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Abstract 
 

We present results of theoretical and computer study of the kinetics of chain-like 
aggregate formation in suspensions of non-Brownian magnetizable particles. An analytical model 
for calculation of the time-dependent function of distribution over chain size is suggested. This 
model describes the evolution of the chain structure due to the chain-chain aggregation. In order 
to verify   this model we have compared it with the results of computer simulations of two-
dimensional model of this suspension. Results of computer simulations and of the analytical 
model are in reasonable agreement up to 5% of the surface concentration of the particles.  
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1. Introduction 
 
 

Magnetorheological suspensions (MRS) are suspensions of micron-sized magnetizable 
particles in a carrier liquid. Right after the first synthesis in the 40's, they attract a considerable 
interest of investigators and engineers due to rich set of unique physical properties valuable for 
many modern high technologies. In part, under the action of applied magnetic field, viscosity and 
other rheological properties of MRS can be changed up to several orders of magnitude. The 
ability to control rheological properties and behavior of MRS find active application in the 
machine building, instrument engineering, orthopedics and many other technologies. Overview of 
works on the physics of MRS and their practical applications can be found in ref. [1].  

The strong dependence of the rheological and other properties of MRS on the applied field 
can be explained by the aggregation of the particles in linear chains, dense column-like or other 
heterogeneous structures aligned along the field.  When these structures span the chamber with 
MRS and form “bridges” between the chamber walls, the rheological state of suspension changes 
from a flowing fluid to a quasy-elastic material. Elastic moduli of the material strongly depend on 
the applied field. Simultaneously with the “fluid – elastic material” transition, the suspension 
electro-conductivity changes up to several orders of magnitude. Both of these effects are used in 
many modern technologies.  

Obviously, the practical applications of MRS are determined by the rate of change of their 
physical properties after application of the field.  Thus, study of kinetics of the internal 
transformations in magnetic suspensions is quite important both from the scientific and practical 
points of view.  

To our knowledge, the first model of the kinetics of evolution of the chain ensembles in 
the systems of magnetizable particles has been developed by M.Doi et al [2]. In this theory all 
chains have the same size at any given instant. Obviously, it is a very crude approximation. 
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Several numerical simulations have focused on the exponent of the growth of the chain average 
size S with time: S(t)∝ tz and have found z between 0.5 and 0.7 . The last limit corresponds to the 
case where dipolar forces dominate Brownian forces [3], [4].   A model of aggregation of 
Brownian magnetic particles in the linear chains has been developed in ref. [5]. Results of this 
model are in a good agreement with experiments. However the theoretical results were 
determined by the assumption of strong influence of the Brownian effects on the kinetics of the 
chain formation.   

At the same time in many cases the Brownian phenomena in MRS are suppressed – the 
energy of magnetic interaction between the micron-sized particles is much larger than the thermal 
energy kT.  In the presented work we consider kinetics of the chain formation in a system of 
magnetizable non-Brownian particles.  

The structure of this paper is the following. In section 2 theoretical model of the 
aggregation process is presented. In section 3 direct computer simulations of the trajectories of the 
particles are carried out. Comparisons of the results of the computer simulations with that of 
analytical model are presented in the section 4.  

 
2. Theoretical model 
 

We consider suspension of identical non-Brownian magnetizable particles in a flat gap. 
Thickness of this gap is much less than the sizes of the boundary plates. The system is subjected 
to homogeneous magnetic field H perpendicular to the gap plane. We suppose that under the field 
action the particles aggregate into linear chains aligned along the field. This situation is illustrated 
in Fig.1.  

 
Fig.1 

Sketch of the system under consideration 
 
 
Let us denote by gn the number of n-particle chains per unite volume of the system. Our 

aim is to determine the evolution of this function with time.  
To this end we use the following approximations. First and foremost we neglect any 

Brownian effects in this system. It follows thence that we can also ignore destruction of the chains 
due to the thermal motion of the particles. This approximation is justified when the energy of 
magnetic interaction between particles is much more than the thermal energy kT.  Second, we take 
into account only pair interaction between the chains, ignoring the simultaneous interaction 
between more than two chains. This approximation can be used when volume concentration ϕ of 
the particles in the system is relatively low, about several per cent. It should be noted that for 
concentrated MRS one can expect the formation of dense solid-like bulk columns rather than that 
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of the linear chains [1]. Theoretical analysis of the equilibrium phase transitions in MRS with 
formation of the dense phases of the particles is given in ref. [6]. The fact of appearance of only 
chains in the considered systems has been checked in our computer simulations.  

