
Computing with spikes, architecture, properties and

implementation of emerging paradigms

Horacio Rostro-Gonzalez

To cite this version:

Horacio Rostro-Gonzalez. Computing with spikes, architecture, properties and implementation
of emerging paradigms. Other [cs.OH]. Université Nice Sophia Antipolis, 2011. English. <tel-
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Abstract

In this thesis we study at a concrete practical level how computation with
action potentials (spikes) can be performed. We address the problem of pro-
gramming a dynamical system modeled as a neural network and considering
both, hardware and software implementations. For this, we use a discrete-
time spiking neuron model, which has been introduced in Soula et al. (2006),
and called BMS in the sequel, whose dynamics is rather rich (see section
1.2.4). On one hand, we propose an efficient method to properly estimate the
parameters (delayed synaptic weights) of a neural network from the observa-
tion of its spiking dynamics. The idea is to avoid the underlying NP-complete
problem (when both weights and inter-neural transmission delays are con-
sidered in the parameters estimation). So far, our method defines a Linear
Programming (LP) system to perform the parameters estimation. Another
aspect considered in this part of the work is the fact that we include a reser-
voir computing mechanism (hidden network), which permits us, as we show,
to increase the computational power and to add robustness in the system.
Furthermore these ideas are applied to implement input-output transforma-
tions, with a method learning the implicit parameters of the corresponding
transfer function.

On the other hand we have worked on the development of numerical
implementations permitting us to validate our algorithms. We also made
contributions to code methods for spike trains statistics analysis and simu-
lations of spiking neural networks. Thus, we co-develop a C++ library, called
EnaS1, which is distributed under the CeCILL-C free license. This library is
also compatible with other simulators and could be used as a plugin.

Finally we consider the emergent field of bio-inspired hardware im-
plementations, where FPGA (Field Programmable Gate Array) and GPU
(Graphic Processing Unit) technologies are studied. In this sense, we evalu-
ate the hardware implementations of the proposed neuron models (gIF-type
neuron models) under periodic and chaotic activity regimes. The FPGA-
based implementation has been achieved using a precision analysis and its
performance compared with that based on GPU.

1http://enas.gforge.inria.fr
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Résumé

Dans cette thèse, nous étudions à un niveau pratique comment nous pouvons
réaliser des processus computationnels avec des potentiels d’action (spikes).
Nous étudions le problème de la programmation d’un système dynamique
modélisé comme un réseau de neurones, et nous considérons des implémen-
tations en software et en hardware. Tout d’abord, nous révisons le modèle
de réseau de neurones à temps discret introduit par Soula et al. (2006) et
nommé ici BMS. L’intérêt d’utiliser ce modèle est dû à son habilité à repro-
duire des dynamiques assez riches (voir la section 1.2.4) et aussi permettre
d’établir un lien direct entre le potentiel de la membrane et les impulsions
de la neurone (spiking activity). En se basant sur une généralisation de
ce modèle, nous proposons une méthode afin d’estimer d’une manière effi-
cace les paramètres (les poids synaptiques à différents délais) d’un réseau
de neurones à partir de l’observation de sa dynamique (train d’impulsions).
L’idée est d’éviter le problème NP-complet qui se pose dès que nous consid-
érons les poids synaptiques et les délais de transmission. Notre méthode
permet de définir un système de programmation linéale à partir du mod-
èle BMS et d’effectuer l’estimation des paramètres de manière polynomiale.
Ensuite nous introduisons un mécanisme de reservoir computing (réseau de
neurones cachés) afin de faire une estimation plus robuste. Finalement nous
appliquons cette idée à l’implémentation de transformations entrée-sortie,
où la méthode est capable d’apprendre les paramètres implicites correspon-
dants à la fonction de transfert.

Dans un second temps, nous travaillons au développement
d’implémentations numériques permettant de valider nos algorithmes.
De plus nous faisons des contributions au niveau de la programmation de
méthodes pour l’analyse de trains d’impulsions et la simulation de réseaux
de neurones à impulsion. Nous co-développons une librairie numérique en
C++, nommée EnaS et distribuée sous une licence gratuite CeCILL-C. Cette
librairie est également compatible avec d’autres simulateurs et peut être
utilisée comme un plugin.

La dernière partie de la thèse se focalisee sur les implémentations
en hardware de modèles bio-inspires. Nous faisons le choix de regarder
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des technologies à bas coût basées sur les FPGA (réseau de portes pro-
grammables in situ) et les GPU (processeur graphique). Nous évaluons la
réponse des implémentations en hardware des modèles de neurones du type
intègre-et-tire quand ils sont soumis aux différents régimes d’activité neu-
ronale. L’implémentation sur le FPGA à été accomplie en faisant une anal-
yse sur la précision et sa performance a été comparée avec celle du GPU.
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Introduction

Neuroscience is an amazing field of knowledge described by multidisciplinary
bodies of science. It is aimed to study the nervous system and to understand
the biological basis of its behavior. The fast-growing of this field carried out
by biologists gave inspiration to physicists and mathematicians to develop
models permitting the analysis of the nervous system behavior in three di-
rections. First, at the cellular level, where fundamental questions are ad-
dressed to understand the mechanisms of how neurons process signals phys-
iologically and electrochemically. Second, at the systems level, where the
questions addressed include how the circuits are formed, using anatomically
and physiologically to produce the physiological functions, such as reflexes,
sensory integration, motor coordination, emotional responses, learning and
memory. Finally at the cognitive level, where the goal is to know how psy-
chological/cognitive functions are produced by the neural circuitry. In recent
years these questions have been studied from a rather pragmatical aspect
thanks to a new branch, called Computational Neuroscience, which is the
study of brain function in terms of the information processing properties of
the structures that make up the nervous system.

The present manuscript aims to better understand the dynamics of a
spiking neural networks and to develop computational methods who permit
us to implement new calculations paradigms, in both, software and hard-
ware. The thesis is divided in four chapters. First we briefly review the the-
oretical background used in the sequel, while generalized Integrate-and-Fire
(gIF) type neuron models and their mathematical properties are presented.
Then, in chapter 2 we present a method that permits us to estimate properly
the parameters (delayed synaptic weights) of a spiking neural network in or-
der to reproduce neural dynamics. This idea is also applied to perform input-
ouput transformations, where the goal is to learn exactly the parameters of
such transformation. In chapter 3 we discuss the previous idea to develop
a mechanism that enables the approximation of spiking dynamics, by using
a mollification in the spiking metrics combined with a learning method. Fi-
nally in chapter 4 we present hardware implementations for the proposed
spiking neuron models, where efficient architectures based on FPGA and
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GPU have been developed.

PART I: SPIKING NEURONS

Neurons in the brain communicate by short electrical pulses, the so-
called actions potentials or spikes. Theoretically, spiking neurons can per-
form very powerful computations with precise timed spikes. They are at
least as computationally powerful as the sigmoidal neurons traditionally
used in artificial neural networks Maass (1997); Maass and Natschlager
(1997). This results has been shown using a spike-response model (see
Maass and Bishop (2003) for a review) and considering piece-wise linear
approximations of the potential profiles. In this context, analog inputs and
outputs are encoded by temporal delays of spikes. The authors show that
any feed-forward or recurrent (multi-layer) analog neuronal network (e.g.,
McCulloch and Pitts (1943)) can be simulated arbitrarily closely by an in-
significantly larger network of spiking neurons. This holds even in the pres-
ence of noise Maass (1997); Maass and Natschlager (1997). These results
highly motivate the use of spiking neural networks, as studied here.

Among the wide variety of neuron models, the generalized Integrate and
Fire (gIF) model stands out thanks to its relative simplicity and its ability
in reproducing many behaviors observed in real neurons. In this direction a
new model derived from the LIF model has been introduced in Soula et al.
(2006) and analyzed in Cessac (2008, 2010). The model is a discrete-time
version of the LIF model or in other words it is a discrete-time spiking neu-
ron model. Thus, the discretization makes possible to have a one-to-one
correspondence between the dynamics of the membrane potential and the
sequences of spike patterns (“raster plots”, in the asymptotic dynamics, Ces-
sac (2008)). Further this correspondence permit us to focus on information
processing Gerstner and Kistler (2002a) and to switch easily from one rep-
resentation to the other. The model is also able to produce simple (periodic)
and complex (chaotic) dynamics.

In the present work the original form of the discrete-time spiking neuron
model is modified in two ways. On one hand we add transmission inter-
neural delays in the model and synaptic time-responses. In this way, we
get closer to gIF models introduced by Rudolph and Destexhe (2006) and
analyzed in Cessac and Viéville (2008). On the other hand considering an
analog-spiking neuron model, which has the same reset mechanism than
the discrete case and where the activation function is given by a non-linear
function (e.g. sigmoid) instead of a function handled by a binary signal as in
the discrete model.

4



PART II: LEARNING THE PARAMETERS OF A NEURAL
NETWORK MODEL

Neuronal networks have tremendous computational capacity, but their
biological complexity makes the exact reproduction of all the mechanisms
involved in these networks dynamics essentially impossible, even at the nu-
merical simulation level, as soon as the number of neurons becomes too
large. One crucial issue is thus to be able to reproduce the “output” of a
neuronal network using approximated models easy to implement numeri-
cally. The issue addressed here is “Can we program an Integrate-and-Fire
network, i.e. tune the parameters, in order to exactly reproduce another
network output, on a bounded time horizon, given the input”.

The main aspect we are interesting here is the calculability of neural
network models. It is known that recurrent neural networks with frequency
rates are universal approximators Schäfer and Zimmermann (2006), as mul-
tilayer feed-forward networks are Hornik et al. (1989). This means that
neural networks are able to simulate dynamical systems, not only to ap-
proximate measurable functions on a compact domain, as originally stated
(see, e.g., Schäfer and Zimmermann (2006) for a detailed introduction on
these notions). Spiking neuron networks can be also universal approxima-
tors Maass (2001).

In a computational context, spiking neural networks are mainly imple-
mented through specific network architectures, such as Echo State Networks
Jaeger (2003) and Liquid Sate Machines Maass et al. (2002), that are called
“reservoir computing” (see Verstraeten et al. (2007) for unification of reser-
voir computing methods at the experimental level). In this framework, the
reservoir is a network of neurons (it can be linear or sigmoidal neurons, but
more usually spiking neurons), with a random topology and a sparse con-
nectivity. Usually, this is a recurrent network, with weights than can be
either fixed or driven by an unsupervised learning mechanism. In the case
of spiking neurons (e.g. in the model of Paugam-Moisy et al. (2008)), the
learning mechanism is a form of synaptic plasticity, usually STDP (Spike-
Time-Dependent Plasticity), or a temporal Hebbian unsupervised learning
rule, biologically inspired. The output layer of the network (the so-called
“readout neurons”) is driven by a supervised learning rule, generated from
any type of classifier or regressor, ranging from a least mean squares rule
to sophisticated discriminant or regression algorithms. The ease of training
and a guaranteed optimality guides the choice of the method. It appears
that simple methods yield good results Verstraeten et al. (2007). This dis-
tinction between a readout layer and an internal reservoir is indeed induced
by the fact that only the output of the neuron network activity is constrained,
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whereas the internal state is not controlled.
In biological context, learning is mainly related to synaptic plasticity Ger-

stner and Kistler (2002b); Cooper et al. (2004) and STDP (see e.g., Toyoizumi
et al. (2007) for a recent formalization), as far as spiking neuron networks
are concerned. This unsupervised learning mechanism is known to reduce
the variability of neuron responses Bohte and Mozer (2007) and is related
to the maximization of information transmission Toyoizumi et al. (2005) and
mutual information Chechik (2003). It has also other interesting computa-
tional properties such as tuning neurons to react as soon as possible to the
earliest spikes, or segregate the network response in two classes depend-
ing on the input to be discriminated, and more general structuring such as
emergence of orientation selectivity Guyonneau et al. (2005).

In the present study, the viewpoint is quite different: we consider super-
vised learning, where “each spike matter”, as e.g. in the special case of a
feed-forward sweep of visual activity in response to a brief visual presenta-
tion Guyonneau et al. (2005); Delorme et al. (2001); thus, we want, not only
to statistically reproduce the spiking output, but also to reproduce it exactly.

The motivation to explore this track is twofold. On one hand, we want
to better understand what can be learned, at a theoretical level, by spik-
ing neural networks, tuning weights and delays. The key point is the non-
learnability of spiking neurons Šíma and Sgall (2005), since it is proved
that this problem is NP-complete, when considering the estimation of both
weights and delays. Here we show that we can “elude” this caveat and pro-
pose an alternate efficient estimation, inspired by biological models.

We also have to notice that the same restriction apply not only to sim-
ulation but, as far as this model is biologically plausible, also holds at the
biological level. It is thus an issue to wonder if, in biological neuron net-
works, delays are really estimated during learning processes, or if a weaker
form of weights adaptation, as developed now, is considered.

On the other hand, the computational use of spiking neuron networks
in the framework of reservoir computing or beyond Schrauwen (2007), at
application levels, requires efficient tuning methods not only in “average”,
but in the deterministic case. This is the reason why we must consider how
to exactly generate a given spike train.

PART III: PROGRAMMING RESETTING NON-LINEAR
NETWORKS

A deterministic framework, i.e. in a context where not the “average”
input/output response, but an exact or approximate specific input/output re-
sponse is targeted (i.e. considering that “each spike may matter” Guyonneau
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et al. (2005); Delorme et al. (2001), which seems to be the case, e.g., in the bi-
ological visual system working in natural scenario Baudot (2007); Masland
and Martin (2007); Koch et al. (2004)). More precisely, from Cessac et al.
(2010), we propose the following pragmatic view of the network result coding
scheme (i.e. the “neural code” in a biological context VanVreeswijk (2004);
Rieke et al. (1996)): two results correspond approximately to the same code
if their distance with respect to a given metric or pseudo-metric is small.
For instance, considering a rank coding scheme (i.e. in a context where the
relative temporal sorting of the spikes matter, but not their exact temporal
values Delorme et al. (2001)) the related pseudo-metric is discrete and easy
to state: network output are equivalent if the ranks of spike trains match,
and not-equivalent otherwise. Contrary to this binary choice, our proposal
is to introduce a richer structure: The proposed modeling view is not only
to consider a weak notion of network coding where two codes can only be
either equal or different, but a more general notion where two codes are
similar up to some quantified distance. This seems to correspond to a more
realistic view of, for instance, the still mysterious “neural code” (see Cessac
et al. (2010) for a discussion), and at the estimation level allows variational
optimization mechanisms to be used.

This permits us to not only address the exact estimation problem, i.e. to
find an exact input/output mapping if and only if there is one, but also the
approximate estimation problem, i.e. to find an approximate input/output
mapping that minimizes a given distance.

Thus, we propose a mollification in the spiking metrics, which allows to
replace the sudden spike generation by a progressive effect, in order to be
able to evaluate its variation. This means that the metric is no more a func-
tion of the spike explicitly, but of the state value itself around the spike.
Though we are able to evaluate its variation, it is not clear to which extents
this trick allows to always solve the following key problem: As soon as an
spike is modified, this may induce a dramatic change on the network dynam-
ics, thus completely change spikes in the future, including re-creating false
spikes with respect to what is expected. We thus may expect our method to
be unusable when the system is chaotic since the effect of an spike modifica-
tion will be significant after a time of order the inverse of the largest positive
Lyapunov exponent.

In the present variational framework, weights are adjusted in order to
drive the state values away from the threshold barriers that induce spike
changes. As a consequence, it tends to produce a dynamic that is robust
and stable, but not necessarily optimal, in the sense that it drives the pa-
rameters towards a reasonable, but local optimum of the chosen criterion.
In other words, it tends to qualitatively generate the input/output response
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with a large margin, which is known to provide statistically robust transfor-
mations, with good generalization performances Vapnik (1998); Bartlett and
Shawe-Taylor (1999). This is what is targeted here at heuristic level.

It also tends to drive the system away from the "edge of chaos" (see Ces-
sac (2008); Cessac and Viéville (2008) for a precise definition in spike system,
different from the usual notion of chaos in differentiable systems : the termi-
nology "stable chaos" has been proposed for this type of behaviour, by Politi
and Torcini (2009)).

Though it is believed that maintaining a system close to the edge of chaos
increases the versatility of its computational power, while this point of view
remains in discussion (see, e.g., Langton (1990); Packard (1988)), the present
framework tends to provide something different. The network is not tar-
geted to remain at the edge of chaos, with the goal to allow a large set of
computation to be performed, but instead to perform a restrained class of
computations, in a robust way. It is an interesting perspective of this work,
to study to which extents such variational approach can be turned out to-
ward the alternate objective.

PART IV: HARDWARE IMPLEMENTATIONS OF SPIK-
ING NEURAL NETWORKS

In recent years the hardware implementation of artificial neural net-
works has evolved to neuromorphic, FPGA-based and GPU-based ap-
proaches in order to emulate the biological neural design. In this sense spik-
ing neuron models attempt to reproduce the neural behavior at different
realism levels (biologic plausibility). However, realism implies complexity,
which from a computational viewpoint it corresponds to high computational
costs. In this context, dedicated hardware take advantage of the inherent
parallelism in the neural processing to accelerate it. Furthermore the de-
sign process of a hardware architecture depends mainly on two aspects: the
characteristics of the hardware platform and the complexity of the neuron
model Johnston et al. (2005); Belatreche et al. (2006). Thus, in this relation
neuron model-hardware platform we can find a wide range of possible com-
binations (see Misra and Saha (2010) for a recent review of the progress in
hardware implementations of neural networks). However, as we know all
neuron model is described by mathematical operations, in this sense certain
hardware devices are better adapted than others according the complexity
of such operations.

Through this huge universe of hardware implementations of neural net-
works, we focus on those related to spiking neuron models. In this direc-
tion, several research groups have concurred in important projects such as
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FACETS9 and SYNAPSE10, where have as common goal to develop neuro-
morphic hardware in order to simulate large scale of realistic neuron mod-
els. Currently, there exist a large number of environments for spiking neural
networks that enable the simulation of realistic neuron models. For example
the NEURON11 simulator is well-suited option when we require to simulate
many ion specific channels and ion accumulation involved in complex models
of membrane cell Hines and Carnevale (1997). GENESIS12 is another simu-
lator developed by Wilson et al. (1989) and widely used in the neuroscience
community to simulate neural systems ranging from subcellular components
and biochemical reactions to complex models of single neurons, simulations
of large networks, and systems-level models. In the last years some simula-
tors, such as SpikeNNS13, SpikeNET14, SpikeLAB15 and BRIAN16 attempt
to simulate large scale neural networks based on spiking neuron models at
different realism levels. However, only the SpikeLAB simulator enable the
integration of digital or analog neuromorphic circuits in the simulation pro-
cess Grassmann and Anlauf (1999).

From a more specific level we can find hardware implementations of spik-
ing neuron models in analog and digital domains and also a combination of
both. Thus, analog-based implementations focus mainly on more realistic
neuron models, this fact is due that in the analog domain the non-linearity
can be captured directly Mahowald and Douglas (1991); Tomas et al. (2006);
Lewis and Renaud (2007); Renaud et al. (2007); Schemmel et al. (2008). In
contrast to analog implementations, digital devices such as FPGA provide
an efficient and low-cost programmable platform for implementing spiking
neuron models Maya et al. (2000); Graas et al. (2004); Glackin et al. (2005);
Cassidy et al. (2007); Girau and Torres-Huitzil (2007); Maguire et al. (2007);
Pearson et al. (2007); Thomas and Luk (2009). However, the circuit density
in FPGAs is still limited to implement large scale models with a big number
of interconnected neurons.

Further, neuromorphic systems have been efficiently implemented in Vo-
gelstein et al. (2007); Hashimoto and Torikai (2009); Saighi et al. (2010).
Here, authors combine analog and digital hardware to simulate neural net-
works based on complex neuron models. On one hand the realism involved
in complex models is captured by the analog hardware. On the other hand
the connectivity among neurons is handle by digital hardware i.e. FPGA or

9http://facets.kip.uni-heidelberg.de
10http://celest.bu.edu/outreach-and-impacts/the-synapse-project
11http://www.neuron.yale.edu/neuron/
12http://www.genesis-sim.org/GENESIS/
13http://cortex.cs.nuim.ie/tools/spikeNNS/index.html
14http://sccn.ucsd.edu/ arno/spikenet/
15http://spikelab.jbpierce.org/
16http://www.briansimulator.org/
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PC.

Moreover GPU’s have been frequently used to solve complex mathemat-
ical problems Kirk and Hwu (2003). GPU uses an heterogeneous program-
ming scheme, which allows us to use different programming language in or-
der to simulate the related mathematical model. This means that a GPU
programming language can easily interact with other programming lan-
guages permitting us to have a programming scheme more flexible and op-
timal. The programmable GPU has evolved into a highly parallel, multi-
threaded, multi-core processor with tremendous computational power and
very high memory bandwidth far beyond the graphical applications they
have been designed initially for. More specifically, the GPU is especially
well-suited to address problems that can be expressed as data-parallel com-
putations, the same program being executed on many data elements in par-
allel Che et al. (2008). In this direction, Spiking Neural Networks could
take profit of this powerful technology, since a Spiking Neuron Model could
be coded as a GPU kernel and reproduce several times to build a neural
network, therefore executed in parallel Fidjeland et al. (2009); Nageswaran
et al. (2009).

The aim of this section is to show the feasibility of the gIF-type neuron
models to be implemented on dedicated hardware, such as FPGA. On one
hand we present the FPGA-based implementation of a discrete-time spiking
neuron model, where we show that such model avoid the use of multipli-
ers in the weighting sum, thus the resource usage in the device is highly
reduced. Besides, this model allows the one-to-one correspondence between
membrane potential and spiking activity as was shown in Cessac (2008).
Furthermore this correspondence allows that the spiking activity can be di-
rectly and easily handle by the FPGA due that the spiking activity is rep-
resented as a sampled signal (spike train). On the other hand we present
the implementation of an analog-spiking neuron model, which permits us
to combine the spiking and the analog approaches to reproduce spiking ac-
tivities. More specific this model uses a non-linear function to evaluate the
synaptic interactions among neurons but at the same time the spiking activ-
ity continue being described by a sampled signal (spike train). In both cases
we perform a precision analysis by considering a fixed-point arithmetic.

The mathematical study presented in Cessac (2008) has evidenced three
different activity regimes on the Integrate and Fire neuron models. In this
work the author has also identified numerically the limits among these
regimes. Following this research we have extended such study to the field of
the hardware implementation. Hence, we show several results that demon-
strate such phenomena and its consequences in the design of FPGA-based
architectures of gIF-type neuron models.
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Finally we present a performance analysis where we compare the FPGA-
based implementations with a GPU-based implementation.
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gIF-type Spiking Neuron
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CHAPTER 1

GIF-TYPE SPIKING NEURON

MODELS

“You must keep an open mind, but not so open that your brains fall out”
–James Oberg ()

OVERVIEW

The aim of this chapter is to briefly review the principles of neuroscience
and the modeling basis of the neural activity. This short description ad-
dresses two scales: first at cellular level, studying the basic neuron physi-
ology, and second exploring its behavior at a system level (neural network).
Then, we review a mathematical model, which defines the dynamics of spik-
ing neurons. In this sense the model is based on the fact that a spike is de-
scribed as an action potential emitted by a neuron, when it has been excited
enough to reach a given positive threshold. Besides, from the spike state
of the neuron, and the membrane potential, we can deduce that there exist
an one-to-one correspondence between spike train and membrane potential
trajectories. This correspondence permits us to switch from the membrane
potential to spikes when focus on information processing, while neural code
(information) is encoded as a spike activity.

We focus on discrete-time spiking neuron model described by a simplified
form of the gIF-type model. The main interest to consider this model as the
basis of this thesis is due to its simplicity to describe the neural behavior,
and the one-to-one correspondence between the membrane potential and its
respective spiking activity in the asymptotic stage: no information is lost
when switching between representations, even if the spiking sequences have
a complex structure. Also, this model has a reasonable biological plausibility
since it can approximate complex dynamics.
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1.1 NEURON ANATOMY

A neuron is an electrically excitable cell that processes and transmits
information by electrical and chemical signaling. Chemical signaling occurs
via synapses, specialized connections with other cells. Neurons connect to
each other to form networks. Given the diversity of functions performed
by neurons in different parts of the nervous system, there is, as expected, a
wide variety in the shape, size, and electrochemical properties of neurons.
A typical neuron can be divided into three anatomical and functional parts,
called dendrites, soma and axon; see figure 1.1.

Figure 1.1: Anatomy of a neuron. (Illustration from Mariana Ruiz Villarreal)

• The soma is the central part of the neuron. It contains the nucleus
of the cell, where most protein synthesis occurs. The soma is consid-
ered as a central processing unit that performs an important nonlinear
processing.

• The dendrites of a neuron are cellular extensions with many
branches. This overall shape and structure is referred to as a den-
dritic tree. This is where the majority of inputs to the neuron occurs.
It is considered as a linear combiners of these inputs.

• The axon is a fine cable-like projection which can extend tens, hun-
dreds, or even tens of thousands of times the diameter of the soma in
length. The axon carries nerve signals away from the soma (and also
carries some types of information back to it). Neurons have only one
axon, but this axon may and usually will undergo extensive branch-
ing, enabling communication with many target cells. The part of the
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axon where it emerges from the soma is called the axon hillock. Be-
sides being an anatomical structure, the axon hillock is also the part of
the neuron that has the greatest density of voltage-dependent sodium
channels. This makes it the most easily-excited part of the neuron and
the spike initiation zone for the axon: in electrophysiological terms it
has the most negative action potential threshold. While the axon and
axon hillock are generally involved in information outflow, this region
can also receive input from other neurons. The axon terminal con-
tains synapses, specialized structures where neurotransmitter chemi-
cals are released in order to communicate with target neurons.

1.1.1 The spiking neuron

The neuron is a dynamic element that emits output pulses whenever the ex-
citation exceeds some threshold. The resulting sequence of pulses or “spikes”
contains all the information that is transmitted from one neuron to the next.

