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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00854183


Quantitative 3D Characterization of Cellular Materials: Segmentation and

Morphology of Foam

Kevin Mader,1, 2 Rajmund Mokso,1 Christophe Raufaste,3 Benjamin
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Wood, trabecular bone, coral, liquid foams, grains in polycrystals, igneous rock, and even many
types of food share many structural similarities and belong to the general class called cellular mate-
rials. The visualization of these materials in 3D has been made possible in the last decades through
a variety of imaging techniques including magnetic resonance imaging (MRI), micro-computed X-
ray tomography (µCT), and confocal microscopy. Recent advances in synchrotron-based ultra fast
tomography have enabled measurements in liquid foams with thousands of bubbles and time resolu-
tions down to 0.5 seconds. Post-processing techniques have, however, not kept pace and extracting
useful physical metrics from such measurements is far from trivial. In this manuscript we present
and validate a new, fully-automated method for segmenting and labeling the void space in cellular
materials where the walls between cells are not visible or present. The individual cell labeling is
based on a new tool, the Gradient Guided Watershed, which, while computationally simple, can
be robustly scaled to large data-sets. Specifically we demonstrate the utility of this new method
on several liquid foams (with varying liquid fraction and polydispersity) composed of thousands of
bubbles, and the subsequent quantitative 3D structural characterization of those foams.
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INTRODUCTION

Dispersions, which by definition consist of at least two phases mixed together, are an interesting class of materials,
principally because the mechanical properties of a mixture are not a linear sum of its components. Furthermore these
materials are particularly useful because their properties can be tuned by adjusting the relative composition, size
distribution, and topology rather than their chemical make-up. For this reason, they are widely seen in nature as
wood and coral, and in synthetic materials such as metallic and liquid foams, and a multitude of ceramic, glass, and
even food products. Many of these materials can be described as cellular, meaning one of the phases is made up of
individual cells or units packed together. The use of a cellular model provides a powerful framework for characterizing
and understanding the physical, rheological, and mechanical properties of a material.
Experimentally it has always been difficult to access the inner 3D structure of cellular materials. The development
over the last decades of micro-computed tomography (µCT), confocal microscopy, scanning electron microscopy
(SEM), and magnetic resonance imaging (MRI) have provided the ability to penetrate into these materials providing
valuable images of the internal organization. Translating these images to structure and consequently individual
cells is highly variable in both feasibility and difficulty. While numerous specific techniques exist, a majority of
the tools are based on closed-source proprietary software packages such as Mavi (Fraunhofer ITWM, Kaiserslautern,
Germany), Avizo (Visualization Sciences Group, Burlington, USA), or Aphelion 3D (ADCIS SA, Saint-Contest,
France). These packages, while generally polished and powerful, limit the flexibility and scalability of the analysis
being done. Furthermore they make it difficult to understand and improve on existing methods as certain functions
are effectively black boxes.

Liquid foam is a cellular material of particular interest because of its wide industrial applicability and thus chosen
for our further analysis. The structure of liquid foams consists of gas bubbles dispersed inside a continuous liquid
phase [1]. The bubbles are separated by a thin layer of liquid called a film and the liquid built up when more than 2
bubbles touch is called a Plateau border. Owing to this multiphasic composition, they exhibit interesting mechanical
properties that lead to numerous applications in food and cosmetic industries and are used to optimize ore and
oil extraction. Experimentally imaging foams can be difficult; in dry foams, most of the liquid accumulates at the
junction of thin films, forming a continuous network of liquid channels called Plateau borders [1, 2]. Films and Plateau
borders absorb light weakly but diffuse it strongly, making the structure opaque and difficult to image using visible
light and other standard approaches. Several alternative more sophisticated techniques have been therefore proposed
to image 3D foams in depth. Magnetic-resonance imaging, for example, has successfully been used to visualize 200
bubbles in [3], as opposed to 48 obtained with optical tomography in [4]. X-ray tomography has also been applied
to the examination of liquid foams; early results in 2005 successfully scanned 750 bubbles with an acquisition time
of 150 s [5]. Setup optimization has led to a steady improvement to 30000 bubbles in 30 s by 2010 in [6], enabling
the observation of the very slow evolution processes in coarsening foams. More recently improvements in detectors
have enabled scans to be conducted 60× faster with the same resolution and field of view with only marginal losses
in image quality [7].

