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ANALYSIS OF REINFORCED CONCRETE SHELLS  

WITH TRANSVERSE SHEAR FORCES 

By Mauro Schulz1 and Maria Paola Santisi d'Avila2 

ABSTRACT:  

This research investigates the simultaneous effect of in-plane and transverse loads in reinforced 

concrete shells. The infinitesimal shell element is divided into layers (with triaxial behavior) that 

are analyzed according to the smeared rotating crack approach. The set of internals forces 

includes the derivatives of the in-plane components. The corresponding generalized strains are 

determined using an extension of the equivalent section method, valid for shells. The formulation 

yields through-the-thickness distributions of stresses and strains and the spatial orientation of the 

concrete struts. Although some simplifications are necessary to establish a practical first-order 

approximation, higher-order solutions could be developed. Despite the fact that constitutive 

matrices are not symmetric, because of the tension-softening formulation, the equilibrium and 

compatibility conditions are satisfied, the stiffness derivatives are explicitly calculated and the 

algorithms show good convergence. The formulation predicts results that agree with 

experimental data obtained by other researchers. Although comparative analysis with additional 

experimental data is still necessary, the proposed theory provides a promising solution for the 

design of reinforced concrete shells.  
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INTRODUCTION 

Reinforced concrete shell structures are widely employed because they provide both 

outstanding performance and architectural beauty. The design of reinforced concrete shells 

involves the determination of reinforcement that is not necessarily arranged in the direction of 

the principal internal forces. The mechanical model must consider the entire set of in-plane and 

out-of-plane forces, bending and twisting moments, as well as the spatial distribution of stresses 

and strains. 

After early investigations regarding the analysis of reinforced concrete plates and shells, 

Falconer (1956) establishes the equilibrium equations of a plane stress element, considering the 

axial forces of the reinforcement, placed in two different orientations, and a compression field of 

concrete stresses, the direction of which remains statically indeterminate.  

Using the plasticity approach, Nielsen (1964) defines design equations for membrane 

elements. Wood (1968) and Armer (1968) organize a similar procedure for the flexural design of 

reinforced concrete slabs. Baumann (1972a; b) considers membrane and flexural forces 

simultaneously, by distributing the internal forces between two plate elements at the upper and 

lower faces of the shell. Each plate is analyzed separately, using the compatibility approach. 

Baumann evaluates the direction of the struts of each membrane element by the principle of 

minimum work, arriving at a linear-elastic approximation of the general equation later proposed 

by Mitchell and Collins (1974). The total reinforcement is minimized taken into account the 

requirement of minimum secondary reinforcement. The shell design procedure recommended by 

CEB and FIP (1982) applies the two-plate approximation together with the plasticity approach, 

to arrive at a simple design method that is equivalent to the compatibility formulation, where the 
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contribution of the secondary reinforcement is neglected. 

The shell formulations discussed above are extensively applied, but they do have the 

following limitations: the thickness and the lever arm of the upper and lower membrane elements 

are not explicitly calculated, the materials are not represented by nonlinear stress-strain 

relationships and the beneficial effects of the compression reinforcement are not taken into 

account. Schnobrich (1977) reports early applications of multi-layered models in finite element 

analysis of reinforced concrete structures. Multi-layered models are used by Schulz (1984) and 

Kirschner and Collins (1986) to verify the punctual response of reinforced concrete shells to in-

plane forces, and twisting and flexural moments. The assumption that plane sections remain 

plane in any direction yields the biaxial strains of each layer. The corresponding stresses are 

obtained by applying nonlinear constitutive models.  

The design of shells for transverse shear forces involves additional considerations. Schulz 

(1988) and Marti (1990) assume that shear stresses are distributed according to the 

corresponding principal direction, since no shear force is acting perpendicularly. The principal 

shear force, which is determined by the square root of the sum of the squares of the components 

in any system of coordinates, is used as a reference for simplified design formulas.  

Analytical models which consider flexural and shear effects simultaneously are also 

investigated in the literature. Kirschner and Collins (1986) include out-of-plane shear by dividing 

the reinforced concrete shell into three-dimensional elements. Three-dimensional constitutive 

relationships are applied assuming a perfectly uniform stress distribution of transverse shear 

stresses in the core of the shell. Adebar (1989) and Adebar and Collins (1994) analyze the 

punctual response of a shell element as subjected to in-plane loads only. The simplified model is 
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corrected by complementary in-plane forces, which are evaluated by assuming a shear stress 

value at the midpoint of the shell and applying three-dimensional constitutive relationships at 

this point. Polak and Vecchio (1993) investigate transverse shear in reinforced concrete shells 

using a finite element based on Reissner-Mindlin plate theory. By assuming that plane sections 

remain plane but not necessarily normal to the mid-surface, transverse shear strains are 

considered constant along the thickness of the shell.  

