign reported here. Following we resume how we tackled (and verified during experiments) each

problem as part of the goals of the thesis.

Failure recovery. Networking and computing infrastructures are subject to random resource fail-
ures. The likeliness of failures increases with the number of physical entities, as seen in large-scale
distributed systems today [Dabrowski, 2009; Huedo et al., 2006]. Recovering from failures be-
comes a critical issue to improve the reliability of the infrastructure, preventing the correct comple-
tion of many application runs. Numerous works addressing this issue have been proposed in the
literature including the check-pointing, live migration [Kangarloun et al., 2009; Koslovski et al.,
2010], job replications [Casanova, 2007] and submission strategies [Lingrand et al., 2009b]. On
general purpose production infrastructures, job resubmission is often the only general failure re-
covering solution available, as check-pointing and migration usually either make restrictive as-
sumptions on the computational processes or they require application instrumentation. The fi-
nal makespan could be increased, specifically with longer applications, but resubmission ensures
that the application execution can always continue and finish successfully. This approach is imple-
mented in the framework by controlling the status of submitted jobs and defining a resubmission

policy when a failure occurs.
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Lowering latency. The splitting of an application’s computation logic in many tasks lends towards
more parallelism but the gain may be easily compensated by the time needed to handle all tasks
generated in a competitive production batch system. In the case of a workflow-based application
with inter-dependencies between tasks, the sequential submission of tasks to long batch queues
will be highly penalizing. Addressing the high latency issue, many works study multiple submis-
sions approaches [Subramani et al., 2002; Casanova, 2007; Lingrand et al., 2009b]. The results of
these studies confirm that submitting tasks several times increases application performance. How-
ever, users who do not use multiple submission are penalized. Furthermore, without considering
the capacity of batch schedulers, high number of submissions can overload the batch schedulers
and then degrade the overall system performance.

Alternatively, pilot jobs systems help users in reserving a pool of computing resources during
the execution of the application [Casajus et al., 2010], being considered as a bridge between batch
systems and systems supporting resources reservation. A pilotjob is submitted to a workload man-
ager to reserve a computing resource. User jobs are then pulled from the job queue to computing
nodes by successfully started pilot jobs. Each pilot job can thus process sequentially several user
jobs without introducing delay between two of them. Each pilot is subject once to the workload
manager queuing time but the jobs they process are not. Another advantage of pilot jobs to the
classical submission approach include the sanity checks of the running environment before assign-
ing resources for execution. They also allow users to create a virtual private network of computing
resources reserved for executing their tasks, and they implement effectively the pull scheduling
paradigm. Our execution framework extensively uses pilot jobs reducing latency and making exe-

cutions more reliable because broken resources are filtered by the pilot jobs.

Taskfairness. Thevery complextuning oflarge-scale submission systems, involving meta-brokers
and many schedulers, makes it extremely difficult to achieve fair balance between short and long
tasks in a computation process. Yet, production infrastructures are not only used for long running
jobs processing data-intensive applications but they are also frequently used for processing shorter
jobs. Statistical results shows that more than 50% of the jobs take less than 30 minutes for execu-
tion [Isard et al., 2009]. While the high latency has less impact on long running jobs, short jobs
are heavily penalized if they have long waiting times before execution. The larger the computing
time discrepancy between tasks, the higher the impact. Users therefore require a mechanism of
resource fair sharing to avoid that long jobs monopolize the whole computing resources, and delay
the completion of other users (short) jobs.

Pilotjobs also improve handling of shortjobs as they reduce individual jobs queuing time. How-
ever, although dedicated to a specific user, pilot job systems usually do not implement fairness
among the user’s jobs and pilots may be overloaded by the processing of longer jobs similarly to
a Grid meta-scheduler. Therefore, our approach combines more dedicated resources out of a dis-
tributed infrastructure with the capacity of Dcis to improve handling of short jobs. Local resources
are more reliable since the user is administrator of computing nodes, thus failures coming from the
software dependencies are lowered. Executing applications locally reduces the number of job sub-

missions remotely removing the submission phase and delays of middleware initialization. This
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then reduces the waiting time of other jobs in the queue for obtaining computing resources on re-
mote infrastructures. Nevertheless, as the number of computing resources in the local server is
limited, the more jobs submitted locally, the longer the execution time needed to finish all jobs.
We define a decision model in Section 2.2 to decide whether a task is executed on local resources

or submitted to a DCI.