Action potentials

In physiology, an action potential (Figure 1.2) is a short-lasting event in
which the electrical membrane potential of a cell rapidly rises and falls,
following a stereotyped trajectory. Action potentials play a central role in
cell-to-cell communication. In other types of cells, their main function is to
activate intracellular processes. Action potentials in neurons are also known
as “nerve impulses” or “spikes”, and the temporal sequence of action poten-
tials generated by a neuron is called its "spike train". A neuron that emits
an action potential is said to“fire”.

1.2 DISCRETIZED INTEGRATE AND FIRE NEURON
MODELS.

Let us now consider a normalized and reduced “punctual conductance
based generalized integrate and fire” (gIF) neural unit model Destexhe
(1997) as reviewed in Rudolph and Destexhe (2006). The model is reduced
in the sense that both adaptive currents and non-linear ionic currents are
no more explicitly depending on the potential membrane, but on time and
previous spikes only (see Cessac and Viéville (2008) for a development).

Here we follow Cessac (2008); Cessac and Viéville (2008); Cessac and
Viéville (2008) after Soula and Chow (2007) and review how to properly dis-
cretize a gIF model.

2NIA - Alzheimer’s Disease: Unraveling the Mystery. National Institutes of Health.
http://www.nia.nih.gov/Alzheimers/Publications/Unraveling/

17

http://www.nia.nih.gov/Alzheimers/Publications/Unraveling/


Figure 1.2: Action potentials arriving at the synapses of the upper right
neuron stimulate currents in its dendrites; these currents depolarize the
membrane at its axon, provoking an action potential that propagates down
the axon to its synaptic knobs, releasing neurotransmitter and stimulating
the post-synaptic neuron (lower left). Illustration from [2]

1.2.1 From a LIF model to a discrete-time spiking neuron
model.

In this section we present the correct discretization of a LIF model, which
has been introduced in Soula et al. (2006) and called BMS. The discretization
process is carried out thanks to the well-done analogy presented in Gerstner
and Kistler (2002a) between a RC circuit and a biological neuron (figure
(1.3)).

The analogy represented in figure 1.3 permits us to study the neuron
behavior using the well-defined techniques of the electrical circuits analysis.
In this direction applying the Kirchhoff ’s current law to the RC circuit shown
in figure (1.3) we have:

Ii(t) = IR + IC (1.1)

then applying the Ohm’s law and deriving the current-voltage relation on
the capacitor, yields in a differential equation:

Ii(t) =
Vi(t)

R
+ C

dVi(t)

dt

dVi(t)

dt
= −Vi(t)

τ
+
Ii(t)

C

where τ = RC is the time required for the voltage to fall to V0 and is called
the time constant.
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Figure 1.3: Schematic diagram of the integrate-and-fire model. The ba-
sic circuit is the module inside the dashed circle on the right-hand side. A
current I(t) charges the RC circuit. The voltage u(t) across the capacitance
(points) is compared to a threshold ϑ. If u(t) = ϑ at time t

(f)
i and output

pulse δ(t− t(t)i ) is generated. Left part: a presynaptic spike δ(t− t(t)j ) is low-

pass filtered at the synapse and generates an input current pulse α(t − t(t)j )

(Illustration from Gerstner and Kistler (2002a)).

Furthermore, we consider that the spiking neuron model will be used in
numerical simulations, thus the Euler method is applied in order to solve
the differential equation. Then we fix some constant values, such as the
sampling time scale dt = 1 and the capacitance C = 1. Finally, we consider
that γ = 1− 1

τ , where τ ≥ 1, thus γ ∈ [0, 1[, the equation reads:

Vi(t+ dt)− Vi(t)
dt

= −Vi(t)
τ

+
Ii(t)

C

Vi[k + 1] = Vi[k]− Vi[k]

τ
+
Ii(t)

C

Vi[k + 1] = Vi[k]
(

1− 1

τ

)
+
Ii[k]

C

Vi[k + 1] = γVi[k] +
Ii[k]

C

Vi[k + 1] = γVi[k] + Ii[k]

The next is to consider that Ii[k] is the sum of all signals flowing into the
neuron, it is Ii[k] = ISi [k] + Iexti [k]. Hence, on one hand the synaptic cur-
rent ISi [k] describes the strength of the connections among neurons and is
defined by

∑N
j=1Wijχ(Vj [k]), where χ is the activation function described

by the equation 1.3 as the firing state of the pre-synaptic neurons. On the
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other hand Iext
i [k] corresponds to a current from an external stimulus. These

assumptions allow us to define a preliminary approximation towards the
discrete-time spiking neuron model as follow:

Vi[k + 1] = γVi[k] +
N∑
j=1

Wijχ(Vj [k]) + Iext
i [k]

Furthermore the term Z[k] is used to specify the indicator function
χ[1,+∞[(V [k]), χA(x) = 1 if x ∈ A and 0 otherwise. More precisely Z de-
fines the firing state of the neuron. Finally, we introduce a reset mechanism
(1 − Z[k]) in order to return the neuron to its initial state, once that it has
reached the fixed firing threshold θ. Thus, the discrete-time neuron model
reads:

Vi[k] = γVi[k − 1](1− Zi[k − 1]) +

N∑
j=1

WijZj [k − 1] + Iext
i [k] (1.2)

Zi[k] = χ(V [k]) =

{
1 if Vi[k] ≥ θ
0 otherwise

(1.3)

where Vi[k] defines the membrane potential of the neuron with index i at
time t. W are the synaptic weights. γ corresponds to the leak factor and Iext

is an external stimulus.

1.2.2 Time constrained continuous formulation.

Let V be the normalized membrane potential, which triggers a spike for
V = 1 and is reset at a given value. This is an approximation characteristic
of IF models: the reset value is a constant. This constraint can be released
by adding noise in the system. The fire regime (spike emission) reads V (t) =

1⇒ V (t+) = 0. Let us write ω̃t = χ(V (t)) = {· · · tni · · · }, the list of spike times
tni < t. Here tni is the n-th spike-time of the neuron of index i. The dynamic
of the integrate regime reads:

dV

dt
+

1

τL
[V − EL] +

∑
j

∑
n

ρj
(
t− tnj

)
[V − Ej ] = Im(ω̃t),

Here, τL and El are the membrane leak time-constant and reverse poten-
tial, while ρj(t) and Ej are the spike responses and reversal potentials for
excitatory/inhibitory synapses and gap-junctions. Furthermore, ρj(t) is the
synaptic or gap-junction response, accounting for the connection delay and
time constant; shape showed in figure 1.4.

Finally, Im() is the reduced membrane current, including simplified adap-
tive and non-linear ionic current (see Cessac and Viéville (2008) for details).
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Figure 1.4: A profile ρ(t) = H(t) tτ e
− t
τ , which represents the synaptic weights

mapped at different delays.

Consequently the dynamic of the integrate regime reads:

dV

dt
+ g(t, ω̃t)V = I(t, ω̃t),

where g and I are the membrane conductance and the current respectively
and their value only depend on the firing states ω̃. Once that we know the
membrane potential at time t, we can deduce it at time t+ δ, which reads:

V (t+ δ) = ν(t, t+ δ, ω̃t)V (t) +

∫ t+δ

t
ν(s, t+ δ, ω̃s) I(s, ω̃s) ds

with:

ν(t0, t1, ω̃t0) = e−
∫ t1
t0
g(s,ω̃s) ds.

The key point is that temporal constraints must be taken into account
Cessac et al. (2008b). Spike-times are bounded by a refractory period
r, r < dn+1

i , defined up to some absolute precision δt, while there is always a
minimal delay dt for one spike to influence another spike, and there might
be (depending on the model assumptions) a maximal inter-spike interval
D such that either the neuron fires within a time delay < D or remains
quiescent forever). For biological neurons, orders of magnitude are typically,
in milliseconds:

r δt dt D

1 0.1 10−[1,2] 10[3,4]

1.2.3 Network dynamics discrete approximation.

Combining these assumptions with equations 1.2 and 1.3 we can to write the
following discrete equation for a sampling period δ:

Vi[k] = γi Vi[k − 1] (1− Zi[k − 1]) +

N∑
j=1

D∑
d=1

Wijd Zj [k − d] + Ii[k], (1.4)
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Thus, the cumulative effects of conductances reads:

γi(t) ≡ ν(t, t+ δ, ω̃t)|t=k δ (1.5)

considering random independent and identically distributed Gaussian
weights.

The numerical analysis performed in Cessac and Viéville (2008) demon-
strates that, for numerical values taken from bio-physical models, consider-
ing here δ ' 0.1ms, this quantity is remarkably constant, with small varia-
tions within the range:

γi ∈ [0.965, 0.995] ' 0.98,

It has been numerically verified that taking this quantity constant over time
and neurons does not significantly influence the dynamics. This the reason
why we write γi as a constant here. This corresponds to a “current based”
(instead of “conductance based”) approximation of the connections dynamics.

The additive current

Ii(t) ≡
∫ t+δ

t
ν(s, t+ δ, ω̃s)

(
im(ω̃s) +

EL
τL

)
ds

∣∣∣∣
t=k δ

' δ γi

(
im(ω̃t) +

EL
τL

)∣∣∣∣
t=k δ
(1.6)

accounts for membrane currents, including leak. The right-hand size ap-
proximation assume γi is a constant. Furthemore, we have to assume that
the additive currents are independent from the spikes. This means that we
neglect the membrane current non-linearity and adaptation.

On the contrary, the term related to the connection weights Wijd is not
straightforward to write and requires to use the previous numerical approx-
imation. Let us write:

Wij [k − knj ] ≡ Ej
∫ t+δ
t ν(s, t+ δ, ω̃t) ρj

(
t− tnj

)
ds
∣∣∣
t=k δ,tnj =knj δ

' Ej δ γi ρj

(
t− tnj

)∣∣∣
t=k δ,tnj =knj δ

,
(1.7)

assuming ν(s, t + δ, ω̃t) ' γi as discussed previously. This allows us to con-
sider the spike response effect at time tnj = knj δ as a function only of k − knj .
The response Wij [d] vanishes after a delay D, τr = D δ, as stated previously.
We assume here that δ < δt i.e. that the spike-time precision allows one to
define the spike time as knj , t

n
j = knj δ (see Cessac and Viéville (2008); Ces-

sac and Viéville (2008) for an extensive discussion). We further assume that
only zero or one spike is fired by the neuron of index j, during a period δ,
which is obvious as soon as δ < r.

This allows us to write Wijd = Wij [d] so that:
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∑n
j=1Wij [k − knj ] =

∑D
d=1

∑n
j=1Wij [d]χ{knj }(k − d)

=
∑D

d=1Wij [d]χ{k1
j ··· ,knj ,··· }

(k − d)

=
∑D

d=1Wijd Zj [k − d]

where Zj [l] = χ{k1
j ··· ,knj ,··· }

(l) is precisely equal to 1 on spike time and 0 other-
wise, thus completes the derivation of (1.4).

1.2.4 Properties of the discrete-time spiking neuron model

Now, we make a review on the main properties of the discrete-time spiking
neuron model described by equation 1.4. These properties have been defined
in Cessac (2008).

Since γ < 1 we can define the phase space for V as a set M =

[Vmin, Vmax]N .

Vmin ≤ Vi[k] ≤ Vmax, (1.8)

where:

Vmin = min
(

0,
1

1− γ

[
mini=1...N

∑
j|Wijd<0

Wijd + Iext
i

])
(1.9)

and:

Vmax = max
(

0,
1

1− γ

[
maxi=1...N

∑
j|Wijd>0

Wijd + Iext
i

])
(1.10)

where the notation j|Wijd < 0 (j|Wijd > 0) specifies that all the weights are
negative (positive).

Equations 1.9 and 1.10 hold even if Iext
i depends on time.

For each neuron we can decompose the interval I = [Vmin, Vmax] into
I0 ∪ I1 with I0 = [Vmin, θ[ and I1 = [θ, Vmax]. If V ∈ I0 neuron is qui-
escent and otherwise it fires. Further, this partition permits us to define
the spiking state, which can be expressed as a N dimensional binary vector,
ω = {ω1, ....., ωN} ∈ Λ, where Λ = {0, 1}N . Then

M =
⋃
ω∈Λ

Mω

where:

Mω = {V ∈M|Vi ∈ Iωi} (1.11)

More precisely, this allows us to classify the membrane potential vectors
according to their spiking state.
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The coefficient γ(1−Z(Vi)) corresponds to contraction in direction i. This
can be explained as follow: let us to suppose that Vi ∈ I1, which means that
Z(Vi) = 1 (neuron fires) by consequence the contraction coefficient will be
zero and the membrane potential reseted, otherwise the membrane potential
will be contracted by a factor γ. These effects are shown in figures 1.5(b) and
1.5(a) respectively.

(a) (b)

Figure 1.5: Two examples of the partition space for non-perturbed balls in
a system with two neurons. The space is partitioned from the firing state of
the neurons and is labeled as ω =

(
ω1

ω2

)
Furthermore this property can be extended to a RN space, since 1.4 is

originally defined on this space. If we consider the δ-ball, this ball is con-
tracted by dynamics.

The equation 1.4 is discontinuous on the set S defined as follow:

S = {V ∈M, |∃i, Vi = θ} (1.12)

This is due to singularities in dynamics. Let us to consider the trajectory
of a point V ∈ M, which has perturbations with an amplitude < ε. Equiva-
lently to consider the evolution of the ε-ball B(V, ε) under 1.4.

There are two cases:

1. The non-critical case: when B does not intersects S, B(V, ε) ∩ S = 0

In this scenario the perturbations have not a considerable effect on the
trajectory of V, in fact they become asymptotically indistinguishable.
At the most, there exist a contraction of the initial ball, since γ < 1.

In order to clarify the non-critical case let us to consider the examples
shown in figure 1.6. In both cases the real trajectories (Figure 1.5) have
been perturbed in B(V, ε) ( • ).

24



(a) (b)

Figure 1.6: The effects on the dynamics when the trajectories of V has been
perturbed. The non-critical case.

First, we concentrate in the partition
(

0
0

)
of the figure 1.6(a). Note that

even if the real trajectory shown in figure 1.5(a) has been perturbed,
the contraction effect is similar in both cases.

Now, in figure 1.6(b) we can observe that the perturbed ball has evoked
a spike in partition

(
0
1

)
, which corresponds to neuron 2. However the ε-

perturbation is not propagated throughout the system due that neuron
2 is reseted in

(
1
0

)
2. The critical case: when B intersects S, B(V, ε) ∩ S 6= 0

On the contrary, the crossing of S by the ε-ball induces a strong effect
reminiscent on the sensitivity of initial conditions for chaotic dynamics.
In other words, when B and S are intersected the trajectory of V change
drastically, since the perturbed trajectory induces a new spiking state.

Two important remarks of this:

• The main difference with chaos is that the present effect occurs
only when the ball crosses the singularity. (Otherwise the ball is
contracted).

• The singularity S is the only source of complexity of the discrete-
time spiking neuron model, and its existence is due to the strict
threshold in the definition of neuron firing.

The critical case is schematized in figure 1.7 where we can observe a
drastic effect on the dynamics when the perturbed ball B(V, ε) ( • ) intersects
the singularity set. More specific, a perturbed ball localized very close to the
threshold can to induce a firing in the neuron.
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Figure 1.7: The effects on the dynamics when a perturbed ball intersects
the singularity set. The critical case.

Further these cases have inspired the chapter 4 of this manuscript,
where we show how limited precision on hardware implementations induce
perturbations on the dynamics. Thus, we demonstrate numerically this phe-
nomena.

1.2.5 Asymptotic dynamics in the discrete-time spiking neu-
ron model

The mathematical study presented in Cessac (2008) has demonstrated that
gIF-type models evidence three main regimes in its asymptotic dynamics for
a finite size. These regimes are: neural death, periodic and chaotic. (see
figure 1.8)

• Neural Death. correspond to a regime where neurons stop to fire due
mainly to a weak activity in their synapses or a weak external stimu-
lus. This definition assumes that Iext

i < (1 − γ)θ and consider the set
M0 = {V|Vi < θ,∀i}.

• Periodic. correspond to trivial activities, where neurons present
repetitive patterns and occurs in the domainM1 = {V|Vi ≥ θ,∀i} when
σ is large enough.

• “Chaotic”. this regime also occurs in the domain of M1 = {V|Vi ≥
θ,∀i} and evidences complex dynamic, where the period tends to be
very large.
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Figure 1.8: Average value of the distance d(A,S) versus γ, C, for N = 50.
Illustration from Cessac (2008)

1.2.6 The analog-spiking neuron model

In biologically-inspired neural networks, such as the gIF neuron model, the
activation function is usually an abstraction representing the rate of action
potentials and stereotyped trajectory called spikes. In this sense the equa-
tion 1.4 shows the simplest form of this definition, where the state of the
synaptic connections is given by their firing states. In this case a large num-
ber of neurons must be computed in order to reach the activation state.

A spike has a discrete-form, which is modeled by a Heaviside step func-
tion. This description yields discontinuity, and there is not a mechanism
that permits us to smooth the transition between the quiescent and the fir-
ing state of a neuron.

In order to elude this discontinuity we can make an extension of 1.4 to
an analog-spiking form. The term analog refers to a non-linear activation
function (Figure 1.9), however the neural activity continues being a spiking
activity. This new gIF-type model is given by the next equation:

Vi[k] = γ Vi[k − 1] ρ(Vi[k − 1]) +
N∑
j=1

D∑
d=1

Wijd σ(Vj [k − d]) + Ii[k], (1.13)

where:
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ρ(Vi[k − 1]) = Zi[k − 1] ∈ {0, 1}

and,

σ(Vj [k − d]) =
1

1 + e−(Vj [k−d])
(Sigmoid function) (1.14)

Figure 1.9: A sigmoid function

1.2.7 Biological plausibility of the gIF-type models

In computational neuroscience, the biological plausibility is based on the
ability of the neuron models to reproduce real neural dynamics. In this
sense the gIF-type models have been studied in Destexhe (1997); Rudolph
and Destexhe (2006); Jolivet et al. (2004). The authors have proved that gIF-
type models can approximate spike trains of a detailed model with a high
degree of accuracy. In addition these models can be extended to the study
of learning mechanism such as spike-timing-dependent plasticity Markram
et al. (1997); Pfister and Gerstner (2006). Also, the description of the neural
activity carried out by these models allow one to reproduce important neural
regimes (tonic spiking, phasic spiking, tonic bursting, etc.)

In this chapter we have defined the basis of the gIF-type neuron mod-
els, which will be used throughout this manuscript. In the next chapters we
show the capacity of the spiking neuron models to perform powerful compu-
tations.
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Part II

Learning spiking neural
networks parameters
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CHAPTER 2

REVERSE-ENGINEERING IN

SPIKING NEURAL NETWORKS

PARAMETERS: EXACT

DETERMINISTIC ESTIMATION

Scientists investigate that which already is; Engineers create that
which has never been.

–Albert Einstein

OVERVIEW

We consider the deterministic evolution of a time-discretized network
with spiking neurons, where synaptic transmission has delays, modeled as
a neural network of the generalized integrate-and-fire (gIF) type. The pur-
pose is to study a class of algorithmic methods permitting us to calculate the
proper parameters in order to reproduce exactly a given spike train, gen-
erated by an hidden (unknown) neural network. This standard problem is
known as NP-hard when delays are to be calculated. So far we propose a re-
formulation, now expressed as a Linear-Programming (LP) problem, which
provides an efficient resolution, thus avoiding the NP complexity. Such refor-
mulation makes possible the “reverse-engineering” of a neural network, i.e.
to find out, given a set of initial conditions, which parameters (i.e., synaptic
weights in this case), allow one to simulate the network spike dynamics.

More precisely we make explicit the fact that the reverse-engineering of a
spike train, is a Linear (L) problem if the membrane potentials are observed
and a LP problem if only spike times are observed. Numerical robustness is
discussed. We also explain how is the use of a generalized IF neuron model
instead of a leaky IF model that enable us to derive this algorithm.

Furthermore, we point out how the L or LP adjustment mechanism is
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local to each unit and has the same structure as an “Hebbian” rule. A step
further, this paradigm is easily generalizable to the design of input-output
spike train transformations. Since a numerical viewpoint we are able to
“program” a spiking network, i.e. find a set of parameters in order to exactly
reproduce the network output, given an input. Numerical verifications and
illustrations are provided.

The proposed methods are detailed in two steps: first, detailing the
family of estimation problems corresponding to what is called reverse-
engineering and discussing the related computational properties; then, mak-
ing explicit how a general input/output mapping can be “compiled” for a spik-
ing neural network thanks to the previous developments. We also present
some numerical experiments.

2.1 METHODS: WEIGHTS AND DELAYED WEIGHTS
ESTIMATION

Let us consider a network of N spiking neurons, whose dynamics is de-
fined by the equation (1.4). Such dynamics is schematized in figure 2.1 as a
raster plot (spike train).

D

T

N

Figure 2.1: Schematic representation of a raster plot with N neurons ob-
served during a time T after a period D (in red), which represents an initial
state.

In order to estimate the dynamics of the neural network, we require
the knowledge of its initial state. Here, due to the particular structure of
equation (1.4) with a delay D, the initial state is defined by a trajectory
Vi[k], k ∈ {0, D{. The notation k ∈ {0, D{ stands for 0 ≤ k < D.

In equation (1.4) if neuron i has fired at least once, the dependence in the
initial condition is removed thanks to the reset mechanism. This means that
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its state does not depend on Vi[0] anymore. We further assume Vi[0] = 0, for
the sake of simplicity.

The dynamics is parametrized by the weightsWijd thusN×N×D values.
Here it is assumed that the γi are known and constant, while Iik are also
known, as discussed below.

When the potential and/or spikes are observed during a period T , N × T
numerical/binary values are measured.

With the assumption that Vi[0] = 0, (1.4) reads:

Vi[k] =
N∑
j=1

D∑
d=1

Wijd

τik∑
τ=0

γτ Zj [k − τ − d] + Iikτ (2.1)

writing Iikτ =
∑τik

τ=0 γ
τ Ii[k − τ ], where Ii[k − τ ] is given by (1.6), (last time

before k when neuron has fired with: τik = k − arg minl>0{Zi[l − 1] = 1})
the derivation of this last form being easily obtained by induction from (1.4).
Here τik is the delay from the last spiking time, i.e., the last membrane
potential reset. If no spike, we simply set τik = k.

Let us now discuss how to retrieve the model parameters from the obser-
vation of the network activity. We propose different solutions depending on
the paradigm assumptions.

2.1.1 Retrieving weights and delayed weights from the obser-
vation of spikes and membrane potential

Let us assume that we can observe both the spiking activity Zi[k] and the
membrane potential Vi[k]. Here, (2.1) reads in matrix form:

Ci wi = di (2.2)

with:

Ci =

 . . . . . . . . .

. . .
∑τik

τ=0 γ
τZj [k − τ − d] . . .

. . . . . . . . .

 ∈ RT−D×N D,

di = (. . . Vi[k]− Iikτ . . .)t ∈ RT−D,

wi = (. . . Wijd . . .)t ∈ RN D.

writing ut the transpose of u.
Here, Ci is defined by the neuron spike inputs, di is defined by the neu-

ron membrane potential outputs and membrane currents, and the network
parameters by the weights vector wi.

More precisely, Ci is a rectangular matrix with:

• N D columns, corresponding to product with the N D unknowns Wijd,
for j ∈ {1, N} and d ∈ {1, D},
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• T −D rows, corresponding to the T −D measures Vi[k], for k ∈ {D,T},
and,

• T − D × N D coefficients corresponding to the raster, i.e. the spikes
Zj [k].

The weights are thus directly defined by a set of linear equalities for each
neuron. Let us call this a Linear (L) problem.

The equation defined in (2.2), concerns only the weights of one neuron of
index i. It is thus a weight estimation local to a neuron, and not global to the
network. Furthermore, the weight estimation is given by the observation
of the input Zi[k] and output Vi[k]. These two characteristics correspond to
usual Hebbian-like learning rules architecture. See Gerstner and Kistler
(2002b) for a discussion.

Given a general raster (i.e., assuming Ci is of full rank min(T −D,N D)):

• This linear system of equations has always solutions, in the general
case, if:

N >
T −D
D

= O

(
T

D

)
⇔ D >

T

N + 1
= O

(
T

N

)
⇔ D (N+1) > T. (2.3)

This requires enough non-redundant neurons N or weight profile de-
lays D, with respect to the observation time T . In this case, given any
membrane potential and spikes values, there are always weights able
to map the spikes input onto the desired potential output.

• On the other hand, if N D ≤ T − D, then the system has no solution
in the general case. This is due to the fact that we have a system with
more equations than unknowns, thus with no solution in the general
case. However, there is obviously a solution if the potentials and spikes
have been generated by a neural network model of the form of (1.4).

If Ci is not of full rank, this may correspond to several cases, e.g.:

• Redundant spike pattern: some neurons do not provide linearly inde-
pendent spike trains.

• Redundant or trivial spike train: for instance with a lot of bursts (with
many Zj [k] = 1) or a very sparse train (with many Zj [k] = 0). Or
periodic spike trains.

Regarding the observation duration T , it has been demonstrated in Ces-
sac (2008); Cessac and Viéville (2008) that the dynamic of an integrate and
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fire neural network is generically1 periodic. This however depends on pa-
rameters such as external current or synaptic weights, while periods can be
larger than any accessible computational time.

In any case, several choices of weights wi (in the general case a D (N +

1) − T dimensional affine space) may lead to the same membrane potential
and spikes. The problem of retrieving weights from the observation of spikes
and membrane potential may thus have many solutions.

The particular case where D = 1 i.e. where there is no delayed weights
but a simple weight scalar value to define a connection strengths is included
in this framework.

2.1.2 Retrieving weights and delayed weights from the obser-
vation of spikes

Let us now assume that we can observe the spiking activity Zi[k] only (and
not the membrane potentials) which corresponds to the usual assumption,
when observing a spiking neural network.

In this case, the value of Vi[k] is not known, whereas only its position
with respect to the firing threshold is provided:

Zi[k] = 0⇔ Vi[k] < 1 and Zi[k] = 1⇔ Vi[k] ≥ 1,

which is equivalent to write the condition:

eik = (2Zi[k]− 1) (Vi[k]− 1) ≥ 0.