The last models represent a significant advance, but the evaluation of transverse shear stresses 

and strains can be improved. The present research investigates a mechanical model for reinforced 

concrete shells considering simultaneous in-plane and transverse shear forces. The infinitesimal 

shell element is divided along the thickness into infinitesimal three-dimensional elements, which 

respect three-dimensional constitutive relationships. The implementation is based on the smeared 

rotating crack approach and the shear stiffness terms are deduced accordingly. The theory applies 

to shells, the equivalent section method for beams, proposed by Diaz (1980) and Diaz and Schulz 

(1981). Through-the-thickness distributions of stresses and strains are established considering 

equilibrium and compatibility conditions. The formulation yields the spatial orientation of the 

concrete struts and the transverse shear stresses are not necessarily oriented according to the 

principal shear force. Some simplifications are necessary to establish a first-order approximation, 

which is recommended for design applications. However, it is shown how to develop higher-

order solutions for a theoretically precise response.  

SIMPLIFYING HYPOTHESES 

The discussion here is limited to small displacements. Disturbed states of deformation at 

boundaries and load application points are not taken into account. The following hypotheses are 
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introduced at the outset: 

1. Eventual cracks are considered uniformly distributed and concrete stresses and strains are 

stated as continuous and derivable functions. The spatial orientation of the smeared struts 

varies along the element thickness.  

2. No slip is considered between concrete and reinforcing bars. Increments of steel and concrete 

strains are assumed to be equal on an average basis. 

3. The principal directions of concrete stresses and strains are considered coincident. 

4. Boundary and volume forces are not taken into account in the interest of simplifying the 

formulation. 

5. The resultant of concrete and steel stresses in the z -direction is small and, hence, neglected. 

6.  In-plane strains are linearly distributed along the thickness (generalized Bernoulli’s 

hypothesis). 

REINFORCED CONCRETE THREE-DIMENSIONAL ELEMENT 

A shell element is presented in Figure 1. The z -axis is normal to the mid-plane of the shell 

and two-way reinforcement layers are placed according to x - and y -axes. Although this steel 

distribution is frequent and simplifies the formulation, it is possible to consider skew and 

multidirectional reinforcement through additional coordinate transformations. The transverse 

shear reinforcement is considered whenever present. The shell element, with infinitesimal 

dimensions dx dy  and finite thickness t , is divided into three-dimensional elements which have 

infinitesimal dimensions dx dy dz (Figure 2). Tensile strains and stresses are considered 

positive.  
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Concrete is assumed to be a continuous and uniform medium (hypothesis 1). The concrete 

strain vector �  is defined by 

 
T

x y xy xz yz z� �= ε ε γ γ γ ε� ��  (1) 

The normal strains in x -, y - and z -directions are xε , yε  and zε . The shear strains are denoted 

by xyγ , xzγ  and yzγ . Concrete strains can also be represented in tensor form by 

 
x xy xz

xy y yz

xz yz z

� �ε ε ε
� �= ε ε ε� �
� �ε ε ε� �

�  (2) 

where 2ij ijγ = ε . According to hypothesis 2, the slip between steel bars and concrete is neglected. 

The reinforcement strain varies according to the average strain of the surrounding concrete. The 

steel strains sxε , syε and szε , respectively in x -, y - and z -directions, are determined by 

 0 0 0sx x sx sy y sy sz z szε = ε + ε ε = ε + ε ε = ε + ε  (3)a-c 

The terms 0sxε , 0syε  and 0szε  represent residual strains of pre-tensioned or bonded post-tensioned 

tendons, which are calculated considering tensioning operations, mobilized loading and 

prestressing losses. 

 The concrete stress vector, in the xyz coordinate system, is defined by 

 
T

x y xy xz yz z� �= σ σ τ τ τ σ� ��  (4) 

Concrete stresses can be represented in tensor form by  
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x xy xz

xy y yz

xz yz z

� �σ τ τ
� �= τ σ τ� �
� �τ τ σ� �

�  (5) 

The steel stress vector s�  is expressed by  

 0 0 0
T

s sx sy sz� �= σ σ σ� ��  (6) 

where sxσ  and syσ  are stresses of the longitudinal reinforcement and szσ  represents the 

transverse reinforcement stress. 

The analogous stress vector s, which combines the contributions of both concrete and 

reinforcement, is defined by 

 
T

x y xy xz yz z s ss s s s s s� �= = +� �s � � �  (7) 

where matrix s�  of the steel ratios is  

 0
0

0

sx
sy

s

sz

ρ� �
ρ� �

= � �
� �
� �ρ� �

0
�

0
 (8) 

The non-dimensional terms sxρ , syρ  and szρ  represent the ratios of steel area, respectively in x -, 

y - and z -directions, over the corresponding concrete areas dy dz, dz dx and dx dy. 

Although several approaches for modeling the nonlinear behavior of reinforced concrete 

could be adopted, a simple hyperelastic stress-strain relationship is considered adequate for the 

analysis of reinforced concrete elements under monotonic loadings. According to hypothesis 3, 

shear stresses and strains are equal to zero in the principal coordinate system. The concrete 
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stress-strain relationship in the principal coordinates is expressed by 

 ( ) ( ) ( )1 1 1 2 3 2 2 1 2 3 3 3 1 2 3, , , , , ,σ = σ ε ε ε σ = σ ε ε ε σ = σ ε ε ε  (9)a-c 

The definition of the constitutive law in the principal coordinate system reduces the number 

of variables and simplifies the constitutive formulation, but demands coordinate transformations. 

