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ANALYSIS OF REINFORCED CONCRETE SHELLS

WITH TRANSVERSE SHEAR FORCES

By Mauro Schulz! and Maria Paola Santisi d'Avila?

ABSTRACT:

This research investigates the simultaneous effert-plane and transverse loads in reinforced
concrete shells. The infinitesimal shell elemerdiigded into layers (with triaxial behavior) that
are analyzed according to the smeared rotatingkcapproach. The set of internals forces
includes the derivatives of the in-plane componefte corresponding generalized strains are
determined using an extension of the equivaleritsemethod, valid for shells. The formulation
yields through-the-thickness distributions of stessand strains and the spatial orientation of the
concrete struts. Although some simplifications aeeessary to establish a practical first-order
approximation, higher-order solutions could be d=ved. Despite the fact that constitutive
matrices are not symmetric, because of the tersaftening formulation, the equilibrium and
compatibility conditions are satisfied, the stiffsederivatives are explicitly calculated and the
algorithms show good convergence. The formulatioedists results that agree with
experimental data obtained by other researchethoddh comparative analysis with additional
experimental data is still necessary, the propdbedry provides a promising solution for the

design of reinforced concrete shells.
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'Professor, Dept. of Civil Engineering, Universiddaleral Fluminense, Niterdi, RJ, Brazil, 24220-900
2Ph.D., Laboratoire Central des Ponts et ChausBégis, France, 75732



INTRODUCTION

Reinforced concrete shell structures are widely leyga because they provide both
outstanding performance and architectural beauhe design of reinforced concrete shells
involves the determination of reinforcement thahd necessarily arranged in the direction of
the principal internal forces. The mechanical madakt consider the entire set of in-plane and
out-of-plane forces, bending and twisting momeassyvell as the spatial distribution of stresses

and strains.

After early investigations regarding the analysfsr@inforced concrete plates and shells,
Falconer (1956) establishes the equilibrium equatiof a plane stress element, considering the
axial forces of the reinforcement, placed in twifedent orientations, and a compression field of

concrete stresses, the direction of which remaatgcally indeterminate.

Using the plasticity approach, Nielsen (1964) defindesign equations for membrane
elements. Wood (1968) and Armer (1968) organiziendas procedure for the flexural design of
reinforced concrete slabs. Baumann (1972a; b) dersi membrane and flexural forces
simultaneously, by distributing the internal fordestween two plate elements at the upper and
lower faces of the shell. Each plate is analyzquhisgely, using the compatibility approach.
Baumann evaluates the direction of the struts eheaembrane element by the principle of
minimum work, arriving at a linear-elastic approxsition of the general equation later proposed
by Mitchell and Collins (1974). The total reinforaent is minimized taken into account the
requirement of minimum secondary reinforcement. 3inell design procedure recommended by
CEB and FIP (1982) applies the two-plate approxiomatogether with the plasticity approach,

to arrive at a simple design method that is egaivalo the compatibility formulation, where the



contribution of the secondary reinforcement is aetgd.

The shell formulations discussed above are extehysiapplied, but they do have the
following limitations: the thickness and the le@m of the upper and lower membrane elements
are not explicitly calculated, the materials aret mepresented by nonlinear stress-strain
relationships and the beneficial effects of the paession reinforcement are not taken into
account. Schnobrich (1977) reports early applicatiof multi-layered models in finite element
analysis of reinforced concrete structures. Malyidred models are used by Schulz (1984) and
Kirschner and Collins (1986) to verify the punctoegponse of reinforced concrete shells to in-
plane forces, and twisting and flexural momentse Hssumption that plane sections remain
plane in any direction yields the biaxial strairfseach layer. The corresponding stresses are

obtained by applying nonlinear constitutive models.

The design of shells for transverse shear forceslves additional considerations. Schulz
(1988) and Marti (1990) assume that shear stresses distributed according to the
corresponding principal direction, since no shemcd is acting perpendicularly. The principal
shear force, which is determined by the square @btie sum of the squares of the components

in any system of coordinates, is used as a refereEmesimplified design formulas.