When probing dry (<10% liquid fraction) liquid foams with hard X-rays (wavelength < 0.1 nm) thin films (< 1 µm)
interact or absorb weakly the X-ray light, making them, in general, impossible to distinguish from background noise.
Plateau borders, being much thicker, absorb and diffuse more light and provide a clear contrast from the air-filled
bubbles (Fig. 1a). The step between Plateau borders visualization (Fig. 1b) to individually, uniquely labeled bubbles
is far from trivial. Earlier studies [6, 8] have successfully labeled bubbles based on X-ray tomographic images, but
relied on proprietary software with limited flexibility and required subdividing the field of view [5] making tasks such
as sensitivity analyses and tracking much more difficult. More recently another group also produced a good labeling
of monodisperse liquid foam data [9], but is again dependent on proprietary commercial software.

The rapid improvements in acquisition time come at some cost in the form of decreased image contrast and increased
background noise and motion artifacts necessitating sensitive and noise resistant post-processing techniques, which
can be easily adapted to the quality of the images at hand. Furthermore the 4D multi-gigabyte data sets acquired
require efficient, scalable, hands-free methods for analyzing these data. The tools described in this manuscript are
an effort to satisfy the needs in this community for automated quantitative analysis of large datasets with special
emphasis on complex liquid foams systems where the presently available tools fail to provide open, scalable, reliable
and consistent results.
Our approach is similar in principle to the watershed transform [10–12], but more adaptable to a variety of problems
and volume fractions while providing tunable parameters, which can be adjusted based on the information content of
the data, specifically, noise-level, volume fraction, and contrast. The watershed transform was also the basis for the
analysis peformed in [8], but required proprietary software and functions to create a usable labeling. Consequently
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it would be difficult to further scale and adapt to new sorts of problems. The methods and tools described in this
manuscript open numerous possibilities in the Materials Science community. They are tested and validated on liquid
foams samples, but have been built in a generic way so they can be directly used for labeling and analysis of other
cellular materials, such as wood or the trabecular structure of bone.

MATERIALS AND METHODS

Sample Preparation

We prepared several samples of liquid foams. FOAM-M and FOAM-P were made of the mixture of sodium lauryl
ether sulfate (SLES), cocamidopropyl betaine (CAPB) and myristic acid (MAc), following the protocol proposed by
[13]: we prepared a solution of 6.6% of SLES and 3.4% of CAPB in mass in ultrapure water; we then dissolved 0.4%
in mass of MAc by stirring and heating at 60◦C for about one hour, and we diluted 20 times this solution. A few
mL of solution was poured in the bottom of a cylindrical plexi-glass container with a diameter of 22 mm and the
height of 50 mm compatible with 180 degree tomography. The foam FOAM-M was prepared by injecting air through
a nozzle of diameter 0.4 mm immersed in the solution, at a flow rate of 1 mL/min controlled by a syringe pump
(PHD-2000, Harvard Apparatus). When building a monolayer with the so-blown bubbles, a crystallized 2D foam
appears, suggesting that the bubble volume dispersity is narrow and FOAM-M can be described as monodisperse.
The order of magnitude for bubble volume was roughly estimated to be around 0.1 mm3. FOAM-P was prepared by
hand shaking the container for about 30 seconds and was visibly more polydisperse than the former sample. Excess of
solution was sucked out of the cell by a syringe when necessary. Foam height in the container ranged between 2 and 5
cm. This is much higher than the millimetric size of the capillary length of the solution so that the foam is subjected
to a vertical drainage. Nevertheless, this system was selected because it produces very stable foams, irrespective of its
interfacial rheological properties. The drainage is slowed down so that no significant evolution is observed during the
first 15 minutes following the foam preparation (which never exceeded the duration of our experiments). However,
since the transfer to the beam-line and the scanning of the various samples were performed at different times, we
expect that our different foam samples have different liquid fraction, due to the slow drainage process. Furthermore
due to the sample preparation method, the liquid fraction was difficult to measure directly, thus the displayed quantity
has been inferred a posteriori using the ratio of liquid voxels to total voxels in the images.