Next, for the maximal simplification of the analysis, we suppose that the chains attach to 
each other only by their extremities and neglect their lateral aggregation.  

In the framework of these approximations, the evolution of the population of chains can be 
represented by the following system of kinetic equations:  
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Here nmα  is a kinetic coefficient of amalgamation of the n- and m- particle chains into a chain 

with (n+m) particles,  N   is  the maximal possible number of particles in a chain. This number is 
determined by the gap thickness. Coefficient ½ at  the first term in eq.(1) is used to avoid counting 
twice the interaction between two chains of different sizes. The term with k=n/2 (when n is even) 
is taken into account two times in the first sum of (1), thus one time - in the first term of the right 
part of (1). The Heaviside function Θ  as well as the upper limit of the sum in the square brackets 
in (1) implies that the maximum number of particles in a chain is N. The second term in these 
brackets takes into account that when two n-particle chains merge, two n-chains disappear.   
     According to their physical meaning, the coefficients �nm must be symmetrical with respect to 
the indexes n and m. Then, one can show that equation (1) automatically satisfies to the 
normalization condition 
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=
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N
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Obviously the following equality const=�/V must be fulfilled, where V is the particle 
volume, and ϕ is the volume fraction of the particles.  

Let us determine now the kinetic coefficient knα  .  To this end we consider two chains 

consisting of n and k particles respectively (Fig.2).   

 
 

Fig.2. Sketch of the interacting chains 
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We denote by knJ   the flux of k-particle chains towards the n-particle one, i.e. nkngJ  is the 

number of k-particle chains which join to n-particle chains per unit  time in  a unit  volume of the 
system. 

In the framework of Eq.(1) we have:  
 

kknkn gJ ⋅= α          (2) 

(here there is no summation over index k). 
On the other hand this flux is defined by  
 

ds

s

GJ

attr

kkn � ⋅= )(v)( r rr         (3) 

 
Here Gk is the number density of k-particle chains at the distance r from the n-particle 

chain, whereas gk  is the mean number of  these chains in a unit  volume; rv  – is the relative radial 

velocity between   a k- chain and a n-chain,  attrs   is the part of the surface of a particle at the 

extremity of the n-particle chain, corresponding to attraction between these chains.  This situation 
is illustrated in Fig.2.  

The main problem now lies in the fact that the function Gk(r) is unknown. We need to 
express this function through the mean magnitude gk which takes place in the kinetic equations 
(1).  

An exact solution of this problem is very complicated and cumbersome. However the 
following physical considerations allow us to get simple estimates, which lead to reasonable 
agreement with the results of computer simulations.  

Below we will discuss two kinds of approximations. The first one is simple and leads to 
good agreement with computer simulations for weakly concentrated systems with the particle 
concentration not more than 1-2%. However, this model does not allow to describe kinetics of the 
aggregation of suspensions with the particle concentration of about 3-5%.  

The second approximation is a little more complicated, however leads to reasonable 
agreement with the simulations up to 5% of the particle concentration.  

Weakly concentrated systems.  The order of magnitude of the the mean distance R 
between the nearest particles in suspension can be estimated as   

3/1−≈ ϕaR           (4) 

 where 2/da =   is the particle radius.  It allows us to associate the mean concentrationkg   of the 

chains in suspension with the local concentration ( )kG R   at the distance R from extremity of the 

n-particle chain.  Strictly speaking, this distance between the n- and k-particle chains must be 
determined by concentrations of these chains, not by the total particle concentrationϕ  . However 
this modification would lead to more complicated calculations.  We will see below that the simple 
estimate 3/1−≈ ϕaR  leads to a good agreement with the computer simulations for weakly 
concentrated suspensions.   