The transformation rule of second order tensors yields  

 123
T=� �� �  (10) 

where 123�  is the strain tensor in the principal coordinate system ( )1 2 3x x x . The corresponding 

rotation matrix �  is expressed by 

 
1 2 3

1 2 3 1 2 3

1 2 3

x x x

y y y

z z z

φ φ φ� �
� �� �= = φ φ φ� � � �
� �φ φ φ� �

� φ φ φφ φ φφ φ φφ φ φ  (11) 

The terms ixφ , iyφ  and izφ  are the direction cosines of the ix -coordinate axis with respect to x -, 

y -and z -directions (Figure 3). The same transformation can be expressed in vector form by  

 123 =� T �  (12) 

where 123�  is the principal strain vector. According to Cook, Malkus and Plesha (1989), the 

transformation matrix T  is defined by 
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2 2 2
1 1 1 1 1 1 1 1 1
2 2 2
2 2 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2

1 3 1 3 1 3 3 1 1 3 3 1 1 3 3 1 1 3

2 3 2 3 2

2 2 2

2 2 2

2 2

x y x y x z y z z

x y x y x z y z z

x x y y x y y x x z x z y z y z z z

x x y y x y x y z x z x y z y z z z

x x y y x

φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ + φ φ φ φ + φ φ φ φ + φ φ φ φ
=

φ φ φ φ φ φ + φ φ φ φ + φ φ φ φ + φ φ φ φ
φ φ φ φ φ φ

T

3 3 2 2 3 3 2 2 3 3 2 2 3
2 2 2
3 3 3 3 3 3 3 3 3

2y x y z x z x y z y z z z

x y x y x z y z z

� �
� �
� �
� �
� �
� �
� �+ φ φ φ φ + φ φ φ φ + φ φ φ φ
� �

φ φ φ φ φ φ φ φ φ� �� �

 (13) 

Equation (10) defines a spectral decomposition. The principal strain tensor 123� , expressed by 

 
1

123 2

3

0 0

0 0

0 0

ε� �
� �= ε� �
� �ε� �

�  (14) 

is a spectral matrix having as diagonal elements the eigenvalues of � . The columns of the modal 

matrix �  are the eigenvectors of � . The solution of the eigenproblem (10) yields the principal 

strains 1ε , 2ε  and 3ε  and the rotation matrix � . The principal stresses 1σ , 2σ  and 3σ  are 

determined by the constitutive relationships (9). The principal stress tensor 123�  corresponds to 

 
1

123 2

3

0 0

0 0

0 0

σ� �
� �= σ� �
� �σ� �

�  (15) 

According to hypothesis 3, the concrete stress components in xyz coordinates are determined 

by either of the following transformations: 

 123 123
T T= =� � � T �� �  (16)a,b 

The procedure defined by the spectral decomposition (10), the constitutive equations (9) and 

the coordinate transformation (16) is valid for cracked and uncracked concrete. The solution of 

nonlinear problems demands incremental equations. The increment 123∆�  of the stress tensor is 
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expressed by 

 
1 12 13

123 12 2 23

13 23 3

∆σ ∆τ ∆τ� �
� �∆ = ∆τ ∆σ ∆τ� �
� �∆τ ∆τ ∆σ� �

�  (17) 

Matrix 123∆�  is not necessarily diagonal. Considering that the constitutive functions (9) are 

sufficient to relate any state of strain to the corresponding stresses, they must also be sufficient to 

define the tangent constitutive matrix. The incremental equation is expressed in the principal 

coordinate system ( )1 2 3x x x  by 

 
123 123 123 123

123 123 123 123

( ) ( ) ( )T

T T T

+ ∆ = + ∆ + ∆ + ∆ =

= + ∆ + ∆ + ∆

I � I �

� I I I I �

� � � �

� � � �

 (18) 

where 123 123+ ∆� �  are updated total stresses, 123 123+ ∆� �  are updated principal stresses and 

+ ∆I �  defines the coordinate transformation from the former to the updated principal 

directions. Matrix + ∆I �  is a rotation matrix for an infinitesimal increment. Matrices 123∆�  and 

∆�  are defined by 

 
1 3 2

123 2 3 1

3 2 1

0 0 0

0 0 0

0 0 0

∆σ −∆φ ∆φ� � � �
� � � �∆ = ∆σ ∆ = ∆φ −∆φ� � � �
� � � �∆σ −∆φ ∆φ� � � �

��  (19)a,b 

Using (18) and (19), the stress tensor increment is obtained by 

 
1 1 2 3 3 1 2

123 1 2 3 2 2 3 1

3 1 2 2 3 1 3

( ) ( )

( ) ( )

( ) ( )

∆σ σ − σ ∆φ σ − σ ∆φ� �
� �∆ = σ − σ ∆φ ∆σ σ − σ ∆φ� �
� �σ − σ ∆φ σ − σ ∆φ ∆σ� �

�  (20) 
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Applying the same procedure, the strain tensor increment is expressed by 

 
1 1 2 3 3 1 2

123 1 2 3 2 2 3 1

3 1 2 2 3 1 3

( ) ( )

( ) ( )

( ) ( )

∆ε ε − ε ∆φ ε − ε ∆φ� �
� �∆ = ε − ε ∆φ ∆ε ε − ε ∆φ� �
� �ε − ε ∆φ ε − ε ∆φ ∆ε� �

�  (21) 

For arbitrary infinitesimal rotations 1∆φ , 2∆φ  and 3∆φ , equations (20) and (21) yield  