Imaging Technique

The samples were measured at the the superbending magnet of the TOMCAT beamline [14] of the Swiss Light
Source. A tomographic dataset is composed of individual radiographic projections of the sample at equidistant angular
positions between 0 and 180 degrees. A new rapid tomographic data acquisition scheme using filtered polychromatic
X-rays and a CMOS detector of 12 bit dynamic range [7] allows the acquisition of a full set of (500-800) tomographic
projections in typically 0.5 seconds with the voxel sizes ranging from 0.5 to 11 µm and a corresponding field of view
of 0.7 to 22 mm. These new capabilities allow the monitoring of the dynamics of liquid froth systems by acquiring a
time series of 3D tomographic images.
With sample holder containing the foam mounted on the sample stage 25 meters downstream of the bending magnet,

the acquisition of a single tomographic dataset took 0.5 s, with a nominal pixel size of 11 µm and the corresponding
field of view of 22 mm in horizontal direction (smaller in the vertical direction because of the smaller X-ray beam
only 6 mm in size). A scintillator screen was used to convert X-rays to visible light, which could then be recorded
as individual projections by the CMOS detector. To reconstruct the set of projections to a 3D stack of images,
we used an in-house Fast-Fourier-based reconstruction technique called Gridrec which is nearly equivalent to filtered
back-projection but many times faster [15]. The resulting volumetric data is 2016×2016×500 voxels with an isotropic
voxel size of 11× 11× 11 µm.

A new labeling method

The measured volumetric data is a 3D gray-leveled image where under ideal circumstances the voxel intensity
corresponds to the amount of X-Ray absorption which occurs in that region. Therefore, brighter regions corresponds
to vertices and Plateau borders which strongly absorb the X-rays, while the bubbles and their interstitial films, which
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are too thin to be observed, remain darker (Fig. 1a). We describe in this section the different steps of analysis from
the tomogram to the labeling of each individual bubbles.

Image segmentation

The first step applied to the raw tomographic reconstructions is the application of a median filter to smooth the
data and remove spike artifacts. Next a threshold is applied to segment the more strongly absorbing Plateau borders
from the more weakly absorbing air-filled bubbles (Fig. 1b). For this step to be successful, the input dataset must
be of good quality in terms of signal to noise ratio and contrast. The segmentation is then improved by using the
morphological operations of erosion and dilation to remove spurious voxels and holes from the image (Plateau borders)
and its inverse (bubbles).

Distance map

The subsequent analysis is done using two voxel masks as input. The first is the segmented collection of Plateau
borders in the image to be called PLAT (Fig. 1b). The second is the region where the bubbles and films are, to be
called MASK (Fig. 1c). When the sample occupies the entire field of view, these two images are complementary and
MASK is simply the inversion of PLAT. Since the acquisition technique provides isotropic spatial information, we
formally define our image as an L×W ×H lattice of touching, non-overlapping cubes. We shall define a voxel as an
individual cube from this lattice, X = (x, y, z) and its 26-Neighborhood N26(X) as all the voxels Y which share a face
or edge with X . From these starting data sets, like in [8] we create a Euclidean distance map based on the voxel-center
positions to be called DIST (figure 1d) from PLAT and MASK where the values are generated by calculating for each
voxel in MASK the Euclidean distance to the nearest voxel in PLAT [16].

Bubble seeds

We define bubble seeds as points which can be used to grow bubbles. We calculate the Gradient and the Hessian
of the distance (to the nearest plateau borders DIST) for every voxel in the image based on its respective N26

neighborhood. We determine which of these voxels are local maxima (in the distance map) by finding voxels where
the Gradient norm is below a flatness criterion and the Hessian is finite negative. The flatness criterion is how low
the gradient at a point needs to be in order for that point to be eligible to be a bubble seed. A high value means
many points are taken as bubble seeds and a lower value means fewer. In order to minimize spurious bubble seeds
we impose several additional criteria on the maxima: for our samples we used a minimum bubble radius of 4 voxels
resulting from the noise content analysis of the images. Additionally we ignored minima found within 2 voxels of the
image edge, since operations involving derivatives require at least two voxels of boundary to be calculated (below and
above). These parameters are both due to the discrete nature of data and are not inherently resolution-dependent.

