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Abstract: The aim of this paper is to propose an optimization strategy for traffic flow on
roundabouts using a macroscopic approach. The roundabout is modeled as a sequence of 2 × 2
junctions with one mainline and secondary incoming and outgoing roads. We consider two cost
functionals: the total travel time and the total waiting time, which give an estimate of the time
spent by drivers on the network section. These cost functionals are minimized with respect to the
right of way parameter of the incoming roads. For each cost functional, the analytical expression
is given for each junction.
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Optimisation du trafic routier dans les rond-points
Résumé : Le but de ce travail est l’optimisation du trafic routier dans un rond-point utilisant
un modèle macroscopique. Le rond-point est décrit par une séquence de jonctions 2 × 2 avec
une route principale et deux routes secondaires (entrante et sortante). Nous considérons deux
fonctions-coût: le temps total de voyage et le temps total d’attente. Elles donnent une estimation
du temps que chaque conducteur passe dans la section du résau en question. Ces fonctions-coût
sont minimisées par rapport au paramètre de priorité des routes entrantes. Pour chaque fonction-
coût, l’expression analytique est calculée au niveau de chaque jonction.

Mots-clés : Réseaux routiers, Modèles macroscopiques, Problème de Riemann, Optimisation,
Lois de conservation scalaires



Macroscopic traffic flow optimization on roundabouts 3

1 Introduction
The first macroscopic traffic flow models are due to the seminal works of Lighthill and Whitham
[15] and, independently, Richards [16]. They proposed a fluid dynamic model for traffic flow on an
infinite single road, using a non-linear hyperbolic partial differential equation (PDE). This model
has, then, been extended to initial boundary value problems in [1] and developed for concave
fluxes in [14]. More recently, several authors suggested models for networks, see [4, 5, 7, 8, 12]
and references therein. These models consider different type of solutions and some of them have
been used for optimization of traffic flow of networks, see for example [3, 2, 6, 10, 11].
In this article, we focus on optimization problems for roundabouts. We consider the model
introduced in [7] and extend it to roundabouts. Roundabouts can be modeled as a sequence of
2×2 junctions. In particular, each junction is composed by one mainline and two secondary roads
connected through a node. On the mainline we apply a macroscopic approach using the Lighthill-
Whitham-Richards (LWR) model, while on the incoming secondary road a buffer of infinite size
and capacity is used, whose evolution is described by an ordinary differential equation (ODE)
that depends on the difference between the incoming and the outgoing fluxes on the lane. The
outgoing secondary road is modeled as a sink. At each junction the Riemann problem is uniquely
solved using a right of way parameter for the incoming fluxes, and solutions are constructed via
wave-front tracking.
The aim of this paper is to derive the analytical expression of two cost functionals, the Total
Travel Time (TTT) and the Total Waiting Time (TWT), and to optimize them through a suitable
choice of the right of way parameter. The TTT and the TWT give an estimate of the time spent
by drivers in the network sections (TTT) or in the queues at the buffers (TWT). The cost
functionals are computed analytically for a simple network consisting of a single 2x2 junction.
This paper is organized as follows. Section 2 describes the junction model and its extension to
roundabouts. Section 3 describes in detail the construction of the Riemann Solver at junctions.
Finally, in Section 4 we introduce the cost functionals and compute their analytical expression.

2 Mathematical Model
In this work we consider a roundabout joining three roads as illustrated in Figure 1.

J1

J2J3

Figure 1: Roundabout considered in the article.

A roundabout can be seen as a periodic sequence of junctions and it can be represented by
an oriented graph, in which roads are described by arcs and junctions by vertexes. Each road is
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4 Obsu & Delle Monache & Goatin & Kasa

modeled by an interval Ii = [ai, bi] ⊂ R, i = 1, 2, ai < bi with the possibility of either ai = −∞ or
bi = +∞. In particular, in our case, each junction can be models as a 2×2 junction, see Figure 2.
To recover the behavior of the roundabout periodic boundary conditions are introduced on the

fin

Fout Fin

foutJi

(a) Part of the roundabout.

J
I1 I2

R1 R2

(b) Corresponded junction.

Figure 2: Detail of the network modeled in the article

mainline such that bi = ai+1, i = 1, 2, 3. At each junction we will consider the model introduced
in [7]: the evolution of the traffic flow in the mainline segments is given by the scalar hyperbolic
conservation law:

∂tρi + ∂xf(ρi) = 0, (t, x) ∈ R+ × Ii i = 1, 2, 3, (2.1)

where ρi = ρi(t, x) ∈ [0, ρmax] is the mean traffic density, ρmax the maximal density allowed on
the road and the flux function f : [0, ρmax]→ R+ is given by following flux-density relation:

f(ρ) =

 ρvf if 0 ≤ ρ ≤ ρc,
fmax

ρmax − ρc
(ρmax − ρ) if ρc ≤ ρ ≤ ρmax,

with vf the maximal speed of the traffic, ρc =
fmax

vf
the critical density and fmax = f(ρc) the

maximal flux value. Throughout the paper, for simplicity, we will assume ρmax = 1 and vf = 1.
In Figure 3 is an example of flux function satisfying these hypotheses.

ρρc ρmax

fmax

f(ρ)

vf
fmax

ρmax−ρc

Figure 3: Flux function considered.