Analytical models which consider flexural and shesffects simultaneously are also
investigated in the literature. Kirschner and @all{1986) include out-of-plane shear by dividing
the reinforced concrete shell into three-dimendia@aments. Three-dimensional constitutive
relationships are applied assuming a perfectlyonmf stress distribution of transverse shear
stresses in the core of the shell. Adebar (1989) Adebar and Collins (1994) analyze the

punctual response of a shell element as subjectadplane loads only. The simplified model is



corrected by complementary in-plane forces, whish evaluated by assuming a shear stress
value at the midpoint of the shell and applyingeidimensional constitutive relationships at

this point. Polak and Vecchio (1993) investigaensverse shear in reinforced concrete shells
using a finite element based on Reissner-Mindlatgtheory. By assuming that plane sections
remain plane but not necessarily normal to the soidace, transverse shear strains are

considered constant along the thickness of the.shel

The last models represent a significant advandethieuevaluation of transverse shear stresses
and strains can be improved. The present reseaveltigates a mechanical model for reinforced
concrete shells considering simultaneous in-plareteansverse shear forces. The infinitesimal
shell element is divided along the thickness infoitesimal three-dimensional elements, which
respect three-dimensional constitutive relationshifhe implementation is based on the smeared
rotating crack approach and the shear stiffnessstare deduced accordingly. The theory applies
to shells, the equivalent section method for begmgposed by Diaz (1980) and Diaz and Schulz
(1981). Through-the-thickness distributions of s$es and strains are established considering
equilibrium and compatibility conditions. The fortation yields the spatial orientation of the
concrete struts and the transverse shear stresses@inecessarily oriented according to the
principal shear force. Some simplifications areassary to establish a first-order approximation,
which is recommended for design applications. Haweit is shown how to develop higher-

order solutions for a theoretically precise respons
SIMPLIFYING HYPOTHESES

The discussion here is limited to small displacemeDisturbed states of deformation at

boundaries and load application points are notrtake account. The following hypotheses are



introduced at the outset:

1. Eventual cracks are considered uniformly distridué®d concrete stresses and strains are
stated as continuous and derivable functions. Tla¢iad orientation of the smeared struts

varies along the element thickness.

2. No slip is considered between concrete and reiifgrisars. Increments of steel and concrete

strains are assumed to be equal on an average basis
3. The principal directions of concrete stresses #&irains are considered coincident.

4. Boundary and volume forces are not taken into agcouthe interest of simplifying the

formulation.
5. The resultant of concrete and steel stresses iz tteection is small and, hence, neglected.

6. In-plane strains are linearly distributed alonge tthickness (generalized Bernoulli's

hypothesis).
REINFORCED CONCRETE THREE-DIMENSIONAL ELEMENT

A shell element is presented in Figure 1. Thaxis is normal to the mid-plane of the shell
and two-way reinforcement layers are placed acogrth x- and y-axes. Although this steel
distribution is frequent and simplifies the formida, it is possible to consider skew and
multidirectional reinforcement through additionadocdinate transformations. The transverse
shear reinforcement is considered whenever predém. shell element, with infinitesimal
dimensionsdx dy and finite thickness, is divided into three-dimensional elements whelve
infinitesimal dimensionsdxdy dz (Figure 2). Tensile strains and stresses are deres

positive.



Concrete is assumed to be a continuous and unifoegium (hypothesis 1). The concrete

strain vectore is defined by

e=[e, & Vo Yo Vo & (1)

The normal strains ix-, y- and z-directions areg,, €, and€,. The shear strains are denoted

by v,,, Y. andy,,. Concrete strains can also be represented inrtéorso by
€
F=|e, €,6 ¢ (2)
€

wherey, =2¢ . According to hypothesis 2, the slip between dbees and concrete is neglected.

The reinforcement strain varies according to theraye strain of the surrounding concrete. The

steel straing, , €,,and e, respectively inx-, y- and z-directions, are determined by

sx? sz?

Ex =&, tE, €,=€,tEy €,~€ F€, (3)a-c
The termse, €., and €, represent residual strains of pre-tensioned odédmost-tensioned

tendons, which are calculated considering tensgnaperations, mobilized loading and

prestressing losses.

The concrete stress vector, in tkygz coordinate system, is defined by
Y = ':GX Gy Txy TXZ T yz G Z:'T (4)

Concrete stresses can be represented in tensobform



o, T (5)

The steel stress vectet, is expressed by

c :[cxSx o, 0 0 O GSZ]T (6)

S
where o, and o, are stresses of the longitudinal reinforcement angd represents the
transverse reinforcement stress.

The analogous stress vecter which combines the contributions of both concratel
reinforcement, is defined by

s=[s, 5 s, 5. S § =o*ps @)

where matrixp of the steel ratios is

p, = 0 % ®)

The non-dimensional terns,,, p, andp, represent the ratios of steel area, respectinel|

y - and z -directions, over the corresponding concrete atBedz, dz dx and dx dy.