Bubble growth and Gradient Guided Watershed (GGW)

This step describes how we grow the bubbles from potential bubble seeds. At this step, our method differs sign-
ficantly from the existing Watershed-based techniques. Here we use a distance guided dilation process to robustly
identify the different bubbles. The Gradient Guided Watershed method works by determining the entire volume for a
bubble given a single or group of voxels, which are identified as a bubble seed (S) and the Plateau border distance map
(DIST). The process is an iterative dilation with the added constraint that the new voxels must follow the distance
gradient. With the watershed algorithm, an analogy is made between the labeling of empty voxels and water (seeds)
flowing into different basins (empty voxels) [12]; using a similar analogy, our technique can be seen as the addition
of an effective friction, put in place to only allow the water to flow when the gradient is steep enough (larger than
Tgrowth). Mathematically this is expressed in terms of a voxel (X) contained in the bubble (S). Given an empty voxel
Y within the N26 (X) region (bordering voxel X), Y is only to be added to bubble S when DIST (Y ) ≤ DIST (X)

and ||DIST (Y )−DIST (X)
Y−X

|| ≥ Tgrowth.

The voxels, which are added to S during this procedure, are then excluded in the search for the possible next bubble
seed. The procedure is repeated in descending order according to local maximum value (approximately bubble radius)
until no more satisfactory local maxima are identified. This allows a larger bubble to engulf any local maxima inside
it. The results of this dilation is shown on 2D experimental data in Figure 2a.

Final steps

After each bubble has been labeled using this technique, there is a large amount of unlabeled air (MASK) remaining
in the image (Fig. 3a), particularly in the regions where films are; indeed, the method deliberately avoids films since
they do not have strong gradients in the distance map field being between two Plateau borders (blue lines in Fig.
2b). These remaining regions are filled by repeating the GGW with a less stringent Tgrowth parameter called Tfill

and finally, optionally, filling the remaining regions using a Voronoi tessellation (Fig. 2a).
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Implementation

These analyses were done using custom-developed tools written in Java for portability and the availability of existing
open-source tools frameworks like ImageJ (National Institutes of Health, Bethesda, Maryland, USA). We provide the
source code for the parallel implementation we developed free of charge [17].

VALIDATION OF OUR NEW LABELING METHOD

We first developed and calibrated our image analysis tools on a series of synthetically generated cellular materials
with various known cell positions, and sizes (data not shown). However, in order to fully validate our approach,
the segmentation and labeling of real experimental data is required. Thus, we have tested our approach on the two
systems described previously, a mono- and a poly-disperse foam, respectively FOAM-M and FOAM-P.
First, we describe in full detail how we determined the set of parameters to correctly reconstruct and label the

bubbles of the mono-disperse foam, FOAM-M.

Parameter Selection

This section describes the procedure required in order to find the best set of parameters to label the bubbles. The
following steps make up the calibration procedure for our method and only need to be performed once to ensure the
quality of the labeling :

1. Identify a flatness criterion for bubble seeds.
The flatness criterion is how low the gradient at a point needs to be in order for that point to be eligible to
be a bubble seed. A high value means many points are taken as bubble seeds and a lower value means fewer
(figure 3). We investigated the general effect of the flatness by varying it systematically between the smallest
and largest reasonable values for a discrete system (0 and 1). From these results it was possible to choose
by visual inspection of the bubbles the physically meaningful subregion between 0.3 and 0.5 for more detailed
investigation. We observe in figure 4c that within the flatness range, the volume distribution presents two well
separated peaks. The larger volume one has an average bubble volume of 0.08mm3 or 70,000 voxels, while the
smaller one has a volume smaller than 10,000 voxels. Below a flatness criterion of 0.3, both groups scale similarly
with flatness, because of the fact more and more bubble seeds are grown. Above a flatness criterion of 0.3, there
is a distinct, quantitative change in the trend: while the number of small bubbles continues to increase, the
number of large bubbles saturates around a value of 360 (figure 4f). The same holds for the complete volume
distribution as well (figure 4c): the larger bubble distribution saturates, while the peak of the smaller bubbles
continues to increase. Guided by knowledge of the preparation and visual inspection of the sample, we interpret
the larger bubbles as expected, real bubbles. The fact that their number saturates emphasize that above a
given flatness, all of them are recognized by the labeling method. Smaller bubbles are artifacts that have no
real counterpart. Their number increases with the flatness and their occurrence will be discussed below. The
important result is that artifacts can be recognized and filtered out by using a volume threshold well below the
volume of real bubbles. We have thus developed an objective determination of the flatness criterion in order
to label correctly the bubbles in our foams: the flatness chosen has to be larger than this threshold. We chose
0.375 to prevent too many artificial seeds.