 ( ) ( )ij ij i j i j∆τ = ∆ε σ − σ ε − ε  (22) 

with , 1,2,3i j = . The relationship between increments of concrete stresses and strains, 

respectively denoted by 123∆�  and 123∆� , is defined by  

 123 123 123∆ = ∆� E �  (23) 

Using (9) and (22), the tangent constitutive matrix 123E  is expressed by 

 

11 12 13

21 22 23

12
123

31

31 23

32 33

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

E E E

E E E

G

G

E G

E E

� �
� �
� �
� �

= � �
� �
� �
� �
� �� �

E  (24) 

where 

 
2( )

j i
ij

j i

G
σ − σ

=
ε − ε

 (25) 

Expression (25), based on the coaxiality of principal stresses and strains, is adopted by Willam, 

Pramono and Sture (1987), Stevens, Uzumeri and Collins (1987), Schulz (1988) and intensively 
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discussed by Zhu, Hsu and Lee (2001). 

Expressions (12), (16) and (23) yield 

 ∆ = ∆� E �  (26) 

The tangent constitutive matrix E , in the xyz coordinate system, is given by 

 123
T=E T E T  (27) 

The constitutive equations of the steel reinforcement are expressed by ( )sx sx sxσ = σ ε , 

( )sy sy syσ = σ ε  and ( )sz sz szσ = σ ε . The relationship between steel stress and strain increments, 

respectively s∆�  and ∆� , is defined by 

 s s∆ = ∆� E �  (28) 

The constitutive matrix sE  is  

 0
0

0

sx
sy

s

sz

E
E

E

� �
� �

= � �
� �
� �� �

0
E

0
 (29) 

Using (7), (26) and (28), the increment of the stress vector ∆s is expressed by 

 ∆ = ∆s C �  (30) 

where the constitutive matrix C  of the reinforced concrete element is s s= +C E � E . 

REINFORCED CONCRETE SHELL ELEMENT 

The in-plane internal forces xN , yN , xyN , xM , yM  and xyM  (Figure 1) are defined by  
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d d d

d d d

B B B

A A A

B B B

A A A

z z z

x x y y xy xyz z z

z z z

x x y y xy xyz z z

N s z N s z N s z

M s z z M s z z M s z z

= = =

= = =

� � �

� � �
 (31)a-f 

where Az  and Bz  correspond to the upper and lower bounds of the shell element (Figure 2). The 

transverse shear forces xV  and yV  are expressed by 

 d d
B B

A A

z z

x xz y yzz z
V s z V s z= =� �  (32)a,b 

The following differential equilibrium equation, with respect to z -axis, is established 

assuming that no forces are applied on the element (hypothesis 4) and 0zs ≅  (hypothesis 5): 

 0xz yzs s′ + =�  (33) 

The prime, the point and the star respectively denote partial derivatives of a function with respect 

to x , y  and z  [ ] [ ] [ ] [ ] [ ] [ ]*
, andx y z

� 	′ = ∂ ∂ = ∂ ∂ = ∂ ∂A B
C D

�

. Integrating (33) yields 

 0x yV V′ + =�  (34) 

The differential equilibrium equations of the reinforced concrete element with respect to x - 

and y -axes are expressed by 

 * *
xz x xy yz xy ys s s s s s′ ′= − − = − −� �  (35)a,b 

Equations (35) and the boundary conditions 

 ( ) ( ) ( ) ( ) 0xz A yz A xz B yz Bs z s z s z s z= = = =  (36) 

are defined considering hypothesis 4. Integrating (35) yields the shear stresses, as follows: 
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 ( ) ( ) ( ) ( )d d
A A

z z

xz xx xy yz xy yz z
s z s s z s z s s z′ ′= − + = − +� �� �  (37)a,b 

Integrating (35) and itself multiplied by z , and substituting (31), (32) and (36) yield 

 
0

0

x xy x xy x

xy y xy y y

N N M M V

N N M M V

′ ′+ = + =

′ ′+ = + =

� �

� �
 (38)a-d 

According to (37), the derivatives xs′ , xys� , xys′  and ys�  are necessary to evaluate the shear 

stresses. Equation (30) is expanded according to 

 
n nn nt n

t tn tt t

∆ ∆� � � � � �
=� � � � � �∆ ∆� � � � � �

s C C �

s C C �
 (39) 

where 

 

T T

n x y xy t xz yz z

T T

n x y xy t xz yz z

s s s s s s� � � �∆ = ∆ ∆ ∆ ∆ = ∆ ∆ ∆� � � �

� � � �∆ = ∆ε ∆ε ∆γ ∆ = ∆γ ∆γ ∆ε� � � �

s s

� �

 (40)a-d 

In (39) and (40), n∆s  and n∆�  are increments of in-plane stresses and strains. Vectors t∆s  and 

t∆�  correspond to transverse normal and shear variables.  