If the previous condition is verified for all time index k and all neuron
index i, then the spiking activity of the network exactly corresponds to the
desired firing pattern.

Expanding (2.1), with the previous condition allows us to write, in matrix
form:

ei = Ai wi + bi ≥ 0 (2.4)

writing:

Ai =

 . . . . . . . . .

. . . (2Zi[k]− 1)
∑τjk

τ=0 γ
τZj [k − τ − d] . . .

. . . . . . . . .

 ∈ RT−D×N D,

bi = (. . . (2Zi[k]− 1) (Iikτ − 1) . . .)t ∈ RT−D,

wi = (. . . Wijd . . .)t ∈ RN D,

ei = (. . . (2Zi[k]− 1) (Vi[k]− 1) . . .)t ∈ RT−D,

1Considering a basic leaky integrate and fire neuron network the result is true except
for a negligible set of parameters. Considering an integrate and fire neuron model with
conductance synapses the result is true, providing synaptic responses have a finite memory.
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thus Ai = Di Ci where Di is the non-singular RT−D×T−D diagonal matrix
with Dkk

i = 2Zi[k]− 1 ∈ {−1, 1}.
The weights are now thus directly defined by a set of linear inequalities

for each neuron. This is therefore a Linear Programming (LP) problem. See
Darst (1990) for an introduction and Bixby (1992) for the detailed method
used here to implement the LP problem.

Furthermore, the same discussion about the dimension of the set of so-
lutions applies to this new paradigm except that we now have to consider a
simplex of solution, instead of a simple affine sub-space.

A step further, 0 ≤ eik is the “membrane potential distance to the thresh-
old”. Constraining the eik is equivalent to constraining the membrane po-
tential value Vi[k].

It has been shown in Cessac (2008) how:

|e|∞ = min
i

inf
k≥0

eik (2.5)

can be interpreted as a “edge of chaos” distance, the smallest |e| the higher
the dynamics complexity, and the orbits periods.

On the other hand, the higher eik, the more robust the estimation. If eik
is high, sub-threshold and sup-threshold values are clearly distinct. This
means that numerical errors are not going to generate spurious spikes or
cancel expected spikes.

Furthermore, the higher |e|∞ the smaller the orbits period Cessac (2008).
As a consequence, the generated network is expected to have rather minimal
orbit periods.

In the sequel in order to be able to use an efficient numerical implemen-
tation, we are going to consider a weaker but more robust norm, than |e|∞:

|ei|1 =
∑
k

eik (2.6)

We are thus going to maximize, for each neuron, the sum, thus, up to a scale
factor, the average value of eik.

Let us now derive a bound for eik. Since 0 ≤ Vi[k] < 1 for sub-threshold
values and reset as soon as Vi[k] > 1, it is easily bounded by:

V min
i =

∑
jd,Wijd<0

Wijd ≤ Vi[k] ≤ V max
i =

∑
jd,Wijd>0

Wijd

and we must have at least V max
i > 1 in order for a spike to be fired while

V min
i ≤ 0 by construction. These bounds are attained in the high-activity

mode when either all excitatory or all inhibitory neurons fire. From this
derivation, emax > 0 and we easily obtain:
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emax = max
i

(1− V min
i , V max

i − 1)

0 < eik ≤ emax

thus an explicit bound for eik.
Collecting all elements of the previous discussion, the present estimation

problem reads:

max
ei,wi

∑
k

ek, with, 0 < eik ≤ emax, and, ei = Ai wi + bi (2.7)

which is a standard bounded linear-programming problem. Note: this
method amounts to approximating an arbitrary spike train with a minimal
period.

The key point is that a LP problem can be solved in polynomial time, thus
is not a NP-complete problem, subject to the curse of combinatorial complex-
ity. In practice, this LP problem can be solved using one of the several LP
solution methods proposed in the literature (i.e., Simplex Method, which is,
in principle, NP-complete in the worst case, but in practice, as fast as, when
not faster, than polynomial methods).

2.1.3 Retrieving signed and delayed weights from the obser-
vation of spikes

In order to illustrate how the present method is easy to adapt to miscel-
laneous paradigms, let us now consider the fact that the weights emitted
by each neuron have a fixed sign, either positive for excitatory neurons, or
negative for inhibitory neurons. This additional constraint, known as the
“Dale principle” Strata and R.Harvey (1999), is usually introduced to take
into account the fact that synaptic weights signs are fixed by the excitatory
or inhibitory property of the presynaptic neuron.

Although we do not focus on the biology here, it is interesting to notice
that this additional constraint is obvious to introduce in the present frame-
work, writing:

Wijd = SijdW
•
ijd, with Sijd ∈ {−1, 1}, and W •ijd ≥ 0

thus separating the weight sign Sijd which is a-priory given and the weight
value W •ijd which now always positive.

Then, writing:
A•ijkd = Aijkd Sijd

the previous estimation problem becomes:

max
ei,w•i

∑
k

ek, with, 0 < eik ≤ emax, 0 ≤W •ijd ≤ 1, and, ei = A•i w•i + bi (2.8)

which is still a similar standard linear-programming problem.
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2.1.4 Retrieving delayed weights and external currents from
the observation of spikes

In the previous derivations, we have considered the membrane currents Iik
as inputs, i.e. they are known in the estimation. Let us briefly discuss the
case where they are to be estimated too.

For adjustable non-stationary current Iik, the estimation problem be-
comes trivial. An obvious solution is Wijd = 0, Iik = 1 + a (Zi[k] − 1/2) for
any a > 0, since each current value can directly drive the occurrence or inhi-
bition of a spike, without any need of the network dynamics.

Too many degrees of freedom make the problem uninteresting: adjusting
the non-stationary currents leads to a trivial problem.

To a smaller extends, considering adjustable stationary currents Ii also
“eases” the estimation problem, providing more adjustment variables. It is
obvious to estimate not only weights, but also the external currents, since
the reader can easily notice that yet another linear-programming problem
can be derived.

This is the reason why we do not further address the problem here, and
prefer to explore in details a more constrained estimation problem.

2.1.5 Considering non-constant leak when retrieving
parametrized delayed weights

For the sake of simplicity and because this corresponds to numerical ob-
servations, we have assumed here that the neural leak γ is constant. The
proposed method still works if the leak varies with the neuron and with time
i.e. is of the form γit (Equation 1.5), since this is simply yet another input to
the problem. The only difference is that, in (2.1) and the related equations,
the term γτ is to be replaced by products of γit.

However, if γ is a function of the neural dynamics, γ ≡ γ(ωt−∞), thus of
Wijd, where {ωt−∞} is the list of firing times of the neuron up to time t, the
previous method must be embedded in a non linear estimation loop. Since we
know from Cessac and Viéville (2008) that this dependency is numerically
negligible in this context, we can propose the following loop:

1. Fix at step t = 0, γ0
it ≡ γ(ω0

−D), to initial values.

2. k- Estimate the weights Wijd, given leaks γkit at k = 0, 1, ...

3. k- Re-simulate the dynamics, given the weights and to obtain corrected
values γ̃kit.

4. k- Smoothly modify γk+1
it = (1− υ) γk+1

it + υ γ̃kit
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5. k + 1 Repeat step 2, k- for k + 1, the convergence of this non-linear re-
laxation method being guarantied for sufficiently small υ. See Viéville
et al. (2001) for an extended discussion about this class of methods.

This shows that considering models with leaks depending on the dynam-
ics itself is no more a LP-problem, but an iterative solving of LP-problems.

2.1.6 Retrieving parametrized delayed weights from the ob-
servation of spikes

In order to further show the interest of the proposed method, let us now
consider that the profile of the weights is fixed, i.e. that

Wijd = W ◦ij ατ (d) with, e.g., α(d) = d
τ e
− d
τ

thus the weights is now only parametrized by a magnitude W ◦ij , while the
temporal profile is known.

Here ατ (d) is a predefined synaptic profile, while τ is fixed by biology
(e.g., τ = 2ms for excitatory connections and τ = 10ms for inhibitory ones).
Let us note that the adjustment of τ would have been a much more complex
problem, as discussed previously in the non-parametric case.

This new estimation is defined by:

ei = A◦i w◦i + bi > 0 (2.9)

writing:

A◦i =

 . . . . . . . . .

. . . (2Zi[k]− 1)
∑

d

∑τjk
τ=0 γ

τZj [k − τ − d]α(d) . . .

. . . . . . . . .

 ∈ RT−D×N

w◦i = (. . . Wij . . .)t ∈ RN

thus a variant of the previously discussed mechanisms.
This illustrates the nice versatility of the method. Several other variants

or combinations could be discussed (e.g. parametrized delayed weights from
the observation of spikes and potential, ..), but they finally leads to the same
estimations.

2.1.7 About retrieving delays from the observation of spikes

In the previous derivations, we have considered delayed weights, i.e. a quan-
titative weight value Wijd at each delay d ∈ {1, D}.

Another point of view is to consider a network with adjustable synap-
tic delays. Such estimation problem may, e.g., correspond to the “simpler”
model:

39



Vi[k] = γi Vi[k − 1] (1− Zi[k − 1]) +
N∑
j=1

Wij Zj [k − dij ] + Iik,

where now the weights Wij and delays dij are to estimated.
As pointed out previously, the non-learnability of spiking neurons is

known Šíma and Sgall (2005), i.e. the previous estimation is proved to be
NP-complete. We have carefully checked in Šíma and Sgall (2005) that the
result still apply to the present setup. This means that in order to “learn”
the proper parameters we have to “try all possible combinations of delays”.
This is intuitively due to the fact that each delay has no “smooth” effect on
the dynamics but may change the whole dynamics in a unpredictable way.

We see here that the estimation problem of delays dij seems not compat-
ible with usable algorithms, as reviewed in the introduction.

We propose to elude this NP-complete problem by considering another es-
timation problem. Here we do not estimate one delay (for each synapse) but
consider connection weights at several delay and then estimate a weighted
pondering of their relative contribution. This means that we consider a weak
delay estimation problem.

Obviously, the case where there is a weight Wij with a corresponding
delay dij ∈ {0, D} is a particular case of considering several delayed weights
Wijd (corresponding to have all equal weights to zero except at dij , i.e.,Wijd =

if d = dij then Wij else 0).
We thus do not restrain the neural network model by changing the posi-

tion of the problem, but enlarge it. In fact, the present estimation provides
a smooth approximation of the previous NP-complete problem.

We can easily conjecture that the same restriction also apply of the case
where the observation of spikes and membrane potential is considered.

We also have to notice, that the same restriction apply not only to sim-
ulation but, as far as this model is biologically plausible, also true at the
biological level. It is thus an issue to wonder if, in biological neural network,
delays are really estimated during learning processes, or if a weaker form of
weight adaptation, as discussed in this work, is considered.

2.2 METHODS: EXACT SPIKE TRAIN SIMULATION

2.2.1 Introducing hidden units to reproduce any finite raster

Up to now, we have assumed that a raster Z̄i[k], i ∈ {1, N}, k ∈ {1, T} is to
be generated by a network whose dynamics is defined by (1.4), with initial
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conditions Z̄j [k], j ∈ {1, N}, k ∈ {1, D} and Vj [0] = 0. In the case where a
solution exists, we have discussed how to compute it.

We have seen that a solution always exists, in the general case, if the
observation period is small enough, i.e., T < O(N D). Let us now consider
the case where T � O(N D).

In this case, there is, in general, no solution. This is especially the case
when the raster has not been generated by a network given by (1.4), for
example in the case when the raster is random.

The key idea, borrowed from the reservoir computing paradigm, is to add
a reservoir of “hidden neurons”, i.e., to consider notN butN+S neurons. The
set of N “output” neurons is going to reproduce the expected raster Z̄i[k] and
the set of S “hidden” neurons to increase the number of degree of freedom
in order to obtain T < O((N + S)D), thus being able to apply the previous
algorithms to estimate the optimal delayed weights. Clearly, in the worst
case, we have to add S = O(T/D) hidden neurons. This is illustrated in
Fig. 2.2.

S

N

D

T

Figure 2.2: Schematic representation of a raster of N output neuron ob-
served during a time interval T after an initial conditions interval D, with
an add-on of S hidden neurons, in order increase the number of degree of
freedom of the estimation problem. See text for further details.

In order to make this idea clear, let us consider a trivial example.

2.2.2 Sparse trivial reservoir

Let us consider, as illustrated in Fig. 2.3, S = T/D + 1 hidden neurons of
index i′ ∈ {0, S{ each neuron firing once at ti′ = i′D, except the last once
always firing (in order to maintain a spiking activity), thus:
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Zi′ [k] = δ(i′D − k), 0 ≤ i′ < S,ZS [k] = 1

Let us choose:
WSS1 > 1

Wi′S1 = 1−γ
1−γti′−1/2

Wi′i′1 < − γ2 ti′−γT
γT (1−γti′ ) < 0

Wi′j′d = 0 otherwise

with initial conditions Zi′ [k] = 0, i′ ∈ {0, S{ and ZS [k] = 1, k ∈ {1, D}, while
Ii′k = 0.

Figure 2.3: Schematic representation of a sparse trivial set of hidden neu-
rons, allowing to generate any raster of length T .

A straight-forward derivation over equation (1.4) allows us to verify that
this choice generates the specified Zi′ [k]. In words, as the reader can easily
verify, it appears that:

• the neuron of index S is always firing since (through WSS1) a positive
internal loop maintains its activity;

• the neurons of index i′ ∈ {0, S{, whose equation writes:

Vi′ [k] = γ Vi′ [k − 1] (1− Zi′ [k − 1]) +Wi′S1 +Wi′i′1 Zi′ [k − 1]

is firing at ti′ integrating the constant input Wi′S1;

• the neurons of index i′ ∈ {0, S{, after firing is inhibited (through Wi′i′1)
by a negative internal loop, thus reset at value negative enough not to
fire anymore before T . We thus generate Zi′ [k] as expected.

Alternatively, the use of the firing neuron of index S can be avoided by
introducing a constant current Ii′k = Wi′S1.

However, without the firing neuron of index S or some input current,
the sparse trivial raster can not be generated, although T < O(N D). This

42



comes from the fact that the activity is too sparse to be self-maintained. This
illustrates that when stating that “a solution exists, in the general case, if the
observation period is small enough, i.e., T < O(N D)”, a set of singular cases,
such as this one, was to be excluded.

The hidden neurons reservoir raster being generated, it is straight-
forward to generate the output neuron raster, considering:

• no recurrent connection between the N output neurons, i.e., Wijd =

0, i ∈ {1, N}, j ∈ {1, N}, d ∈ {1, D},

• no backward connection from the N output neurons to the S hidden
neurons i.e., Wi′jd = 0, i′ ∈ {0, N{, j ∈ {1, N}, d ∈ {1, D},

• but forward excitatory connections between hidden and output neu-
rons:

Wij′d = (1 + ε) Z̄i[j
′D + d] for some small ε > 0

yielding, from (1.4) :
Vi[k] =

∑n
j′=1

∑D
d=1Wij′d Zj′ [k − d]

=
∑n

j′=1

∑D
d=1(1 + ε) Z̄i[j

′D + d] δ(j′D − (k − d))

= (1 + ε) Z̄i[k]

setting γ = 0 for the output neuron and Ii′k = 0, so that Zi[k] = Z̄i[k], i.e.,
the generated spikes Zi[k] correspond to the desired Z̄i[k], as expected. Af-
ter a time T , the term ε induces changes in the dynamics that can not be
controlled.

2.2.3 The linear structure of a network raster

The previous construction allows us to state: given any raster of N neurons
and observation time T , there is always a network of size N + T/D + 1 with
weights delayed up to D, which exactly simulates this raster. What do we
learn from this fact ?

This helps to better understand one aspect of the reservoir computing
paradigm: Although it is not always possible to simulate any raster plot using
a “simple” integrate and fire model such as the one defined in (1.4), adding
hidden neurons allows to embed the problem in a higher-dimensional space
where a solution can be found.

This results is induced by the fact, made explicit, in the previous section,
that learning the network weights is essentially a linear (L or LP) problem.
With this interpretation, a neuron spiking sequence is a vector in this linear
space, while a network raster is a vector set. Designing a “reservoir” simply
means choosing a set of neurons whose spiking activity spans the space of
expected rasters. We are going to see in the next section that this point of
view still holds in our framework when considering network inputs.
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This linear-algebra interpretation further explains our “trivial sparse”
choice: We have simply chosen a somehow canonical orthonormal basis of
the raster linear trajectory. One consequence of this view is that, given a
raster, any other raster which is a linear combination of this raster can be
generated by the same network, by a little variation in the weights. This is
due to the fact that a set of neurons defining a given raster corresponds to
the set of vectors spanning the linear space of all possible raster generated
by this network. Generating another raster corresponds to a simple change
of generating vectors in the spanning set. This also allows us to define,
for a given raster linear space, a minimal set of generating neurons, i.e. a
vector basis. The “redundant” neurons are those which spiking sequence is
obtained by feed-forward connections from other neurons.

We must however take care in the fact that the numerical values of the
vector are binary values, not real numbers. This is a linear space over a
finite field, whereas its scalar product is over the real numbers.

2.2.4 On optimal hidden neuron layer design

In the previous paragraph, we have fixed the hidden neuron spiking activity,
choosing a sparse ad-hoc activity. It is clearly not the only one solution, very
likely not the best one.

Given N output neurons and S hidden neurons, we may consider the
following question: which are the “best” weights W and the hidden neuron
activity Zj′ [k] allowing one to reproduce the output raster.

By “best”, we mean optimal weights estimation with the smaller number
of hidden neurons in order to estimate a given spike dynamics. In that case,
instead of having to solve a LP-problem, as specified in (2.7), we have to
consider a much more complicated problem now:

• not a linear problem anymore instead we need to define a bi-linear
problem that permit us to consider both, the weights estimation and
the desired spiking activity.

• not a standard linear programming problem with real values to es-
timate, but a mixed integer programming problem with both integer
values to estimate.

This has a dramatic consequence, since such problem is known as be-
ing NP-hard, thus not solvable in practice, as discussed previously for the
estimating of delays.

This means that we can not consider this very general question, but must
propose heuristics in order to choose or constraint the hidden neuron activ-
ity, and then estimate the weights, given the output and hidden neuron’s
spikes, in order to still consider a LP-problem.
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Let us consider one of such heuristic.

2.2.5 A maximal entropy heuristic

Since we now understand that hidden neuron activity must be chosen in
order to span as much as possible the expected raster space, and since we
have no a-priori information about the kind of raster we want to reproduce,
the natural idea is to randomly choose the hidden neuron activity with a
maximal randomness.

Although it is used here at a very simple level, this idea is profound and
is related to random sampling and sparse approximation of complex signal
in noise (see Tropp (2004b,a) for a didactic introduction), leading to greedy
algorithms and convex relaxation Tropp (2006); Tropp et al. (2006). Since
inspired by these elaborated ideas, the proposed method is simple enough to
be described without any reference to such formalisms.

In this context, maximizing the chance to consider a hidden neuron with
a spiking activity independent from the others, and which adds new inde-
pendent potential information, simply corresponds to choose the activity “as
random as possible”. This corresponds to a so called Bernouilli process,
i.e., simply to randomly choose each spike state independently with equi-
probability.

Since we want to simulate the expected raster with a minimal number of
hidden neuron, we may consider the following algorithmic scheme:

1. Starts with no hidden but only output neurons.

2. Attempts to solve (2.7) on hidden (if any) and output neurons, in order
to obtain weights which allows the reproduction of the expected raster
on the output neurons.

3. If the estimation fails, add a new hidden neuron and randomly draw
its spiking activity

4. Repeat step 2 and 3 until an exact reproduction of the expected raster
is obtained

Clearly, adding more and more random points to the family of generating
elements must generate a spanning family after a finite time, since ran-
domly choosing point in an affine space, there is no chance to always stay in
a given affine sub-space. This means that we generate a spanning family of
neuron after a finite time, with a probability of one. So that the algorithm
converges.

What is to be numerically experimented is the fact we likely obtain a
somehow minimal set of hidden neurons or not. This is going to be experi-
mented in section 2.4.
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2.3 APPLICATION: INPUT/OUTPUT TRANSFER
IDENTIFICATION

Let us now describe the main practical application of the algorithm pre-
viously developed, which is to “program” a spiking network in order to gen-
erate a given spike train or realize a given input/output spike train function.
In the present context, this means finding properly the spiking network pa-
rameters in order to map an input’s set onto an output’s set.

Let us to rewrite equation (2.1) as an input/output system:

Vi[k] =
No+S∑
j=1

D∑
d=1

Wijd

τik∑
τ=0

γτZj [k − τ − d]︸ ︷︷ ︸
output + hidden

+

+
Ni∑
l=1

D∑
d=1

W ′ild

τik∑
τ=0

γτZ ′l [k − τ − d]︸ ︷︷ ︸
input

+

τik∑
τ=0

γτIi[k − τ ] (2.10)

All variables involved in equation (2.1) have been defined throughout this
chapter. Observing the equation, we can analyze it in three parts. The first
part corresponds to an output+hidden activity. Here the output describes an
spiking activity, which has been estimated from a given function, the hidden
layer corresponds to an ensemble of neurons, which has been set to reinforce
the parameters estimation. The second part corresponds to input dynamics,
which is basically a spike train containing the data set that will be processed
by the given function. The third part defines an external stimulus.

The goal in this section is to define a LP problem from equation (2.10),
similar to section 2.1.2, that permit us to estimate the parameters (W and
W ′) involved in a input-output transformations. We consider the exact case,
further in chapter 3 we study the problem for an approximate solution.

AiWi + BiW′i + ci > 0

thus:
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Ai =

 . . . . . . . . .

. . . (2Zi[k]− 1)
∑τik

τ=0 γ
τZj [k − τ − d]

. . . . . . . . .

 ∈ RNS(T−D)×(N+Nh)D

Bi =

 . . . . . . . . .

. . . (2Zi[k]− 1)
∑τik

τ=0 γ
τZ ′l [k − τ − d]

. . . . . . . . .

 ∈ RNS(T−D)×NiD

ci = (. . . (2Zi[k]− 1)(
∑τik

τ=0 γ
τ
I i[k − τ ]− 1) . . .)t ∈ RNS(T−D)

On the number of hidden neurons

As we describe in 2.2.1 hidden neurons are necessaries in order to perform
a robust parameters estimation. In this sense the system has a solution in
the general case when N = Ni + No + S. The number of hidden neurons S
for an input/output system is given by the next inequality:

S ≥ T ×NS

D
+ (NS − 1)−Ni−No

where NS defines the number of samples (input-output spiking dynamics)
that will be used for the estimator to perform a solution in order to learn the
transfer function.

What is pointed out here, is the fact that the previous formalism does not
only apply to the simulation of a unique, input less, fully connected network,
but is applicable to a much wider set of problems.

In order to make this explicit, let us consider the following specification of
spiking neural networks with units defined by the recurrent equation (1.4).

• Connectivity. We assume a partially connected network with a con-
nection graph K, i.e., some connections weights can be zero.

• Input current. We consider that any neurons can be driven by an
input current Iik, defining an “analog” input.

• Input spikes. We have also to consider that the network can also be
driven by external incoming spikes.

• Output neurons. We consider that a subset of neurons define an out-
put layer with readout state that must be constrained, as was defined
in (2.4). Other neurons are hidden neurons.

As discussed previously, the best heuristics is to randomly generate the
hidden neurons required to estimate the spiking activity.

• Weighted estimation. We further consider that depending on neu-
ron and time the estimation requirement is not homogeneous, whereas
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there are times and neurons for which the importance of potential to
threshold distance estimation differs from others. This generalized es-
timation is obvious to introduce in our formalism, defining:

|ei|1,Λ =
∑
k

Λik eik,Λik ≥ 0 (2.11)

for some metric (described in chapter 3) Λ.

We further consider a “supervised learning paradigm” in the following
sense. We now consider a family of L input current or spikes vectors:

Il = (. . . I lik . . .)t ∈ RN×T−D,

to be mapped on family of output spike trains:

Zl = (. . . l . . .)t ∈ RN×T−D,

given initial states:

Zl0 = (. . . l . . .)t ∈ RN×D, k ∈ {0, D{,

for l ∈ {0, L{. We would like to find the correct weights W allowing one
to perform this input/output mapping. The estimation problem is in fact
strictly equivalent to (2.4), by concatenating the input information (except
the initial states). This reads:

Ai =

 . . . . . . . . .

. . . (2Zi[k]l − 1)
∑0

τ=τjk
γτZj [k − τ − d]l . . .

. . . . . . . . .

 ∈ RL (T−D)×N D,

bi = (. . . (2Zi[k]l − 1) (I likτ − 1) . . .)t ∈ RL (T−D).

This formalism, thus allows us to find an exact input/output mapping,
adding hidden neurons in order to have enough degree of freedom to obtain
a solution.

Example: IO transfer identification of the “OR” Function

In order to illustrate our method in a input-output system we consider as a
starting example, a simple “OR” function. Therefore we have only one spike
as output if at least one neuron fire a spike in the precedent time. We have
chosen the “OR” function because it has a trivial solution and we can ob-
serve the evolution on the weights. The system is trained with NS inputs
and theirs respective outputs, where each output is the “OR” function calcu-
lated on each input raster; finally it is tested with a different input (not used
in the learning phase), the output of this input is calculated with the weights

48



-1

 0

 1

 2

 3

 4

 5

 6
 0  10  20  30  40  50

N
eu

ro
ns

Time

RasterIn

Figure 2.4: A spike train representing input-output dynamics. Red lines
define an initial state. Purple lines define a spiking activity in input neurons.
Black lines define the output spiking activity, which is defined by an OR
function applied in the input activity.

estimated using the Eq. (2.10), here the distance between the estimated out-
put with the weights obtained and the expected output is calculated. Figure
2.4.

2.4 NUMERICAL RESULTS

2.4.1 Retrieving weights from the observation of spikes and
membrane potential

In a first experiment, we consider the linear problem defined in (2.2) and
use the singular value decomposition (SVD) mechanism Gantmatcher (1977)
in order to obtain a solution in the least-square sense. Here the well-
established GSL2 library SVD implementation is used.