Inria



Macroscopic traffic flow optimization on roundabouts 5

The incoming lane of the secondary roads entering the junctions are modeled with a buffer of
infinite size and capacity. This choice is made to avoid backward moving shocks at the boundary,
for details see [7]. In particular, the evolution of the queue length of each buffer is described by
an ODE:

dli(t)

dt
= F iin(t)− γr1,i(t), t ∈ R+ i = 1, 2, 3, (2.2)

where li(t) ∈ [0,+∞[ is the queue length, F iin(t) the flux entering the lane and γr1,i(t) the flux
exiting the lane. The outgoing lane is considered as a sink that accepts all the flux coming from
the mainline. No flux from the incoming lane is allowed on the outgoing stretch of same road.
The Cauchy problem to solve is then:

∂tρi + ∂xf(ρi) = 0, (t, x) ∈ R+ × Ii, i = 1, 2, 3
dli(t)

dt
= F iin(t)− γr1,i(t), t ∈ R+, i = 1, 2, 3

ρi(0, x) = ρi,0(x), on Ii, i = 1, 2, 3
li(0) = li,0 i = 1, 2, 3,

(2.3)

where ρi,0(x) are the initial conditions and li,0 the initial lengths of the buffers. This will be
coupled with an optimization problem at the junctions that gives the distribution of traffic among
the roads.
We define the demand d(F iin, li) of the incoming lane for the secondary roads, the demand function
δ(ρi) on the incoming mainline segment at each junction, and the supply function σ(ρi) on the
outgoing mainline segment at each junction as follows.

d(F iin, li) =

{
γmax

r1,i if li(t) > 0, i = 1, 2, 3
min (F iin(t), γmax

r1,i ) if li(t) = 0, i = 1, 2, 3
(2.4)

δ(ρi) =

{
f(ρi) if 0 ≤ ρi < ρc, i = 1, 2, 3
fmax if ρc ≤ ρi ≤ 1, i = 1, 2, 3

(2.5)

σ(ρi) =

{
fmax if 0 ≤ ρi ≤ ρc, i = 1, 2, 3
f(ρi) if ρc < ρi ≤ 1,

(2.6)

where γmax
r1,i is the maximal flow on the incoming lane R1,i, i = 1, 2, 3. Moreover, we introduce

β ∈ [0, 1] the split ratio of the outgoing lane R2,i, and γr2,i(t) = βf(ρi(t, 0−)) i = 1, 2, 3 its flux.

Definition 1 (See [7].) Consider a junction J with two incoming roads I1 =] −∞, 0[ and R1

and two outgoing roads I2 =]0,+∞[ and R2. A triple (ρ1, ρ2, l) ∈
2∏
i=1

C0
(
R+;L1 ∩ BV(R)

)
×

W1,∞(R+;R+) is an admissible solution to (2.3) if

1. ρi is a weak solutions on Ii, i.e., ρi : [0,+∞[×Ii → [0, 1], i = 1, 2, such that∫
R+

∫
Ii

(
ρi∂tϕi + f(ρi)∂xϕi

)
dxdt = 0, i = 1, 2, (2.7)

for every ϕi ∈ C1
c (R+ × Ii).

2. ρi satisfies the Kružhkov entropy condition [13] on (R × Ii), i.e., for every k ∈ [0, 1] and
for all ϕi ∈ C1

c (R+ × Ii), t > 0,∫
R+

∫
Ii

(|ρi − k|∂tϕi + sgn (ρi − k)(f(ρi)− f(k))∂xϕi)dxdt

+
∫
Ii
|ρi,0 − k|ϕi(0, x)dx ≥ 0; i = 1, 2. (2.8)

RR n° 8291



6 Obsu & Delle Monache & Goatin & Kasa

3. f(ρ1(t, 0−)) + γr1(t) = f(ρ2(t, 0+)) + γr2(t).

4. The flux of the outgoing mainline f(ρ2(t, 0+)) is maximum subject to

f(ρ2(t, 0+)) = min
(

(1− β)δ(ρ1(t, 0−)) + d(Fin(t), l(t)), σ(ρ2(t, 0+))
)
, (2.9)

and 3.

5. l is a solution of (2.2) for a.e. t ∈ R+.

Remark 1 A parameter q is introduced to ensure uniqueness of the solution, that is, q ∈ ]0, 1[ is
a right of way parameter that defines the amount of flux that enters the outgoing mainline from
each incoming road. In particular, when the priority applies, qf(ρ2(t, 0+)) is the flux allowed
from the incoming mainline into the outgoing mainline, and (1− q)f(ρ2(t, 0+)) the flux from the
onramp.

3 Riemann Problem the junction

In this section we recall briefly the costruction of the Riemann Solver at a junction as introduced
in [7] and then we apply it to our particular case to recover the expressions of the cost functionals.
We will focus only on one junction J . We fix constants ρ1,0, ρ2,0 ∈ [0, 1], l0 ∈ [0,+∞[, Fin ∈
]0,+∞[ and a priority factor q ∈ ]0, 1[. The Riemann problem at J is the Cauchy problem (2.3)
where the initial conditions are given by ρ0,i(x) ≡ ρ0,i in Ii for i = 1, 2. We define the Riemann
Solver by means of a Riemann Solver RS l̄, which depends on the instantaneous load of the buffer
l̄. For each l̄ the Riemann Solver RS l̄ is constructed in the following way.

1. Define Γ1 = f(ρ1(t, 0−)), Γ2 = f(ρ2(t, 0+)), Γr1 = γr1(t);

2. Consider the space (Γ1, Γr1) and the sets O1 = [0, δ(ρ1)], Or1 = [0, d(Fin, l̄)];

3. Trace the lines (1− β)Γ1 + Γr1 = Γ2; and Γ1 = q
1−qΓr1;

4. Consider the region

Ω =
{

(Γ1,Γr1) ∈ O1 ×Or1 : (1− β)Γ1 + Γr1 ∈ [0,Γ2]
}
. (3.1)

Different situations can occur depending on the value of Γ2:

• Demand limited case: Γ2=(1− β)δ(ρ1(t, 0−)) + d(Fin, l̄).
We set Q to be the point (Γ̂1,Γ̂r1) such that Γ̂1 = δ(ρ1(t, 0−)), Γ̂r1 = d(Fin, l̄) and
Γ̂2 = (1− β)δ(ρ1(t, 0−)) + d(Fin, l̄), as illustrated in Figure 4(a).