Although several approaches for modeling the nealinbehavior of reinforced concrete
could be adopted, a simple hyperelastic stressistetationship is considered adequate for the
analysis of reinforced concrete elements under mommo loadings. According to hypothesis 3,

shear stresses and strains are equal to zero iprih@pal coordinate system. The concrete



stress-strain relationship in the principal cooatds is expressed by
0, =0,(&,€,€,) 0,=0,(€,€,¢€) 0,=0{¢€,€,¢) (9)a-c

The definition of the constitutive law in the pripal coordinate system reduces the number
of variables and simplifies the constitutive foratidn, but demands coordinate transformations.

The transformation rule of second order tensorslyie
Tp=® L@ (20)

where E,,, is the strain tensor in the principal coordinastem (x x,%). The corresponding

rotation matrix® is expressed by

(ORI CWERON
o=[q ! gl q]= %% %y% @ (11)
@ 0@

The termsg,, ¢, and @, are the direction cosines of the-coordinate axis with respect to-,

y -and z -directions (Figure 3). The same transformationlmaexpressed in vector form by
€,n=T¢ (12)

where ¢,,, is the principal strain vector. According to Codkalkus and Plesha (1989), the

transformation matrixr is defined by



&, d, Q@ QP 9 9 2
@, @, @ @, QP 9 9 g
20,0 26,9 QR PR 09 0.0 400 £ E g g
20,® 29,9 QG tRP PP tHO B0 FQ R ., 4G
20,8, 20,9 P HtRD, B, 9 tL R NP HP.P2 9.8
@, &, @ 9 Q9 R0 g

—
1

Equation (10) defines a spectral decomposition. grireipal strain tensof,,,, expressed by

™
=
o
o O

L= (14)

o o
o
o™
w

is a spectral matrix having as diagonal elememt®igenvalues of . The columns of the modal
matrix @ are the eigenvectors & . The solution of the eigenproblem (10) yields pniecipal

strains €,, €, and €, and the rotation matrib®. The principal stresses,, o, and o, are

determined by the constitutive relationships (9)e Principal stress tensdy,, corresponds to

Q

0O O
g, O (15)
0 o

5123 =

o O

3

According to hypothesis 3, the concrete stress oompts inxyz coordinates are determined

by either of the following transformations:
S=®S,,®" =T o, (16).,b

The procedure defined by the spectral decomposftiOh the constitutive equations (9) and
the coordinate transformation (16) is valid foraked and uncracked concrete. The solution of

nonlinear problems demands incremental equations.ificrementAS,,, of the stress tensor is



expressed by

Ao, At, At
AS,,=| A, Ao, AT, (17)
At, At,, Ao,

Matrix AS,,, is not necessarily diagonal. Considering thatdbestitutive functions (9) are

sufficient to relate any state of strain to theresponding stresses, they must also be suffiatent t

define the tangent constitutive matrix. The incratak equation is expressed in the principal

coordinate systerfix,x,%,) by

Sist AS ;= (1 + AD) (5123+A§122 (I +MD)" = (18)
=5, +AD S, T+ AS—‘lZ\L, T4 Slng(I)T

where S,,,+AS,,, are updated total stresseS,,+AS,,, are updated principal stresses and
| + A® defines the coordinate transformation from them#r to the updated principal
directions. Matrix| + A® is a rotation matrix for an infinitesimal increnteMatricesAS,,, and

A® are defined by

Ao, O 0 0 -Ap, Ag
AS,,=| 0 Ao, O AP=| Ap, O -Ag (19),b
0 0 Ao, -Ap, Aq 0

Using (18) and (19), the stress tensor incremeuwibtigined by
Ao, (0,-0,) A9, (0,-0) Ag,

AS,,=|(0,—0,) A, Ao, (0,-0) Ag (20)
(0,-0) A, (0, -0) AQ Ag,

10



Applying the same procedure, the strain tensoement is expressed by
Ag, (81 - E2) Ao, ( &~ %) Ag,
AT ;= (e,—€) Ag, Ae, (g,-¢€) A (21)
(e5—&) Mg, (& —&) A Ag,
For arbitrary infinitesimal rotationdq,, Ap, and Ag,, equations (20) and (21) yield
A = A (q ~9 )/(!; - ) (22)
with i,j =1,2,2 The relationship between increments of concrdtesses and strains,

respectively denoted bfo,,, and Ag,,,, is defined by
Ao,y = E 502 (23)