This permits us to find:

• if more than one solution, the weights of minimal magnitude |wi|2 =∑
jdW

2
ijd;

• if no exact solution, the solution which minimizes
∑

k(Vi[k] − Ṽi[k])2

where Ṽi[k] is the membrane potential predicted by the estimation.

2http://www.gnu.org/software/gsl
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The master and servant paradigm.

We have seen that, if D (N + 1) > T , i.e., if the observation time is small
enough for any raster, there exist a solution. Also, there is always a solution
wherever the raster is generated by a model of the form of (1.4). We consider
the second case here and consider a master/servant paradigm, as follows:

1. In a first step we randomly choose weights and generate a “master”
raster.

2. The corresponding output raster is submitted to our estimation method
(the “servant”), while the master weights are hidden. The weights are
taken from a normal distribution N (0, σ

2

N ) with 70% excitatory connec-
tions and 30% for inhibitory one. The standard deviation σ ∈ [1, 10] has
been chosen in order to obtain simple (periodic) and complex dynamics,
as discussed in Cessac (2008).

The algorithm defined in (2.3) or in (2.7) has a set of spikes as input for which
we are sure that a solution exists. Therefore it can be used and leads to a
solution with a raster which must exactly correspond to the master input
raster.

Note that this does not mean that the servant is going to generate the
raster with the same set of weights, since several solutions likely exist in
the general case. Moreover, except for the paradigm (2.3), the master and
servant potential Vi[k] are expected to be different, since we attempt to find
potentials whose distance to the threshold is maximal, in order to increase
the numerical robustness of the method.

This is going to be the validation test of our method. As an illustration
we show two results in Fig. 2.5 and Fig. 2.6 for two different dynamics. The
former is “chaotic” in the sense that the period is higher than the observation
time.

In the non trivial case in Fig. 2.5, it is expected that only one weight’s
set can generate such a non-trivial raster, since, as discussed before, we are
in the “full rank” case, thus with a unique solution. We observe the same
weights for both master and servant in this case, as expected. This would
not be the case for simpler periodic raster, e.g. in Fig. 2.6, where the weight’s
estimation by the servant differs from the master’s weights, since several
solutions are possible.

Retrieving weights from the observation of spikes and membrane poten-
tial has been introduced here in order to explain and validate the general
method in a easy to explain case. Let us now turn to the more interesting
cases where only the observation of spikes are available.
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Figure 2.5: A “chaotic” dynamics with 30 neurons fully connected within
network, initial conditions D = 3 and observation time T = 100, using
both excitatory (70%) and inhibitory (30%) connections, with σ = 5 (weight
standard-deviation). After estimation, we have checked that master and ser-
vant generate exactly the same raster plot, thus only show the servant
raster, here and in the next figures.

Figure 2.6: A “periodic” (58.2 periods of period 5) dynamics with 20 neurons
fully connected within network and observation time T = 300, using both
excitatory (70%) and inhibitory (30%) connections, with σ = 1. Again the
master and servant rasters are the same.
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2.4.2 Retrieving weights from the observation of spikes

In this setup we still use the master / servant paradigm, but now consider
the LP problem defined previously. The numerical solutions are derived
thanks to the well-established improved simplex method as implemented
in GLPK3.

As an illustration we show two results in Fig. 2.7 and Fig. 2.8 for two
different dynamics.

Figure 2.7: Example of rather complex “chaotic” dynamics retrieved by a
the LP estimation defined in (2.7) using the master / servant paradigm with
50 neurons fully connected, initial conditions D = 3 and observation time
T = 200, used here to validate the method.

Interesting is the fact that, numerically, the estimated weights corre-
spond to a parsimonious dynamics in the sense that the servant raster pe-
riod tends to be minimal:

• if the master raster appears periodic, the servant raster is also, with
the same period;

• if the master raster appears aperiodic (i.e., “chaotic”) during the obser-
vation interval, the servant raster is periodic with a period close to the
observation time T .

3http://www.gnu.org/software/glpk
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Figure 2.8: Example of periodic dynamics retrieved by a the LP estimation
defined in (2.7) using the master / servant paradigm, here a periodic raster
of period 30 is observed during 8.3 periods. (N = 30, T = 300 and D = 3) As
expected from by the theory, the estimated dynamics remains periodic after
the estimation time, thus corresponding to a parsimonious estimation.

2.4.3 Retrieving delayed weights from the observation of
spikes

In this next setup we still consider the same master/servant paradigm, for
N = 50 units, with a leak γ = 0.95 and an external current I = 0.3, but
in this case where the master delayed weight profile has the standard form
shown in Fig. 2.9.

Figure 2.9: Weights distribution (positive and negative) used to generate
delayed weights, with D = 10.

In the case of periodic dynamics, it is observed that the estimated ser-
vant weights distribution is periodic as illustrated in Fig. 2.10. However, as
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soon as the dynamics is non trivial, the proposed algorithm uses all delayed
weight parameters in order to find an optimal solution, without any corre-
spondence between the master initial weight distribution and the servant
estimated weight distribution. This is illustrated in Fig. 2.12, where instead
of the standard profiles shown in Fig. 2.9, a “Dirac” profile has been used in
the master, while the estimated weights are distributed at all possible de-
lays. In order to complete this illustration a non trivial dynamics is shown
in Fig. 2.11.

Figure 2.10: An example of periodic dynamics obtained with excitatory
weights profiles shown in the top-left view (master weight’s profile), with
N = 30, γ = 0.98, D = 10 T = 100. The estimated weights profile (servant
weight’s profile) is shown in the top-right view. To generate such trivial pe-
riodic raster, shown in the bottom view, only weights with a delay equal to
the period have not zero values. This corresponds to a minimal edge of the
estimation simplex, this parsimonious estimation being a consequence of the
chosen algorithm.
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Figure 2.11: An example of non-trivial dynamics,with N = 30, γ = 0.98,
D = 10 T = 100. Profiles corresponding to the master’s excitatory profiles
are superimposed in the top-left figure, those corresponding to the master’s
inhibitory profiles are superimposed in the top-left figure. The estimated
raster is shown in the bottom view. This clearly shows that, in the absence of
additional constraint, the optimal solution corresponds to a wide distribution
of weight’s profiles.
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Figure 2.12: In this figure we show that whatever be the weights and delays
in the master (left), with N = 20, γ = 0.98, D = 10 T = 100, the estimator
uses all the weights and delays to calculate the raster, in order to obtain a
solution.
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On the complexity of the generated network

Maximizing (2.5) we obtain, among networks which generate exactly the
required master, the “less complex” network, i.e. the one with the smallest
period. A very simple way to figure out how complex is the servant network
is to observe its generated raster after T , i.e., after the period of time where
it matches exactly the required master’s raster. They are indeed the same
before T .

After T , in the case of delayed weights, we still observe that if the original
raster is periodic, the generated raster is still periodic with the same period.

If the original raster is aperiodic, for small N and T , we have observed
that the generated master is still periodic, as illustrated in Fig. 2.13. We
however, have not observed any further regularity, for instance changes of
regime can occur after the T delay, huge period can be observed for relatively
small numbers of N and T , etc.

T

(a)

T

(b)

Figure 2.13: Two examples of observation of the raster period, on the slave
network, observing the raster after the time T where it matches the master
raster (shown by an arrow in the figure). (a) With N = 20, γ = 0.98, σ = 5,
D = 5, T = 50, a periodic regime of periode P = 1 is installed after a change
in the dynamics. (b) With N = 20, γ = 0.98, σ = 5, D = 5, T = 50, a periodic
regime of periode P = 1 corresponds to the master periodic regime.
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2.4.4 Retrieving delayed weights from the observation of
spikes, using hidden units

In this last set of numerical experiments we want to verify that the proposed
method in section 2.2 is “universal” and allows one to evaluate the number
of hidden neurons to be recruited in order to exactly simulate the required
raster. If it is true, this means that we have here available a new “reservoir
computing” mechanism.

Considering Bernoulli distribution

We start with a completely random input, drawn from a uniform Bernoulli
distribution. This corresponds to an input with maximal entropy. Here the
master/servant trick is no more used. Thus, the raster to reproduce has no
chance to verify the neural network dynamics constraints induced by (1.4),
unless we add hidden neurons as proposed in section 2.2.

In Fig. 2.15, we show an exact reproduction of a given raster using hidden
neurons. The number of these is increased when the relation between the
number of neurons changes as shows Fig. 2.14. This is expected since we are
in a situation of maximal randomness.
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Figure 2.14: Relation between the number of hidden neurons S and the ob-
servation time T , here N = 10, T = 470, D = 5, γ = 0.95 for this simulation.
The right-view is a zoom of the left view. This curves shows the required
number of hidden neurons, using the proposed algorithm, in order to obtain
an exact simulation. We observe that S = T

D −N , thus that an almost max-
imal number of hidden neuron is required. This curve has been drawn from
45000 independent randomly selected inputs.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.15: Finding the expected dynamics from a raster with uniform dis-
tribution. (a), (c), (e) and (g) correspond to different raster with Bernoulli
distribution. In addition (b), (d), (f) and (h) show the raster calculated by the
methodology proposed. The red lines correspond to initial conditions (initial
raster), the black ones are the spikes calculated by the method and the blue
ones are the spikes in the hidden layer obtained with a Bernoulli Distribu-
tion. We can also observe that the number of neurons in the hidden layer
increases, 1 by 1, between (b), (d), (f) and (h), this is because the observation
time T is augmented by 4, as predicted. Here N = 5, γ = 0.95, D = 3; in
(a)(b) T = 15 with S = 0, in (c)(d) T = 19 with S = 1, in (e)(f) T = 23 with
S = 2, in (g)(h) T = 27 with S = 3, while S correspond to the number of
neurons in the hidden layer, detailed in the text.
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Considering correlated distributions

We now consider a correlated random input, drawn from a Gibbs distribu-
tion Chazottes et al. (1998); Cessac et al. (2008a). To make it simple, the
raster input is drawn from a Gibbs distribution, i.e. a parametrized range R
Markov conditional probability of the form:

P ({Zi[k], 1 ≤ i ≤ N}|{Zi[k − l], 1 ≤ i ≤ N, 1 ≤ l < R}) = exp (Φλ({Zi[k − l], 1 ≤ i ≤ N, 0 ≥ l > −R}))
where Φλ() is the related Gibbs potential parametrized by λ and Z a normal-
ization constant.

This allows to test our method on highly-correlated rasters. We have
chosen a potential of the form:

Φλ(Z|k=0) = r
∑N

i=1 Zi[0] + Ct
∑N

i=1

∏R
l=0 Zi[l] + C0

∏N
i=1 Zi[0]

thus with a term related to the firing rate r, a term related to multi-temporal
autocorrelations Ct, and a term related to inter-unit synchronization C0.

Figure 2.16: Raster calculated, by the proposed method, from a highly cor-
related Gibbs distribution. Here r = −1, Ct = −0.5 and C0 = −1. The other
parameters are N = 4, γ = 0.95, D = 3, T = 330 with S = 106. The red
lines correspond to initial conditions (initial raster), the black ones are the
input/output spikes and the blue ones are the spikes in the hidden layer.

We obtain a less intuitive result in this case, as illustrated in Fig. 2.16:
even strongly correlated (but aperiodic) rasters are reproduced only if using
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as many hidden neurons as in the non-correlated case.
This result is due to the fact that since the raster is aperiodic, non pre-

dictable changes occur in the general case, at any time. The raster must
thus be generated by a maximal number of degrees of freedom, as discussed
in the previous sections.

In order to further illustrate this aspect, we also show in Fig. 2.17 how a
very sparse raster is simulated. We again obtain a solution with the same
ratio of hidden neurons. This shows that the algorithm is very general, but
not optimal in terms of number of hidden neurons.

Figure 2.17: Raster calculated, by the proposed method, from a very sparse
raster, with N = 30, γ = 0.95, D = 3, T = 100 and S = 23. The hidden neu-
rons derived by the present algorithm simply allow to maintain the network
activity in order to fire the sparse spikes at the right time. Color codes are
the same as previously.

Considering biological data

As a final numerical experiment, we consider two examples of biological data
set borrowed from Riehle et al. (2000) by the courtesy of the authors. Data
are related to spike synchronization in a population of motor cortical neurons
in the monkey, during preparation for movement, in a movement direction
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and reaction time paradigm. Raw data are presented trial by trial (without
synchronization on the input), for different motion directions and the input
signal is not represented, since meaningless for the purpose. Original data
resolution was 0.1ms while we have have considered a 1ms scale here.

What is interesting here is that we can apply the proposed method on
non-stationary rasters, qualitatively very different, such as a very sparse
raster, similar to the one shown in Fig. 2.17, a raster with two activity phases
(presently movement preparation and execution) in Fig. 2.18 and a raster
with a rich non-stationary activity in Fig. 2.19. In fact a dozen of such data
sets have been tested, with the same result: exact raster reconstruction,
with the same hidden unit ratio.

Figure 2.18: Raster calculated, by the proposed method, from a biological
data set, with N = 50, γ = 0.95, D = 3 T = 391 and S = 80. From Riehle
et al. (2000) by the courtesy of the authors.

On the computation time

Since the computation time is exclusively the LP problem resolution compu-
tation time we have simply verify that we roughly obtain what is generaly
observed with this algorithm, i.e. that the computation time order of magni-
tude is:

O (S T )

when N � T , which is the case in our experimenation. On a standard laptop
computer, this means a few seconds.

62



Figure 2.19: Raster calculated, by the proposed method, from a biological
data set, with N = 50, γ = 0.95, D = 5 T = 291 and S = 8. From Riehle et al.
(2000) by the courtesy of the authors.

2.4.5 Input/Output estimation

In this section we present results on the Input/Output matching, the objec-
tive is to find the parameters (delayed weights) for a transfer function and
demonstrate that the methodology proposed in this work is also capable to
learn certain functions in order to approximate input-output functions.
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Figure 2.20: Input-Output dynamics matching, the purple lines represent
the input dynamics, the black ones are the OR function of the inputs, it
means that if at least one of the input neurons fire a spike in t the output
fire a spike in t + 1, finally the red ones represent the initial conditions.
Ni = 5, No = 1, D = 0, T = 100 and S = 6. Exact matching (diff = 0).
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Figure 2.21: Input-Output dynamics matching, the purple lines represent
the input dynamics, the black ones are the OR function of the inputs, it
means that if at least one of the input neurons fire a spike in t the output
fire a spike in t + 1, finally the red ones represent the initial conditions.
Ni = 10, No = 1, D = 0, T = 100 and S = 10. Approximate matching (diff
= 2).
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Figure 2.22: Input-Output dynamics matching, the purple lines represent
the input dynamics, the black ones are the OR function of the inputs, it
means that if at least one of the input neurons fire a spike in t the output
fire a spike in t + 1, finally the red ones represent the initial conditions.
Ni = 15, No = 1, D = 0, T = 300 and S = 15. Approximate matching (diff
= 21).
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Part III

Programming resetting
non-linear networks
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CHAPTER 3

PROGRAMMING RESETTING

NON-LINEAR NETWORKS

Science is more asking the right question than providing
falsifiable answers

–Alex Williams

OVERVIEW

The aim of this more prospective chapter is to discuss how the ideas intro-
duced in chapter 2 can be used in neural learning schemes and generalize
to more complex models by considering an approximate estimation. More
precisely, we sketch-out a novel computational approach that enables us to
program non-linear neural networks by performing a mollification in the
spiking metrics and deriving a temporal learning mechanism. On one hand,
we propose an indexation of the spiking metrics permitting us to make more
explicit each operation (insertion, deletion and shift) in the distance estima-
tion, when we compare two spike trains. On the other hand the improvement
in the learning mechanism consists in proposing a variational approxima-
tion of the synaptic weights using the mollified metric.

In any case, this chapter is more a prospective, and simply points out key
facts in order to go beyond what has been done in chapter 2.

3.1 PROBLEM POSITION

Let us consider a network of Ni+No+Nh spiking neurons, whose dynam-
ics is defined by the equation (3.1) and schematized in figure 3.1 as a raster
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plot (spike train).

Vo[k] = γVo[k−1]U ′′′o [k−1]+

No+Nh∑
j=1

Do∑
d=1

W ′′ojdU
′′
j [k − d]︸ ︷︷ ︸

Recurrent network

+

Ni∑
i=1

Di∑
d=1

W ′oidU
′
i [k − d]︸ ︷︷ ︸

Feed−forwardnetwork

+Iexto

(3.1)
or in a compact way, writes:

Vo[k] = FW′′,W′(· · ·Vj [k′′] · · · , · · ·Ui[k′] · · · ), k −Do ≤ k′′ < k, k −Di ≤ k′ < k,

= F ′′W′′(· · ·Vj [k′′] · · · ) + F ′W′(· · ·Ui[k′] · · · ),
(3.2)

where:

- Vo[k] represents the membrane potential of the neuron with index o at
time k.

- γ fixes a constant leak value between 0 and 1. Further we consider it
variable γi[k].

- U ′′′[k−1] represents the reset mechanism. In both cases, analog (ρ) and
discrete (Z) is considered as a binary function, Zo[k] = ρ(Vo[k]) ∈ {0, 1}.

- U ′, U ′′ model the activation function. On one hand for a discrete system
it is defined as a binary function, Z ∈ {0, 1}. On the other hand for the
analog case, it is defined as a non-linear function, σ(V ) ∈ [0, 1].

- No, Nh andNi determine the size of the network. Number of neurons
in the output, hidden and input layers respectively.

- Di, Do define the maximum inter-neural delays for each layer (input
and output).

- W ′, W ′′ represent the synaptic weights, which are randomly estimated
from a random truncated normal distribution function.

- Iexto simulates an external stimulus.

In the case of a spiking unit at a microscopic scale, which resets its state
when the value becomes higher than a threshold θ, we usually choose U ′′j [k] =

ξ[θ,+∞[(Vi[k]) ∈ {0, 1} defining the firing state (Ui[k] = 1 when spiking) of the
unit, while U ′′′o [k] = 1 − U ′′i [k] is the complementary state variable, defining
the reset. See Cessac (2008) for a study of such dynamical system.

In the case of an analog unit at a mesoscopic scale, we typically choose
U ′′j [k] = σ(gok Vi[k]), i.e., a sigmoid profile with a slope of gok at zero, while
U ′′′o [k] = 1, thus without reset mechanism. See Rougier (2006) for a review on
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discrete neural field with local connectivity. In this case, the state variable
corresponds to firing rates, the sigmoid profile corresponding to the firing
probability repartition function.
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Figure 3.1: An input/ouput transformation based on spikes.

Thus, the equation (3.1) defines entirely an input/output system based
on a discrete-time (or analog) spiking neural network. The system considers
both, recurrent (W ) and feed-forward (W ′) synaptic weights, where they can
be written together:

W = (W′,W′′)

Further, W is considered constant and the goal is to adjust it in order to
make an adequate input-ouput mapping. Equation (3.1) also represents a
deterministic system, where the estimation of the current membrane poten-
tial Vo[k] depends on its initial state. In this sense for this work we have set
it in zero (Vo[k], 0 ≤ k < D), knowing that from a computational viewpoint it
is equivalent to have transient inputs.

Figure 3.1 shows us the firing state Z of the network, where each color
line represents an spike or spike. Spikes occur ever that the membrane
potential V reaches a firing threshold θ. This relation writes:

R = (Z,V)

Since, the time has been discretized, we have a twofold issue. On one
hand, it corresponds to the fact that not all continuous time sequences corre-
spond to spike trains, since they are constrained by the network dynamics,
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yielding global time constraints such as the fact that inter-spike intervals
are bounded by a refractory period r and the fact that spike times are de-
fined up to some absolute precision δt (see Cessac et al. (2010) for a detailed
discussion), this being true in both biological and numerical implementa-
tions. The maximal amount of information, for one unit, is thus bounded
during a finite period [0, T ] as stated in Cessac et al. (2010):

T

r
log2

(
T

δt

)
bits.

In a biological context, the order of magnitude is 1 Kbit/second for a neuron,
which is coherent with biological observations Rieke et al. (1996). On the
other hand, at a pragmatic level, time discretized network models are
rather easy to study theoretically Cessac (2008); Cessac and Viéville (2008),
trivial to simulate (contrary to continuous time models, see Brette et al.
(2007) for discussion), and correspond without bias to what happens in a
computer. We thus focus on discrete time and are going to briefly point out,
from step to step, to which extent the present development can be applied to
continuous time frameworks.

3.2 MOLLIFICATION IN THE SPIKING METRICS

From a mathematical definition, a metric is a function which defines a
distance between elements of a set. In the particular case of a spiking metric
in a discrete space, it gives us the distance between two finite spike trains Z̄

(desired output), Z (estimated output) and is defined as the minimum cost of
transforming one spike train into another. In other words, two spike trains
are similar if, with a few operations, we can edit one to equal the other.
See Victor (2005) for an recent introduction. This distance is known as the
Hamming distance and is defined as:

d
(
Z̄,Z

)
=
∑
ok

Λok |Z̄o[k]− Zo[k]| (3.3)

counting the number of non-coincident spikes (e.g. an expected spike not ob-
tained or an obtained spike not expected). Here since |Z̄o[k] − Zo[k]| ∈ {0, 1}
all Lp-norms yield the same value, up to a convex increasing power function.
For Λok = 1 the value is exactly the number of non-coincident spikes, while
other values of Λ allows us to enrich the semantic of such criterion.

Two kinds of operations are defined to this purpose:

• spike insertion or spike deletion, the cost of each operation being set to
1;
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• spike shift, the cost to shift from k̄ to k in order to obtain
Z̄o[k̄] = 1 ⇒ Zo[k] = 1, increases with the delay |k̄ − k|, e.g. with
|k̄ − k|/τ for a time constant τ .

In the case, where both spike trains are equal the distance will be zero (no
editing operation). We also can deduce that the distance of two spike trains
will be bounded by their number of spikes (i.e. the cost of delete/insert all
spikes).

For small τ , the distance approaches the number of non-coincident
spikes, since instead of shifting spikes it is cheaper to insert/delete non-
coincident spikes. At the limit, when τ → 0 we re-obtain the coincidence
distance.

Further, we study the spiking metric for the analog space, where spik-
ing dynamics are at beginning described as analog values. Here, we could
consider a well-defined metric i.e., using a quadratic form Λ

d
(
V̄,V

)
= |V̄ −V|Λ =

√∑
oko′k′

Λoko′k′ (V̄o[k]− Vo[k]) (V̄o′ [k′]− Vo′ [k′]) (3.4)

or a weighted Lp-norm:

d
(
V̄,V

)
= |V̄ −V|pΛ =

(∑
ok

Λok |V̄o[k]− Vo[k]|p
) 1

p

(3.5)

where the cumulative difference between the desired and obtained output
is weighted in order to take into account relative precisions between units
and/or times, the fact that some components may not matter (the related
weights Λok being set to zero).

Using (3.4), for Z, instead of (3.5), the coupling between units and
time, can also be specified. So far, this metric will be mollified i.e. to
replace the metric by a convergent series of regular functions. Here, since
the non-differentiable ingredient is ρ(u), this means replacing ρ(u) by a
parameterized family fo function ρυ(u), with limυ→0 ρυ(u) = ρ(u).

We are also considering networks based on spikes with more than one
unit, where our approach computes the distance for each alignment unit-to-
unit. It means that we are considering that an spike can not “jump” from
one unit to another. If this assumption is not true, the related estimation
suffers from NP-completeness. See Aronov (2003) for a development and
Victor et al. (2007) for a recent development.
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This original metric can be generalized as follows Cessac et al. (2010):

Causality: Causal alignment metric. At a given time, the cost of the
alignment of previous spikes decreases with the obsolescence of the spike,
say, with an exponential profile parametrized by a time-constant τ ′.
When τ ′ → ∞, the original alignment metric is retrieved. This is a very
interesting extension, allowing to work on on-line and not only off-line
paradigms. It also takes into account adaptation to new spikes. With
other weighting this can also implement mechanisms such as habituation
(new spikes are not taken into account because, things are “already known”).

Non-linearity: Non-linear shift cost. The cost of a shift is not necessar-
ily a linear function of the delay, while any suitable non-linear function
φ((k̄ − k)/τ) can be used, as soon as φ() is symmetric and positive (i.e. with
φ(u) = φ(−u) ≥ 0), non decreasing, and with φ(0) = 0. This allows us to
enrich the notion of precision, for instance to state that below a threshold
shifts has no importance, thus is cost-less. This also enable us to modulate
the cost depending on the time scale, etc.. See also Dubbs et al. (2009) for
the development of a true Lp alignment metric.

However, the theory is not complete, because the alignment distance
calculation give us the minimal cost by editing one spike train to match the
other, but does not make explicit what are the editing operations to obtain
such a minimal cost. It is thus not possible to match spikes from one train
to another, thus not possible to adjust the parameters in order to improve
this match. In order to overcome this difficulty, we are going to introduce
a so-called alignment divergence, in which an indexing function is going to
break this barrier.

Integrating the two elements proposed here: differentiable mollification
ρυ(u) of the spike binarization and design of an alignment divergence in the
next section will allow us to solve the problem of choosing a suitable metric
which can be properly minimized, i.e. solve the ∇Rd

(
R̄,RW

)
part of the

formal optimization rule:

∇Wd
(
R̄,RW

)
= ∇Rd

(
R̄,RW

)
∇WRW.

Let us now to mollify the spike generation function ρ() and see how it
applies to the coincidence metric ( Equation 3.3). In order to be able to enter
into details, we focus on ρ(u) = H(u−θ), H() = ξ]1,+∞[(x) being the Heaviside
function defined with H(0) = 0. In other words, we focus on the fact an spike
is defined by a state value above a given threshold θ. The generalization
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to other semi-algebraic conditions is straightforward, since they always can
be stated as a combination of Heaviside functions (see Benedetti and Risler
(1990) for a treatise on the subject).