Deployment & scalability. Beyond middleware parametrization, the deployment of application ser-
vices may have a strong impact on application performance as servers easily become overloaded in
large-scale runs [Krishnan and Bhatia, 2009]. Some initiatives like GAsw [Ferreira da Silva et al.,
2011] or LoNI Pipeline [Dinov et al., 2009] propose tools to reuse scientific applications on Dcis but
they have scalability limitations or interoperability constraints respectively. Concerning Web ser-
vice-related projects, tools such as GEMLCA [Delaitre et al., 2005], and gravi [Chard et al., 2009]
manage services lifecycle at different levels, enabling dynamic deployment and/or supporting of
non-functional concerns. However, their adoption involves the use of an homogeneous middle-
ware. Our execution framework relies on a legacy application code wrapper that both provides a
standard Web service interface to all application computing components, and helps managing the
complete lifecycle of the resulting services.

In practice multiple services containers, acting as a proxy between users and the production
DcI, may be configured in the framework. Each container naturally has a limited capacity to pro-
cess concurrent services. When the size of input dataset increases, the number of services submit-
ted concurrently may exceed its capacity. The replication of servers into the system (scaling out)
resolves this limitation. It increases the performance without modifying the framework architec-

ture.

Addressingall concernstogether. The execution framework used during this experimental campaign
addresses simultaneously the production Dcis shortcomings by combining advanced job submis-
sion strategies, services replication, and including the use oflocal resources during workflow enact-
ment. The implementation of job resubmission improves the reliability by instantiating a system
capable of error overcoming from remote executions. Then the adoption of pilot jobs for multi-
level scheduling ensures the reduction of latency. Pilot jobs represent a new approach to overcome
long queues of batch schedulers reusing computing resources efficiently. In order to tackle the
unfair balancing resulting from the competition of short/lightweight application tasks with the
long/heavyweight ones, a decision model dispatching tasks among local and remote resources is
implemented. The deployment of services provides transparent mechanisms of applications real-
location, over local and remote resources, holding back technical details far from final users. Fi-
nally, the scalability heedfulness ensures large-scale experiment campaigns by enabling services
resiliency.

The delivery of an integrated execution environment is eased by the application of soA prin-
ciples, made possible by the workflow formalism used to model distributed applications. SoA has
been adopted to a large extent in middleware design [Foster, 2006]. For instance, the Swift work-

flow management system [Zhao et al., 2007] provides an integrated working environment for job
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scheduling, data transfer, and job submission. It is built on top of a uniform implementation based
on Globus toolkit. Yet, production infrastructures hardly ever comply to a homogeneous middle-
ware stack, nor adopt a single communication standard for all core and community services. Con-
versely, traditional workflow management systems like Taverna [Oinn et al., 2006a], or Triana [Tay-
lor et al., 2005] support service invocation enabling interoperability but they do not natively exe-
cute code on DcIs. In our architecture, both middleware and application components are deployed
as services. The application code is instrumented non invasively to comply to this model through
a Web service builder aware of Dcis computing capability. Using an S0A approach allows users to
scale the execution of their applications and flexibly extend the execution framework according to

the computation needs.
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Figure 6.8: Timeline diagrams (execution time [seconds] as a function of the number
of services) for the workflow executions of 128 patients on EGI. From top to down:
grid execution, multilevel execution, and efficient execution. Each service is repre-
sented by a horizontal bar composed of two parts: thefirst (in red) is the latency time
between submission and acquisition of a computing resource, the second (in green)
is the execution time including data transfers.
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Conclusions

This work aims at improving the Grid users experience, specially among the neuroimaging scien-
tific community, by simplifying experiments and enacting scientific applications efficiently.

The need for a uniform and generic characterization of legacy applications led to a formal ab-
straction of cL1tools to describe their invocation, taking into account the execution context. It pro-
vides a set of definitions to identify details concerning invocation arguments. This abstraction en-
ables the definition of the application interface independently from the configuration required for
execution. In addition, several infrastructure configuration environments can be included within
the definition, supporting the execution in heterogeneous platforms. The abstraction of cLI ap-
plications, defined in chapter 2, is used in a reference implementation framework to expose those
tools as services.