Using (9) and (22), the tangent constitutive magjx, is expressed by

E, E, 0 0 0 Ey

E, E, O 0 0 E,

0 0 G 0 0 0
E123: 12 (24)

0 0 0 G, O 0

E, O 0 0 G, O

E, 0 0 0 0 E,;

where

— 0-J' ~0 2
=1 5
26 —e) (25)

Expression (25), based on the coaxiality of priatgiresses and strains, is adopted by Willam,

Pramono and Sture (1987), Stevens, Uzumeri andn8dl1987), Schulz (1988) and intensively

11



discussed by Zhu, Hsu and Lee (2001).
Expressions (12), (16) and (23) yield
Ac =E Ae (26)
The tangent constitutive matri , in the xyz coordinate system, is given by
E=T'E,T (27)

The constitutive equations of the steel reinforcetmare expressed by =0o_(E.),
o, =0.(e,) and o,=0 (¢ ). The relationship between steel stress and sinaiements,

respectivelyAe, andAe, is defined by

Ao, =E_ Ae (28)
The constitutive matriXe, is
ESX
= 0
ES = 0 0 (29)
0 0
E

Using (7), (26) and (28), the increment of thessrgectorAs is expressed by
As= Cle (30)
where the constitutive matri€ of the reinforced concrete elemends-E +p_E..
REINFORCED CONCRETE SHELL ELEMENT

The in-plane internal forcell,, N, N, , M,, M_andM, (Figure 1) are defined by

xy !

12



NX=J:Bs&dz Nf:J.: sdz N/:_[: gd z

3

(3L)a-f
M, =["s zdz M=I:§,nz I\4/=_[

Zp

5 @

A

where z, and z, correspond to the upper and lower bounds of tk# sfement (Figure 2). The

transverse shear forc®s andV, are expressed by

V, =I: S,dz V, =I: sd: (32)a,b

The following differential equilibrium equation, thi respect to z-axis, is established

assuming that no forces are applied on the elethgpbthesis 4) and, 1O (hypothesis 5):
S+ §,=0 (33)
The prime, the point and the star respectively teepartial derivatives of a function with respect

to x, y andz ([ ['=o[ ]/ox.[1=4 | /oyand[ | = ] /azj. Integrating (33) yields

V,+V, =0 (34)

The differential equilibrium equations of the rarded concrete element with respectxto

and y -axes are expressed by

Se =78, 8 ="%"'S (35)a,b

Equations (35) and the boundary conditions

Se(z)=8.02)=s{ 9= §{ =0 (36)

are defined considering hypothesis 4. IntegratBi yields the shear stresses, as follows:

13



so(2=-[ (&+5)dz (=] ('s+ (37a.b
Integrating (35) and itself multiplied by, and substituting (31), (32) and (36) yield

N, +N,, =0 M, +M,, =V,
: : (38)a-d
N;, +N, =0 M, +M, =V,

According to (37), the derivatives,, §,, s, and $, are necessary to evaluate the shear

stresses. Equation (30) is expanded according to

ASn _ Cnn J%__Cnt A‘(;n 39
ASI - Ctn ; Ctt Aat ( )
where
T T
As, :[Asx As, Asd As, :[A s As, A sz] 0
e, =[0e, B¢, By,] e, = Ay, by, A

In (39) and (40),As, and Ag,, are increments of in-plane stresses and straiestovs As, and

Ag, correspond to transverse normal and shear vasiable

The derivatives ofs, are neglected according to hypothesis(@ DO). A first-order

which

vl

approximation is defined by neglecting the firstidgtives of shear stresseg and s,

results in
| §,=Dg, (41)a,b

The (3% 3)-constitutive matrixD is determined byp=C,, -C,, C, C,.. The terms of matrixD

14



are forces per unit area. Matrix is partitioned according to
T
D' =[D} | D} | D]] (42)
The following equations are deduced from (41) a&8):(

s =D& $,=D ¢ 5,=D g, 8,°D ¢, (43)a-d

Y
Equations (37) and (43) yield
SXZ(Z)=—Li(Dx8'n+DXy‘an)dz sd ;:—j;(D SEatD E)d (44),b

According to the generalized Bernoulli’'s hypothe@igpothesis 6), the longitudinal strains

g, €, andy, are linearly interpolated according to
e, =e t+tk z e,=g+k z Vo= &t K (45)a-c

where g, g, and g, are strains az=0 and k,, k, and k,, are generalized curvatures.