3.2.1 Threshold mollification

In words, we precisely need to replace H(u) by a regular function that can
influence the estimation,

• either if the condition is incorrect,

• or if the condition is correct, but close to be incorrect, i.e. at margin ν

of the correctness boundary, while

• we better require the function to have no influence if the condition is
correct and beyond this boundary.

A suitable function that fits with this requirement is the Hυ,ν (u) non-
linear regular profile represented in figure 3.2 and defined as:

Hυ,ν (u)
def
= H(u+ υ ν) exp

(
− υ

u+ υ ν

)
, (3.6)

thus with Hυ,ν (u) = 0, u ≤ −υ ν and Hυ,ν (+∞) = 1, while limυ→0Hυ,ν (u) =

H(u).

Figure 3.2: Defining the mollification of the Heaviside function H(). It is
drawn here for ν = 0 and in black, brown, red, orange, yellow, green, blue, for
υ = [1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01], respectively. The curves are convex below
the magenta horizontal line.
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3.2.2 Mollified coincidence metric

Now considering the coincidence metric (Equation 3.3) in the mollification,
we can write the next:

d
(
Z̄,Z

)
= lim

υ→0
dυ,ε(Z̄,V) , dυ,ε(Z̄,V) =

∑
ok

Λok |Z̄o[k]−Hυ,ν (Vo[k]− θ) |

for an spike threshold θ, a mollification parameter υ > 0, and a margin ν > 0.

The mollified metric dυ,ε(Z̄,V), is not a function of Z but of V, since we
need to observe the state value in order to drive towards the correct side of
the threshold. Qualitatively1, an increase of Vi[k] tends to reduce shift delay,
avoid deletion but induce insertion of spike, whereas a decrease of Vi[k] tends
to enlarge shift delay, induce deletion but avoid insertion of spike.

However, this is not the only possible mollification of (3.3), we can also
write:

d
(
Z̄,Z

)
= lim

υ→0
dυ,ε(Z̄,V) , dυ,ε(Z̄,V) =

∑
ok

ΛokHυ,ν

(
(1− 2 Z̄o[k]) (Vo[k]− θ)

)
(3.7)

since H
(
(1− 2 Z̄o[k]) (Vo[k]− θ)

)
= |Z̄o[k]−H (Vo[k]− θ) |, while, now:

∇Vo[k]dυ,ε
(
Z̄,V

)
= υΛok

Hυ,ν

(
(1− 2 Z̄o[k]) (Vo[k]− θ)

)
(Vo[k]− θok)2

(3.8)

with θok = θ− (1− 2 Z̄o[k]) υ ν, corresponding the threshold thickened, defin-
ing a margin.

The interest of using this variant is that it has a symmetric effect below
and above the theshold: the state values are always driven away without any
limited range, which is not the case with the former form as made explicit in
footnote1.

This criterion enjoys the following properties. There is always a υ,
such that the criterion is convex. This is the case if we consider υ >

2 max (Vmax − θ, θ − Vmin), thus with Hυ,ν convex, for all V ∈]Vmin, Vmax[.
Then the criterion is convex in this range, as the positive linear combina-
tion of convex functions.

1 Quantitatively, the gradient reads:

∇Vo[k]dυ,ε
(
Z̄,V

)
= υΛok ξ

Hυ,ν(Vo[k]−θ)
(Vi[k]−θυ,ν)2

ξ =


1 , Z̄o[k] = 1

−1 , Z̄o[k] = 0 , Vi[k] > θυ,ν

0 , Z̄o[k] = 0 , Vi[k] ≤ θυ,ν
with θυ,ν = θ − υ ν, while ξ = sg(Z̄o[k] − Hυ,ν (Vo[k]− θ)). This corresponds to what is
qualitatively described in the text.
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3.2.3 Indexing the alignment distance

Let us introduce an alignment indexation between the “expected spike train”
Z̄ and the “observed spike train” Z, in the discrete case.

δ : k̄ → δ(k̄) (3.9)

so that, given the alignment distance d(Z̄,Z): δ(k̄) = k − k̄ if Z̄[k̄] = 1 and
Z̄[k̄] and Z[k] are aligned by a shift, while δ(k̄) = 0 otherwise.

In words, an indexing δ() allows to align Z̄ onto Z, in accordance to
d(Z̄,Z). More precisely, we not only compute the distance but make explicit
the alignment operations (shift, deletion, insertion) allowing to “edit” Z in
order to obtain Z̄. Obviously, several alignment operation sequences may
lead to the same minimal alignment cost. In order to make a choice, from
the last time to the previous time, we consider that shift is preferable to edi-
tion (i.e., insertion/deletion), since it is a reasonable assumption to heuristic
that it is going to have a less important influence on the dynamics than the
apparition/cancelation of an unexpected spike. It is going to be made algo-
rithmically explicit now that this defines a unique indexing function.

The distance dn̄,n between the first n̄ spikes in Z̄ and the first n spikes
Z and the indexing function δ defining this so-called divergence are itera-
tively defined as follows, after Victor (2005) but now including the indexing
mechanism.

On one hand, d0,n = n due to the fact that the distance between any spike
train and the empty spike train corresponds to the cost of deleting all spikes,
while δ(k̄n̄) = +0 in this case. Similarly, dn̄,0 = n̄ corresponds to inserting all
spikes, while δ(k̄n̄) = −0 in this case.

On the other hand, by induction, writing kn the n-th value such that
Z[kn] = 1 and k̄n the n-th value such that Z̄[k̄n] = 1, for n ≥ 0 and n̄ ≥ 0:

dn̄+1,n+1 = min


dn̄,n+1 + 1 (deletion) ⇒ δ(k̄n̄) = +0

dn̄+1,n + 1 (insertion) ⇒ δ(k̄n̄) = −0

dn̄,n + cn̄,n (shift) ⇒ δ(k̄n̄) = kn − k̄n
(3.10)

where:

cn̄,n
def
= φ

(
k̄n̄ − kn

τ

)
(3.11)

while choosing the shift operation if the relative cost increase is not higher
than deletion and insertion, i.e. not higher than one, otherwise the required
deletion or insertion. By doing this, there is now a unique well-defined index-
ing function for a given distance, that solves some ambiguities, while, on the
reverse, solving these two ambiguities allows us to define algorithmically a
unique indexing function.

75



There is also a variational definition of the alignment divergence, and its
related indexing, which writes:

d
(
Z̄,Z

)
= minδ

∑
k,∀k′ 6=k,δ[k′] 6=k Λko

[
|Z̄[k + δ[k]]− Z[k]|+ φ

(
δ[k]
τ

)]
+
∑

k, Z̄[k] = 1,

k′ = argmink′>kZ̄[k′] = 1

µk

[
1 + δ[k′]−δ[k]

k′−k

]
(3.12)

using δ[k] = 0 as initial value. Here Λo ≤ 1 for the definition to be well-
defined. For the standard alignment distance φ(u) = |u| and Λo = 1. The
Kuhn-Tucker multipliers µk allows to preserves spike sorting and provides
a one-to-one mapping, i.e. guaranty that the indexing is strictly increasing.

Finally we can write the final mollification distance taking into account
the shift indexing:

d
(
Z̄,Z

)
= limυ→0

∑
ok,δ[k]=0 ΛokHυ,ν

(
(1− 2 Z̄o[k]) (Vo[k]− θ)

)
+∑

ok,δ[k] 6=0 Λok φ
(
δ[k]
τ+ν

)
Hυ,ν

(
(1− 2 Z̄o[k + δ[k]]) (Vo[k]− θ)

)
(3.13)

with the interesting property that for Λok = 1 and φ(u) = |u| this corresponds
exactly to standard alignment metric, as the reader can easily verified.

The criterion variation balances two contradictory effects: a required
deletion/insertion or shift may have been satisfied, versus a correct re-
set/spike state may have been canceled, with the key aspect that changes
are now differentiable, thanks to the mollification.

The term with δ[k] = 0 includes correct reset/spike states and dele-
tion/insertion corresponds to the coincidence metric, the second term with
δ[k] 6= 0 correspond to shifts. The gradient is obvious to derive and corre-
sponds to (3.8), if δ[k] = 0, with an additional factor otherwise. For a fixed
indexing δ, we obviously have the same local convexity property as detailed
for the coincidence metric.

This gives us a heuristic tool to optimize the weights with respect to a
general class of alignment metric. This metric being not convex, it may have
several minima, and the present methods, though well-defined and well-
founded, is only expected to find a local minimum, not necessarily “the” op-
timal solution.

3.3 LEARNING PARADIGMS.

As pointed out, in section 3.1, our problem position is to solve the “net-
work programming” problem which can be stated as follows: find, whenever
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possible, network weights verifying input/output relations, under some con-
straints.

Such a class of paradigms differs from what is often addressed in biologi-
cal context, where learning is mainly related to synaptic plasticity Gerstner
and Kistler (2002b); Cooper et al. (2004) and STDP (Spike-Time-Dependent
Plasticity), as far as spiking neural networks are concerned (see e.g., Toy-
oizumi et al. (2007) for a recent formalization). Such unsupervised learning
mechanism is known to reduce the variability of neuron responses Bohte and
Mozer (2007) and to be related to the maximization of information transmis-
sion Toyoizumi et al. (2005) and mutual information Chechik (2003). Our
point of view is different, since we consider supervised and reinforcement
learning as detailed now: Given some learning samples of input/output data,
the goal is to adjust the weights in order the network output to be as “close
as possible” to the desired output.

3.3.1 The learning scenario.

A learning sample is defined here by a finite set of T spikes and/or values,
as schematized in figure 3.1. This corresponds to an epoch, i.e. an arbitrary
predefined period of time T . We are going to consider the simple scenario
in which the learning data is given as a set of such epochs. The present
development is easily generalizable to more realistic temporal scenari, the
present restriction being only chosen for the sake of simplicity.

For a given input, in the present paradigm, we consider both desired
output, the network being required to produce exactly or approximately such
output, and hidden output, which values do not matter. Hidden ouput are
added in order to increase the number of degrees of freedom of the network.
This defines a reservoir of spikes and/or values with the goal to increase the
computational power.

In this context, let us make explicit three learning schemes.

3.3.2 Supervised learning scheme.

In a supervised learning scheme, a set S = {1R̄, 2R̄, · · ·MR̄} (using the ¯ sym-
bol for desired output) of M learning samples is presented and the learning
algorithm is formally defined as:

min
W
Cs, where Cs =

∑
mk

Λmk %
(
d
(
mR̄[k],RW[k]

))
(3.14)

for some increasing function %() (e.g. % : u → u2, other profiles being dis-
cussed below), and for some weighting Λmk. For instance, if all samples are
equivalent and M < +∞, we simply choose Λmk = 1. We may also have
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to consider an unbounded (in practice very large) number of samples, the
previous criterion being well-defined as soon as limM→+∞

∑
m |Λmk| < +∞.

Note that we consider a weighting at two temporal scales: between times
indexed by k inside an epoch of index m, and between epochs.

In other words, we specify that the weights W must be adjusted in or-
der to minimize some cumulative distances d() between the desired output

mR̄,m ∈ {1,M} and the obtained output RW. We write RW to make explicit
the fact that the obtained output depends on the weights W.

Such a problem position leads to two key questions:

• Which suitable “temporal” metric d(), regarding spikes, can be consid-
ered and how to adjust such metric ? And how does the result depends
on the metric ?

• How to compute the weights variation influence on such a metric ?
Considering input and recurrent weights, in our case.

These are the two key points addressed and developped in this chapter,
in sections 3.2 and 3.4 respectively. Interesting enough, addressing these
issues not only enable us to program the studied class of networks in a su-
pervised learning scheme but also in more complex learning schemes, as
discussed now.

3.3.3 Robust learning scheme.

In a robust learning scheme, a set S = {1R̄, 2R̄, · · ·MR̄} of M learning data
is also presented, but not all the data are relevant. Some are outliers, i.e.
“mistakes”, and must not be taken into account in the estimation. In other
words, we have to both estimate the weights W and to discriminate which
data correspond to these weights. Formally, this corresponds to define a
weighting Λmk ∈ {0, 1} with Λmk = 0 if and only if the result is an outlier,
so that it is not taken into account in the minimization of (3.14). The goal is
to obtain the capability to derive unbiased estimations even in the presence
of numerous outliers, and in the presence of outliers with huge errors with
respect to the expected values, but also in the presence of inliers, i.e. spuri-
ous data corresponding to another configuration not to be taken into account
here. There is a strong difference between outliers and inliers: outliers are
random samples, while inliers correspond to other structures, thus may trap
the estimation in a spurious estimate. See, e.g., Rousseeuw and Leroy (1987)
for a general introduction, Davé and Krishnapuram (1997) for unified view
of these classes of methods and Comaniciu and Meer (2001) for a detailed
discussion on their properties and limits.

In a nutshell, two main classes of methods are used to this purpose.
On one hand, M -estimators use non-convex profiles %() as sketched out in
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Fig. 3.3-A, in order to decrease the influence of potential outliers. This corre-
sponds to a criterion of the form of (3.14). Such methods have rather limited
performances in the presence of inliers.

On the other hand, L-estimators, e.g., RANSAC (RANdom SAmple Con-
sensus) methods, introduce a complete different paradigm. Such algorithms
perform trials, select the best trial, and then threshold correct data, before
refining the estimation, as detailed now.

• Performing a trial means randomly drawing a minimal number D of
data from S, in order to be able to perform an exact estimation of the
parameter W, under the assumption that these data are correct (nei-
ther an outlier, nor an inlier). Such estimation can be implemented
minimizing (3.14) for this minimal set of data, yielding Cs = 0, since
this yields an exact estimation. Given M data and K independent uni-
formly distributed trials, the need to select at least D data to perform
a relevant estimation, and a probability p to draw a correct sample, the
chance to draw at least one trial with correct data writes:

psuccess = 1−
(

1− p
D
M

)K
,

which means an exponential dependence with respect to the dimen-
sion D. This is the reason why we always need to consider a minimal
number D of sample for this step.

• For the next step, we have to select the “best” trial among the K, as-
suming this corresponds to a correct sampling. The way to do it differs
with the method. In the RANSAC algorithm, the trial with the max-
imal number of small marginal errors is selected, as sketched out in
Fig. 3.3-B. More precisely, the count of data with an estimation error
lower than a given threshold is used. Other design choices consist in
selecting the trial with the lower median (or other percentile) error, or
more sophisticated error histogram indicators Viéville et al. (2001), as
sketched out in Fig. 3.3-C. These methods take into account the fact
that due to noise or numerical errors, trials with correct data may lead
to poor selection score. Hopefully, a trial with incorrect data is not ex-
pected to yield a spurious good score. Many variants exist (e.g., draw-
ing trials until a “sufficiently correct” result is obtained, etc..) but are
still based on the same ingredients.

• The final step is to select the subset of S with data with an estimation
error lower than a given threshold, and use them in order to refine the
estimation, as in a standard supervised scheme.
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In our context, the implementation of such scheme thus leads to three
key steps: (i) estimation of the weights with a minimal number of data, in or-
der to obtain, if any, an exact input/output relation of the parameters W, (ii)
compare the distance on results between the obtained input/output relation
and the expected results on other data to estimate the marginal error, (iii)
refine the estimation as in the supervised paradigm. All steps are going to
be designed and developed in the sequel. The issue (i) has been recently en-
tirely solved Rostro-Gonzalez et al. (2009a,b, 2010) for a large class of models
proposing a formulation leading to a polynomial algorithm. Issues (ii) and
(iii) correspond to the same issues to be addressed in the supervised learn-
ing scheme. As a consequence, solving the supervised learning scheme, is
going to provide the suitable ingredients to solve the robust learning scheme
described here.

A B

r

r
r

r
r

o

i

i

i

(4)(2)
(3)

(1)
C

Figure 3.3: A Left view: a typical non-convex M -estimator profile %(), for
robust estimation: for small errors the profile corresponds to a convex, e.g.
quadratic shape, while for higher errors the contribution “saturates” and
the sample is no more taken into account in the variational minimization.
B Middle view: showing a few trials of a L-estimator, for a set S with ex-
pected results r, an outlier o and inliers i corresponding to another spurious
trial set; the trial (1) contains expected result and outlier, thus generates
large marginal errors; the trial (2) contains expected results only, thus gen-
erates several small marginal errors; the trial (3) contains expected results
only, but is too imprecise to generate several small marginal errors; the trial
(4) contains inliers, thus generates several small marginal errors but for a
smaller number of results than the trial (2). If the trial with a maximal
number of small marginal errors is kept, i.e. trial (2) in this example, the
method is successful. C Right-view: qualitative view of the marginal errors
histogram for a “correct” (in plain line) versus “spurious” trials (in dashed
lines): a large amount of small marginal errors is expected in the former
case, while a dispersion of errors is expected in the second case. A typical
threshold value, as used in a RANSAC method, is represented by the vertical
dot line.
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3.3.4 Reinforcement learning scheme.

In a reinforcement learning scheme, given a result mRW,m ∈ {1,M} a feed-
back in terms of a bounded reward mrk ∈ R is available for each sample, but
without any explicit comparison between the (now unknown) desired output
and the obtained output (see, e.g., Sutton and Barto (1998) for a general
introduction and Wörgötter and Porr (2005) for a recent review in link with
the present topic, more details being out of the scope of this work). It is thus
necessary to estimate the functional link:

ν : RW −→ r

between the produced output and the obtained reward, yielding an estima-
tion / minimization (EM) problem Green (1990) (here, the estimation of ν
and the minimization of W) of the formal form:

min
W,ν
Cr, with Cr =

∑
mk

mrk, mrk = νk (· · ·mRk′W · · · ) , k′ ≤ k

In the general case, the reward mrk depends on previous samples, as made
explicit here. Several particular cases are relevant, such as mrk = δk(T−1) mr

when a unique reward mr is given at the end of the epoch, or mrk = γk mr
′
k

when the weighting of the returned reward mr
′
k is subject to an exponential

decay.
In order to obtain a tractable framework in relation with the present

context, we propose to assume that the local variation of ν() is a weighted
regular function %() of the distance between the corresponding outputs, i.e.:

νk (mRkW)− νk−1 (mRk−1W) =
1

T
Lmk % (d (mRkW,mRk−1W)) ,

for some weights Lmk. This is the way we propose to introduce a temporal
learning (TD) scheme Sutton and Barto (1998) in this context. We further
assume that the reward depends on the last sample only, while the gener-
alization to a sum of distances with previous rewards is straightforward.
Taking into account the distance only, simply means that we do not con-
sider the influence of the orientation in the (Z,V) space, i.e. that we as-
sume the reward’s variation to be locally spherically symmetric. As a conse-
quence, the likely intractable functional estimation of the vectorial function

ν ∈ RTR
(No+Ni)T

reduces to the functional estimation of the scalar function
% ∈ RR, which seems to be a reasonable choice. The estimation step of such
a scalar function, for this EM problem, has been extensively addressed else-
where (see, e.g., Green (1990) for a development directly reusable here) and
is not going to be further reviewed here.
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The minimization step is however not so trivial as made explicit now.
Combining the two previous equations, we obtain:

min
W,%
Cr, Cr =

∑
mk

Λmk % (d (mRkW,mRk−1W)) +O

(
1

T

)
(3.15)

for Λmk = T−k
T Lmk. With such a formulation, we have reduced the minimiza-

tion step of this estimation/minimization problem to a variational problem 2

equivalent to the supervised scheme, if we neglect the last term in O
(

1
T

)
. As

a consequence, solving the supervised learning scheme is going to provide
the suitable ingredients to solve the specific form of reinforcement learning
scheme described here. Generalzing the present issue to other reinforcement
learning schemes is a perspective of the present work.

3.3.5 Other learning paradigms.

In addition to these three fundamental learning schemes, the estimation in-
gredients identified previously can be applied to other composite learning
schemes, such as robust multi-model paradigms where different recurrent
equations F can be compared and/or different inlier sets segmented (see,
e.g. Viéville et al. (2001) in the case of visual processing, or Davé and Kr-
ishnapuram (1997) for segmentation tasks), in virtue of the computational
richness of the variational formulation proposed here, including mixing re-
inforcement learning schemes with robust approaches.

In order to solve these variational problems, it appears that we “simply”
have to choose a suitable temporal metric d(), and in order to adjust such a
metric, make explicit how to compute the weight variation influence on such
a metric. This is in fact not so trivial, as made explicit in the next sections.

The present development does not explicitly target unsupervised or semi-
supervised learning as in deep-learning schemes3. A step further, we do not
address “active learning” paradigms, i.e. paradigms in which we explicitly
control the input or output. For instance, we know from the dynamic system
theory that if we generate a dense trajectory (i.e. adding noise to avoid the
orbit to be periodic), its observation allows to correctly approximate the sys-
tem parameter, in the general case. Furthermore, active perceptual strate-
gies allow the estimation to optimize the learning process, using an extra

2For instance, considering a new results mRkW and assuming the information regarding
the previous result mR̄k−1 to be worked out, we can write:

∇W Cr|
mRk−1W=mR̄k−1

= Λ′mk∇W d
(
mRkW,mR̄k−1

)
,

with Λ′mk = %′k (d (mRkW,mRk−1W)) Λmk, thus adjust the weights depending on the local in-
crease/decrease of the reward. In words, the related local learning rule in this EM paradigm
is proportional to the estimation of the rewards variation derivative ν′() and the metric gra-
dient ∇W d().

3See http://deeplearning.net for details.
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mechanism of input/output control.
The add-on of the present work is elsewhere, i.e. to consider general

recurrent networks without any restriction on the internal architecture, plus
introduce the idea to optimize hidden states of the network, as discussed in
section 3.4.

3.4 RECURRENT WEIGHTS ADJUSTMENT

Once defined the mollification on spiking metrics, the question now is to
know, how to compute the weights variation influence on such metric to yield
in a robust learning mechanism?. In order to answer it, let us to consider
the learning scenario, shown in figure 3.1. This scenario corresponds to a
sample and considering the simple case where learning data is given as a set
of such samples.

Let us analyze how we can compute the influence of weight variation, i.e.
∇WRW. We start discussing the influence on output values, i.e. ∇WVW,
then we extend it to output spikes, i.e. ∇WZW. From equation 3.1 we writes
the variations of forward and recurrent weights as follows:

∇W′V[k] = ∇VF ′′W′′(V[k − 1])∇W′V[k − 1] +∇W′F ′W′(U[k − 1]),

∇W′′V[k] = ∇W′′F ′′W′′(V[k − 1])∇W′′V[k − 1].

(3.16)
The former equation is straightforward to use if there is no recurrent

weights (i.e. if F ′′() = 0), simplifying to ∇W′V[k] = ∇W′F ′W′(U[k − 1]),
which corresponds to a feed-forward network. Otherwise, both equations
are more complex since the recurrent weights variation recursively depends
on itself.

In computational context, networks dealing with spikes, e.g. spiking neu-
ral networks, are mainly implemented through specific network architec-
tures, such as Echo State Networks Jaeger (2003) and Liquid Sate Machines
Maass et al. (2002), that are called “reservoir computing” (see Verstraeten
et al. (2007) for unification of reservoir computing methods at the experi-
mental level). In this framework, the reservoir is a network model of neu-
rons (can be linear or sigmoid neurons, but more usually spiking neurons),
with a random topology and a sparse connectivity.

The key idea is that the forward layer of the network (the so-called “read-
out” layer, here the output layer) is driven by a supervised learning rule
of the forward weights, generated from any type of classifier or regressor,
ranging from a least mean squares rule to sophisticated discriminant or
regression algorithms. However the recurrent layer of hidden units is not
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explicitly learned, whereas recurrent weights are either randomly fixed or
adjusted using unsupervised learning mechanism, without any direct con-
nection with the learning samples (though the hidden unit statistics, for
instance, is sometimes adjusted in relation with the desired output). In the
case of temporal mechanisms, i.e. using spiking neurons (e.g. in the model
of Paugam-Moisy et al. (2008)), the unsupervised learning mechanism of the
recurrent weights is a form of synaptic plasticity, usually STDP (Spike-Time-
Dependent Plasticity), a temporal Hebbian unsupervised learning rule, bi-
ologically inspired. It appears that simple methods yield good results Ver-
straeten et al. (2007), while the ease of training and a guaranteed optimality
guides the choice of the method.

This distinction between a readout layer and an internal reservoir is in-
duced by the fact that only the output of the neural network activity is con-
strained, whereas the internal state is not to be controlled.

It is obvious to notice that the reservoir architecture is a special case of
the general architecture written in (3.1), where output units oV and hidden
units hV have been explicitly separated, while the recurrent part F ′ of the
update equation only depends on the hidden units hV only, i.e.:

oVo[k] = oF ′′oW′′(· · · hVj [k′′] · · · ) + oF ′oW′(· · ·Ui[k′] · · · ),
hVh[k] = hF ′′

hW′′(· · · hVj [k′′] · · · ) + hF ′
hW′(· · ·Ui[k′] · · · ).

Here, output forward weights oW
′′, hW′ are explicitly learned, whereas re-

current weights hW′′ are not explicitly adjusted. In fact, the forward weights

hW
′ could be adjusted by back-propagation, though this is does not seem to

be used, up to our best knowledge of the literature.
Contrary to specific architectures such as deep-learning Bengio and Le-

Cun (2007) or reservoir computing Verstraeten et al. (2007), the variational
framework proposed is not restrained to the design of a specific class of ar-
chitecture. The solution is valid for recurrent network with or without con-
nectivity restriction, including hidden values adjustment. This is computa-
tionally tractable because we are in a discretized time scheme.

With the notation of (3.2), for a desired output V̄, the present variational
problem is to be written:

min
W,V=(oV,hV)

max
µk
Cv, Cv =

∑
k

dk(oV̄[k], oV[k]) +
∑
k

µTk (V[k]−F(V[k − 1]))

(3.17)
where:

- the dependency with respect to U has been omitted for the sake of
clarity;

- the input and output weights W = (W′,W′′) are considered together,
because of the interdepence made explicit in (3.16).
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- we make explicit the output part, oV, of the state values, which vari-
ation modified the metric defining the criterion, from the hidden part,

hV, which are not taken into account in this metric, but has neverthe-
less to be explicitly adjusted;

- we decompose the metric d()p =
∑

k dk() with respect to its contribu-
tion dk() at each sampling time of index k, as the structure of met-
rics like (3.4) or (3.5), since minimizing d() is equivalent to minimize
d()p, p > 0;

- we introduce Lagrange multipliers µk ∈ RN Do , used to formalize the
fact that the output and hidden state values are interdependent with
respect to the recurrent weights,thus must be estimated in the same
process.