• Supply limited case: Γ2 = σ(ρ2(t, 0+)).
We set Q to be the point of intersection of (1 − β)Γ1 + Γr1 = Γ2 and Γ1 = q

1−qΓr1. If
Q ∈ Ω, we set (Γ̂1,Γ̂r1)=Q and Γ̂2 = Γ2, see Figure 4(b); if Q /∈ Ω, we set (Γ̂1,Γ̂r1)=S and
Γ̂2 = Γ2, where S is the point of the segment Ω ∩ (Γ1,Γr1) : (1− β)Γ1 + Γr1 = Γ2 closest
to the line Γ1 = q

1−qΓr1 see Figure 4(c).

Inria



Macroscopic traffic flow optimization on roundabouts 7

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Q

(a) Demand limited case

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Γ1 = q
1−qΓr1

Q

(b) Supply limited case: intersection inside Ω

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Γ1 = q
1−qΓr1

Q

S

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Γ1 = q
1−qΓr1

Q

S

(c) Supply limited case: intersection outside Ω

Figure 4: Solutions of the Riemann Solver at the junction.

We define the function τ as follows, for details see [9].

Definition 2 Let τ : [0, 1]→ [0, 1] be the map such that:

• f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];

• τ(ρ) 6= ρ for every ρ ∈ [0, 1] \ {ρc}.

Theorem 1 Consider a junction J and fix a right f way parameter q ∈ ]0, 1[. For every
ρ1,0, ρ2,0 ∈ [0, 1] and l0 ∈ [0,+∞[ there exists a unique amdmissible solution (ρ1(t, x), ρ2(t, x), l(t))
in the sense of Definition 1 satisfying the priority (possibly in an approximate way). Moreover,
there exists a unique couple (ρ̂1, ρ̂2) ∈ [0, 1]2 such that

ρ̂1 ∈
{
{ρ1,0}∪]τ(ρ1,0), 1] if 0 ≤ ρ1,0 ≤ ρc,
[ρc, 1] if ρc ≤ ρ1,0 ≤ 1;

f(ρ̂1) = Γ̂1, (3.2)

RR n° 8291



8 Obsu & Delle Monache & Goatin & Kasa

and

ρ̂2 ∈
{

[0, ρc] if 0 ≤ ρ2,0 ≤ ρc,
{ρ2,0} ∪ [0, τ(ρ2,0)[ if ρc ≤ ρ1,0 ≤ 1;

f(ρ̂2) = Γ̂2. (3.3)

For the incoming road the solution is given by the wave (ρ1,0, ρ̂1), while for the outgoing road the
solution is given by the wave (ρ̂2, ρ2,0). Furthermore, for a.e. t > 0, it holds

(ρ1(t, 0−), ρ2(t, 0+)) = RSl(t)(ρ1(t, 0−), ρ2(t, 0+)).

For the proof see [7].

4 Cost Functionals

In this section we define the cost functionals and derive their expressions. We introduce the Total
Travel Time (TTT ) on the road network and the Total Waiting Time (TWT ) on the incoming
lanes of the secondary roads, which are defined as follows:

TTT (T ) =

∫ T

0

∫
Ii

ρ(t, x)dxdt+

∫ T

0

l(t)dt+

∫
Ii

ρ(T, x)dx+ l(T ) (4.1)

TWT (T ) =

∫ T

0

l(t)dt+ l(T ) (4.2)

for T > 0 that we will take sufficiently big to that the solution is stabilized. Our aim is to
derive the explicit form of these cost functionals to study their dependence on the right of way
parameter q. Since the solutions of such optimization problems cannot be analytically computed
in general, we focus on the case of the junction showed in Figure 2(b) with I1 = [−1, 0] and
I2 = [0, 1]. We suppose that the network and the buffer are empty at t = 0 and we assume that
the following boundary data are given: f in the inflow on the incoming mainline, fout the outflow
on the outgoing mainline and Fin the incoming flux of the secondary road. Moreover we assume
Fin ≤ fmax = γmax

r1 and fout ≤ fmax. Now, we can solve the corresponding initial-boundary
value problem.
The first step is to compute the demand and supply functions of the roads. We have δ(ρ1,0) = 0,
d(Fin, l) = min(Fin, γ

max
r1 ) = Fin and σ(ρ2,0) = fmax. Then we can compute Γ2:

Γ2 = min
(

(1− β)δ(ρ1,0) + d(Fin, l), σ(ρ2,0)
)

= Fin.

It is straightforward to see that the problem is demand limited, hence the optimal point is the
point at maximal demands. Thus it follows Γ̂1 = 0, Γ̂2 = Fin and Γ̂r1 = Fin, from which we can
derive ρ̂1 = 0 and ρ̂2 = Fin . Since we are demand limited we also have l(t) = 0. The solution in
the x− t plane looks as in Figure 5. The wave produced by the junction problem interacts with
the right boundary x = 1 at time t1 = 1. Moreover at x = −1, the boundary condition enforces
the creation of an additional wave at t = 0 with speed equal 1. This produces a density ρ̂1 equal
at f in which reaches the junction at the same time t1 = 1. The solution looks as in Figure 5.

Inria
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f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

t

−1 1 x

t1

Figure 5: Solution of the initial-boundary value problem for t ∈ [0, t1].