Equations (45) are expressed in matrix form by
.
e, =€, &, V] =p'e (46)

In (46), the position matriy and the generalized strain vectare defined by

1 z000 0

p=/0 01z 0O (47)
00001z

e=[e, k g k g k] (48)

The derivatives of the longitudinal straireg, €, and y,, with respect tox and y are

15



determined by
€,=p'é  g=pe
where the derivativeg andé of the generalized strain vector are expressed by
;o 12 12 T P . * . * . ‘ T
¢=[¢ K & k ‘g 'k] e=['¢ k¢ kg K
Substituting (49) in (44) yields

so(9=S(ge+Sf3e [ p=38{ pe §)

whereS,(z), S,(z) andS,(z) are vectors defined by

Si(2) = —LZ D,p'dz  S)(2 = —LZ D pdz Sf = —LZ D, p'd

The vectorF of generalized stresses per unit length is exptebyg

F=[N, M, N, M, N, M,] =["psdz

4

The derivatives™' and F, with respect toax and y, are determined by

FI

[ ] 1 T —_ ! [}
[N, M, N, M, N M, _j“pspz
E=[N, M, Ny N M) =[ps dz
Substituting (41) and (49) in (54) yields

F=Ke F=Keé

where the stiffness matriK is defined by

(49),b

(50%,b

(51)a,b

(52)-c

(53)

(54)@.,b

(55),b

16



K:jZBprsz (56)

Equations (51) and (55) yield the shear stresgeand s ,. These simple final equations are

conceptually identical to the equivalent sectiorthrod for beams, proposed by Diaz (1980) and
Diaz and Schulz (1981). Equations (55) define twstesns of six generalized stresses by six
generalized strains. The derivatives of generaliggdsses in (54), which can be directly
evaluated from analytical solutions and finite ed@manalyses, must satisfy the differential

equilibrium equations (38).
HIGHER-ORDER APPROXIMATIONS

Although the first-order approximation is considkr@dequate for practical applications, a

higher-order solution is also discussed. DeriviBg) ( substituting (33), and integrating, yield

L2=-5.03= 5 (5902
$.(9=- (§+75)dz (57R-c
(2= (§+7)z

The second-order approach is defined by negledtwegsecond derivatives of the shear

stressess,, and s,. Considering that the material properties do mgiicantly vary in x and

y, the following approximation is adopted:
§,=Dé (58)a-c

Using partition (42) and substituting (58) in (31@lds

17



%.9=-5(3= 73] (02,70  Jaz
$.(2)= —LZ (D,&,+D & )dz (59)a-c

s,(2= —LZA(DXys'n+D A )dz

where ¢! =p' €, £ =p' & and & =p' €. Deriving (54) and substituting (58) yields the

derivativesF’ , F andF' of the vector of generalized stresses, which speessed by
F'=K¢e F=Ké F =Ké (60)a-c
whereK is the stiffness matrix defined in (56).

Equations (59) and (60) evaluate the shear stresgativess,,, §,,, s, and §,, formerly

neglected by the first-order approximation. Thetiphderivativess,,, §,, §, , S

v S, and s

yz!

neglected in the second order approximation, carcdresidered by repeating the proposed
approach in a third-order approximation. Higheresrdhpproximations can be successively
established in search of more precise resultstdajtire the evaluation of additional generalized
stresses. The first-order approximation is considexcceptable for reinforced concrete design,

and it is recommended in the interest of simplifythe formulation.
MATERIAL BEHAVIOR

The proposed mechanical model can be implementedrding to different constitutive
formulations. The present analysis is based orbifienensional constitutive model proposed
by Vecchio and Collins (1993). It uses the uniaxgtkss-strain curve proposed by Popovics
(1973), modified for high strength concrete by Térdeldt, Tomaszewicz and Jensen (1987) and

calibrated by Collins and Porasz (1989). In modgeth& softening effect in tension-compression

18



state is expressed as a function of the rati@,, wheree, ande, are respectively the principal

tensile and compressive strains. In the presengérpdpis estimate is lower bounded by the

softening coefficient formerly proposed by the seaméhors (1986), which is a function ef.