Stating the estimation this way, leads us to a simplified form of the Pon-
tryagin’s minimum principle, well-known in control theory Astrom (1983),
and the effective related solution is derived from the normal equations of
the proposed criterion, namely:
∇µkCv = 0⇒ V[k] = F(V[k − 1]) forward simulation

∇Vk
Cv = 0⇒ µk = ∇VF(V[k])

(
µk+1 −∇Vdk(oV̄[k], oV[k])

)
backward tuning

Ẇ ≡ −∇WCTv =
∑

k∇WF(V[k − 1])
(
µk −∇Vdk(oV̄[k], oV[k])

)
weights adjustment

(3.18)
The 1st forward simulation equation, simply states that as soon as we

modified the weights, the whole output has to be recalculated from the be-
ginning to the end, which is a natural requirement since weights influence
state values at each time. Therefore, an algorithm that adjusts recurrent
weights must naturally adjust both weights and state values in a coordinate
way. In other words, it allows to implement the fact that adjusting the sys-
tem parameters at time k is interdependent with the state a time before k.
Here the induced paradigm is a relaxation scheme in which we alternatively
adjust the weights and re-simulate the obtained network.

The 2nd backward tuning recurrent equation, allows the algorithm to
also take into account the fact that adjusting the system parameters at time
k is interdependent with the state a time after k. The very interesting point,
offered by the variational theory, is that this backward adjustment has not
to be implemented by solving explicitly the system update inverse function
(likely intractable), but by introducing dual parameters µ. A closed-formed
solution is available when computed from k = T backward to k = 0, noticing
that we have to write µT+1 = 0 for the backward tuning equation to be well-
defined at k = T . The algorithmic complexity of these additional N ×T steps
has again the same order of magnitude as the forward simulation steps, the
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overload4 being the calculation of the system state gradient ∇VF(V[k]).
The 3rd weights adjustment equation implements the usual minimiza-

tion gradient scheme of such a non-linear criterion, with the expected cor-
rective term µk, taking into account the interdependency, as discussed pre-
viously. Behind the Ẇ ≡ −∇WCTv equation, we quote usual non-linear stan-
dard minimization methods5. This corresponds to the usual “weights learn-
ing rule” applied on the learning set, in such kind of framework.

The key feature of the present specification is that we solve the “recur-
rent weight problem” without any assumption on the network connectivity.
It could be fully connected, or constrained by some specific topology, or it
could be structured in some dedicated architecture with a “reservoir” or some
“hidden/deep” layers, as briefly reviewed previously. The rough message is
that it is not “that costly” to solve the recurrent weight problem in its whole
generality, providing we are in this deterministic time-discretized context.

Following this track, a very interesting perspective of the present work
would be also to adjust the connectivity itself, i.e. to minimize the metric
not only with respect to the weights values, but also with respect to the
fact that some weights have either zero or non-zero values, i,e, with respect
connection sets. Sparse estimation methods (see e.g. Tropp (2004b,a) for a
didactic introduction) can be used to this end.

The second key feature of the present specification is that we not only
solve the recurrent weight problem, but also the “hidden state values prob-
lem”. Since hidden state values are generated by the hidden layers recurrent
weights, we obtain for the same algorithmic cost the optimal hidden state
values. The second rough message is that it is not “that costly” to add hid-
den units in a recurrent weight system when solving the recurrent weights
problem in its whole generality. In fact, an output is hidden as soon as its
weighting in the metric is zero.

Obviously, this method is neither a panacea, nor a revolutionary method.
Not revolutionary but simply the suggestion to apply a well-known algorith-

4A careful look at the backward tuning and weights adjustment reveals that the former
can also be calculated backward (since a simple summation), thus factorized with the former
calculation, allowing ∇Vdk(oV̄[k], oV[k]) to be calculated once, thus only temporary stored.
The memory cost has the same order of magnitude, since µ has the dimension of V while it
has to stored only temporarily.

5 Considering a simple gradient scheme, there is always a ε small enough and to be
adjusted numerically so that Ẇ = −ε∇WCTv decreases the criterion. In the experimen-
tal section of this work we use the GSL http://www.gnu.org/software/gsl multi-dimensional
minimization algorithms taking the criterion derivatives into account, mainly the Fletcher-
Reeves conjugate gradient algorithm. Other methods such as the Polak-Ribiere conjugate
gradient algorithm, and the Broyden-Fletcher-Goldfarb-Shannon quasi-Newton are alterna-
tives to be considered, depending on the application. A simple wrapper to these method
bundle is available at http://enas.gforge.inria.fr/classIterativeSolver.html.
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mic scheme of the control theory to this context, things becoming tractable
in the deterministic discrete case. Not a panacea since the induced scenario
is not causal: the weights learning rule is defined as soon as the system has
been both simulated and then backward tuned, thus use information com-
ing from the future. It is thus not applicable as a model of on-line learning
mechanism. It is however quite useful in both off-line learning paradigms,
and might have also some representative power, when considering biological
mechanisms where mental states simulate a future action in order to adapt
a given behavior.

At the modeling level, the contrapositive consequence, may be also inter-
esting as a “negative result”. The variational specification (3.17) and its solu-
tion (3.18) seem canonical, since simply stating how to find the best weights
(i.e. that minimize a metric) in this general case. Therefore, it shows that
solving the recurrent weights problem at a general level is a simple but ir-
reducible non-causal forward/backward simulation/tuning scheme. On the
contrary, we can expect causal schemes or simple back-propagation to never
solve the problem at a general level. This highlight why people usually at-
tack the recurrent weight problem in suitable architectures only.

Obviously, this method being non-linear, is highly dependent on the ini-
tial parameter and variables values, as discussed in details now.

Initial weights and states values adjustment.

We have noticed, that the induced paradigm is a relaxation scheme in which
we alternatively adjust the weights and re-simulate the obtained network.
This means that we do not, strictly speaking, “estimate” the weight values
whereas we only “optimize” the current weight values estimate. Further-
more, even if the mollified metric is convex d(), the criterion (3.17) is not
convex unless the F() would have been convex, which is obviously not ex-
pected for usual dynamical system.

It is thus a crucial issue to be able to properly initialize these values.
Since we target output values to be as close as possible to the expected val-
ues, it is obvious to take as initial output values the expected values, i.e.
assume oV[k] ' F(oV̄[k − 1]), yielding an initial scheme of the form:

Ẇ ≡ −∇WCTv
' −

∑
k∇WF(hV[k − 1], oV̄[k − 1])∇Vdk(oV̄[k],F(V̄[k − 1])).

(3.19)

With this modification of the adjustment scheme, we do not have to calculate
the output values in parallel with the weights since we simply assume that
they are “perfect”, i.e., correspond to the expected values, i.e., syntactically
replace oV by oV̄ when needed. Furthermore, in (refr-criterion), we can
state µk = 0, since we replace the recurrence equation constraint by the
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exact value. This also means that we can minimize the weights of each unit
independently, since there output Vo is no more coupled, whereas replaced
by the expected value V̄o, reducing the algorithmic complexity by a factor of
No, during this initial phase.

This is a natural way, to 1st estimate the weights without bothering with
the fact that the effective output are not the expected by the obtained output,
and its likely going to provide a reasonable estimate of the recurrent weights
if the final solution is close to the expected solution. It, in fact, provides the
exact weights (i.e. with the expected values equal to the obtained values), if
any.

However, this specification does not define anything regarding the hid-
den initial state values. The value hV[k− 1] is still there without any tool to
provide a reasonable initial value. We thus must introduce some knowledge
outside the present framework in order to initialize these values. The known
heuristics are to start with a sparse random hidden activity, i.e. with hV

drawn from any suitable probability distribution, either as random as pos-
sible (i.e. with a maximal entropy, e.g., values uniformly drawn and spikes
drawn from a balanced Bernoulli distribution) or sparse (minimizing some
energy in addition to randomness), and then optionally adjust values us-
ing unsupervised learning mechanisms, as reviewed previously for reservoir
computing methods.

Another track is to start not using hidden state values in the very first
initial state, and consider the network connection weights related to the hid-
den units as zero. Then we can incrementally introduce hidden units and
optimize the related weights to optimize their values, but now in a context
where other weights have received relevant approximate values. This is also
an interesting heuristic with respect to the fact that it allows to be parsimo-
nious with respect to hidden units, thus search solutions with a small, when
not minimal, number of hidden units. An exact solution is available in the
case of exact input/output function estimation Rostro-Gonzalez et al. (2010).
If the reservoir of hidden units has no special connectivity, then the order
of introduction of the hidden units is irrelevant. Otherwise heuristics dedi-
cated to such a choice have to be worked out, allowing the algorithm to add
units related to the metric terms with a large errors seems relevant, which
is an issue beyond the present development.

Finally, despite the fact that we simply consider Vo[k] = 0, for 0 ≤ k < Do,
i.e., consider that the trajectory is not defined by its temporal initial condi-
tions, but by the inputs, we also could wonder if this formalism addresses the
issue of initial stage adjustment. The answer seems negative. For the simple
reason that, if the initial stage values are not known, in (3.18), the equation
∇µkCv = 0 does not correspond anymore to a forward simulation (since we
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known the initial stage and can then calculate the next stage, etc..) but to
a strong, likely intractable, set of under-determined non-linear equations.
The choice of choosing a known (e.g., 0) initial stage is thus crucial in this
context.

3.5 APPLICATION TO RESETTING NON-LINEAR
(RNL) NETWORKS.

Let us to consider 3.1, where model equation corresponds to the main
classes of artificial or biologically plausible models. Also, this equation al-
lows to combine analog and spiking mechanisms. In this sense, models at the
mesoscopic scale, consider both, unit’s firing rates as analog signals and syn-
chronizations effects represented by reset mechanisms. It has been shown
elsewhere Cessac and Viéville (2008) that such models correctly represent
time discretized versions of generalized Integrate and Fire (gIF) spiking neu-
ral models Rudolph and Destexhe (2006).

In both cases, relative refractoriness is defined by weights W ′′ood < 0, d ∈
{1, Do} so that as soon as a unit has a high activity, its state is inhibited for
a certain amount of time, as in spike response models, see Gerstner and
Kistler (2002a) for a general introduction. In order to introduce a abso-
lute refractoriness of one sampling period (3.1) has to be modified, writing
U ′′′o [k]

def
= ρok(Vo[k]) ∈ {0, 1} in factor of all the right-hand side equation. With

this trick a reset induces Vo[k] for one sampling period.

Regarding the initial conditions, we set U ′′o [k] = U ′i [k] = 0, k < 0 and,
as in the general case, choose Vo[0] = 0 and U ′′o [k] = 0, k ∈ {0, Do{, thus a
zero initial state. This entirely defines, for a given input, the deterministic
system state, from (3.1). Given any other initial condition Vo[k], k ∈ {0, Do{,
from (3.1) we always can add No inputs U ′i [k] = 0, i ∈ {0, No{, k ∈ {0, Do{,
with unit weights W ′oid = δoi δd1 such that:

U ′i [k] = Vo[k]− Iok + γok Vo[k − 1]U ′′′o [k − 1]−
∑No

j=1

∑Do

d=1W
′′
ojd U

′′
j [k − d]

for k ∈ {0, Do{ and U ′i [k] = 0 otherwise. We may also use existing inputs, if
N i ≥ No, to introduce values that balance any initial conditions. This makes
explicit the fact that there is no loss of generality to consider a zero initial
state in this context.

As discussed in the general case, the variation with respect to the last
reset time τok is obviously not regular and must be understood in the distri-
bution sense. The purpose of the previous framework is precisely to by-pass
this problem, proposing a mollification of the non-regular input/output sys-
tem update equation (3.1), when a discontinuous reset mechanism is used.
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Here we proposed to use the function series, for ε ∈]0, 1]:

ρε(v)
def
= 1− σε(v) (3.20)

where:
σε(v)

def
= ξ

(
v − θ
ε

)
and

ξ(u) =


0 if u ≤ −1

1 if u ≥ 1
1
2 + 15

16

(
x− 2

3 x
3 + 1

5 x
5
)

otherwise

as shown in Fig. 3.4. The reset function ρε is not a usual sigmoid profile
but has the following key feature: if Vo[k] ≥ θ − ε ⇒ ρε(Vo[k]) = 0, so that
a true reset occurs. A sigmoid profile, e.g. χ(u) = (1 + exp(−x))−1, would
have maintained 0 < ρε(Vo[k]), i.e. with the spurious effect to have τok = 0,
thus without a true reset, thus likely with a dynamics having very different
qualitative properties Cessac (2008). This is avoided here. Similarly the non-
linear activation function σε is designed to induce no effect if the state value
is below θ−ε. The profile has been chosen as the simplest polynomial profile6

which is twice differentiable (as required by minimization algorithms) and
with a sigmoid shape of bounded support. In both cases limε→0 ρε = ξ[−∞,θ[,
limε→0 σε = ξ[θ,+∞[, as expected.

3.5.1 Computational properties.

A straightforward derivation, from (3.1), yields:

Vo[k] = Iτokok +
∑No

j=1

∑Do

d=1W
′′
ojd U

′′
ojkd +

∑N i

i=1

∑Di

d=1W
′
oid U

′
oikd

(3.21)

using the following notations:

- U ′′ojkd =
∑τok

τ=0 γ
τ
ok U

′′
j [k − d− τ ], thus U ′′ojkd ≥ 0, since σ() ≥ 0 and U ≥ 0.

- U ′oikd =
∑τok

τ=0 γ
τ
ok U

′
j [k − d− τ ], with the same remarks.

- The 1st reset time before k, reads7: τok
def
= k−arg minl>0{U ′′′o [k−l] = 0}.

and:

- γτok
def
=
∏τ−1
k=0 γok (with γτok = (γ̄)τ if the γok = γ̄ are constant, while

γτok = ξ{1}(τ) if the γok = 0 vanish)

6Up to our best knowledge, it is not possible to build an indefinitely differentiable left
and right bounded support sigmoid profile, though it is possible to build such a indefinitely
differentiable left and right bounded support bell profile (e.g. b(u) = H(1− u2) exp(−u2/(1−
u2)), with b(0) = 1) corresponding to the bounded form of the usual Gaussian profile. The
reader is invited to take up the bet.

7Thanks to the chosen initial conditions, this notation includes the fact that τok = k in the
case where the unit never reset.
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Figure 3.4: Defining the mollification of the reset function ρε = 1 − σε, and
the activation function σε (left view), for θ = 1. It is drawn here in black,
brown, red, orange, yellow, green, for ε = [1, 0.5, 0.2, 0.1, 0.05, 0.01], respec-
tively. Comparing the bounded profile (drawn in black in the right view) for
θ = ε = 1 with a sigmoid profile of the same maximal slope (in green) or
the same surface (in blue), showing that profiles are very similar though the
former has a bounded support.

- Iτok
def
=
∑τok

τ=0 γ
τ
ok Io(k−τ) (defined by the systems constants γok and Iok).

This allows to make the following obvious but critical observation: given
some desired input Ui and related output Vo (which also define the recurrent
variables), the programming problem involves linear constraints with respect
to the weights parameters to adjust.

Based on this, it has been made explicit in Rostro-Gonzalez et al. (2010)
that the parameter estimation of a neural network in order to generate a
given spike train, is a Linear (L) problem if the membrane potentials are
observed and a Linear Progamming (LP) problem if only spike times are
observed, with a gIF model. Such L or LP adjustment mechanisms are dis-
tributed and have the same structure as an “Hebbian” rule. A step further,
this paradigm is easily generalizable to the design of input-output spike
train transformations. This means that a practical method is available to
“program” a spiking network, i.e. to find a set of parameters allowing us to
exactly reproduce the network output, given an input.

The fact that there is an efficient LP algorithm that exactly matches in-
put/output is crucial in robust learning schemes as pointed out in section 3.3.

In this linear framework, input/output relations can be specified, by con-
straining the output, with a rich semantic. Imposing inequalities means:

• stating the spiking state corresponding to inequalities of the form θ ≤
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Vo[k] ≤ Vmax,

• stating the non-spiking state corresponding to inequalities of the form
Vmin ≤ Vo[k] ≤ θ − ν,
where Vmin and Vmax are the absolute minimal, maximal values, while
ν is an infinitesimal value8;

• stating the output analog values range, i.e. inequalities of the form
V equ
o [k] − V ν

o [k] ≤ Vo[k] ≤ V equ
o [k] + V ν

o [k], for desired values V equ
o [k] up

to precisions V ν
o [k].

Structural constraints on the weights W allows us to specify connectivity
constraints:

• for topographical connectivity, when no connection between units of
index j and o, we get ∀d > 0,Wojd = 0,

• for excitatory/inhibitory connections ∀d > 0, 0 ≤Wojd / ∀d > 0,Wojd ≤ 0.

Furthermore, weight profile constraints take into account the fact that
weight profiles are “smooth”, e.g.: that the weight’s temporal variation is
bounded by ∆W , ∀d > 1, |Wojd −Woj(d−1)| ≤ ∆W .

All together we can specify a rather large amount of semantic elements
within this framework, including the major biologically plausible constraints
taken into account in such a context.

A step further, we can rewrite (3.1) as:

Vo[k] = Iτok +
∑No

j=1

∑Do+τok
s=1 Y ′′okjs σok(Vj [k − s]) +

∑N i

i=1

∑Di+τok
s=1 Y ′okis U

′
i [k − s] Y ′′okjs

def
=

∑min(s,Do)
d=max(s−τok,1)

[∏k−1
h=k−d γoh

]
W ′′ojd

Y ′okis
def
=

∑min(s,Di)
d=max(s−τok,1)

[∏k−1
h=k−d γoh

]
W ′oid

(3.22)
making explicit the auto-regressive / moving-average form of this recurrent
equation.

In the case where the reset mechanism Uo[k] = 1 is not used, while the
sigmoid profile σ(gok u)

def
= gok u + ook is a linear/affine equation, this corre-

sponds to a standard so-called trivial linear ARMA mechanism. This case is
a singular case with respect to the computational properties as made explicit
now.

The serial combination of RNL networks (i.e. one network input being
the network output of the other) or their parallel concatenation (i.e. the con-
catenation of their state) are RNL networks. Unless in the linear ARMA case

8In fact, at a theoretic level, the spiking / no-spiking state is simply specified by θ ≤ Vo[k] /
Vo[k] < θ. Making explicit additional “technical” bounds Vmin and Vmax and transforming the
strict equality in a weak equality up to some infinitesimal value ν is required by the numeric
implementation discussed in the sequel.
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these are the two possible combinations of RNL networks. Furthermore,
RNL networks are irreducible up to a scale factor, and universal approxima-
tors, as it is the case for less restrictive artificial neural networks Hornik
et al. (1989); Schäfer and Zimmermann (2006). More concretely, there is
always a RNL network that exactly matches, in the general case, a finite
input/output transformation, all Boolean input/output causal functions can
be implemented with a delay of two samplings, and for a given finite spike
pattern, there is always a RNL unit that separates this pattern among all
others.

In any case, equation (3.22) corresponds to the instantiation of FW′′,W′

in (3.2) and allows to instantiate the general framework developed here for
a concrete class of models as numerically experimented now. It is straigtfor-
ward to integrate this model in the previous framework since, ∇W ′oidVo[k] =

U ′oikd and ∇W ′′ojdVo[k] = U ′′ojkd, while ∇Vj [k−s]Vo[k] = Y ′′okjs σ
′
ok(Vj [k − s]).

3.6 PRELIMINARY CONCLUSION

In this chapter we have defined a theoretical framework, which address
the aspects of the computational capabilities of the spiking neuron models.
On one hand we review on the spiking metrics, where we have evidenced the
lack of information with respect to each performed operation. In this sense
we propose a mollification in the spiking metrics permitting one to make ex-
plicit each operation. On the other hand we show how this mollification can
be used in learning mechanism in order to implement input-output transfor-
mations in a general case.

A current on-going work based on this prospective analysis targets the
implementation and numerical validation of these general principles.
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Part IV

Hardware Implementations
of gIF-type Spiking Neural

Networks
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CHAPTER 4

HARDWARE

IMPLEMENTATIONS OF

GIF-TYPE NEURAL NETWORKS

“Things should be made as simple as possible, but not any simpler.”
–Albert Einstein

OVERVIEW

We know that spiking neuron models can perform very powerful compu-
tations. Moreover, the equations that describe the behavior of these models
have inspired scientist and engineers, especially in the field of electronics, to
use them in order to develop bio-inspired hardware implementations. The
development of dedicated hardware permits us to accelerate the processing,
since operations are carried out directly in the related device. However, even
if the technology advances rapidly, this approach presents some difficulties:
the area-greedy operators and the complex topologies are involved in a neu-
ral network.

In this sense the aim of this chapter is to study the feasibility of imple-
menting the gIF-type neuron models on dedicated hardware, such as FPGA
(Field Programmable Gate Array). The study is based on a precision analy-
sis, where a fixed-point arithmetic is considered. More specifically, this anal-
ysis permits us to determine the best data representation to map our models
onto a FPGA. Furthermore, we consider this representation as a perturbed
signal (described in chapter 1) producing an approximation of the real tra-
jectory and we evaluate its behavior on periodic and chaotic dynamics. The
results evidence that the generalization in the data representation can in-
duce drastic effects on the desired activity, especially for complex dynamics.

The FPGA-based architectures have been coded using the Handel-C and
VHDL (VHSIC hardware description language; VHSIC: very-high-speed in-
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tegrated circuit) hardware description languages. These architectures have
a modular and reconfigurable scheme, which enables one to evolve in larger
of more complex systems.

The VHDL designs have been synthesized for a Virtex-II Pro FPGA in or-
der to evaluate the resources consuming. However, the designs are generic,
which means that them can be mapped on updated FPGA devices.

Finally, we have developed GPU-based kernels in order to evaluate the
performance of our FPGA-based architectures. The GPU (Graphing Process-
ing Unit) technology uses parallel computing to perform complex tasks, since
the hard processing is carried out directly on the GPU. The same gIF-type
neuron models have been simulated on a GPU and further compared with
the FPGA designs in terms of speed. At the present stage, however they can
not be directly compared in terms of the maximal number of neurons that
support each one, where the GPU is clearly superior. The GPU-kernel has
been coded using a CUDA-C++ heterogeneous programming scheme.

The chapter is organized as follows. First we describe the hardware and
programming languages in sections 4.1 and 4.2 respectively. Then in 4.3 we
define a representation data based in the fixed-point arithmetic in order to
make possible the implementations on hardware of these models. Finally in
4.4 and 4.5 the hardware implementations of spiking neural networks are
described.

4.1 HARDWARE DESCRIPTION

In this work we are specially interested in low-cost hardware in order to
perform spiking neural network implementations. For this reason we have
chosen two low-cost technologies FPGA and GPU. They focus in the parallel
processing, which solves much faster any task ever that it has been well-
designed.

4.1.1 FPGA (Field-Programmable Gate Array)

A FPGA (Figure 4.1) is a reconfigurable integrated circuit. It has a dual
nature combining the flexibility of software with the performance of hard-
ware. The FPGA has been designed to be configured by the customer. They
implement circuits, providing huge power, area, and performance benefits
over software, yet can be reprogrammed cheaply and easily to implement
a wide range of tasks. Sometimes reprogramming is merely a bug fix to
correct faulty behavior, or it is used to add a new feature. Some times, it
may be carried out to reconfigure a generic computation engine for a new
task, or even to reconfigure a device during operation to allow a single piece
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of silicon to simultaneously do the work of numerous special-purpose chips.
FPGAs implement computations spatially, simultaneously computing mil-
lions of operations in resources distributed across a silicon chip. The FPGA
configuration is generally specified using a hardware description language
(HDL).

Figure 4.1: A FPGA xilinx board (Illustration from Xilinx throughout
wikipedia)

FPGAs contain programmable logic components called “logic blocks”, and
a hierarchy of reconfigurable interconnections that allow the blocks to be
"wired together" somewhat like a one-chip programmable breadboard. Logic
blocks can be configured to perform complex combinational functions, or
merely simple logic gates like AND and XOR. In most FPGAs, the logic
blocks also include memory elements, which may be simple flip-flops or more
complete blocks of memory

4.1.2 GPU (Graphics Processing Unit)

In recent years researchers have found in GPU’s the alternative to run their
computational models in real time. GPU has evolved into a highly paral-
lel, multithread, multi-core processor with tremendous power and very high
memory bandwidth (Figure 4.2). Modern GPU’s are very efficient at manip-
ulating computer graphics, and their highly parallel structure makes them
more effective than general-purpose CPUs for a range of complex algorithms.
In a personal computer, a GPU can be present on a video card, or it can be
on the motherboard.
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The reason behind the discrepancy in floating-point capability between
the CPU and the GPU is that the GPU is specialized for compute-intensive,
highly parallel computation, exactly what graphics rendering is about and
therefore designed such that more transistors are devoted to data processing
rather than data caching and flow control

More specifically, the GPU is especially well-suited to address problems
that can be expressed as data-parallel computations. The same program is
executed on many data elements in parallel with high arithmetic intensity.

Figure 4.2: Floating-Point Operations per Second and Memory Bandwidth
for the CPU and GPU (Illustration from Kirk and Hwu (2003))

4.2 PROGRAMMING LANGUAGES

Behind an efficient hardware architecture exists an algorithm coded un-
der a powerful programming tool. In this sense we consider mainly two
important programming languages such as VHDL for a FPGA-based imple-
mentation and CUDA for a GPU-based implementation. We also consider
another two support languages such as Handel-C and C++. Handel-C is
used to test the models before to be implemented under VHDL. This lan-
guage is similar to C, which makes possible a fast coding for a hardware
implementation.