At t1 = 1 we solve a new Riemann problem at the junction with initial densities

ρ(1, x) =

{
ρ̂1 if x < 0,
ρ̂2 if x > 0.

We assume that the splitting ratio β ∈ (0, 1) is fixed and that 0 ≤ ρ̂1 < ρc and 0 ≤ ρ̂2 <
ρc. The demand and supply functions on the respective roads are δ(ρ̂1) = f in, d(Fin, l0) =
min(Fin, γ

max
r1 ) = Fin, σ(ρ̂2) = fmax. Computing Γ2 from these we obtain

Γ2 = min
(

(1− β)δ(ρ̂1) + d(Fin, l), σ(ρ̂2)
)

The case (1− β)δ(ρ̂1) + d(Fin, l) ≤ σ(ρ̂2) is demand limited and thus vehicles enter the junction
without restrictions. That is, the roundabout is not congested and hence we do not consider this
situation. Since we want to minimize our functionals with respect to the right of way parameter,
from now on we will only focus on the supply constrained case and hence, we make the following
assumption.
First assumption on data

fmax ≤ (1− β)f in + Fin (4.3)

With this assumption then it is straightforward to compute the value of Γ2 = fmax and hence,

Γ1 =
q

1− βq
fmax and Γr1 =

1− q
1− βq

fmax.

Moreover, let us assume the following conditions

A1) Γ1 =
q

1− βq
fmax < δ(ρ̂1) = f in,

A2) Γr1 =
1− q

1− βq
fmax < d(Fin, l) = Fin.

The following are solutions of the Riemann problem at the junction.

a) If both A1 and A2 are satisfied, then
(

q

1− βq
fmax,

1− q
1− βq

fmax, fmax

)
is the solution.

b) If δ(ρ1) = f in ≤ q

1− βq
fmax, then

(
f in, fmax − (1− β)f in, fmax

)
is the solution of Riemann

problem.

RR n° 8291



10 Obsu & Delle Monache & Goatin & Kasa

c) If d(Fin, l) = Fin ≤
1− q

1− βq
fmax, then

(
fmax − Fin

1− β
, Fin, f

max

)
is the solution.

From condition b) at f in ≤ q

1− βq
fmax solving for q we get

q ≥ q2 =
f in

fmax + βf in
(4.4)

Similarly, from condition c) at d(Fin, l) = Fin =
1− q

1− βq
fmax solving we have

q ≤ q1 =
Fin − fmax

βFin − fmax
(4.5)

To see the relation between q1 and q2 with respect to the feasible set we take their difference.

q2 − q1 =
f in

fmax + βf in
− Fin − fmax

βFin − fmax

=

fmax[fmax − (1− β)f in − Fin︸ ︷︷ ︸
<0

]

(fmax + βf in)(βFin − fmax︸ ︷︷ ︸
<0

)
. (4.6)

This holds true because of (4.3) and implies q1 ≤ q2, see Figure 6.

Γr1d(Fin, l)

Γ1

δ(ρ1)

Γ2 = (1− β)Γ1 + Γr1

Γ1 =
q1

1− q1
Γr1

Γ1 =
q2

1− q2
Γr1

Figure 6: Relationship between q1 and q2

We will analyze the different cases that can occur according to the different values of q.

4.1 Case q1 < q < q2

We solve now the Riemann problem at the junction at t1. Since we assume that we are supply
limited and that q1 < q < q2 it is straightforward to have the following fluxes at the junction:

Inria



Macroscopic traffic flow optimization on roundabouts 11

Γ1 =
q

1− βq
fmax,Γr1 =

1− q
1− βq

fmax and Γ2 = fmax. It follows that

ρ1 = 1− (1− fmax)q

1− βq
(4.7)

and that the wave speed λ is

λ(ρ̂1, ρ1) =
f in(1− βq)− qfmax

(1− βq)(f in − 1) + (1− fmax)q
(4.8)

The characteristic x = λ(t− 1) crosses the boundary x = −1 at

t2 =
λ

1− λ
= 1− (1− βq)(f in − 1) + (1− ρc)q

f in(1− βq)− qfmax
=

=
1− (β + fmax)q − (1− fmax)q

f in(1− βq)− qfmax
=

1− (1 + β)q

f in(1− βq)− qfmax
(4.9)

In the outgoing road ρ2 = ρc which produces a wave with positive speed 1 as can be seen in the
7

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2ρ1

t

−1 1 x

t1

t2

Figure 7: Junction problem at t1.

The value of the corresponding flux from the buffer is Γr1 =
(1− q)fmax

1− βq
. For all β and

q ∈]0, 1[ we have
(1− q)
1− βq

< 1, so the length of buffer satisfies

l̇ = Fin − Γr1 = Fin −
(1− q)fmax

1− βq
> 0

Since (1 − βq)Fin > (1 − q)fmax or q(fmax − βFin) > fmax − Fin then q >
fmax − Fin

fmax − βFin
= q1.

Therefore,

l(t) = (Fin −
(1− q)fmax

1− βq
)(t− 1) > 0. (4.10)

The length of buffer increases linearly.
Moreover at time t1 the interaction between the wave in the outgoing road and the boundary at

RR n° 8291



12 Obsu & Delle Monache & Goatin & Kasa

x = 1 can generate an additional wave if Fin > fout. When this is the case, in fact, there is a
wave with negative speed which can interact with other waves between [0, 1]. Since our purpose
is to study the interactions among waves we make the following:
Second assumption on data

Fin > fout. (4.11)

When (4.11) is satified there is a wave with negative speed created at (t1, 1). This new wave
creates a density

ρ3 = 1− fout(1− fmax)

fmax
, (4.12)

and has a wave speed λ(ρ̂2, ρ3)

λ(ρ̂2, ρ3) =
Fin − fout

ρ̂2 − ρ3
=

Fin − fout

Fin − 1 + fout(1−fmax)
fmax

=
fmax(Fin − fout)

(Fin − 1)fmax + (1− fmax)fout
. (4.13)

This wave with equation x = λ(t− 1) + 1 intersect the characteristic line x = t− 1 at a point P
as in Figure 8.