2. Identify a high GGW criterion (Tgrowth) for growing seeds.
From its definition, Tgrowth could potentially range between 0 (complete filling of every interconnected space)
and 1 (no growth). Tgrowth was adjusted so that bubbles grow up to approximately 80% of their final volume. A
value of 0.9 was taken to satisfy this criterion. This enabled us to eliminate all potential artificial seeds present
in the middle of the final bubbles while avoiding intruding bubbles fig 3a,4c). Smaller artificial seeds could still
potentially be present (we mostly find them close to the vertices or close to the edges of the 3D image), but
are easily eliminated using a volume threshold (see above). Smaller value of Tgrowth are not advised since they
could lead to invasion of other bubbles and lead to unphysical very anisotropic bubbles (see figure 3a).

3. Remove any artificial seeds.
The former step is performed starting with the seed with the highest distance and iterating through all seeds
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in a descending manner. For each seed, we check whether it overlaps with an existing grown bubble. The seed
is kept and allowed to grow if the overlap is less than 40% by volume (the exact value is not restrictive). This
step is repeated until all seeds have been processed. After this step, the number of final bubbles is fixed.

4. Identify a low GGW criterion (Tfill) for filling bubbles.
0.3 was found as the best compromise between growing bubbles (lower value) and overlapping bubbles (higher
value) in all the systems examined. The parameter while important for visual inspection and a reconstruction
of the film areas, played only a very minor role on the final quantitative results (bubble count, anisotropy, face
count, volume, etc)

After the image analysis, using the set of parameters Flatness = 0.375, Tgrowth = 0.9 and Tfill = 0.3, we found
that the labeled FOAM-M contains 400 bubbles with a mean volume V=0.08±0.02 mm3. Moreover, we can evaluate
the liquid fraction from the PLAT images as the ratio of the Plateau border network volume to the total volume of the
image; for FOAM-M, this is 7.2%.We have verified that this measurement of the liquid fraction is not very sensitive
to the threshold level applied to the raw reconstruction images.

COMPARISON TO PREVIOUS METHOD

To demonstrate the robustness and reusability of the technique, we use the same set of parameters established
in the previous section to label a very different foam sample, FOAM-P which corresponds to a highly polydisperse,
disordered foam. We verified by direct visual inspection on various slices that these parameters resulted in a good
labeling.
In order to completely validate our labeling technique, we compared our method to the current state of the art. We

thus independently filtered, segmented, labeled, and analyzed the same foam sample, FOAM-P, using an approved,
existing method recently developed [6, 8] and based on a commercial software package.
We show in Figure 6c,d the histograms of the bubble size and face counts for the poly-disperse FOAM-P, using the

two different procedures. We observe that the two different segmentation and labeling techniques give similar results,
providing, for the existing (Lambert) and current (this manuscript) methods respectively: a bubble count of 6191 and
6299, with an volume of 0.08±0.12 mm3 and 0.09±0.14 and face count 9.9±4.7 and 11.1±4.4.
We also performed an individual comparison by matching each bubbles between the two methods (smallest distance

criterion) and comparing their respective volume and face count (Figure 6cd). Again, the results are very good,
emphasized by the large number of bubbles matched between the two methods, and allows to conclude that such
results validate clearly our new labeling method. For this foam, we estimate the average liquid fraction to be 8.3 %
(we note the liquid fraction varies slightly in the vertical direction ranging from 7.0% near the top of the image to
9.4% at the bottom).