The tension-stiffening effect is as representedPbjak and Vecchio (1993), where concrete
average tensile stresses, transmitted across dloksgrare limited by the reserve capacity of the
reinforcement. Tension stiffening effect is assurteetle limited to a volume of concrete within

7.5 bar diameters from the reinforcement cented, the maximum shear stress at a crack is
verified as recommended by Vecchio and Collins @98'he shear slip at crack surfaces,

Poisson’s ratio and other secondary effects areoudidered.

The tridimensional constitutive model uses the samaxial curves, but the principal strains

€, and g, are replaced, in the same softening functionsthieystrain parameters and €,.
Kirschner and Collins (1986) defirg as the square root of the sum of the squared pbsitive
principal strains. The straig,, is assumed as the minimum principal strain. ThageE; in (24)

are determined by

' 0e;, OB 0e dg; 0%, 0%

where B(s’l,s’z) is the tension-softening coefficient. The part@rivatives in (61) are
analytically presented by Santisi d'Avila (2008)ncg E, # E; under tension-compression
states, matriceg, C, D andK are not necessarily symmetric.

IMPLEMENTATION PROCEDURES

19



The following procedure yields strains and stre$ésea given set of internal forces:

1. An iteration is started considering a generdligiain vectore (48) and distributions of shear

stressess,, and s, along the thickness. The first approximations lsazero.

2. At each layer, the vectors of in-plane strains(46) and transverse stressgsare known.
Vectorss, andg, are determined using a secondary iterative prde&ssd on (39), the final step
of which yields the reduced constitutive matbx(42).

3. The vector of generalized stres$e$53) is integrated. The procedure stops whendbelual

AF , between applied and resisting internal forEesis considered relatively small.
4. The stiffness matrixK (56) and the derivatives of generalized straghsand é (50),
evaluated by equations (55), yield a new approxonasf the shear stresseg, and s, (51).
Solving AF =K Le yields the strain incremerfie and a new approximation of the generalized
strain vectore, restarting the main iterative process.

The simultaneous update of generalized strainss@edr stresses proves to be numerically
efficient, although each update assumes that ther giarameter is restrained. The numerical

efficiency is not affected by solving non-symmetsgstems with low order matrices. The

secondary iterative process, based on (39), isvadteRaphson procedure that solves

As, Cn _CntC;thtn | CmC;t1 Ag,
""""" = 1 : ) Ne (62)
A, -C. Gy [ C As

t

The ultimate load capacity is evaluated by anotheremental procedure based on the arc-

length method. The shear stresses are determimeg the stiffness matriXX of the previous

20



incremental step. Additional details are presebte&antisi d'Avila (2008).
COMPARISON WITH TEST DATA REPORTED IN THE LITERATUR E

The proposed theory and the material model usedeaifed with experimental data obtained

from the literature.

Vecchio and Collins (1982) analyze the responsemeimbrane elements submitted to
combined in-plane shear and normal stresses. SeesifV, with 890 x 890 x 70 mm, are
typically reinforced with two layers of welded wiraesh, which are heat-treated to exhibit a
long yielding plateau. The selection presented abl& 1 excludes panels with concrete voids,
panels which fail prematurely because of pull-olitsbear connecting keys, and panels that
require additional information on steel responsed@roperly analyzed under strain-hardening.
Table 1 presents the main material and geometidaimation, including the steel yielding

stresses {,, f,) and reinforcement ratiop(, p,), which are defined, respectively, in each

y
orthogonal direction. The cracking tensile strengtltoncrete is estimated tQ/.33/f_c( MP@.
Most specimens are subjected to increasing purarshed 1, designates the ultimate shear

stress. Panels PV23, PV25 and PV28 combine sheasss, denoted by, with biaxial normal

stresses, which are respectively equat@39t, —0.691 and +0.32t. The biaxial compressive

stresses of specimen PV29 are expressed in mooylus 3.80 MPg, when 1> 3.80 MPa.

The ultimate loads predicted by Vecchio and Collfh882), Bentz, Vecchio and Collins
(2006) and the proposed procedure show good ctioeld he contribution of tension-stiffening
is analyzed by excluding and including this effddte predicted results are denoted respectively

by PT (pure tension) and TS (tension stiffening)d aultimate loads are not significantly

21



different.