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ1 ρ3

t

−1 1 x

t1

Pt2

Figure 8: Solution at t1.

Solving the system we get the coordinates of the point P = (tP , xP ):

tP = t3 =
λ− 2

λ− 1
=
fmax(Fin − fout)− 2((Fin − 1)fmax + (1− fmax)fout)

fmax(Fin − fout)− ((Fin − 1)fmax + (1− fmax)fout)
=

=
fmaxfout + 2fmax − 2fout − fmaxfout

fmax − fout
(4.14)

xP =
1

1− λ
=

(Fin − 1)fmax + (1− fmax)fout

(Fin − 1)fmax + (1− fmax)fout − fmax(Fin − fout)
=

=
fmaxfout + fmax − fmaxFin − fout

fmax − fout
. (4.15)

Inria
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Once we have determined the coordinates of P, we can solve the classical Riemann Problem at
P:

∂tρ+ ∂xf(ρ) = 0

ρ(t, x) =

{
ρc if x < xp,
ρ3 if x > xp,

(4.16)

where xp is given by (4.15). Note that ρc < ρ3, hence, from the Rankine-Hugoniot jump condition
we can compute the characteristic speed of the wave emanating from the point P

λ(ρc, ρ3) =
f(ρ3)− f(ρc)

ρ3 − ρc
=

fmax

fmax − 1
. (4.17)

The solution of the classical Riemann Problem at P is

ρ(t, x) =

{
ρc if x < λ(t− tp) + xp,
ρ3 if x > λ(t− tp) + xp,

(4.18)

where λ and tp are respectively as in (4.17) and (4.14). The characteristic line with speed λ
starting from P interacts with the junction at x = 0. This line intercepts the t-axis at

t4 = tp −
1

λ
xp = tp +

1− fmax

fmax
xp =

(fmax)2 − fmaxFin + fmax − fout

fmax(fmax − fout)
. (4.19)

The situation at t = t4 looks as in Figure 9

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ1 ρ3

t

−1 1 x

t1

t4 Pt2

Figure 9: Solution at time t = t4

We can then, solve at t4 another Riemann problem at the junction:

ρ(t4, x) =

{
ρ1 if x < 0,
ρ3 if x > 0.

(4.20)

To do so, we compute:

d(Fin, l) = γmax
r1 , (4.21)

δ(ρ1) = fmax, (4.22)

σ(ρ3) = fout. (4.23)

RR n° 8291



14 Obsu & Delle Monache & Goatin & Kasa

In order to limit the complexity of the computation we fix γmax
r1 = fmax. It follows Γ2 =

min((1−β)δ(ρ1)+d(Fin, l), σ(ρ3)) = min((1−β)fmax +fmax, fout) = fout, Γ̂1 =
q

1− βq
fout and

Γ̂r1 =
1− q

1− βq
fout Since by assumption it holds fout < fmax the soution of the Riemann problem

at the junction lies inside the feasible region as shown in Figure 10.

Γrd(Fin, l) = fmax

Γ1

δ(ρ1) = fmax
Γ2 = (1− β)Γ1 + Γr

Γ1 = q
1−qΓr

Q

Figure 10: Solution of the Riemann problem at the junction at t4.

The solution of Riemann Problem at junction is given by

(Γ̂1, Γ̂r1, Γ̂2) =

(
q

1− βq
fout,

1− q
1− βq

fout, fout

)
From this we can uniquely recover the corresponding values of the queue length and of the

densities of the mainline. Since the flux exiting the secondary road is Γ̂r1 =
1− q

1− βq
fout then the

queue length is

l(t) = l(t4) +

(
Fin −

1− q
1− βq

fout

)
(t− t4) > 0. (4.24)

Thus, the length of the buffer increases linearly.
On the outgoing mainline there is no new wave created since Γ̂2 = fout = f(ρ3). And on the

incoming mainline we have Γ̂1 =
q

1− βq
fout ⇒ q

1− βq
fout =

1− ρ̌1

1− ρc
fmax which gives

ρ̌1 = 1− (1− fmax)qfout

(1− βq)fmax
. (4.25)

On the incoming main road of a roundabout ρc ≤ ρ1 ≤ 1 so ρc ≤ ρ̌1 ≤ 1, and the pair (ρ1, ρ̌1)
produces a wave with negative speed on the incoming road of the roundabout. The speed is

given by λ(ρ1, ρ̌1) =
fmax

fmax − 1
. This characteristic line crosses the left boundary x = −1 at a

time t = t5 given by

t5 = t4 −
1

λ
= tp +

1− fmax

fmax
(xp + 1) =

fmaxf in − fmaxfout − 2fmax + 2fout

fmax(fout − fmax)
. (4.26)
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Moreover, since
q

1− βq
fout < δ(ρ1) = fmax, there is no wave produced by the interaction with

the boundary x = −1 at time t5. The solution at t5 looks like as in Figure 11

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ1 ρ3

ρ̌1

t

−1 1 x

t1

t4
t5

Pt2

Figure 11: Solution of the problem at t5

Depending on the priority parameter q, the waves emanating from the junction at time t1
and t4 could collide within the region −1 < x < 0. The wave starting from (t1, 0) could be slower
than the one created at time t4 and so they could collide. Solving the system generated by the
characteric lines we can find the value of q for which this happens. We find that for q = q̄, where
q̄ is given by

q̄ =
(1− β)

(
f infmaxFin + 2f infmax + 2f infout

)
− fmax(βf infmax + fmax − fout + f infout(2β − 1))

(fmax)2(Fin − βf in + β − 1− fout) + fmaxfout(1− β + βf in)
(4.27)

the waves collide. We can distinguish two additional cases q1 < q < q̄ and q̄ < q < q2

4.1.1 The case q1 < q < q̄

If q1 < q < q̄, the waves do not intersect in the region −1 < x < 0 and there are no new waves
created. Hence, the study of the problem is concluded.