DISCUSSION

Parameter Sensitivity

As mentioned earlier, a visual inspection is of paramount importance to test the effects of the two parameters
Flatness and Tgrowth and to ensure an accurate labeling of the bubbles. None the less, we performed a thorough
analysis by varying systematically both parameters to give some insights about their acceptable range. In this analysis
Tfill was fixed to 0.3. Results are displayed in figure 4. As discussed previously, number of large bubbles does not
change significantly for a flatness between 0.3 and 0.5, while the number of artificial bubbles increases with the flatness,
without being strongly affected by Tgrowth. While Tgrowths effect on bubble count and volume was only significant
at a value above 0.95, a value below 0.8 caused bubbles to start to grow inside of each other (so-called intruding
bubbles). Intruding bubbles is most directly seen in topology, but anisotropy is also affected.
It is important to emphasize that both parameters are dimensionless. Therefore, approximately the same value

could be used in future studies irrespective of the bubble sizes. Dealing with segmented images with a different
quality, parameters value would need to be slightly adapted since noisier data would lead to more artificial seeds, that
would need to be eliminated by decreasing slightly Flatness and / or adjusting the threshold for the minimal accepted
bubble size (10,000 voxels). We expect that the lower the signal to noise the larger this minimal accepted bubble size
would need to be and for perfect images (e.g. in silico data) the requirement could be removed entirely. In any case,
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we would advise careful visual inspection and following the optimization procedure so as to ensure the quality of the
bubble labelling.

Artifacts

The analysis performed above emphasizes that artifacts can be simply filtered out a posteri since their size is
significantly smaller than the physically relevant bubbles. Artifacts are present in any labeling method and arise from
a number of sources but primarily from the quality of the initial segmented image including truncation effects when
Plateau border were near the edge of the image. The way the labelling procedure proceeds, from deeper local minima
to smaller one, allows the growth of the most physically relevant bubbles first, reducing less space for the artifacts.
As emphasized above, it is important to note that the two quantities that select the number of final bubbles, namely
Flatness and Tgrowth, are dimensionless numbers. It means a priori that the criteria applied here are not connected
to any physical length scales and the same procedure and parameter selection should hold for other foams with any
bubble sizes and roughly the same liquid fraction, without adding more artifacts. In fact, this was checked here by
using the same parameters to reconstruct successively both FOAM-M and FOAM-P.

Filling and Final Steps

The final steps involving filling with Tfill and the Voronoi tesselation are important for the final image and particu-
larly for the film reconstruction. We applied the Voronoi tesselation in all of our analyses to ensure accurate volumes
as the MASK should consist 100% of bubbles. However, we note in images with empty space in the MASK image
not corresponding to bubbles this extra step could drastically reduce the quality of the results as bubbles would grow
unconstrained into the entire MASK volume (similar to figure 3a) possibily effecting the reliability of face count,
anisotropy, and volume.

Morphological Considerations

The technique we presented did not utilize the physical mechanisms involved in bubble morphology or film shape.
Rather, films are reconstructed by the dilation/growing of two neighboring bubbles, guided by the distance map.
The ordering of the procedure means that larger bubbles will have first priority to fill this region with small bubbles
coming later. This procedure may lead to deviations from the Plateau rules obeyed by dry foams [1] and consequently
potentially unphysical films. Therefore we, at this stage, make no attempt to investigate the exact shape of the films
connection at the Plateau Borders and vertices. We can imagine that the addition of physical constraints to the
GGW method and a fine tuning of the Tfill and voronoi steps would provide a more accurate reconstruction near
the Plateau Borders and consequently more physically meaningful films. Alternatively an iterative or optimization
approach could be developed by combining this method with a relaxation step.