Due to the particle number conservation, the flux through the surface sattr  is equal to the  
flux through the surface Sattr at the average distance R . Thus, instead of (3) we can write down:  

 

rv ( )kn k

attr

J g dS

S

= � R         (5) 

 
Now we need to calculate the radial velocity vr. This velocity can be determined from the 

equation   
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( )rv |kn
kn r R

U

r
β =

∂= −
∂

R         (6) 

 
where Ukn is potential energy of interaction between these chains, �kn  is the Stokes coefficient of 
mutual mobility of the chains.  
In order to estimate Ukn we will suppose that every particle in the chain has the same magnetic 
moment m  as a single particle in the magnetic field H. In other words we will neglect the mutual 
interaction between the different dipoles of the chains. This approximation is widely used in the 
theory of magnetic suspensions [1].  In this approximation the energy Ukn equals to the sum of the 
dipole-dipole interaction of all k particles of the first chain with all n particles of the second one.   

We can approximate this double sum by using the method of the image charges.  When the 
distance between the chains is more than the diameter d  of the particle, the energy of the total 
dipole-dipole interaction between all particles in these chains formally is nearly  equal to energy 
of the Coulomb interaction between four image charges q=±m/d situated on the poles of the 
extremity particles of the chains [1]. These charges are shown in Fig. 3.  

 
 

Fig.3. Image charges on the poles of the chains. 
 

Because the total volume concentration � of the particles is supposed small, the distance 
Rkn between the particles on the chain extremities is much more than the particle diameter d. That 
is why the “four charge” approximation between the chains can be used instead of the double 
summation of the dipole-dipole interaction of all particles in the chains. 

One can estimate the mobility coefficient knβ  by modeling each k-particle chain as 

ellipsoid of revolution with the minor and major axes equal to d and kd respectively. The volume 
of this ellipsoid is equal to the total volume of the particles in the chain. Analytical expressions 
for the ellipsoid mobility coefficients are well known (see, for example, [7]).  Generally speaking 
the ellipsoid mobility presents a tensor.  For maximal simplification of calculations, taking into 
account that at the moment of aggregation, the axes of the chains are nearly parallel to the line  
of attraction force between them, we will use component of this tensor corresponding to the 
motion along the ellipsoid major axis. Keeping in mind that knβ  corresponds to the relative 

velocity of two attracting chains, we get [7]:   
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Having estimated knU  in the approximation of four image charges and using Eq. (6), we 

come to the following expression for the radial relative velocity of the chains 
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The angle θ is illustrated in Fig.1. 
It is convenient to define the formal velocity of the chain attraction as: 

F
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>
≤

=
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0v,v
v

r

rr*
r  .  

It has been noted that we neglect lateral aggregation of chains. Therefore we consider only 
the positions of the chains corresponding to 2/πθ < .  

The flux knJ  at a distance r=R is: 

 

�=
*

*v
attrS

rkkn dSgJ          (9) 

 
Combining relations (2), (6) and (8), we come to the following estimate: 
 

�=
*

*v
attrS

rkn dSα           (10) 

The integrals in (10) can be easily calculated numerically.  
Moderately concentrated suspensions.  Our analysis shows that the estimate of the 

distance between interacting chains 3/1ϕaR=  leads to a bad agreement with results of computer 
simulations when concentration of particles exceeds three percent. The reason for this 
disagreement lies in the fact that the mean distance between chains with n and k particles depends 
on concentrations gn and gk of these chains. This is not significant when the particle volume 
concentration is about one percent, however it becomes important for higher concentrations. To 
take it into account we will estimate the characteristic distance between the chains as 

( ) 3/1);max(~ −
nkkn ggR         (11) 
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The numerical multiplier in the right part of (11) cannot be determined from simple 
considerations but can be found from comparison of the analytical calculations with the results of 
laboratory or computer experiments. 

After this modification of the characteristic distance between chains, the formulas (8-10) 
for the radial velocity vr, flux Jkn and the kinetic coefficient αkn formally do not change. However 
now the surface of integration Sattr corresponds to the part of spherical surface with the radius Rkn 
on which the radial velocity vr is negative. Therefore, the position of this surface as well as the 
kinetic coefficients αkn depend on the concentrations gn and gk. 

Now we need to estimate the particle magnetic moment m. Under assumption of constant 
permeability µp of the particle, we have [8]: 

 

H
d

m
p

p

2

1

2
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 where 0µ  is the vacuum permeability. Substituting (12) into (8-10), and, then into (1), we come to 

the final form for the equations of evolution of the size distribution. Assuming that at the onset of 
aggregation all particles are isolated, we get the following initial conditions for eqs. (1): 

 

0=t ,  1

1
nn V
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Here 1nδ  is the Kroneker symbol.   