4.1.2 The case q̄ ≤ q < q2

As described above, the pair (ρ1, ρ̌1) produces a wave with negative speed λ =
fmax

fmax − 1
on the

incoming main road of the roundabout. This wave interacts with the wave exiting from (t1, 0)
at point Q as in Figure 12
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16 Obsu & Delle Monache & Goatin & Kasa

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ1 ρ3

ρ̌1

t

−1 1 x

t1

t4 PQ

Figure 12: Solution in the case q̄ ≤ q < q2

The coordinates of the point Q are then

tQ =
fmaxt4((1− βq)(f in − 1) + (1− fmax)q) + (1− fmax)(f in(1− βq)− qfmax)

fmax((1− βq)(f in − 1) + (1− fmax)q) + (1− fmax)(f in(1− β)− qfmax)
(4.28)

and
xQ =

fmax

fmax − 1
(tQ − t4) (4.29)

Once we have determined the coordinates of point Q, we can solve classical Riemann Problem
at Q.

∂tρ+ ∂xf(ρ) = 0 (4.30)

ρ(t, x) =

{
ρ̂1 if x < xQ,
ρ̌1 if x > xQ,

(4.31)

where Q is given by (4.29). By Rankine-Hugoniot jump condition we can derive

λ(ρ̂1, ρ̌1) =
f(ρ̂1)− f(ρ̌1)

ρ̂1 − ρ̌1
=
f in − Γ̂1

ρ̂1 − ρ̌1
=

f in − q

1− βq
fout

f in −
(

1− (1−fmax)qfout

(1−βq)fmax

) =

=

(
f in(1− βq)− qfout

)
fmax

(1− βq)fmax(f in − 1) + (1− fmax)qfout
(4.32)

where λ is the characteristic speed of the wave emanating from the intersection point Q. The
solution of the classical Riemann Problem at Q is

ρ(t, x) =

{
ρ̂1 if x < λ(t− tQ) + xQ,
ρ̌1 if x > λ(t− tQ) + xQ,

(4.33)

where λ and tQ are respectively as in (4.32) and (4.28). The wave with speed λ starting from Q
cross the left boundary x = −1 at

t5 = tQ −
1 + xQ
λ

(4.34)

Inria



Macroscopic traffic flow optimization on roundabouts 17

The complete solution can be seen in Figure 13

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ1 ρ3

ρ̌1

t

−1 1 x

t1

t4

t5

PQ

Figure 13: Solution at tQ

This concludes the analysis of this case.

4.2 Case q ≥ q2

In this subsection, we assume that assumption (A1) is not satisfied and give the analysis for the
Riemann problem at junction for t ≥ t1. The Riemann problem to solve is

∂tρ+ ∂xf(ρ) = 0,

ρ(t, x) =

{
ρ̂1 if x < 0,
ρ̂2 if x > 0.

(4.35)

The splitting ratio β ∈ (0, 1) is fixed and 0 ≤ ρ̂1 < ρc and 0 ≤ ρ̂2 < ρc as in the previous section.
The demand and supply functions on the corresponded roads are given by δ(ρ̂1) = f(ρ̂1) = f in,
d(Fin, l0) = min(Fin, γ

max
r1 ) = Fin and σ(ρ̂2) = fmax.

From this follows that ρ1 = ρ̂1 and no wave is created in the incoming mainline. However, on
the outgoing link ρ2 = ρc which generates a wave with positive speed. The buffer increases
since l(t) = (Fin + (1 − β)f in − fmax)(t − 1) > 0. The wave with positive speed 1 generated
at (t1, 0) interacts with the wave generated from right boundary at point P = (tP , xP ) at
time t = tP as described in subsection 4.1 under assumption (4.11). At the right boundary

fout =
1− ρ3

1− fmax
fmax, hence one obtain that

ρ3 = 1− fout(1− fmax)

fmax
. (4.36)

At this point up to time t4 the analysis is the same as in the previous case, so we will solve
directly the Riemann problem at the junction at t4 with the new assumption.
The Riemann problem to solve is then

ρ(t4, x) =

{
ρ̂1 if x < 0,
ρ3 if x > 0,
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18 Obsu & Delle Monache & Goatin & Kasa

coupled at the junction with the following demands and supply functions

d(Fin, l) = γmax
r1 = fmax, (4.37)

δ(ρ̂1) = f in, (4.38)

σ(ρ3) = fout. (4.39)

We can now compute

Γ2 = min
(

(1− β)δ(ρ̂1) + d(Fin, l), σ(ρ3)
)

= min
(

(1− β)f in + fmax, fout
)

= fout

and

Γ̂1 =
q

1− βq
fout.

According to the value of f in two cases can occur at this point. If f in < fout the solution of the
Riemann Problem at the junction is given by (Γ̂1, Γ̂r1, Γ̂2) = (f in, fout − (1− β)f in, fout). From
this it is straightforward to see that ρ̂1 = ρ1 since f in = ρ̂1 for vf = 1. No new waves are created.
If f in > fout the solution of the Riemann problem at the junction becomes

(Γ̂1, Γ̂r1, Γ̂2) =

(
q

1− βq
fout,

1− q
1− βq

fout, fout

)
.