The study of the dataflow and computing requirements of two neuroimaging use-cases, de-
scribed in chapter 5,1ed to model them as scientific workflows composed of servicesin a data-driven
approach. A coordinated work with neuroimaging experts was needed to understand completely
the details of applications involved in complex pipelines and transform them into scientific work-
flows. We took advantage of two scientific workflow definition languages to describe the data it-
eration strategies and control structures of the dataflow. In the case of the automatic brain seg-
mentation, we defined the workflow using the scuFLlanguage. This first composition revealed the
limitations of SCUFL when working with high data dimensionality. Therefore, the second use-case,
ameasure of changes applied to brain structures by the Alzheimer’s disease, was designed with the
GWENDIA language. This later definition enabled the representation of a more complex dataflow.
In both cases, the use of MOTEUR led a proper enactment on heterogeneous platforms.

We identified the requirements to enact the designed workflows and we highlighted the need
to fulfill non-functional concerns associated to work with sensitive data in a distributed working
environment. Jigsaw, an extensible framework integrating external concerns, was developed in the
context of two driver projects to enable the execution of services that compose the workflows. This
reference implementation manages the complete lifecycle of services from creation stage to invo-
cation, passing through deployment and instrumentation on the executing infrastructure. Some
salient characteristics of the framework include the implementation of a cLI application wrapper
as Web service and a generic consumer API; an embeddable Gurin third-party software; and the ex-

tension support for new execution strategies on alternative distributed infrastructures. This frame-
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work not only represents a proof-of-concept of the feasibility of our approach. Nowadays, jigsaw

is successfully used in production environments by external research projects.

We adopted a service-oriented approach during the implementation of the jigsaw framework to
ensure scalable and flexible experimentation. The implementation takes advantage of service con-
tainers enabling execution scalability. The use of an open and production tested container, such
as Apache Tomcat, eases the services management with mechanisms like hot deployment. It also
grants more advances procedures of server-side administration such as clustering, load balancing
and servers farming. The possibility of a transparent deployment of several containers ensures to
serve a larger number of service invocations. In addition, the implementation of a compatible ser-
vice-oriented framework based on Web standards extends the number of potential users by pro-
viding interoperable interfaces. In fact, the access to heterogeneous platforms through a single

standard-based interface simplifies the experimentation of scientists.

In addition, we handled some strategies to ensure reliable and resilient executions on hetero-
geneous infrastructures. The use of DIRAC, a workload managed system supporting multilevel jobs
scheduling execution by the instrumentation of “pilot jobs” on the target infrastructure, allows us
to tackle high failure rates commonly found in production environments such as EGI. The perfor-
mance loss of job submission was significantly reduced in combination with two more pragmatic
solutions: job resubmission policies and data replication. The modular implementation of jigsaw
offered the possibility to integrate DIRAC into the framework improving the executions extensively.
On the other hand, the implementation of resubmission policies was resolved as a simple exten-
sion without compromising the rest of the framework. We also noticed the beneficial effect of data
replication in order to avoid storage servers unavailability that can completely stop a workflow ex-

ecution.

Finally we defined a workflow-oriented model to exploit efficiently local and remote resources.
The adoption of production DcCIs ensures access to a large number of computing resources. How-
ever, it often implies high latencies and failure rates. In the case of scientific workflows, the latency
and failures are amplified because of the enactment of several levels of parallelism. Moreover, the
unfair balance of short and long-term executions makes extremely difficult to achieve an opti-
mized execution due to the very complex tuning of large-scale submission systems. Conversely,
the use of local resources offers reactive and more reliable resources but often brings resource lim-
itations with large experimentation. The definition and implementation of a simple and effective
decision model to combine both types of resources showed a non negligible global improvement

in terms of failure rate and submission latency reduction.