Polak and Vecchio (1993) investigate the behavioshell elements subjected to biaxial
bending and in-plane forces, using a shell elerrestér that is capable of applying uniform load
conditions. Specimen SM4 is of special interestbee it presents symmetrical top and bottom
reinforcement in two orthogonal directions, ori¢athat 45° with respect to the applied loads
M and P (Figure 4). The reinforcement ratios are 1.32p2@Q spaced at 0.076m) and 0.44%
(@10 spaced at 0.076m), per layer, in each direcfldre corresponding stress-strain curves
present definite plateaus at 425 and 430 MPa,nstrardening after 12 and 20 mm/m and
ultimate strength of 611 and 480 MPa. The effedist dimensions are 1524 x 1524 x 316 mm,
the concrete compression peak stress is 64 MP& ahi2d/m, and the split cylinder tensile test

yields 2.76 MPa. The final load level is reportedvd, = 205 kNny m and P, =820 kN m.

The element x-axis is defined in the direction of the strongesinforcement. The
experimental surface straing, and reinforcement strains,, and £, are compared to the
theoretical results (Figure 4). The predicted sgaexcluding the concrete tensile strength (NT -

no tension) and including the tension stiffening),Tdescribe tension effects at intermediate

load levels and demonstrate good correlation.

The predicted and observed ultimate momeéwisare discussed in Table 2 according to three

conditions: excluding the concrete tensile strer{f), taking into account the concrete tensile
strength but excluding the tension-stiffening eff@@T) and including both concrete tensile
strength and tension-stiffening effect (TS). Allsasiptions predict conservative results in

agreement with the observed data. In this analydiisnate loads are not influenced by tensile
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effects.

The predicted stresses and strains, neglectingetentensile strength, are presented at a load
level near to failure (Figure 5). The stress on weaker reinforcement increases because of
strain hardening, but it is still inferior to thdtimate strength. Concrete reaches its reduced

compressive strengtlo(= -3 f, ), as shown in Figure 6.

Adebar (1989) and Adebar and Collins (1994), usihgsame element tester, analyze 1524 x
1524 mm shell elements subjected to in-plane ans#erse shear loads. The specimens selected
for this verification have very small amounts oéahreinforcement (0.08% reinforcement ratio).
Some other specimens, which present larger amafnthear reinforcement, are discarded
because they do not fail during the test. The spexcs denoted by SP3, SP4, SP7, SP8 and SP9
are 310 mm thick and have large amounts of symoatin-plane reinforcement, equally
arranged in orthogonal grids oriented4&® with respect to their sides. The stress-straivesur
show definite plateaus and the strain hardeningomese is described by Adebar (1989). The
yield and ultimate stresses of the shear reinfoergrare respectively 460 MPa and 570 MPa
and other details are presented in Table 3. Inpiesent numerical analyses, the cracking
strength of concrete is estimated based on thdtseell the split test. The specimens are
subjected to different load combinations, which preportionally increased during the testing
procedure. The in-plane and transverse forces amstant along the specimen, but bending

moments vary linearly (Figure 7). They coordinate system is associated with the in-plane

reinforcement. Generic transverse shear fokt;es\/i kN/m andV,, =0 kN/m, applied in the

X'y coordinate system, correspond\p=V, =1 kN/m. The derivativesM , M, M|, M,

xy !
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I\/'Iy and I\/'IXy are equal td/2 kN/m. The load capacity is verified at=+0.75 m, transforming

the corresponding bending momeWit, to xy coordinates.

Theoretical and observed stirrup strains are coetpar Figure 8. The reference shear stress

V/t is defined byV/t=V,/t=V,/t, wheret is the thickness of the shell. The experimental

transverse strains cannot be exactly representethdyroposed formulation, since they are
measured with strain gauges on unbounded stirr@psording to hypothesis 2, no slip is
considered between concrete and reinforcing barspite of this limitation, predicted average
stirrup strains are compared, in magnitude, exolyidind including the tension stiffening effect.
The theoretical strains of specimen SP4, includivggtension stiffening effect, show low levels
of stress. The same results are predicted by AdabarCollins (1994). The necessary stirrup
contribution to the equilibrium, between cracksstiies the large experimental strains of the

unbounded stirrups.

Although the properties of specimens SP3, SP4, SP&,and SP9 are not exactly the same, it
is possible to establish a relationship betweenstrarse shear capacity and membrane shear
forces (Figure 9). The ultimate loads predictedthiy proposed theory are compared to other
formulations (Polak and Vecchio 1993; Adebar andlli@® 1994), and give a better
approximation. Results excluding tension-stiffenirffects are significantly lower. The

reduction of longitudinal strains increases thesltapacity considerably.