From this we can uniquely recover the corresponding values of the densities:

ρ̌1 = 1− (1− fmax)qfout

(1− βq)f in
(4.40)

such that ρc ≤ ρ̌1 ≤ 1. The pair (ρ̂1, ρ̌1) produces a wave with negative speed on the incoming
main road of the roundabout, that is

λ(ρ̂1, ρ̌1) =
f in − fout

ρ̂1 − ρ̌1
=

(f in − fout)(1− βq)f in

(1− βq)((f in)2 − 1) + (1− rc)fout
. (4.41)

This characteristic line with initial point (t4, 0) and speed λ crosses the left boundary x = −1
when t = t5. That is,

t5 = t4 −
1

λ
= t4 −

(1− βq)((f in)2 − 1) + (1− fmax)fout

(f in − fout)(1− βq)f in
. (4.42)

Since
q

1− βq
fout < f in, there is no interaction with the boundary x = −1 at time t5. On the

outgoing mainline of the roundabout Γ̂2 = fout = f(ρ3). Hence no new wave is created on the
outgoing link. Hence, the solution looks as in Figure 14.
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f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ3

ρ̌1

t

−1 1 x

t1

t4 P

Figure 14: Solution in the case q ≥ q2

The flux that leaves the buffer towards the junction is Γ̂r1 =
1− q

1− βq
fout. Substituting this in

the ODE we have l̇ = Fin −
1− q

1− βq
fout > 0 since

1− q
1− βq

fout < fout < Fin. Integrating it gives

l(t) = l(t4) +

(
Fin −

1− q
1− βq

fout

)
(t− t4) > 0. (4.43)

Thus, the queue length increase linearly. This complete the analysis for this case.

4.3 The case q ≤ q1

In this subsection, we assume that assumption (A2) is not satisfied and give the analysis for the
Riemann problem at junction for t ≥ t1, as in the subsection 4.2. In order to do so, we compute
the demand and supply functions at t = t1

d(Fin, l) = Fin, (4.44)

δ(ρ̂1) = f in, (4.45)
σ(ρ̂2) = fmax, (4.46)

coupled with the following Riemann problem at the junction

ρ(t1, x) =

{
ρ̂1 if x < 0,
ρ̂2 if x > 0.

Since we suppose that only assumptionA1 holds true then
(

Γ̂1, Γ̂r1, Γ̂2

)
=
(fmax − Fin

1− β
, Fin, f

max
)
.

From the value of Γ̂r1 we can solve the ODE (2.2) and find l(t) = 0.
From Γ̂1 we can find the new value of the density

ρ1 =
(1− β)fmax − (1− ρc)(fmax − Fin)

(1− β)fmax
=
fmax(fmax − β − Fin) + Fin

(1− β)fmax
(4.47)

RR n° 8291



20 Obsu & Delle Monache & Goatin & Kasa

and since 0 ≤ ρ̂1 ≤ ρc then ρc ≤ ρ1 ≤ 1. Moreover, the wave created has a negative speed λ:

λ(ρ̂1, ρ1) =
f in − Γ̂1

ρ̂1 − ρ1
=

((1− β)f in − (fmax − Fin))fmax

(1− β)fmax(f in − 1) + (1− ρc)(fmax − Fin)
(4.48)

The characteristic line with speed λ crosses the boundary x = −1 at time:

t2 = 1− 1

λ
=

(1− β)fmax − ((1− fmax) + fmax)(fmax − Fin)

((1− β)f in − (fmax − Fin))fmax

=
Fin − βfmax

(f in − βf in − fmax + Fin)fmax
(4.49)

In the outgoing link of the mainline we obtain ρ2 = ρc which produces a wave with positive speed
equal to 1 in x ∈ [0, 1]. This wave interacts with a wave coming from the boundary since it is

still possible that Fin > fout. In particular, this happens when q <
fmax − fout

fmax − βfout
. We procede

now as in the subsection 4.1 and we obtain the coordinates of the point of intersection P , which
are given by (4.15) and (4.14). The problem is the same as in subsection 4.2 up to time t4. At
this point we solve again the Riemann problem at the junction

ρ(t4, x) =

{
ρ1 if x < 0,
ρ3 if x > 0.

coupled with the following values of demands and supply functions:

d(Fin, l) = Fin, (4.50)
δ(ρ1) = fmax, (4.51)

σ(ρ3) = fout. (4.52)

From this it follows Γ2 = min((1−β)δ(ρ1)+d(Fin, l), σ(ρ3)) = min((1−β)fmax+Fin, f
out) = fout,

Γ̂1 =
q

1− βq
fout and Γ̂r1 =

1− q
1− βq

fout. From this we can uniquely recover the corresponding

value of the densities. In the incoming mainline we have

ρ̌1 = 1− (1− fmax)qfout

(1− βq)fmax

such that ρc ≤ ρ̌1 ≤ 1. This produces a wave of negative speed λ =
fmax

fmax − 1
on the incoming

road that intersects the boundary x = −1 at

t5 = tp +
1− fmax

fmax
(xP + 1).

Since
q

1− βq
fout < f in = fmax, there is no interaction with the boundary x = −1 at time t5.

On the outgoing link there is no wave generated since Γ̂2 = fout = f(ρ3). Hence, the solution
looks as in Figure 15.
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f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ3

ρ̌1

t

−1 1 x

t1

t4 P

Figure 15: Solution in the case q ≤ q1

Last thing to do is to compute the queue length at t4. To do so, we insert the value of Γ̂r1

inside the ODE (2.2) and we solve it obtaining

l(t) =

(
Fin −

1− q
1− βq

fout

)
(t− t4) > 0. (4.53)

This concludes our analysis for this case. We are now ready to give the explicit version of the
cost functionals for each different case.