The conceptual contributions and development presented throughout this work addressed si-
multaneously cLI applications lifecycle management in distributed environments, and production
Dcis shortcomings. The implementation of a reference standard-based framework, combined to
the adoption of efficient mechanism to overcome resource unavailability, and the formal defini-
tion of a decision model for job submissions provide an alternative to tackle issues of data intensive

experimentation.
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Perspectives

Towards an open and standard description of CLI applications

Many specifications to describe cLI applications execution have been presented in the literature.
A majority of them share the same principles and concepts. Some abstractions are also geared
towards specific fields of science like bioinformatics [Senger et al., 2008] or chemistry [Krishnan
etal.,2009]. However, these initiatives are not consensual efforts, thus the specifications are likely
ignored or inadvertently recreated outside of their original purpose. Moreover, they do not include
systematically a formal data schema making it difficult to fully exploit the features of the abstrac-
tion.

The abstraction of cLI applications developed in this work may be the starting point for an en-
hanced version. The experience gained from interactions with neuroscientists, and the feedback
received during the development of the jigsaw framework resulted in some potential modifications
and extensions towards an open and standard specification for the description of cL1 applications
interfaces and execution contexts. New resolution models (e.g., cross references between argu-
ments, or support for arguments that are input and output simultaneously) and mappers in the
declaration of arguments, may introduce a cleaner and more flexible description of tools. The
definition of additional schemes for domain-specific tools support may also promote a uniform
description of cLI applications for better dissemination. This kind of extensions may benefit to se-
mantic abstraction of applications as well, because the resulting descriptions can be directly reused
for the generation of semantic annotations or the definition of ontologies. The integration of ex-
ecution environment configuration in the description would represent an additional contribution
to the standardized abstraction of cLI applications description addressing heterogeneous infras-

tructures.

Forthcoming development paths

As part of the permanent goal of improving the user experience, multiple development paths are
considered. First, we can integrate JSAGA [Reynaud, 2010], an open initiative of the Grid commu-
nity, to enable a uniform data and execution management across heterogeneous infrastructures.
This integration would reduce the management of multiple sources of libraries and dependencies.
The use of JSAGA can also lead the reuse of jigsaw components as JSAGA adapters (i.e., program-
matic interfaces designed to minimize coding effort for integrating support of new technologies)
to release features of our framework like the result processing as data-typed collections. In the
same direction as the adoption of solutions that support a wide range of technologies, we can in-
tegrate natively DIRAC through its Apis allowing users to aggregate, in a single management sys-
tem, resources of different nature. This represents the inclusion of a new layer into the framework
supporting the infrastructure management. The inclusion may simplify the implementation of
the framework removing the need of extending new executors for additional infrastructures. Fur-
thermore, DIRAC may bring to the framework additional control and auditing mechanisms for dis-

tributed infrastructures.
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Second, planning the executions of applications as scientific workflows, we can enhance the
interfaces of the framework to ensure a modular cohesion with workflow management systems.
In fact, one goal of the European SHIWA project is to address the fine-grained interoperability exe-
cution of workflows [Plankensteiner, 2010]. Fine-grained interoperability focuses on the transfor-
mation of workflow representations in order to achieve workflows migration from one system to
another. The power of the fine-grained workflow interoperability stands in exploiting the most ap-
propriate enactor for a certain workflow application, independently from the language in which it
was created. The use of technological-neutral mechanisms to provide access to application execu-
tions would definitely reduce the integration effort between application execution and workflow
enactment. The jigsaw framework becomes an interesting tool for achieving that goal since the
first-class entities in scientific workflows are services, and they must be interoperable to enable
the execution on different Dcis. Part of this initiative is already achieved with the integration of the
jigsaw APIin the MOTEUR workflow engine.

Complementarily, we are convinced that we can make an important improvement to the jig-
saw framework joining new technological trends like autonomic computing. The framework, for
example, would take advantage of ongoing efforts of self-management of distributed computing
resources [Krikava et al., 2011] incorporating mechanisms to adapt the responsiveness of applica-

tion executions according to the infrastructure status.

Prospects in neuroinformatics

Neuroinformatics merges the power of computational analysis with neuroscience evolving from a
simple use of computers for data organization to the current development and application of so-
phisticated computational tools for large-scale data and image management, analysis and model-
ing of brain function. This discipline continuously searches for methods that facilitate new insights
through the integration and analysis of large and diverse datasets.