4.2.1 Handel-C

Handel-C is a high level programming language which targets low-level
hardware, most commonly used in the programming of FPGAs. It is a rich
subset of C, with non-standard extensions to control hardware instantiation
with an emphasis on parallelism. Handel-C is to hardware design what the
first high level programming languages were to programming CPUs. Unlike

100



many other design languages that target a specific architecture Handel-C
can be compiled to a number of design languages and then synthesised to
the corresponding hardware.

4.2.2 VHDL (VHSIC hardware description language; VHSIC:
very-high-speed integrated circuit)

VHDL is a strongly typed, Ada1-based programming language that includes
special constructs and semantics for describing concurrency at the hardware
level. Programming in VHDL is quite different from programming in C be-
cause of its concurrent semantics. However, it does have several similari-
ties with object oriented languages i.e. C++ and Java. It should help the
reader to understand the basic structure of the language and its relation
with hardware-specific VHDL constructs.

Structural Description (From Hauck and Dehon (2008))

1. VHDL files typically start by including the IEEE library and certain
important packages like std_logic_1164 that enable us the use of
type std_logic and Boolean operations on it. Additional packages
such as std_logic_arith and std_logic_unsigned are also in-
cluded for supporting arithmetic operations.

2. The VHDL description of a hardware module requires an entity dec-
laration that specifies the interface of the module with the outside
world. It is an enumeration of the interface ports. The declaration also
provides additional information about the ports such as their direction
(in/out), data type, bit width, and endianness. An entity declaration
in VHDL is analogous to an interface definition in Java or a function
header declaration in C.

3. Almost all VHDL signals and ports use the data type std_logic and
std_logic_vector. These data types define how VHDL models elec-
trical behavior of signals. The vector std_logic_vector allows dec-
laration of buses that are bundled together.

4. While an entity specifies the interface of a hardware module, its in-
ternal structure and function are enclosed within the architecture

definition.

5. In a structural description of a module, the constituent submodules are
declared, instantiated, and connected to each other. Each submodule

1Ada is a structured, statically typed, imperative, wide-spectrum, and object-oriented
high-level computer programming language, extended from Pascal and other languages.
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needs to be first declared in the component declaration. This is merely
a copy of the entity declaration where only the submodule interface is
specified. The instantiated components are connected to each other
via internal signals by a process called port mapping. Port mapping is
performed on a signal by signal basis using the⇒ symbol.

6. Each component can be reused for. This is one of the benefits of a
structural representation, it permits reuse of existing code for recur-
ring design elements and helps reduce total code size.

Limitations

• VHDL syntax is verbose, extremely heavy, and requires several lines
of code to describe even simple logic elements.

• Hardware needs to be described at a very low level of abstraction.

• As technology and FPGA architectures evolve, the optimal amount of
pipelining required to meet the desired cycle time changes.

• Low-level descriptions also make it hard for synthesis tools to optimize
and schedule logic.

• Hardware described in VHDL suffers from the additional drawback of
significantly long verification times.

4.2.3 CUDA (Compute Unified Device Architecture)

CUDA is general purpose parallel computing architecture, introduced in
November 2006 by NVIDIA. CUDA use a new parallel programming model
and instructions set architecture that provides the parallel compute engine
in GPUs to solve complex computational problems in a more efficient way
than on a CPU.

The advent of multicore CPUs and GPUs means that mainstream proces-
sor chips are now parallel systems. Furthermore, their parallelism continues
to scale with Moore’s law2. The challenge is to develop application software
that transparently scales its parallelism to suply the increasing number of
processor cores, much as 3D graphics applications transparently scale their
parallelism to GPUs with widely varying numbers of cores.

The CUDA parallel programming model is designed to overcome this
challenge while maintaining a low learning curve for programmers famil-
iar with standard programming languages such as C.

2Moore’s law describes a long-term trend in the history of computing hardware. The num-
ber of transistors that can be placed inexpensively on an integrated circuit has doubled ap-
proximately every two years
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Programming Model for GPU-based implementations

The programming model for GPU-based applications is defined from a
heterogeneous programming scheme. This is divided in two parts, on one
hand the application uses an interface between the CPU and the GPU,
usually coded in a high-level programming language such as C/C++, python,
etc. On the other hand a piece of code defined as a kernel, which will be
placed to run directly in the GPU. In order to identify which process will be
executed on the CPU and which one on the GPU, there exist two qualifiers,
host and device.

The __host__ qualifier declares a function that is executed and callable
only by the host (CPU).

The __device__ qualifier declares a function that is executed and
callable only by the device (GPU).

However, the __host__ qualifier can also be used in combination with
the __device__ qualifier, in which case the function is compiled for both
the host and the device. Further there exist the global qualifier, which
makes the interface between the CPU and the GPU.

The __global__ qualifier declares a function as being a kernel that is
executed on the device and callable from the host only.

Kernels

CUDA extends C by allowing the programmer to define C functions,
called kernels, that, when called, are executed N times in parallel by N dif-
ferent CUDA threads, as opposed to only once like regular C functions.

• A kernel is defined by a declaration specifier (__global__).

• The number of threads must be defined in the kernel call
new <<<....>>>, where each thread could be identified in the kernel
through the built-in threadIdx variable.

Limitations

• CUDA uses a recursion-free, function-pointer-free subset of the C lan-
guage, plus some simple extensions. However, a single process must
run spread across multiple disjoint memory spaces, unlike other C lan-
guage runtime environments. Fermi GPUs now have (nearly) full sup-
port of C++. Exceptions as follows:
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• Code compiled for devices with compute capability 2.0 (Fermi) and
greater may make use of C++ classes, as long as none of the member
functions are virtual (this restriction will be removed in some future
release).

• For double precision (only supported in newer GPUs like GTX 260)
there are some deviations from the IEEE 754 standard: round-to-
nearest-even is the only supported rounding mode for reciprocal, di-
vision, and square root. In single precision, denormals and signalling
NaNs are not supported; only two IEEE rounding modes are supported
(chop and round-to-nearest even), and those are specified on a per-
instruction basis rather than in a control word; and the precision of
division/square root is slightly lower than single precision.

• The bus bandwidth and latency between the CPU and the GPU may be
a bottleneck.

• Threads should be running in groups of at least 32 for best perfor-
mance, with total number of threads numbering in the thousands.
Branches in the program code do not impact performance significantly,
provided that each of 32 threads takes the same execution path.

• Unlike OpenCL, CUDA-enabled GPUs are only available from NVIDIA
(GeForce 8 series and above, Quadro and Tesla).

4.3 FIXED-POINT ARITHMETIC FOR DATA REPRE-
SENTATION

A representation data is the bridge between a mathematical model, here
a spiking neuron model, and a design of reconfigurable architectures with
high performance for FPGA-based implementations. This is because real
values can not directly be handled by a FPGA, since it last is composed of
logic blocks, which use binary logic to perform complex combinational func-
tions. Particularly, we have chosen the fixed-point arithmetic due that con-
sumes less area resources than floating-point arithmetic Parhami (2000).
Indeed, this makes our circuitry smaller and faster than a representation
in floating-point arithmetic. A value of a fixed-point data type is essentially
an integer that is scaled by a specific factor determined by the type. This
representation is commonly defined by two parts, integer and fractional. A
fixed-point data writes:

Fixed-point data (word size) = (int)(realvalue ∗ 2f ) (4.1)

where f represents the number of fractional bits.
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4.3.1 Resolution for the fixed-point data representation

The resolution for a fixed-point variable is set by the number of fractional
bits (f ) used in the fixed-point representation. The resolution ε is given by
the next equation:

ε =
1

2f
(4.2)

4.3.2 Range for the fixed-point data representation

An important point in the precision analysis is to verify that the word size
will cover correctly the values that we want to represent. In order to know
if we have chosen an adequate data representation we estimate the range of
values that will cover our representation.

1. Considering only integer values the range is given by:

∈ [0, 2b − 1]

where b is the number of bits considered in the data representation.

2. Considering only positive values and a fixed-point representation
U(a, b), where a represents the integer part and b the fractional part,
the range is given by:

∈ [0, 2a − 2−b]

3. Considering both, negative and positive values and a fixed-point rep-
resentation U(a, b), where a represents the integer part and b the frac-
tional part, the range is given by:

∈ [−2M−1−b, 2M−1−b − 2−b]

where M = a+ b

Since the precision analysis is carried out only on b, the value of a can be
defined as follow:

a ≥ η(log2(real value + 1)) (4.3)

where η is a rounding variable.

4.3.3 A precision analysis of the gIF-type neuron models

The word-size of data (data representation) in the FPGA-design is an im-
portant consideration. As the number of bits being processed increases, the
area of the resulting circuit and often the power consumption may increase,
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at the same time that the speed in the device decreases. For this reason it is
necessary that the designer calculates efficiently the number of bits required
by the hardware to ensure that it can to perform certain task.

The number of bits for any algorithm can be calculated considering the
range of the input data, output data and the operations involved. In this
section we present a precision analysis in the design of the architecture for
the gIF-type neuron models in order to calculate adequately the number of
bits for its implementation.

The precision of a value describes the number of digits that are used to
express that value, alternatively it describes the position at which an inexact
result will be rounded. In this sense we make a precision analysis on the
gIF-types neuron models. In both cases, analog and discrete we find that
constant parameters (i.e. leak factor and the external current ) and variables
(i.e. membrane potential, synaptic weights (considering STDP, otherwise it
is constant) and non-linear activation function σ in the analog neuron model)
are described by real values. Further, these values are represented by a
certain number of integer bits, which is an approximation of the real value.
For this reason we make an analysis in terms of precision for each constant
parameter and variable considered in the spiking neuron models.

• The general constant parameters of a neural system (N , T and
D)

A neural system is defined by two general parameters, N and T . On
one hand the number of neurons N define the size of the network and
the number of synaptic connections. On the other hand T that defines
the simulation time. Also, in our models we consider the inter-neural
transmission delays D. These parameters are defined by integer and
non-negative values, for this reason they have a U [a, 0] fixed-point rep-
resentation as follow:

UN [a, 0] with a = η(log2(N)) (4.4)

UT [a, 0] with a = η(log2(T )) (4.5)

UD[a, 0] with a = η(log2(D)) (4.6)

• The synaptic weights (W)

The values of W are chosen randomly from a normal distribution
N (µ, σ2), where the variance σ2 = C√

N
defines the activity regime (see

chapter 1) of the neural network. The fact to consider a normalization
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on the variance is in order to avoid cases where a simple synaptic con-
nection can be able to produce a very strong effect on the post-synaptic
neuron that makes fires the neuron or in the contrary case, where weak
connections leave the neuron quiescent. The mean µ can be adjusted
in order to specify the percentage of excitatory and inhibitory synaptic
connections.

In a neural system, the synaptic weights are represented as a vector of
N ×N ×D values. Further from the viewpoint of the hardware design
they can be contained in a RAM memory. Hence, each value is mapped
onto the FPGA as a UW [a, b] fixed-point representation. In our neural
network models we consider a fully-connected topology, it means that
we have N ×N connections, each modeled with D parameters.

The fixed-point data of W consider both, negative (inhibitory connec-
tions) and positive values (excitatory connections) and is given by

UW [a, b] (4.7)

where:
a = η(log2(max(|Wijd ∈ N (µ, σ2)|) + 1))

and b depends on the desired precision. Further we analyze numeri-
cally the effects on the dynamics at different precision levels.

• The leak rate (γ)

The leak factor γ is a constant value that solves the memory problem.
Biologically, this term reflects the diffusion of ions that occurs through
the membrane when some equilibrium is not reached in the cell (when
the threshold has not been reached). So far, it takes into account the
multiplicative effects of conductances and its value variates between
0 and 1. Moreover since γ never touches the 1 integer bits are not
considered for its fixed-point representation, which writes:

Uγ [0, b] (4.8)

• The external current (Iext)

The external current represents an external stimulus coming from a
sensorial source. In the present work we have considered it as a con-
stant value between 0 and 1, since it is given by the next equation:

Iext = θ(1− γ) (4.9)
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and its fixed-point representation writes:

UI [0, b] (4.10)

• The firing state (Z = ρ(V))

As we described in chapter 1 the dynamics of a spiking neural network
can be described by their firing state, which is commonly represented
as a spike train (raster plot). Further this representation permit us to
study the neural dynamics in terms of the information theory. In ad-
dition for a digital hardware implementation, this representation per-
mits us to reduce considerably the device area consumption, since Z is
a vector of N × T localities each represented by only 1 bit.

• The non-linear activation function (σ(V ))

The gIF-type neuron model in its analog-spiking form and described by
the equation 1.13 considers a non-linear activation function to perform
the output of each synaptic connection in a neural network. In our
case we consider the logistic sigmoid function (Figure 1.9). This form
permits us to define later the same limits of V than in the discrete
case, since its value variates between 0 and 1. Hence, the fixed-point
representation writes:

Uσ[0, b] (4.11)

• The membrane potential (V )

As we described in chapter 1, the variable V represents the behavior
of the spiking neural network, further this variable is described in two
ways from its synaptic model. On one hand in equation 1.4 we have
discrete-type synapses, which means that the synaptic connections de-
pend on the firing state of the other cells. On the other hand in 1.13 we
consider analog-type synapses, since them are evaluated by a sigmoid
function.

Now, we evaluate both cases for an efficient hardware implementation:

– The discrete case

Most part of neural network models consider V as a vector of
N × T real values, which contains the whole activity of the neu-
ral network. However, in our particular case, since there exist an
one-to-one correspondence between the membrane potential and
the spiking state, we only need to consider the last state of V as
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equation 1.4 evidences. Further for a FPGA-based architecture we
consider a vector V with N fixed-point values.

Let us to separate the equation 1.4 in three terms in order to
determine the best data representation for V . We use V to define
a single trajectory (the membrane potential on one neuron),
further the data representation is generalized for all elements of
the vector V.

The reset mechanism is the part of the equation that evaluates
the last state of the cell and is given by

Vi[k] = γ Vi[k − 1] (1− Zi[k − 1])

Since (1−Zi[k− 1]) is a binary signal equal to 0 when Zi[k− 1] = 1

(which means that the neuron has fired and the membrane must
be reseted) and 1 otherwise, thus a preliminary fixed-point rep-
resentation for V is given by the product between its last state and
γ. Thus, the representation is defined as follow:

1. We consider the fixed-point representations of γ and V , which
have been defined as Uγ(0, b) and UV (a, b) respectively.

2. Then, we perform the product using fixed-point arithmetic,
hence we have a UγV (a, b+ b) representation.

3. Finally the UγV (a, b+b) representation is truncated to UV (a, b).

The external stimulus can be computed at the same time that the
reset mechanism in order to save one step as follow:

Vi[k] = γ Vi[k − 1] (1− Zi[k − 1]) + Iext
i

1. If Zi[k − 1] = 1 we reset V with Iext
i instead of 0, where the

UI(0, b) representation can be perfectly matched with the rep-
resentation of V .

2. Otherwise the Iext
i is added with the truncated value of the

product between γ and V .

The synaptic activity determines the range of V and consequently
its number of integer bits a in the fixed point representation. The
synaptic weights have a UW (a, b) representation, where the num-
ber of fractional bits b is the same than V , but not a due that the
number of integer bits in V needs to be larger in order to compute
the whole synaptic activity, for this reason ever if all the synaptic
weights are computed at the same time in the cell, the fixed-point
representation in V must to be large enough to support it. Thus,
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once that the state of the membrane has been evaluated and the
external stimulus computed, the next is to add the synaptic with
spiking activity in k− d, where d = {1...D}. From a computational
viewpoint it is a sequential process, however from a hardware im-
plementation viewpoint it is a combinational one as we probe be-
low.

In summary the fixed-point representation of V depends on the
activity of the whole neural network as we have seen. In this
sense considering this analysis we can define the representation
of V as follow:

UV [a, b] (4.12)

where from equations 1.9, 1.10 and 4.3 we define a range for a:

a ≥ η(log2(max(|Vmin|, Vmax) + 1)) (4.13)

and b will depend on the neural regime as we show in the numer-
ical results.

– The analog case
The term analog refers to the kind of activation function that uses
the gIF-type neuron model to compute the output inherent to each
synaptic connection. In this sense the equation 1.13 describes the
dynamics of a gIF-type neuron model with a non-linear activation
function but with spiking activity. Its fixed-point representation
is the same than that in the discrete case and given by equation
4.12. However this model needs to consider more than N values
to estimate the whole neural activity due that we are considering
delays (σ(Vj [k − d])). Thus, the vector V has N ×D values with a
fixed-point representation defined by equation 4.12.

4.4 FPGA-BASED ARCHITECTURES OF GIF-TYPE
NEURON MODELS

The motivation to implement the proposed models on dedicated hard-
ware, such as FPGA, has been inspired from two ideas. On one hand we
consider that the gIF-type neuron models are highly feasible to large scale
simulation due to the one-to-one correspondence between the membrane po-
tential and the spiking activity. Further, the resulting spiking dynamics can
be analyzed by statistical methods using the EnaS simulator3.

3http://enas.gforge.inria.fr/
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On the other hand we study the behavior of the FPGA-based implementa-
tions of gIF-type neuron models under different activity regimes, i.e., chaotic
and periodic. The design of the FPGA-based architectures has a general and
modular programming scheme that permits us to reconfigure the neural net-
work and to evolve in a more complex systems. Also, the architectures use
the previous precision analysis in order to have an efficient area distribution.

The FPGA-based architectures have been designed using the Handel-C
and VHDL programming languages. The Handel-C design is not efficient
compared with that in VHDL, since Handel-C code has an implicit sequen-
tial programming scheme. However we have designed it in order to perform
the precision analysis and to calibrate the hardware architecture with the
software parameters. Since one of the goals in this work is to analyze the
behavior of the spiking neural network on hardware under different neural
activity regimes, we need to consider the same parameter on both implemen-
tation, software and hardware. The Hande-C design has also permitted us
to determine the best number of bits to represent our data in the FPGA de-
vice considering trivial and complex neural dynamics. Further the hardware
design is implemented on VHDL in order to have a hardware architecture
with high performance and best adapted to any target (FPGA device).

The next is to describe the characteristic of each design for the analog and
discrete approaches (analog and discrete) of the gIF-type neuron models.

4.4.1 A FPGA-based architecture of gIF-type neural net-
works using Handel-C

The structure of a Handel-C code is very similar to that in C/C++ program-
ming, which permits us to pass rapidly from a software design to a hardware
design that eventually could be mapped on a FPGA device in a not efficient
way. In this sense we explain now the structure of our design for the gIF-type
neuron models.

The Handel-C algorithm

1. We write a C++ code that simulates a spiking neural network using
either the discrete or the analog form.

• We define the constant values of γ (float), Iext (float), N (int), D
(int) and T (int). Then we declare the vectors V, W and Z (ρ(V))
using the GSL library4. GSL is a numerical and optimized library
for C and C++ that allows one to perform operations with vector
and matrices.

4http://www.gnu.org/software/gsl/
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• We make a random initialization in V[k] and Z[k] (ρ(V)), where
k < D. Also, we define the synaptic weights W using the EnaS
library.

• We estimate Vmin (Equation 1.9) and Vmax (Equation 1.10) from the
estimated values of W.

* For the analog case we perform a C function, which computes the
synaptic connection using a sigmoid function.

• We create text files containing each one a different fixed-point rep-
resentation of V[k] and W. Such representations are estimated
using the equation 4.1.

• We perform the equations 1.4 and 1.13 using a case C statement.

• We compile and execute the C++ code. During the execution the
text files that contain the fixed-point representations are sent to
the Handel-C folder.

2. We write a Handel-C design using the same structure that the C++
code.

• First we define the precision b that will be considered in the de-
sign.

• We estimate γ and Iext from equations 4.8 and 4.10 respectively.

• We define the fixed-point representation of the counters for N

(twice), D and T , respectively. Thus, the representations are given
by the equations 4.4 (twice), 4.6 and 4.5.

• Vectors W and V[k] are load from the text files generated in soft-
ware. Further Z[k] is defined from V[k].

* We also perform a function, which contains the sigmoid activation
function to be used in the analog case.

• Both gIF -type neuron models are implemented. However an ini-
tial signal indicates us, which synapses model will be used in the
simulation.

• We compile and execute the implementation using the Celoxica
DK Design Suite.

• The numerical results (V and Z) are saved in a text file.

• The algorithm is executed several times for different values of b
and a different text file is generated for each value of b.

3. The resulting spiking dynamics in software and hardware are com-
pared using the Victor-Purpura distance Victor and Purpura (1996),
which has been implemented in EnaS. Also, we estimate the RMS er-
ror from their respective membrane potentials.
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4. The steps 1, 2 and 3 are simulated for trivial and complex neural dy-
namics as was described in chapter 1.

5. The results on complex dynamics for both, software and hardware (at
different fixed-point representations), are statistically analyzed using
the Kullback-Leibler divergence5 Cessac (2010). This function is avail-
able in EnaS.

6. We define the best fixed-point representation to design the VHDL ar-
chitecture.

The implementation of the gIF-type neuron models on Handel-C and
their respective version in software has permitted one to define the elements
to design an efficient VHDL-based architecture that permits us to have a
high performance on the FPGA-device.

4.4.2 A FPGA-based architecture of gIF-type neural net-
works using VHDL

We present a reconfigurable and efficient VHDL-based architecture of a gIF-
type neural network, which is based on the precision analysis in 4.3 and the
previous Handel-C design. This architecture permits us to switch between
the analog and the discrete activation functions and is described by three
main functional blocks: the first one defines the space of constants and vari-
ables. In other words the topology and parameters of the neural network are
defined here. In the second one we define the gIF-type equations. The third
one serves to route the resulting data to a RAM memory.

In figure 4.3 we present the general scheme of the FPGA-based architec-
ture. The general operation begins with a signal sent from the control to the
input module in order to initialize the parameters and to create the neural
network. Once that the size of the network and its topology are defined the
input module sends the respective parameters to each neuron. Then, from
a combinational process the neurons compute the gIF-type equations and
send their results to the output module, which can be either routed (only
the spiking states) to the embedded RAM memory or presented to the real
world.

5The Kullback-Leibler divergence Kullback and Leibler (1951); Kullback (1959) is a non-
symmetric measure of the difference between two probability distributions P and Q. Thus
this reads:

DKL(P ||Q) = −
∑
x

p(x) log q(x) +
∑
x

p(x) log p(x)

= H(P,Q) − H(P )

where H(P,Q) is called the cross entropy of P and Q, and H(P ) is the entropy of P .
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Figure 4.3: A FPGA-based architecture.

Data types package

In VHDL we have implemented a package with our own data types in order
to reutilize them in the main modules. It is called from the other modules as
follow:

use work.my_data_types.all

and contains the next data types:
constant Neurons : integer := N;

constant Time : integer := T;

constant Delays : integer := D;

type Nbits_Leak is range (b - 1) downto 0;
type Nbits_Current is range (b - 1) downto 0;
type Nbits_Potential is range (U_V(a, b) - 1) downto 0;
type Nbits_Weights is range (U_W(a, b) - 1) downto 0;
type Nbits_Z std_logic;

Further the architecture can be use of Nbits_Potential,
Nbits_Weights and Nbits_Z to create vectors with this sizes.

Input Module

The Input Module contains a LUT with the values of the synaptic weights
and is activated with a signal from the control block (Figure 4.3). This mod-
ule uses the Nbits_Weights data type to define the size of each value in
the LUT. The synaptic weights are separated and routed from this module
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to each neuron in a combinational process. The LUT requires a larger vector
than traditional hardware implementations, since W is defined byN×N×D.

In the figure 4.3 we show a block labeled as GRWG (Gaussian Random
Weights Generator), which is a prototype to be further developed using the
Ziggurat algorithm Zhang and Leong (2005) in order to generate the synaptic
weights on-chip or as a embedded system.

gIF-type neuron module

This module can to compute the gIF-type neuron models using either the
analog approach, which consider a non-linear activation function to estimate
the output of each synaptic connection or the discrete approach, which takes
into account the spiking state of the synaptic connections. Our method is
a quite different from the most part of the works on hardware implemen-
tations of spiking neural networks, due that we consider delayed synaptic
weights. It means that each synaptic weight is modeled with D parame-
ters as was previous described. It means also that our neuron model will
perform more computations than the other works. However at a network
level it implies the same processing time, because the weighting sum is a
combinational process.

Although this module uses all the predefined data types and operations
use fixed-point arithmetic. Its operation is synchronized with the other mod-
ules. Once that the weights have been separated in the input module they
are sent to each neuron, thus when the neuron receives them, it performs
the membrane potential estimation. Finally this membrane potential is com-
pared with a given threshold in order to know the firing state of the neuron.

Let us to describe the internal structure of the gIF-type neuron model
considering both, the analog and the discrete approach.

Architecture with a discrete activation function

In figure 4.4 we show the internal structure of the neuron module with
discrete activation function. The goal of this module is to reproduce the
comportment of the membrane potential and its consequently spiking firing
state, which are describe by the equation 1.4.

The spikes generation is carried out by a combinational process inside
the neuron module. Hence, the process is described in three steps.

• The Reset mechanism simulates a multiplexor, which switch between
two possible states. The switch is controlled by the last firing state of
the neuron Zi[k − 1]. If Zi[k − 1] = 1 (neuron comes to fire a spike), a
“logic 0” (neuron is reseted) is reflected in the output. Otherwise we
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Figure 4.4: Block diagram of individual discrete-time spiking neuron

have a contraction effect in the neuron, which is given by a fixed-point
value of the product between γ and Vi[k − 1] (see section 4.3 to more
details). The output of this block goes directly to the

∑
block, which

performs the sum of the reset state, external stimulus and the synaptic
activity.

• Synaptic connections defines the activity among the neurons. We con-
sider a fully-connected topology, which means that all neurons are con-
nected. In addition each synaptic connection evaluates the past spiking
activity of the other neurons. Here, N × D delayed weights are com-
puted (par neuron).

• Spike generation is carried out by a comparator. Here, the membrane
potential Vi[k] is compared with a established firing threshold. If the
membrane potential reaches this threshold a “logic 1” is set in the out-
put, otherwise a “logic 0’.

The VHDL description

• The entity of the VHDL design makes use of the defined data types.