4.4 Total Waiting Times and Total Travel Times

• q1 ≤ q ≤ q̄

We compute the TWT as follows

TWT (T, q) =

∫ t4

t1

((
Fin −

(1− q)fmax

1− βq

)
)(t− 1)

)
dt

+

∫ T

t4

(
l(t4) +

(
Fin −

1− q
1− βq

fout

)
(t− t4)

)
dt+ l(t4)

+

(
Fin −

1− q
1− βq

fout

)
(T − t4). (4.54)
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Concerning TTT (T ), it is given by a constant plus a term depending on the priority, that
we denote by TTT (T, q):

TTT (T, q) =

∫ ∫
A1

ρ̂1(t, x)dtdx+

∫ ∫
A2

ρ1(t, x)dtdx+

∫ ∫
A3

ρ̌1(t, x)dtdx

+

∫ t4

t1

((
Fin −

(1− q)fmax

1− βq

)
)(t− 1)

)
dt

+

∫ T

t4

(
l(t4) +

(
Fin −

1− q
1− βq

fout

)
(t− t4)

)
dt

+ l(t4) +

(
Fin −

1− q
1− βq

fout

)
(T − t4) +

∫ x2

x1

(ρ̌1 + ρ3) dx (4.55)

where the areas are defined by

A1 =
1

2
(t2 − 1) =

1

2

(
1− (1 + β)q

f in(1− βq)− qfmax
− 1

)
A2 =

1

2
(t5 + t4 − t2 − 1)

A3 =
1

2
(t5 − t4)

and T = t5, as in Figure 16.

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2ρ1

ρ3

ρ̌1

t

−1 1 x

t1

t4

Pt3

A1

A2

A3

t5

Figure 16: Area of integration in the case q1 ≤ q ≤ q̄
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• q̄ ≤ q ≤ q2

The TWT is as in (4.54), since it does not depend on the wave interactions but only on
the queue length. The TTT (T ) is given by the constant term plus

TTT (T, q) =

∫ ∫
A1+A2+A5

ρ̂1(t, x)dtdx+

∫ ∫
A3

ρ1(t, x)dtdx+

∫ ∫
A4+A6+A7

ρ̌1(t, x)dtdx

+

∫ t4

t1

((
Fin −

(1− q)fmax

1− βq

)
)(t− 1)

)
dt+

∫ x2

x1

(ρ̌1 + ρ3) dx

+

∫ T

t4

(
l(t4) +

(
Fin −

1− q
1− βq

fout

)
(t− t4)

)
dt

+ l(t4) +

(
Fin −

1− q
1− βq

fout

)
(T − t4). (4.56)

f in fout

F in

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2

ρ1

ρ3

ρ̌1

t

−1 1 x

t1

t4

t5

P

Q

A1

A2

A5

A6 A7

A4

A3

tQ

Figure 17: Area of integration in the case q̄ ≤ q ≤ q2

The areas are defined by

A1 =
1

2
(tQ − 1), A2 =

1

2
(tQ − 1)(xQ + 1)

A3 =
1

2
(xQ − xQt4)
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A4 =
1

2
(tQ − t4)(−xQ)

A5 =
1

2
(t5 − tQ)(xQ + 1)

A6 =
1

2
(t5 − tQ)(xQ + 1)

A7 = (t5 − tQ)(−xQ) as in Figure 17.

• q ≥ q2

The TWT is given by

TWT (T, q) =

∫ t4

t1

(
Fin + (1− β)f in − fmax)(t− 1)

)
dt

+

∫ T

t4

(
(Fin + (1− β)f in − fmax)(t4 − 1) +

(
Fin −

1− q
1− βq

fout

)
(t− t4)

)
dt

+ (Fin + (1− β)f in − fmax)(t4 − 1) +

(
Fin −

1− q
1− βq

fout

)
(T − t4). (4.57)

The TTT (T ), as usual, is instead calculated by the constant term plus

TTT (T, q) =

∫ ∫
A1

ρ̂1(t, x)dtdx+

∫ ∫
A2

ρ̌1(t, x)dtdx

+

∫ t4

t1

(
Fin + (1− β)f in − fmax)(t− 1)

)
dt+

∫ x2

x1

(ρ̌1 + ρ3) dx

+

∫ T

t4

(
(Fin + (1− β)f in − fmax)(t4 − 1) +

(
Fin −

1− q
1− βq

fout

)
(t− t4)

)
dt

+ (Fin + (1− β)f in − fmax)(t4 − 1) +

(
Fin −

1− q
1− βq

fout

)
(T − t4) (4.58)

and the area for this case are A1 = 1
2 (t5 − t4) and A2 = 1

2 (t5 − t4) as shown in the Figure
18.

• q ≤ q1

The TWT is computed as

TWT (T, q) =

∫ T

t4

(
Fin −

1− q
1− βq

fout

)
(t− t4)dt+

(
Fin −

1− q
1− βq

fout

)
(T − t4) (4.59)

while the TTT (T, q) is given by

TTT (T, q) =

∫ ∫
A1

ρ1(t, x)dtdx+

∫ ∫
A2

ρ̌1(t, x)dtdx+

∫ T

t4

(
Fin −

1− q
1− βq

fout

)
(t− t4)dt

+

(
Fin −

1− q
1− βq

fout

)
(T − t4) +

∫ x2

x1

(ρ̌1 + ρ3) dx (4.60)

where A1 = 1
2 (t5 − t4) = A2 as shown in Figure 19.
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Figure 18: Area of integration in the case q ≥ q2
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Figure 19: Area of integration in the case q ≤ q1
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