The derivatives of zs  are neglected according to hypothesis 5 ( )0zs ≅ . A first-order 

approximation is defined by neglecting the first derivatives of shear stresses xzs  and yzs , which 

results in 

 n n n n′ ′= =s D� s D�� �  (41)a,b 

The (3 3)× -constitutive matrix D  is determined by 1
nn nt tt tn

−= −D C C C C . The terms of matrix D  
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are forces per unit area. Matrix D  is partitioned according to 

 
TT T T T

x y z� �= � �D D D D  (42) 

The following equations are deduced from (41) and (42): 

 xx x n xy xy n y y n xy xy ns s s s′ ′ ′ ′= = = =D � D � D � D �� � � �  (43)a-d 

Equations (37) and (43) yield 

 ( ) ( )( ) d ( ) d
A A

z z

xz x n xy n xz xy nn y nz z
s z z s z z′ ′= − ε + ε = − ε + ε� �D D D D� �  (44)a,b 

According to the generalized Bernoulli’s hypothesis (hypothesis 6), the longitudinal strains 

xε , yε  and xyγ  are linearly interpolated according to 

 x x x y y y xy xy xye k z e k z e k zε = + ε = + γ = +  (45) a-c 

where xe , ye  and xye  are strains at 0z =  and xk , yk  and xyk  are generalized curvatures. 

Equations (45) are expressed in matrix form by 

 
T T

n x y xy� �= ε ε γ =� �� p e (46) 

In (46), the position matrix p  and the generalized strain vector e are defined by 

 

1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

T
z

z

z

� �
� �= � �
� �� �

p  (47) 

 
T

x x y y xy xye k e k e k� �= � �e  (48) 

The derivatives of the longitudinal strains xε , yε  and xyγ  with respect to x  and y  are 
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determined by 

 T T
n n′ ′= =� p e � p e��  (49)a,b 

where the derivatives ′e  and e�  of the generalized strain vector are expressed by  

 
TT

x x y y xy xy x x y y xy xye k e k e k e k e k e k� �′ ′ ′ ′ ′ ′ ′� �= =� � � �e e � � �� � � �  (50)a,b 

 Substituting (49) in (44) yields 

 ( ) ( ) ( ) ( ) ( ) ( )T T T T
xz x xy yz xy ys z z z s z z z′ ′= + = +S e S e S e S e� �  (51)a,b 

where ( )x zS , ( )y zS  and ( )xy zS  are vectors defined by 

 ( ) ( ) ( )d d d
A A A

z z zT T T T T T
x x y y xy xyz z z

z z z z z z= − = − = −� � �S D p S D p S D p  (52)a-c 

The vector F  of generalized stresses per unit length is expressed by 

 d
B

A

zT

x x y y xy xy nz
N M N M N M z� �= =� � �F ps  (53) 

The derivatives ′F  and F� , with respect to x  and y , are determined by 

 

d

d

B

A

B

A

zT

x x y y xy xy nz

zT

x x y y xy xy nz

N M N M N M z

N M N M N M z

′ ′ ′ ′ ′ ′ ′ ′� �= =� �

� �= =� �

�

�

F ps

F ps� � � � � � � �

 (54)a,b 

Substituting (41) and (49) in (54) yields 

 ′ ′= =F K e F K e� �  (55)a,b 

where the stiffness matrix K  is defined by 
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 d
B

A

z T

z
z= �K p Dp  (56) 

Equations (51) and (55)  yield the shear stresses xzs  and yzs . These simple final equations are 

conceptually identical to the equivalent section method for beams, proposed by Diaz (1980) and 

Diaz and Schulz (1981). Equations (55) define two systems of six generalized stresses by six 

generalized strains. The derivatives of generalized stresses in (54), which can be directly 

evaluated from analytical solutions and finite element analyses, must satisfy the differential 

equilibrium equations (38). 

HIGHER-ORDER APPROXIMATIONS 

Although the first-order approximation is considered adequate for practical applications, a 

higher-order solution is also discussed. Deriving (35), substituting (33), and integrating, yield 
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 (57)a-c 

The second-order approach is defined by neglecting the second derivatives of the shear 

stresses xzs  and yzs . Considering that the material properties do not significantly vary in x  and 

y , the following approximation is adopted: 

 n n n n n n′′ ′′ ′ ′= = =s D� s D� s D��� ��� �  (58)a-c 

Using partition (42) and substituting (58) in (57) yields 
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where T
n′′ ′′=� p e , T

n =� p e����  and T
n′ ′=� p e�� . Deriving (54) and substituting (58) yields the 

derivatives ′′F , F��  and ′F�  of the vector of generalized stresses, which are expressed by 

 ′′ ′′ ′ ′= = =F K e F K e F K e�� ��� �  (60)a-c 

where K  is the stiffness matrix defined in (56).  

Equations (59) and (60) evaluate the shear stress derivatives xzs′ , xzs� , yzs′  and yzs� , formerly 

neglected by the first-order approximation. The partial derivatives xzs′′ , xzs�� , xzs′�  , yzs′′ , yzs��  and yzs′� , 

neglected in the second order approximation, can be considered by repeating the proposed 

approach in a third-order approximation. Higher-order approximations can be successively 

established in search of more precise results, but require the evaluation of additional generalized 

stresses. The first-order approximation is considered acceptable for reinforced concrete design, 

and it is recommended in the interest of simplifying the formulation. 