• The port has the inputs and the outputs declaration necessaries to
perform the operations of the equation 1.4.
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in The constant value of γ defined with Nbits_Leak bits.

in The constant value of the external stimulus Iext defined with
Nbits_Current bits.

in The W vector with N × D values, where each one has a size of
Nbits_Weights.

in The Z vector with N × D values, where each one has a size of
Nbits_Z.

in The the last value of the membrane potential Vi[k − 1], which has
a size of Nbits_Potential bits.

out The computed membrane potential Vi[k] expressed with
Nbits_Potential bits.

out The firing state of the neuron Zi[k] expressed with Nbits_Z bits.

• The architecture contains the computational description of the
discrete-time spiking neuron model. The design of this architecture
utilizes only combinational logic, since all the terms of the weighted
sum are computed at the same time thanks to the generate declara-
tion, which permits us to create all the topology around the neuron.

Architecture with a non-linear activation function

As we have described throughout this chapter the unique difference be-
tween the analog and the discrete approaches is the way to compute the
synaptic activity. In this sense the figure 4.5 schematize the internal struc-
ture of the hardware description of the gIF-type neuron model considering a
non-linear activation function.

• The Reset mechanism operates in the same way that in the discrete
case, since ρ(Vi[k−1]) = Zi[k]. The multiplexor (Mux 1) selects between
a “logic 0”s (reset) and a memory value given by the product of γ and
Vi[k− 1]. The selection is based in the firing state of the neuron i in the
last time k−1. The multiplexor output will be a “logic 0” if ρ(Zi[k−1]) =

1, otherwise this will be the product.

• Synaptic connections emulate real biological synapses through a math-
ematical model, which involves an activation function and synaptic
weights. Further this model is characterized using fixed-point arith-
metic to be implemented onto a FPGA. The activation function con-
sidered in this work is a sigmoid profile (Figure 1.9), which displays a
history dependent progression.
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Figure 4.5: Analog-spiking neuron model

The synaptic weights are estimated from a random gaussian distribu-
tion and stored in a LUT, where each synaptic connection is modeled
by D parameters.

The straightforward hardware implementation of a sigmoid function is
not a feasible realization due that both, division and exponentiation in
1.14 are very demanding operations. In Tommiska (2003); Zhang et al.
(1996); Myers and Hutchinson (1989); Alippi and Storti-Gajani (1991);
Basterretxea and Tarela (2001); Amin and Curtis (1997) the authors
present different approaches to efficiently implement a sigmoid func-
tion.

First, let us to write the differentiation of equation 1.14, which is given
by

dy

dx
= y(1− y)

where x = V [k − d] and y = σ(V [k − d]).

Also, from figure 1.9 we can observe that the sigmoid function is sym-
metric at (0, 0.5). Hence, this fact permits us to compute only a half
part of the (x, y) pairs and to deduce the rest as follow:

yx>0 = 1− yx≤0
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or,
yx<0 = 1− yx≥0

FPGA-based hardware designs use these assumption to approximate
the sigmoid function in order to have an efficient implementation. In
this sense we consider the method of Alippi and Storti-Gajani (1991)
in order to implement the sigmoin function as an internal block of the
neuron module. This method bases its approximation on selecting an
integer set of breakpoints, and setting the y-values as power of two
numbers. Thus, the approximation writes:

y =
1
2 + b

4

2|a|
(4.14)

where a and b correspond to the integer and fractional parts respec-
tively of the fixed-point representation of V (Equation 4.12).

The hardware implementation of this sigmoid approximation function
is quite simple, since all is needed is a shift register and a counter to
control it Alippi and Storti-Gajani (1991)

• Spike generation, has the same structure that the discrete-time model.
Here, the membrane potential is compared with a given firing thresh-
old. The output of this block is sent to the router module (labeled as
Output Module in Figure 4.3).

Note: in both cases the external stimulus Iext is a constant value defined
in 4.9.

Output Module

The Output Module is a kind of router handled by the general control. The
goal of this module is to bridge the spiking activity of all neurons to a RAM
memory. In addition, this module has a register of N elements in the dis-
crete model and N × D elements in the analog model, where each element
has a size of Nbits_Potential bits. Thus, the last state of the membrane
potential of each neuron is temporarily stored in this register. Further these
values are used as a feedback toward the neurons.

4.5 GPU-BASED IMPLEMENTATION OF GIF-TYPE
NEURON MODELS

An heterogeneous programming scheme derives in a mix of languages
that are commonly used to perform the solution for a certain computational
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problem. In a particular opinion a well-crafted and powerful programming
scheme should be formed by Python & C++ & CUDA. This combination has
inspired this section of the work, it because we needed a powerful soft-
ware/hardware implementation in order to compare the performance of our
FPGA-based implementation. We consider the GPU-based implementation
as a combination of software and hardware due that the interface between
the GPU and the programmer is carried out by the CPU using a high-level
language, such as C/C++, python, etc. The main and the most consider-
able problem occurs here for GPU-based implementations due that the data
transferring between the GPU and the CPU could be derived in a neck-bottle
making slowly the communication between both devices.

Global
Memory

SN SN SN SN SN

SN

SN

SN SN

SN

SN

SN

SN SN

SN SN

SNSNSNSN

GRNG Sigmoid

Figure 4.6: A GPU-based architecture

The GPU-based implementation can be described by the next steps:

__host__

The develop of a GPU-based implementation begins with an initialization
on the host of the constant parameters, such as γ, I, N , D and T . Here, we
also allocate the space memory of the vectors V and Zin two ways:

• We allocate the three vectors that will be used in the host with the
subroutine malloc. The vectors are labeled as h_V (double *) and h_Z

(bool *), where the h means that will be exclusively used in the host.

• We allocate the three vectors that will be used in the device with the
subroutine cudaMalloc. The vectors are labeled as d_V (double *) and
d_Z (bool *), where the d means that will be exclusively used in the
device.

Since the synaptic weights vector is defined by the qualifier __device__
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it has no communication with the host.
Thus, the vectors are mapped as follow:

cudaMemcpy(d_V, h_V, N * T, cudaMemcpyHostToDevice)

cudaMemcpy(d_Z, h_V, N * T, cudaMemcpyHostToDevice)

The cudaMemcpy subroutine permits us to send the initial data (Vi[d]

and Zi[k], where k = {1...D}) from the host to device in order to simulate
the gIF-type models in the GPU.

__device__ (GRNG kernel)

The device is a CUDA function that can be only executed on the GPU.
We use this programming model to implement a gaussian random number
generator (GRNG) in order to generate the N × N × D synaptic weights.
This function uses the Mersenne Twister method Matsumoto and Nishimura
(1998) to generate the random numbers, which is based on the Monte Carlo
approaches Metropolis (1987). Then we use the Box-Muller Transform Box
and Muller (1958) to map the generated random number into a normal dis-
tribution.

We have chosen the Mersenne Twister method because it presents the
two main properties of the random number generators. On one hand it has
a long period of 219,937, which is enough long to generate several random val-
ues. On the other hand by its good statistical quality Knuth (1969); L’Ecuyer
(2006).

The GRNG kernel is called from the Neuron kernel as a simple C function.

__device__ (Sigmoid kernel)

The GPU-based architecture has another kernel called Sigmoid. In this
kernel we have perform the equation 1.14, such function is used by the model
when we consider the analog form of the gIF-type neuron models. It is also
a CUDA function, which is exclusively executed in the GPU.

The exponential operation (e) in equation 1.14 is completely supported
by the device using the __expf(x) function.

__global__ (SN kernel)

The SN kernel is the main element of the GPU-based architecture due
that it contains the description of the gIF-type neuron models. This kernel is
defined by the __global__ CUDA qualifier due that it is used in the host
but described in the device.

The kernel is invoked in the host as follow:
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cuSN<<<blocksPerGrid, MY_KERNEL_MAX_THREADS>>>(d_Z, d_V, leak, Iext, synapse)

where:
cuSN is the given name to the kernel.
Since the GPU internal structure is divided in three levels (grid, blocks
and threads), we need to define them. The blocksPerGrid and the
MY_KERNEL_MAX_THREADS define the GPU workspace where the network
will be mapped. These parameters depend on GPU card and the number of
neurons. Further this structure permits us to execute our model in parallel,
where all neurons are computed at the same time. The vectors d_V and d_Z

will contain the processed data in the device, in other words this variables
will contain the neural activity. The leak and Iext are the leak factor and
the external stimulus respectively. Finally the synapse parameter defines
the kind of synaptic connection that will used to compute the connections in
the simulation of the neural network.

__host__

Once that the data has been processed in the device it is recover by the
host using the next subroutines:

cudaMemcpy(h_V, d_V, N * T, cudaMemcpyDeviceToHost)

cudaMemcpy(h_Z, d_V, N * T, cudaMemcpyDeviceToHost)

Note: in order to obtain the maximum performance of this approach we
need consider large scale neural networks. Otherwise, we will not have an
important gain on the processing speed in comparison with a classical soft-
ware implementation. Besides the approach is highly suitable when learn-
ing mechanism are considered due to the high computational costs.

4.6 NUMERICAL RESULTS

In this section we present the numerical results of the FPGA-based im-
plementations of the gIF-type neuron models. Our experiments are based on
a precision analysis. Thus, this analysis has permitted us to reproduce spik-
ing dynamics at different fixed-point data representations and to evaluate
the behavior of these representations when they are exposed to parameters
that generate complex spiking dynamics. In tables 4.1 and 4.2 we show the
different precision values that we have considered to simulate our models
in the FPGA. More specific, these values correspond to the fractional part b
of the fixed-point representation, which has been studied in section 4.3 and
that permits us to map the equations of the gIF-type neuron models onto the
FPGA.
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Fixed-Point representation

b = 6 b = 7 b = 8 b = 9 b = 10 b = 11

Precision 0.984375 0.9921875 0.99609375 0.998046875 0.9990234375 0.99951171875

Table 4.1: Precision for different values of b, where b is the fractional part in
the fixed-point representation.

Fixed-Point representation

b = 12 b = 13 b = 14 b = 15 b = 32

Precision 0.99975585937 0.99987792969 0.99993896484 0.99996948242 0.99999999977

Table 4.2: Precision for different values of b, where b is the fractional part in
the fixed-point representation. (Continuation)

These values allow to define the fixed-point representation for the leak
factor (γ) and the external stimulus (Iext), since their representations only
depend on the fractional bits. However in order to define the the integer
part of the fixed-point representations for V and W a numerical test have
performed.

The numerical test consists of 10000 simulations in software of one of the
proposed neuron models in order to obtain an average of the number of inte-
ger bits for each variable. In the case of W we need to take into account that
their values are randomly chosen from a normal distribution N (µ, σ2). In
this sense we estimate the best representation for a from different variances
σ2 = C√

N
as we show in table 4.3.

Fixed-Point representation

C = 1 C = 2 C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10

N = 4 W a = 1 a = 2 a = 3 a = 3 a = 4 a = 4 a = 4 a = 4 a = 5 a = 5

N = 10 W a = 1 a = 2 a = 3 a = 3 a = 3 a = 4 a = 4 a = 4 a = 4 a = 4

N = 20 W a = 1 a = 2 a = 2 a = 3 a = 3 a = 3 a = 3 a = 4 a = 4 a = 4

N = 50 W a = 1 a = 1 a = 2 a = 2 a = 2 a = 3 a = 3 a = 3 a = 3 a = 3

N = 100 W a = 1 a = 1 a = 1 a = 2 a = 2 a = 2 a = 3 a = 3 a = 3 a = 3

Table 4.3: Number of integer bits a in the fixed-point representation.
These values have been estimated considering different normal distribution
N (µ, σ2), where σ2 = C√

N
.

Moreover in the case of V, we first estimate its minimum (Equation 1.9)
and maximum (Equation 1.10) values obtained during a simulation. Then
from equation 4.13 we define the number of integer bits a in order to map
V in the FPGA device. Note that equations 1.9 and 1.10 depend on the leak
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factor (γ). For this reason we have performed the numerical test for different
values of γ. The results are shown in 4.4, 4.5 and 4.6. The indicative of high,
medium and low resources usages are due to the value of γ, note that when
it is closer to 1 the value of a is bigger than when γ is closer to 0.

• γ = 0.95 (High resources usage)

Fixed-Point representation

C = 1 C = 2 C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10

N = 4 V a = 8 a = 9 a = 9 a = 10 a = 10 a = 10 a = 10 a = 11 a = 11 a = 11

N = 10 V a = 8 a = 9 a = 10 a = 10 a = 11 a = 11 a = 11 a = 11 a = 11 a = 11

N = 20 V a = 9 a = 10 a = 10 a = 11 a = 11 a = 11 a = 11 a = 12 a = 12 a = 12

N = 50 V a = 9 a = 10 a = 11 a = 11 a = 11 a = 12 a = 12 a = 12 a = 12 a = 12

N = 100 V a = 10 a = 11 a = 11 a = 12 a = 12 a = 12 a = 12 a = 13 a = 13 a = 13

Table 4.4: Number of integer bits a in the fixed-point representation.
These values have been estimated considering different normal distribution
N (µ, σ2), where σ2 = C√

N
.

• γ = 0.5 (Medium resources usage)

Fixed-Point representation

C = 1 C = 2 C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10

N = 4 V a = 4 a = 5 a = 6 a = 6 a = 7 a = 7 a = 7 a = 7 a = 8 a = 8

N = 10 V a = 5 a = 6 a = 6 a = 7 a = 7 a = 7 a = 8 a = 8 a = 8 a = 8

N = 20 V a = 5 a = 6 a = 7 a = 7 a = 8 a = 8 a = 8 a = 8 a = 8 a = 9

N = 50 V a = 6 a = 7 a = 7 a = 8 a = 8 a = 8 a = 9 a = 9 a = 9 a = 9

N = 100 V a = 6 a = 7 a = 8 a = 8 a = 9 a = 9 a = 9 a = 9 a = 9 a = 10

Table 4.5: Number of integer bits a in the fixed-point representation.
These values have been estimated considering different normal distribution
N (µ, σ2), where σ2 = C√

N
.

• γ = 0.1 (Low resources usage)
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Fixed-Point representation

C = 1 C = 2 C = 3 C = 4 C = 5 C = 6 C = 7 C = 8 C = 9 C = 10

N = 4 V a = 4 a = 4 a = 5 a = 5 a = 6 a = 6 a = 6 a = 6 a = 7 a = 7

N = 10 V a = 4 a = 5 a = 6 a = 6 a = 6 a = 7 a = 7 a = 7 a = 7 a = 7

N = 20 V a = 5 a = 5 a = 6 a = 6 a = 7 a = 7 a = 7 a = 7 a = 8 a = 8

N = 50 V a = 5 a = 6 a = 7 a = 7 a = 7 a = 7 a = 8 a = 8 a = 8 a = 8

N = 100 V a = 5 a = 6 a = 7 a = 7 a = 8 a = 8 a = 8 a = 8 a = 9 a = 9

Table 4.6: Number of integer bits a in the fixed-point representation.
These values have been estimated considering different normal distribution
N (µ, σ2), where σ2 = C√

N
.

In chapter 1 we have seen that the gIF-type neuron models present three
different regimes (neural death, periodic and chaotic) in their dynamics, thus
this phenomena is numerically demonstrated in this section. However in the
numerical tests we focus mainly on periodic and chaotic regimes. Taking as
reference the figure 1.8 the parameters have varied in our FPGA-based im-
plementations in order to reproduce these regimes. The results that we show
below demonstrate two things: first, the implementations that we have per-
formed are able to reproduce these regimes and second, a generalization on
the fixed-point representation can have drastic consequences on the desired
results due that the number of bits used to reproduce trivial dynamics (peri-
odic) is not the same than those to reproduce complex ones.

Analyzing the figures
We present a set of numerical results, where each figure contains three

subfigures: a raster plot of the simulated spiking activity, a plot with the
RMS error for the different precision levels and a plot with the Kullback-
Leibler divergence. The results are presented according to their complexity,
thus we start showing the trivial case, which correspond to periodic dynam-
ics, then we present intermediate regimes such as: quasi-periodic and semi-
chaotic, and finally we present complex dynamics (chaotic).

In order to understand the results shown in figures let us to describe each
element:

1. The raster plot represents both, the simulated dynamics in software
and the desired reproduction in hardware. The red lines (|) define an
initial activity, necessary since our models consider delays. The black
lines (|) correspond to the generated activity by the neuron model.

2. In the RMS error plot we calculate the difference between the esti-
mated membrane potential in software and hardware at different pre-
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cision levels. Also, we estimate the Victor-Purpura distance between
their respective spike trains, where:

• The green label ( ) indicates that the spiking activity as in soft-
ware (ZS) as in hardware (ZH ) is the same d(ZH ,ZS) = 0.

• The red label ( ) indicates that the spiking activity in software
(ZS) is different to that in hardware (ZH ), d(ZH ,ZS) 6= 0.

3. The KL (Kullback-Leibler) divergence plot shows a non-symetric mea-
sure of the difference between two probability distributions, P (ZS) and
Q(ZH).
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Figure 4.7: Numerical results on periodic dynamics (N = 4, T = 50).
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Figure 4.8: Numerical results on periodic dynamics (N = 4, T = 50).
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Figure 4.9: Numerical results on quasi-periodic dynamics (N = 10, T = 50).
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Figure 4.10: Numerical results on quasi-periodic dynamics (N = 10, T = 50).
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Figure 4.11: Numerical results on quasi-periodic dynamics (N = 4, T = 50).
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Figure 4.12: Numerical results on semi-chaotic dynamics (N = 4, T = 50).
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Figure 4.13: Numerical results on semi- chaotic dynamics (N = 4, T = 50).
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Figure 4.14: Numerical results on semi-chaotic dynamics (N = 4, T = 50).
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Figure 4.15: Numerical results on chaotic dynamics (N = 10, T = 50).
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Figure 4.16: Numerical results on chaotic dynamics (N = 10, T = 50).
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Figure 4.17: Numerical results on chaotic dynamics (N = 10, T = 50).
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• The raster plots correspond to dynamics that our FPGA-based imple-
mentations are able to reproduce.

• The RMS error gives us the difference between real (software) and
estimated (hardware) membrane potential. However, from the RMS
error we are not able to define if the spiking dynamics are the same.
For this reason we have also estimated the Victor-Purpura distance
between both rasters. Thus, we have results with 100 % of certainty.
Moreover if we observe the evolution of these graphs we can observe
an interesting phenomena:

– When the raster plot evidences a periodic activity, the resources
usage in the FPGA are low. This fact is due that in a periodic
dynamic the membrane potential in the cell is constantly reseted.
Thus, the error is not propagated throughout the trajectory.

– Otherwise, when the raster plot evidences a chaotic activity,
the resources usage in the FPGA are high. Contrary to the peri-
odic case, in a chaotic dynamic the membrane potential variates
constantly during a long period. Thus, each variation induces a
cumulative effect on the error.

• The Kullback-Leibler divergence provides a “distance metric” on
the space of probability distribution. From this, we can establish the
minimum data representation required by the hardware implemen-
tations in order to reproduce a spiking activity. Further even if the
hardware has not reproduced exactly the spiking activity than software
some statistical methods can be applied to reconstruct the original one.

4.6.1 Synthesis and Performance

The synthesis of the designs has been carried out on a XC2VP100 FPGA of
the Virtex II Pro family using the Xilinx ISE Project. The number of neurons
that we can map onto the device is largely variable. This fact is due to the
existence of different activity regimes (see figures 4.8, 4.9, 4.10, 4.11, 4.12,
4.13, 4.14, 4.15, 4.16 and 4.17) in the gIF-type neuron models and also to the
different normal distributions (table 4.3) that we have considered to define
the synaptic weights. However, since we have developed a reconfigurable
and general architecture, it can be adapted to each situation. In order to
give an idea about the resources usage we evaluate the characteristics of the
device and the gIF-type neuron models.

The XC2VP100 FPGA contains 44096 slices and 444 multipliers. These
parameters have an important role on the number of neurons that we want
to map onto the FPGA. In the case of the analog-spiking neuron model, we
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can only map 30 neurons (30× 30× 4 synapses) due that the model incorpo-
rates multipliers to compute the synapse current. The maximal frequency is
46 MHz, it is 46000 times faster than real time, since we have established
an Euler integration time step of 1 ms. Moreover the discrete-time spiking
neuron model has a huge difference with the analog form of the gIF-type
models. The description of this model allows a quasi-direct mapping onto
the FPGA due that the synaptic activity is described by the firing state of
the neurons. Thus we can map at least 1000 neurons fully-connected, it is
1000 × 1000 × 4 synapses with a maximal frequency of 94 MHz, it is 94000
times faster than real time due that we consider the same Euler integration
time step than the analog case. In both cases we have considered the maxi-
mum resources usages, it means that the models can reproduce either trivial
dynamics (periodic) or complex dynamics (chaotic).

Now, as we described in this chapter we have also implemented a GPU
kernel in order to compare the performance of the FPGA-based implemen-
tations. However, for small networks such as in the analog case there is
a difference almost negligible between the simulation in classical software
(C++) and the GPU kernel. This fact is due that in the data transference pro-
cess from the GPU to the PC the gain of the parallel processing carried out
by the device is lost. Nevertheless, if we consider the discrete-time neuron
model with 1000 neurons, we gain a factor of 50 on classical software. This
speeds are far from those in the FPGA, however this factor can be elevated
until 1000 or more with a larger neural network or a better GPU card, since
we have implemented our GPU kernel on a Alienware PC with a NVIDIA
GeForge GT 335M card. The advantage of the GPU kernel is that we can
consider larger networks than a FPGA for comparative hardware.
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Part V

Conclusion
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CHAPTER 5

CONCLUSION

Considering a deterministic time-discretized spiking network of neurons
with connection weights having delays, we have been able to investigate
in details to which extend it is possible to reverse-engineer the networks
parameters, i.e., the connection weights. Contrary to the known NP-hard
problem which occurs when weights and delays are to be calculated, the
present reformulation, now expressed as a Linear-Programming (LP) prob-
lem, provides an efficient resolution and we have discussed extensively all
the potential applications of such a mechanism, including regarding what is
known as reservoir computing mechanisms, networks with or without a full
connectivity, etc..

At the simulation level, this is a concrete instantiation of the that rasters
produced by the simple model proposed here, can produce any rasters pro-
duced by more realistic models such as Hodgkin-Huxley, for a finite horizon.

At the computational level, we are here in front of a method which allows
to “program” a spiking network, i.e. find a set of parameters allowing us
to exactly reproduce the network output, given an input. Obviously, many
computational modules where information is related to “times” and “spikes”
are now easily programmable using the present method. This idea has also
extended to consider both, “analog” and “spike” computations, the fact that
we have studied both the unit analog state and the unit spike firing reverse-
engineering problems (corresponding to the L and LP problems), tends to
show that we could generalize this method to networks where both “times”
and “values” have to be taken into account. The present equations are to be
slightly adapted, yielding to a LP problem with both equality and inequality
constraints, but the method is there.

At the modeling level, the fact that we do not only statistically repro-
duce the spiking output, but reproduce it exactly, corresponds to the com-
putational neuroscience paradigm where “each spike matters” Guyonneau
et al. (2005); Delorme et al. (2001). The debate is far beyond the scope of
the present work, but interesting enough is the fact that, when considering
natural images, the primary visual cortex activity seems to be very sparse
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and deterministic, contrary to what happens with unrealistic stimuli Bau-
dot (2007). This means that it is not a nonsense to address the problem of
estimating a raster exactly.

Furthermore, exact input/output matching is required as a basic tool in
sophisticated learning paradigms such as robust learning schemes.

As far as modeling is concerned, the most important message is in the
“delayed weights design: the key point, in the present context is not to have
one weight or one weight and delay but several weights at different delays”.
We have seen that this increases the computational capability of the net-
work. In other words, more than the connection’s weight, the connection’s
profile matters.

Furthermore, we point out how the related LP adjustment mechanism is
distributed and has the same structure as an “Hebbian” rule. This means
that the present learning mechanism corresponds to a local plasticity rule,
adapting the unit weights, from only the unit and output spike-times. It
has the same architecture as another spike-time dependent plasticity mech-
anism. However, this is supervised learning mechanisms, whereas usual
STDP rules are unsupervised ones, while the rule implementations is en-
tirely different.

To which extends this LP algorithm can teach us something about how
other plasticity mechanisms is an interesting perspective of the present
work. Similarly, better understanding the dynamics of the generated net-
works is another issue to investigate, as pointed out previously.

Although, we have studied some mechanisms in order to determine a
reasonable number of hidden neurons, since we have observed that the role
of these hidden layer used to span the linear space corresponding to the
expected raster, as detailed in section 2.2. This opens a way, not only to
find a correct set of hidden units, but a minimal set of hidden units. In this
sense we have also started to explore some statistical methods Cessac et al.
(2009). However, even if we have established a statistical relation between
the input and the hidden neurons, the number of hidden neurons is expected
to remain large. This is thus an open question to be further investigated.

Moreover in chapter 3 we have defined a theoretical framework to gen-
eralize the exact parameters estimation to an universal approximator have
been pointed out by considering a mollification in the spiking metrics. Thus,
this mollification allows us to make more explicit each operation when we
compare two spiking dynamics. Direct applications of this idea include un-
supervised or reinforcement learning schemes.

At the hardware implementation level we have pointed out two aspects:
first, the different activity regimes (periodic, chaotic and intermediate) ob-
served in the gIF-type neuron models have been reproduced by the developed
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FPGA-based implementations. Second, these activity regimes have an im-
portant effect on the design process of a FPGA-based architecture due that
the precision depends on the activity that you want to reproduce. Both issues
have been addressed in detail in this work.
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WORK

Journal papers

1. H. Rostro-Gonzalez, B. Cessac and T. Vieville. Exact spike-train repro-
duction with a neural network model. Submitted to Neurocomputing

2. B. Cessac, H. Rostro, J.C. Vasquez and T. Vieville. How Gibbs distri-
butions may naturally arise from synaptic adaptation mechanisms. A
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565-602 (2009).

Conference papers
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spiking neural networks. Proceedings in Neurocomp 2010. Lyon,
France.
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