Scientific workflows become a potential catalyst to transform the way experimental campaigns
are conducted in neuroinformatics. Their adoption in bioinformatics, for instance, has become a
driver in the creation of a dynamic community to find, share, and exchange data, models, and pro-
cesses [De Roure et al., 2009]. Yet, the use of distributed workflows, enacting services deployed
over remote sites, remains infrequent in neuroinformatics. Several factors influence negatively a
broader development of neuroinformatics. The cumbersome access to data due to legal policies
restricts sharing. Frequently tools are not fully developed requiring long iterative process of test
before reaching mature stages. Unlike bioinformaticians, only specific collaborations between re-
search teams have been established. Moreover, there is still some reluctance to change working
practices even if they are error-prone or take longer to perform large-scale experimentation.

The evolution of neuroinformatics today has to be based on a broad dissemination of exist-
ing tools and continuous development. This multidisciplinary approach involves advanced con-
cepts and technologies that are not easy to assimilate and handle. Nevertheless, the advantages at-
tached to the adoption of high-level abstraction applications and the automation of previous man-
ual data-processing and analysis tasks may represent a trigger. The promotion of scientific work-

flows can accelerate the development of neuroinformatics by a separation of concerns between dis-

104



Perspectives

cipline-specific content and domain-independent software. Neuroscientists understand the im-
pact of interactions between tools in the creation of analysis methods supporting disciplinary re-
search. Therefore, the development and utilization of the jigsaw framework become a step forward
in this context but much more effort in dissemination of concepts such as scientific workflows and
development of similar frameworks is needed before initiatives like jigsaw may be applied routinely

across many disciplines.

Outlook on service-oriented science

We strongly advocate for service-oriented science [Foster, 2005a]. This approach has the poten-
tial to increase scientific productivity by making tools available, and thus enabling the widespread
automation of data analysis and computation. Service-oriented science enables publishing and
accessing data and scientific applications. The definition of standard interfaces and protocols al-
lows users to encapsulate data and applications as interoperable services. Therefore, tools formerly
accessible only to restricted communities now can be made available to all. Service-oriented archi-
tectures resolve past data interchange and execution autonomy issues, and their implementations
are bridged successfully to external infrastructures opening the door to scalable experimentation.

Service-oriented science takes advantage of distributed computing infrastructures enabling
large-scale experimentation in remote and cross-institutional contexts. Analogously, cloud com-
puting can also foster the development of service-oriented science. Cloud computing is a comput-
ing model providing software, middleware and computer resources on demand where the phys-
ical location, scale, and maintenance remains transparent to users. Cloud computing can be a
key benefit in service-oriented science, despite the challenges that cloud computing carry on in
scientific environments: external providers raising security issues, commercial strategies of busi-
ness-oriented operations, or throughput computing incompatibilities. It harnesses the rapidly in-
creasing computing power as well as virtualization technologies to create a resource delivery model
“as a service” at different levels, namely, infrastructure as a service ([aaS), platform as a service
(PaaS), or software as a service (SaaS). This emerging approach, adopted into the strategy of most
industries nowadays, defines the concept of “elasticity” as the feature of automated, dynamic, flexi-
bleand frequent resizing of resources that are provided to an application by the execution platform.
This elasticity provides dynamicity and adaptivity to the efficient experimentation and honors the

service-oriented science approach.
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Schema of the CLI application description

The definition of the schema uses the RELAX-NG compact syntax [ISO/IEC 19757-2:2008]. The no-

tation convention is as follows:

12

13

Reserved keywords are in italics.
Definitions are in sans serif.
Values are in monospace.

Data types include their namespace prefix in SMALL CAPITALS.

start = bundle
bundle = element bundle { interface , implementations }

interface = element interface { version , symbolicName , description? ,
organization? , copyright? , reference? , contactAddress? , arguments? }

implementations = element implementations { implementation+ }

version = element version { XSD:NMTOKEN{ pattern = '\c+' }}
symbolicName = element symbolicName { XSD:NCName{ pattern = '\s"' }}
description = element description { xsD:token }

organization = element organization { xsD:token }

copyright = element copyright { xSD:token }

reference = element reference { xsD:token }

contactAddress = element contactAddress { XSD:NMTOKEN }

arguments = element arguments { argument+ }

argument = element argument { identifier , stream , type , mapper ,
implicitness , space , label , option? , hint? , content , nesting }

identifier = attribute identifier { XSD:ID }
stream = attribute stream { streamType }

type = attribute type { typeType }
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20