The response of specimen SP7 is evaluated cloaltoe, including the concrete tensile

strength and the tension-stiffening effect (Figa®. Minute negative shear stressgs are

detected in the tensile cover region. They are Gatsul with the negative derivatives of the
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stress-strain diagram for concrete under tensio@, descending branch of which represents
declining tension stiffening as cracking progres3d®e stirrups reach yield stress through an

extensive area of the thickness. The principal cesgive stresses, and o, are compared with

the concrete capacity in Figure 11, where the redumoncrete strength due to compression

softening is defined bf f..

The spatial orientation of the principal compresssiresses close to failure, as predicted by
the proposed theory, is presented in Figure 12.cFlemtation of the struts is more detailed for
specimen SP7 (Figure 13). The direction of the isls&aits, in the central core of the shell,

follows the direction of the principal transversear force.
CONCLUSIONS

The proposed mechanical model yields through-tiedatiess distributions of stresses and
strains in reinforced concrete shells, considerihg simultaneous effect of in-plane and
transverse loads. The comparison with test datarteg in the literature confirms that the
formulation is able to accurately model in-planenditions, flexural behavior and transverse
shear effects. The constitutive model adopted ptedesults which are in agreement with the

observed data.

The proposed theory provides a promising solutionthe design of reinforced concrete
shells. A practical design method can be develdmedapplying optimization techniques to
balance the internal forces with a minimum amodribtal reinforcement. Strain limitations can
be considered as complementary optimization canditi The bipartition method, starting from

the minimum and maximum code requirements, is leiapproach that is sufficient for fixed
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reinforcement ratios.

However, the influence of tension effects demardit@nal investigation. Concrete tension
effects are often neglected in reinforced concdetsign, because they are usually considered to
have little to no influence on the ultimate loagh&eity. This hypothesis is confirmed in PV and
SM specimens (membrane and shell elements subjeriaeplane conditions). The fact that the
load capacity of SP specimens is significantly @#d by tension stiffening shows that this
approach may be too conservative for shells wigdmdverse shear forces, particularly when
dealing with large amounts of flexural reinforcememall amounts of shear reinforcement and

monotonic loadings.

The verification of tension effects, with additibexperimental data, and the implementation
of finite element formulations, based on the pre@gosnechanical model, call for further

research.
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APPENDIX Il. NOTATION
The following symbols are used in this paper:

() = derivative of function with respect to variabte(9/0x)

() = derivative of function with respect to variabye (9/dy)
()” = derivative of function with respect to variatie(d/9z)

C = tangent constitutive matrix of reinforced comeréﬁx 6)
D = reduced constitutive matrix of reinforced coner8x 3)
E = strain tensor

E = tangent constitutive matrix of concrete

E. = tangent constitutive matrix of reinforcement

E, = elasticity moduli of concretfi,j =1,2,3
E. = elasticity moduli of reinforcement

e = vector of generalized strains
&.§, 6§, = axial strains and in-plane shear straiz at0

F = vector of generalized stresses per unit length

E. E

Sx? —sy!

f. = concrete strength in compression

f, = steelyielding stress

f, = steel ultimate stress

G, = tangent shear modu(i,j =1,2,3;withi #j)
| = identity matrix

K = stiffness matrix of the reinforced concrete sakdment

k., K, K, = curvatures of the cross-section
N, N,, N, = axial forces and in-plane shear force per @mgth
M, = ultimate bending moment
M,,M M, = bending and twisting moments per unit length

p = position matrix
P, = ultimate axial force
S = concrete stress tensor
S..S,, S, = vectors of stiffness properties of reinforcedaete betweenz, and z

s = vector of analogous stresses in reinforced @acr
S S, S, = in-plane analogous stresses in reinforced coacre
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transverse analogous stresses in reinforcedetnc

rotation matrix
shell thickness
ultimate shear force

transverse shear forces per unit length

coordinate axes

principal coordinate axes

z-coordinates of the cross-section upper and lowants
softening coefficient

shear strains

shear strains in principal coordinates

strain vector
reinforcement strains

residual strain of prestressed tendons

axial strains

shear terms of the strain tensor

maximum, intermediate and minimum principal isisa
strain parameters

matrix of reinforcement ratios

reinforcement ratios

concrete stress vector
reinforcement stress vector

reinforcement stresses

concrete axial stresses

concrete axial stresses in principal coordinates
concrete shear stresses

concrete shear stresses in principal coordinates
rotation matrix
terms of matrix® (i =1,2,3;j =x y z)
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