MATERIAL BEHAVIOR 

The proposed mechanical model can be implemented according to different constitutive 

formulations. The present analysis is based on the bidimensional constitutive model A proposed 

by Vecchio and Collins (1993). It uses the uniaxial stress-strain curve proposed by Popovics 

(1973), modified for high strength concrete by Thorenfeldt, Tomaszewicz and Jensen (1987) and 

calibrated by Collins and Porasz (1989). In model A, the softening effect in tension-compression 
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state is expressed as a function of the ratio 1 2ε ε , where 1ε  and 2ε  are respectively the principal 

tensile and compressive strains. In the present paper, this estimate is lower bounded by the 

softening coefficient formerly proposed by the same authors (1986), which is a function of 1ε . 

The tension-stiffening effect is as represented by Polak and Vecchio (1993), where concrete 

average tensile stresses, transmitted across the cracks, are limited by the reserve capacity of the 

reinforcement. Tension stiffening effect is assumed to be limited to a volume of concrete within 

7.5 bar diameters from the reinforcement center, and the maximum shear stress at a crack is 

verified as recommended by Vecchio and Collins (1986). The shear slip at crack surfaces, 

Poisson’s ratio and other secondary effects are not considered. 

The tridimensional constitutive model uses the same uniaxial curves, but the principal strains 

1ε  and 2ε  are replaced, in the same softening functions, by the strain parameters 1′ε  and 2′ε . 

Kirschner and Collins (1986) define 1′ε  as the square root of the sum of the squares of all positive 

principal strains. The strain 2′ε  is assumed as the minimum principal strain. The terms ijE  in (24) 

are determined by 

 1 2

1 2

i i
ij

j j j

E
′ ′∂σ ∂σ ∂ε ∂ε∂β ∂β� 	= + +A B′ ′∂ε ∂β ∂ε ∂ε ∂ε ∂εC D

 (61) 

where ( )1 2,′ ′β ε ε  is the tension-softening coefficient. The partial derivatives in (61) are 

analytically presented by Santisi d'Avila (2008). Since ij jiE E≠  under tension-compression 

states, matrices E , C , D  and K  are not necessarily symmetric. 

IMPLEMENTATION PROCEDURES 
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The following procedure yields strains and stresses for a given set of internal forces: 

1. An iteration is started considering a generalized strain vector e (48) and distributions of shear 

stresses xzs  and yzs  along the thickness. The first approximations can be zero. 

2. At each layer, the vectors of in-plane strains n�  (46) and transverse stresses ts  are known. 

Vectors ns  and t�  are determined using a secondary iterative process based on (39), the final step 

of which yields the reduced constitutive matrix D  (42).  

3. The vector of generalized stresses F  (53) is integrated. The procedure stops when the residual 

∆F , between applied and resisting internal forces F ,  is considered relatively small. 

4. The stiffness matrix K  (56) and the derivatives of generalized strains ′e  and e�  (50), 

evaluated by equations (55), yield a new approximation of the shear stresses xzs  and yzs  (51). 

Solving ∆ = ∆F K e  yields the strain increment ∆e and a new approximation of the generalized 

strain vector e, restarting the main iterative process.  

The simultaneous update of generalized strains and shear stresses proves to be numerically 

efficient, although each update assumes that the other parameter is restrained. The numerical 

efficiency is not affected by solving non-symmetric systems with low order matrices. The 

secondary iterative process, based on (39), is a Newton-Raphson procedure that solves  
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 (62) 

The ultimate load capacity is evaluated by another incremental procedure based on the arc-

length method. The shear stresses are determined using the stiffness matrix K  of the previous 
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incremental step. Additional details are presented by Santisi d'Avila (2008).  

COMPARISON WITH TEST DATA REPORTED IN THE LITERATUR E 

The proposed theory and the material model used are verified with experimental data obtained 

from the literature. 

Vecchio and Collins (1982) analyze the response of membrane elements submitted to 

combined in-plane shear and normal stresses. Specimens PV, with 890 x 890 x 70 mm, are 

typically reinforced with two layers of welded wire mesh, which are heat-treated to exhibit a 

long yielding plateau. The selection presented in Table 1 excludes panels with concrete voids, 

panels which fail prematurely because of pull-out of shear connecting keys, and panels that 

require additional information on steel response to be properly analyzed under strain-hardening. 

Table 1 presents the main material and geometrical information, including the steel yielding 

stresses (ylf , ytf ) and reinforcement ratios (lρ , tρ ), which are defined, respectively, in each 

orthogonal direction. The cracking tensile strength of concrete is estimated by ( )0.33 MPacf . 

Most specimens are subjected to increasing pure shear, and uτ  designates the ultimate shear 

stress. Panels PV23, PV25 and PV28 combine shear stresses, denoted by τ , with biaxial normal 

stresses, which are respectively equal to 0.39− τ , 0.69− τ  and 0.32+ τ . The biaxial compressive 

stresses of specimen PV29 are expressed in modulus by 3.80 MPaτ − , when 3.80 MPaτ > .  

The ultimate loads predicted by Vecchio and Collins (1982), Bentz, Vecchio and Collins 

(2006) and the proposed procedure show good correlation. The contribution of tension-stiffening 

is analyzed by excluding and including this effect. The predicted results are denoted respectively 

by PT (pure tension) and TS (tension stiffening), and ultimate loads are not significantly 
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different. 