21

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
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mapper = attribute mapper { mapperType }

implicitness = attribute implicitness { xsD:boolean }

space = attribute space { xsD:boolean }

label = element label { XSD:NMTOKEN }

option = element option { XSD:NCName }

hint = element hint { XSD:NCName }

content = element content { model , crossRef , matter? , extensions? , template? }
model = attribute model { modelType }

crossRef = attribute crossRef { xsD:boolean }

matter = element matter { text }

extensions = element extensions { extension+ }

extension = element extension { XSD:NMTOKEN }

template = element template { basePath & baseName & baseExtension }
basePath = attribute basePath { XSD:IDREF }?

baseName = attribute baseName { XSD:IDREF }?

baseExtension = attribute baseExtension { XSD:IDREF }?

nesting = element nesting { dimension , separator , beginCollection , endCollection }
dimension = element dimension { xsD:nonNegativeInteger }
separator = element separator { text }

beginCollection = element beginCollection { text }

endCollection = element endCollection { text }

implementation = element implementation { release
platforms , configuration? , attachment? }

release = element release { XSD:NCName }
platforms = element platforms { platform+ }
configuration = element configuration { variable+ }
attachment = element attachment { XSD:anyURI }

platform = element platform { infrastructure , profiles ,
sharedEnvironment? , sharedArtifact? }

infrastructure = attribute infrastructure { infrastructureType }
profiles = element profiles { profile+ }

sharedEnvironment = element sharedEnvironment { variable+ }
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60
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62

63

64

65

66

67

68

69

70
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72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

sharedArtifact = element sharedArtifact { XSD:anyURI }

profile = element profile { job , target , boundEnvironment? , boundArtifact? }
job = attribute job { jobType }

target = element target { XSD:NMTOKEN }

boundEnvironment = element boundEnvironment { variable+ }
boundArtifact = element boundArtifact { XSD:anyURI }

variable = element variable { category , name, value }

category = attribute category { categoryType }

name = element name { XSD:NCName }

value = element value { text }

streamType = ( "input"
| ||noneu
| "output")

typeType = ( "boolean"
| "double"
| "integer"
| "string"
| "URI")

mapperType = ( "archive"
| "console"
| "filesystem"
| "regexp")

modelType = "regular”

modelType |= ( "directory’
| "expansion"
| "replacement")

infrastructureType = "single"

infrastructureType |= ( "egi"
| ||g5k||
| "other"
| "pbs”)

jobType = "normal”
jobType |= ("mpi-lam"

| "mpi-mpich"
| "mpi-mpich2")

categoryType = ( "infrastructure"
| "internal"
| "system")
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Template-based source code generation

Apache Velocity is a Java-based template engine. It is a simple and powerful development tool that
allows users to easily create and documents (source code) that format and present data. When using

Velocity in an application program, the following steps are performed:

1. Initialize Velocity.

2. Create a Context object.

3. Add data objects to the Context.
4. Setabase template.

5. Merge the template and data to produce the output.

The “context object” is a common technique for moving a container of data around between
parts of a system [Apache Velocity]. The idea is that the context is a carrier of data between the Java
layer and the template layer. Objects, and their methods and properties, are accessible via tem-
plate elements called references. The language uses references defined through statements to em-
bed content in the resulting code. There are three types of references in the language: variables,
properties and methods.

An statement is meant to incorporate dynamic content by replacing the reference in the tem-
plate. Itisidentified with the “#” character. The shorthand notation of a variable consists of a lead-
ing “s” character followed by an identifier. The notation of a property consists of a leading “$” char-
acter followed an followed by a dot character (“.”) and another identifier. Finally, the notation of a
method consist of aleading “$” character followed a identifier, followed by amethod body. A method
body consists of a identifier followed by an left parenthesis character (“("), followed by an optional
parameter list, followed by right parenthesis character (“)”).