The equations (1), (13) can be solved numerically.  
 
3. Computer simulations.  
 

Three-dimensional computer model of the MRS aggregation requires too long time of 
calculations.  In order to verify the main ideas of the analytical model, we use here a two-
dimensional computer model. In the framework of this model the disk-shaped particles are 
situated in a plane parallel to the applied magnetic field H . Magnetic moment of the particle in 
the computer simulation, like in the analytical model, is calculated by the formula (12). It  should 
be stressed that we use the two-dimensional simulation only to verify  the analytical model, not to 
describe a real system of magnetic disks. Therefore we can use here the formula (12), which is 
valid for magnetizable spheres. 

In the simulation we take into account magnetic interactions between all particles and 
ignore hydrodynamical interactions between the particles.  

Neglecting inertia, the equation of motion of the i-th particle is:  
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Here ir  is the position of i-th particle, ji

m
,F  and ji

st
,F  are the magnetic and sterical forces of 

interaction between the i-th and j-th particles.  
In the framework of the dipole-dipole interaction, the radial and tangential components of 

the magnetic force can be calculated as:  
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Here jir ,  is the distance between the particle centers, im  and jm  are their magnetic 

moments, θ  is the angle between the applied field H  and the radius vector rij.  
The short range force of sterical interaction between particles preventing their interpenetration 
was simulated as follows. In the program of the computer experiment, upon the interpenetration 
of particles (r ij � d), the repulsive force was applied to particles, the value of which makes them to 
leave the region of interpenetration during one time step. At the same time, the force of magnetic 
attraction was equated to zero under condition r ij � d.   As soon as the particles separate under the 
repulsion force (r ij>d), we put this force equal to zero and reintroduce the magnetic force.  

We have used about 4000 particles in the computer simulations and solved numerically 
equations (14) for all particles. At the onset of simulations a random particle distribution on the 
plane has been created. The time step has been chosen so that the particle displacement for a 
given step would not exceed d/20.  The particles are in a square region which is determined by 
repulsive boundary conditions. Some results of our simulations are illustrated in Figs. 4 and 5. 
The viscosity of the carrier liquid, size of the particles and the magnetic field correspond to 
experiments made with nickel particles that we are currently doing in order to test this model.  

 
 

 
 

Fig.4  
The snapshots of the simulations for the time t1=450 s after beginning of aggregation.  

       Parameters of the system: magnetic field H=13130 A/m; the carrier liquid viscosity η=20 Pa⋅s; 
diameter of the nickel particle 3 �m; the surface concentration of the disks f=0.014. 
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Fig.5 
Same as in Fig. 4 for the time t2=900 s after beginning of aggregation 

 
 

 
 
4. Comparison between theory and computer simulations 

 
In this part we compare results of the analytical model with the simulations.  
It was noted in the part 3 that in order to avoid too long time of calculations, the 

simulations have been carried out in two-dimensional approximation, in which the particles were 
modeled as disks able to move only in the plane, parallel to the applied field. 

In order to adapt 3D theoretical model to 2D computer simulations, we need to make the 
following transformations. First, instead of the volume concentration � of the spherical particles 
we must use the surface concentration f of the disks.  Second, in the approximation of weakly 
concentrated suspension the mean distance R between chains instead of (4)  can be estimated as  

 
2/1−≈ afR           (16) 

 
Third, while calculating the flux knJ  in the expression similar to (9), one should integrate 

*v r  over an arc *
attrl , on which  the chains attract (vr<0). Next, instead of volume of the spherical 

particle V, the cross section S of the particle must be used. 
As a result, the kinetic equations for the 2D model have the same form (1) as for the 3D 

case, however the coefficient knα  should be calculated by the formula 

�=
*

*v
ttral

dlrknα           (17) 

instead of eq.(10).  Integral in (17) can be calculated numerically.   As in the 3D case, we 
integrate over the region -π/2<θ<π/2.  