Polak and Vecchio (1993) investigate the behavior of shell elements subjected to biaxial 

bending and in-plane forces, using a shell element tester that is capable of applying uniform load 

conditions. Specimen SM4 is of special interest because it presents symmetrical top and bottom 

reinforcement in two orthogonal directions, orientated at 45°  with respect to the applied loads 

M  and  P  (Figure 4). The reinforcement ratios are 1.32% (φ20 spaced at 0.076m) and 0.44% 

( φ10 spaced at 0.076m), per layer, in each direction. The corresponding stress-strain curves 

present definite plateaus at 425 and 430 MPa, strain hardening after 12 and 20 mm/m and 

ultimate strength of 611 and 480 MPa. The effective test dimensions are 1524 x 1524 x 316 mm, 

the concrete compression peak stress is 64 MPa at 2.6 mm/m, and the split cylinder tensile test 

yields 2.76 MPa. The final load level is reported as 205 kNm muM =  and 820 kN muP = . 

The element x -axis is defined in the direction of the stronger reinforcement. The 

experimental surface strains yε  and reinforcement strains sxε  and syε  are compared to the 

theoretical results (Figure 4). The predicted strains, excluding the concrete tensile strength (NT - 

no tension) and including the tension stiffening (TS), describe tension effects at intermediate 

load levels and demonstrate good correlation.  

The predicted and observed ultimate moments uM  are discussed in Table 2 according to three 

conditions: excluding the concrete tensile strength (NT), taking into account the concrete tensile 

strength but excluding the tension-stiffening effect (PT) and including both concrete tensile 

strength and tension-stiffening effect (TS). All assumptions predict conservative results in 

agreement with the observed data. In this analysis, ultimate loads are not influenced by tensile 
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effects. 

The predicted stresses and strains, neglecting concrete tensile strength, are presented at a load 

level near to failure (Figure 5). The stress on the weaker reinforcement increases because of 

strain hardening, but it is still inferior to the ultimate strength. Concrete reaches its reduced 

compressive strength ( cfσ = −β  ), as shown in Figure 6.  

Adebar (1989) and Adebar and Collins (1994), using the same element tester, analyze 1524 x 

1524 mm shell elements subjected to in-plane and transverse shear loads. The specimens selected 

for this verification have very small amounts of shear reinforcement (0.08% reinforcement ratio). 

Some other specimens, which present larger amounts of shear reinforcement, are discarded 

because they do not fail during the test. The specimens denoted by SP3, SP4, SP7, SP8 and SP9 

are 310 mm thick and have large amounts of symmetrical in-plane reinforcement, equally 

arranged in orthogonal grids oriented at 45°  with respect to their sides. The stress-strain curves 

show definite plateaus and the strain hardening response is described by Adebar (1989). The 

yield and ultimate stresses of the shear reinforcement are respectively 460 MPa and 570 MPa 

and other details are presented in Table 3. In the present numerical analyses, the cracking 

strength of concrete is estimated based on the results of the split test. The specimens are 

subjected to different load combinations, which are proportionally increased during the testing 

procedure. The in-plane and transverse forces are constant along the specimen, but bending 

moments vary linearly (Figure 7). The xy coordinate system is associated with the in-plane 

reinforcement. Generic transverse shear forces 2xV ′ =  kN/m and 0yV ′ =  kN/m, applied in the 

x y′ ′  coordinate system, correspond to 1x yV V= =  kN/m. The derivatives xM ′ , yM ′ , xyM ′  , xM� , 
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yM�  and xyM�  are equal to 1 2 kN/m. The load capacity is verified at 0.75 mx′ = ± , transforming 

the corresponding bending moment xM ′  to xy coordinates. 

Theoretical and observed stirrup strains are compared in Figure 8. The reference shear stress 

V t  is defined by x yV t V t V t= = , where t  is the thickness of the shell. The experimental 

transverse strains cannot be exactly represented by the proposed formulation, since they are 

measured with strain gauges on unbounded stirrups. According to hypothesis 2, no slip is 

considered between concrete and reinforcing bars. In spite of this limitation, predicted average 

stirrup strains are compared, in magnitude, excluding and including the tension stiffening effect. 

The theoretical strains of specimen SP4, including the tension stiffening effect, show low levels 

of stress. The same results are predicted by Adebar and Collins (1994). The necessary stirrup 

contribution to the equilibrium, between cracks, justifies the large experimental strains of the 

unbounded stirrups. 

Although the properties of specimens SP3, SP4, SP7, SP8 and SP9 are not exactly the same, it 

is possible to establish a relationship between transverse shear capacity and membrane shear 

forces (Figure 9). The ultimate loads predicted by the proposed theory are compared to other 

formulations (Polak and Vecchio 1993; Adebar and Collins 1994), and give a better 

approximation. Results excluding tension-stiffening effects are significantly lower. The 

reduction of longitudinal strains increases the shear capacity considerably. 

The response of specimen SP7 is evaluated close to failure, including the concrete tensile 

strength and the tension-stiffening effect (Figure 10). Minute negative shear stresses yzτ  are 

detected in the tensile cover region. They are associated with the negative derivatives of the 
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stress-strain diagram for concrete under tension, the descending branch of which represents 

declining tension stiffening as cracking progresses. The stirrups reach yield stress through an 

extensive area of the thickness. The principal compressive stresses 2σ  and 3σ  are compared with 

the concrete capacity in Figure 11, where the reduced concrete strength due to compression 

softening is defined by cfβ .  