Several directives are defined as script elements in the template language. They can be used to
creatively manipulate the output of the Java code. They include statements, conditionals, loops,
and macros. The macro script element allows template designers to define a repeated segment of a
template. They are very useful in a wide range of scenarios because they are saving keystrokes and

minimizes typographic errors.
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Gestion du cycle de vie de services déployés sur une infrastructure
de calcul distribuée en neuroinformatique

L'intérét va croissant parmiles communautés scientifiques pour le partage de données et d'applications qui
facilitent les recherches et I'établissement de collaborations fructueuses. Les domaines interdisciplinaires
tels que les neurosciences nécessitent particulierement de disposer d'une puissance de calcul suffisante pour
I'expérimentation a grande échelle. Malgré les progres réalisés dans la mise en ceuvre de telles infrastruc-
tures distribuées, de nombreux défis sur l'interopérabilité et le passage a I'échelle ne sont pas complétement
résolus. L'évolution permanente des technologies, la complexité intrinseque des environnements de pro-
duction et leur faible fiabilité a 'exécution sont autant de facteurs pénalisants.

Ce travail porte sur la modélisation et I'implantation d'un environnement orienté services qui permet
I'exécution d'applications scientifiques sur des infrastructures de calcul distribué, exploitant leur capacité
de calcul haut débit. Le modéle comprend une spécification de description d'interfaces en ligne de com-
mande; un pont entre les architectures orientées services et le calcul globalisé; ainsi que l'utilisation efficace
de ressources locales et distantes pour le passage al'échelle. Une implantation de référence est réalisée pour
démontrer la faisabilité de cette approche. Sa pertinence et illustrée dans le contexte de deux projets de
recherche dirigés par des campagnes expérimentales de grande ampleur réalisées sur des ressources dis-
tribuées. L'environnement développé se substitue aux systemes existants dont les préoccupations se con-
centrent souvent sur la seule exécution. Il permet la gestion de codes patrimoniaux en tant que services,
prenant en compte leur cycle de vie entier. De plus, I'approche orientée services aide a la conception de flux
de calcul scientifique qui sont utilisés en tant que moyen flexible pour décrire des applications composées
de services multiples.

L'approche proposée est évaluée a la fois qualitativement et quantitativement en utilisant des applica-
tions réelles en analyse de neuroimages. Les expériences qualitatives sont basées sur l'optimisation de la
spécificité et la sensibilité des outils de segmentation du cerveau utilisés pour traiter des Image par Raison-
nance Magnétique de patients atteints de sclérose en plaques. Les expériences quantitative traitent del'accé-
lération et de la latence mesurées pendant I'exécution d'études longitudinales portant sur la mesure d'atro-
phie cérébrale chez des patients affectés de la maladie d'Alzheimer.

Services Lifecycle Management Using Distributed Computing Infrastructures
in Neuroinformatics

There is an increasing interest among scientific communities for sharing data and applications in order to
supportresearch and foster collaborations. Interdisciplinary domains like neurosciences are particularly ea-
ger of solutions providing computing power to achieve large-scale experimentation. Despite all progresses
made in this regard, several challenges related to interoperability, and scalability of Distributed Computing
Infrastructures are not completely resolved though. They face permanent evolution of technologies, com-
plexity associated to the adoption of production environments, and low reliability of these infrastructures
at runtime.

This work proposes the modeling and implementation of a service-oriented framework for the execu-
tion of scientific applications on Distributed Computing Infrastructures taking advantage of High Through-
put Computing facilities. The model includes a specification for description of command-line applications;
a bridge to merge service-oriented architectures with Global computing; and the efficient use of local re-
sources and scaling. A reference implementation is proposed to demonstrate the feasibility of the approach.
It shows its relevance in the context of two application-driven research projects executing large experiment
campaign on distributed resources. The framework is an alternative to existing solutions that are often lim-
ited to execution consideration only, as it enables the management of legacy codes as services and takes
into account their complete lifecycle. Furthermore, the service-oriented approach helps designing scientific
workflows which are used as a flexible and way of describing application composed with multiple services.

The approach proposed is evaluated both qualitatively and quantitatively using concrete applications in
the area of neuroimaging analysis. The qualitative experiments are based on the optimization of specificity
and sensibility of the brain segmentation tools used in the analysis of Magnetic Resonance Images of patient
affected by Multiple Sclerosis. On the other hand, quantitative experiments deal with speedup and latency
measured during the execution of longitudinal brain atrophy detection in patients impaired by Alzheimer's
disease.
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