Some results of the computer simulations as well as numerical solutions of the model 
(1,16,17) for the weakly concentrated suspension are presented in Fig. 6. The expressions for 
coefficient knβ of the mutual mobility of the chains, for the modified radial velocity *v r  as well as 

for the particle magnetic moment m  have been used in the forms (7), (8) and (12)  in both cases 
of the analytical model and computer simulations.  
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Fig.6 
 

Relative surface concentration fnStg� nn /)( 1=  of the n-particle chain vs. number n  of particles in the 

chain, S is the cross section of the particle area, f  is the total surface concentration of particles. Physical 
parameters of the system are the same as in Fig. 4 and Fig. 5.  Solid lines - results of analytic model,  
dots – simulations. f =0.014. a) Time t after the field was switched on, is 50s; b)  t=900s. Size of dots 
equals to the simulation error bar. 

 
Theoretical and computer results are in quite good agreement for any time after onset of 

the aggregation. The zigzags of the solid lines (analytical model) here and below appear because 
we deal with integer variations of n.  

Modification of the model to the moderately concentrated systems leads to the estimate  

( ) 1/ 2
max( ; )kn k nR C g g

−= ⋅  instead of  eq.(11). The numerical multiplier C has been fitted by 

comparison of analytical calculations and computer simulations. As a result the form has been 
chosen: 

( ) 2/1);max(
2

1 −= nkkn ggR         (18) 

Figures 7, 8 show distribution functions gn calculated by the model (1), (17), (18) and results of 
computer simulations with the surface concentrations f = 0.014 and f = 0.05 respectively.  
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Fig.7 
Same as in Fig.6a; analytical calculations (solid line) made in the approximation (18) of moderately 
concentrated system instead of (16);  f=0.014;  a) t=50 s; b) t=900 s   
 
 
 
 

 
Fig.8 

Same as in Fig.7 for the area fraction f=0.05. a) t=50 s; b) t=900 s 
 
 

 
 
In spite of the strong simplifications, the theoretical model leads to reasonable agreement 

with the computer simulations. For the systems with the concentration f of about 0.014 both 
models (16) and (18) are quite accurate, however the model (16) is significantly simpler for 
calculations. That is why it can be recommended for analysis of chaining in weakly concentrated 
systems. 

 
Conclusion 

 
Theoretical model of kinetics of evolution of chain-like aggregates in suspensions of non-
Brownian magnetizable particles is proposed. In spite of strong simplifications, results of this 
model are in reasonable agreement with results of computer simulations for the two-dimensional 



 12 

version of the model, when the surface concentration of the particles is about several per cent.    
This model can be considered as a robust basis for theoretical modeling of kinetics of the chaining 
in low- and moderately concentrated magnetorheological and other polar suspensions of non-
Brownian particles. In particular it can be used to study conductivity percolation in composites in 
which metal particles form chains aligned along magnetic field. Since the branch-like, dense drop- 
and solid-like aggregates are ignored in this model, it cannot be applied to concentrated 
suspensions where these bulk structures are quite typical. A further step in the model would be to 
take into account lateral agregation between chains which should increase its range of 
applicability. Such improvement is under consideration as well as experiments with a monolayer 
of magnetizable particles.  
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Figure captures 
 
Fig.1. Sketch of the system under consideration 
Fig.2. Sketch of the interacting chains 
Fig.3. Image charges on the poles of the chains. 
Fig.4. The snapshots of the simulations for the time t1=450 s after beginning of aggregation.  
 Parameters of the system: magnetic field H=13130 A/m; the carrier liquid viscosity η=20 Pa⋅s; diameter 
of the nickel particle 3 �m; the surface concentration of the disks ϕ=0.014. 
Fig.5. Same as in Fig 4, for the time t2=900 s after beginning of aggregation 
Fig.6. Relative surface concentration fnStg� nn /)( 1=  of the n-particle chain vs. number n  of particles 

in the chain. S is the cross section of particle area, f  - the total surface concentration of particles. 
Physical parameters of the system are the same as in Fig. 4 and Fig. 5.  Solid lines - results of analytic 
model, dots – simulations. f =0.014. a) Time t after the field was switched on, is 50s; b)  t=900s. Size of 
dots equals to the simulation error bar. 
Fig.7 Same as in Fig.6a; analytical calculations (solid line) made in the approximation (18) of moderately 
concentrated system instead of (16);  f=0.014;  a) t=50 s; b) t=900 s   
Fig.8. Same as in Fig.7 for the area fraction f=0.05. a) t=50 s; b) t=900 s 
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