The spatial orientation of the principal compressive stresses close to failure, as predicted by 

the proposed theory, is presented in Figure 12. The orientation of the struts is more detailed for 

specimen SP7 (Figure 13). The direction of the shear struts, in the central core of the shell, 

follows the direction of the principal transverse shear force. 

CONCLUSIONS 

The proposed mechanical model yields through-the-thickness distributions of stresses and 

strains in reinforced concrete shells, considering the simultaneous effect of in-plane and 

transverse loads. The comparison with test data reported in the literature confirms that the 

formulation is able to accurately model in-plane conditions, flexural behavior and transverse 

shear effects. The constitutive model adopted predicts results which are in agreement with the 

observed data.  

The proposed theory provides a promising solution for the design of reinforced concrete 

shells. A practical design method can be developed by applying optimization techniques to 

balance the internal forces with a minimum amount of total reinforcement. Strain limitations can 

be considered as complementary optimization conditions. The bipartition method, starting from 

the minimum and maximum code requirements, is a simple approach that is sufficient for fixed 
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reinforcement ratios.  

However, the influence of tension effects demands additional investigation. Concrete tension 

effects are often neglected in reinforced concrete design, because they are usually considered to 

have little to no influence on the ultimate load capacity. This hypothesis is confirmed in PV and 

SM specimens (membrane and shell elements subjected to in-plane conditions). The fact that the 

load capacity of SP specimens is significantly affected by tension stiffening shows that this 

approach may be too conservative for shells with transverse shear forces, particularly when 

dealing with large amounts of flexural reinforcement, small amounts of shear reinforcement and 

monotonic loadings. 

The verification of tension effects, with additional experimental data, and the implementation 

of finite element formulations, based on the proposed mechanical model, call for further 

research. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 
 

 ( )′  = derivative of function with respect to variable x  ( )x∂ ∂  

 ( )
�

 = derivative of function with respect to variable y  ( )y∂ ∂  

 ( )∗  = derivative of function with respect to variable z  ( )z∂ ∂  

 C  = tangent constitutive matrix of reinforced concrete ( )6 6×  

 D  = reduced constitutive matrix of reinforced concrete ( )3 3×  

 �  = strain tensor 
 E  = tangent constitutive matrix of concrete  
 sE  = tangent constitutive matrix of reinforcement 

 ijE  = elasticity moduli of concrete ( ), 1,2,3i j =  

 , ,sx sy szE E E  = elasticity moduli of reinforcement 

 e = vector of generalized strains 
 , ,x y xye e e  = axial strains and in-plane shear strain at 0z =  

 F  = vector of generalized stresses per unit length 
 cf  = concrete strength in compression 

 yf  = steel yielding stress 

 uf  = steel ultimate stress 

 ijG  = tangent shear moduli ( ), 1,2,3;with i j i j= ≠  

 I  = identity matrix 
 K  = stiffness matrix of the reinforced concrete shell element 
 , ,x y xyk k k  = curvatures of the cross-section 

 , ,x y xyN N N  = axial forces and in-plane shear force per unit length 

 uM  = ultimate bending moment 

 , ,x y xyM M M  = bending and twisting moments per unit length  

 p  = position matrix 

 uP  = ultimate axial force 

 �  = concrete stress tensor 
 , ,x y xyS S S  = vectors of stiffness properties of reinforced concrete between Az  and z  

 s = vector of analogous stresses in reinforced concrete 
 , ,x y xys s s  = in-plane analogous stresses in reinforced concrete 



 

 31

 , ,yz xz zs s s  = transverse analogous stresses in reinforced concrete 

 T  = rotation matrix 
 t  = shell thickness 
 uV  = ultimate shear force 

 ,x yV V  = transverse shear forces per unit length 

 , ,x y z = coordinate axes 

 1 2 3, ,x x x  = principal coordinate axes 

 ,A Bz z  = z -coordinates of the cross-section upper and lower bounds 

 β  = softening coefficient 

 , ,xy xz yzγ γ γ  = shear strains 

 12 23 13, ,γ γ γ  = shear strains in principal coordinates 

 �  = strain vector  
 , ,sx sy szε ε ε  = reinforcement strains 

 0 0 0, ,sx sy szε ε ε  = residual strain of prestressed tendons 

 , ,x y zε ε ε  = axial strains 

 , ,xy xz yzε ε ε  = shear terms of the strain tensor 

 1 2 3, ,ε ε ε  = maximum, intermediate and minimum principal strains 

 1 2,′ ′ε ε  = strain parameters 

 s�  = matrix of reinforcement ratios 

 , ,sx sy szρ ρ ρ  = reinforcement ratios 

 �  = concrete stress vector  
 s�  = reinforcement stress vector 

 , ,sx sy szσ σ σ  = reinforcement stresses 

 , ,x y zσ σ σ  = concrete axial stresses 

 1 2 3, ,σ σ σ  = concrete axial stresses in principal coordinates 

 , ,xy yz xzτ τ τ  = concrete shear stresses 

 12 23 13, ,τ τ τ  = concrete shear stresses in principal coordinates 

 �  = rotation matrix 
 ijφ  = terms of matrix �  ( )1,2,3; , ,i j x y z= =  

 

 