CONCLUSIONS

In this manuscript, we have presented a new, generic and open method, which has been validated by successively
labeling thousands of bubbles inside samples of liquid foams. The Gradient Guided Watershed procedure provides a
reliable tool to label bubbles based on physical arguments that are explicitly controlled by the user and not hidden
inside a commercial software page. The validation has been performed on highly disordered real foams. Especially
the comparison with an already published method (based on a commercial software) was found to yield an excellent
agreement. More generally, we claim that our method can be applied to any other multiphasic and cellular material
as long as the cellular network can be imaged and segmented. This should provide a powerful tool for both the X-ray
tomography and Materials communities.
The labeling and segmenting method we used provides a leap in the field of 3D foam analysis. The completely
open nature of our algorithm [17] and the tools used to reproduce the results means that the only limits for such
analyses are hardware and processing power. Additionally with the open and free choice of tools for analysis the
potential to advance the field with new metrics for bubble shape and organization, network and topological analysis,
and longitudinal studies are drastically increased. We also allow multiple groups working with multiple different
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instruments and analysis tools to perform identical labeling and thus avoiding systematic differences on the post-
processing side. Finally this should allow researchers to further collaborate and share data, ideally culminating in a
large centralized database of 3D foams, which could be used to test and verify new theories about the behavior and
fundamental physics of foams.
If bubbles tracking is now possible inside resting or slowly evolving foams (such as coarsening), it raises the question

of the feasibility of such an approach for moving bubbles inside 3D foam flows and dynamical evolution on relatively
faster scales. It is especially encouraging that these analysis tools are performing very well on the data sets acquired
with an unprecedented sub-second temporal resolution. The high-throughput, hands-free processing made possible
with our tools means that the previously unfathomably daunting task of analyzing thousands of bubbles in hundreds
of measurements is now a simple matter of computational time. This performance allows to conclude that all the tools
are now available for the assessment of the foam dynamics in 3D, which requires many bubbles and measurements for
a clear quantification of the behavior and mechanical properties in the system.

ACKNOWLEDGEMENTS
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FIG. 1. Foam Imaging. We show in this figure the steps involved for foam imaging using X-Ray tomography. (a) Reconstructed
absorption values from the sample. The liquid in the Plateau borders (gray) absorbs much more than the air within the bubbles
(black). (b) Segmented Plateau borders. (c) Inverse of (b), showing the bubbles of the image. (d) Distance map created from
the inverse of the Plateau borders. It shows how far each voxel in the foam is away from the nearest Plateau border. Yellow
regions are far away and black regions are closer.

FIGURES
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FIG. 2. Gradient Guided Watershed. The principle is shown through these two 2D images. (a) shows a local maximum selected
to grow as a bubble (S0) and the surrounding Plateau borders (blue) and distance map colored in yellow. The progress of
the bubble is shown as arrows through several iterations. The first few (light red) are isotropic as the distance map increases
uniformly from local maximum. The next (green) become slightly more anisotropic with regions no longer in-line with the
proximal Plateau borders growing more slowly. The final step (dark thick red) is very anisotropic with no growth in the black
circle regions and strong growth to the Plateau borders. The figure also illustrates how poorly constrained the bubbles are by
the plateau borders in lower liquid fraction, open cellular materials. (b) shows three local maxima (yellow circles), Plateau
borders (white triangles), and the distance map as a gradient field (red arrows). The growth of each local maxima would follow
the arrows toward the Plateau borders.
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FIG. 3. Illustration of the effect of the parameters Tgrowth and F latness on the labeling of bubbles. (a-c) show 3 different values
of Tgrowth and the resulting labeling in a small region. The plateau border is colored white. (a) Shows a too low threshold such
that the bubbles creep or invade neighboring bubbles shown in a slice and 3D illustration. (b) Shows the value, which was used
for the analysis of FOAM-M and FOAM-P with nearly full bubbles and little to no creep. (c) shows a Tgrowth value, which is
too high and prevents the bubbles from sufficiently filling the cavities and then during Tfill overlap. Specifically the bubble in
the red box is not completely filled in and could result in bubbles invaginating each other. (d-f) Show 3 different values for
F latness and the labeled bubbles drawn as spheres colored by the volume between 0 and 10,000 voxels. (d) shows a value,
which is too high and results in a large number of very small bubbles. (e) Shows the value used for the analysis of FOAM-M
and FOAM-P. (f) Shows a too low value for F latness resulting in too few seeds, which consequently become bubbles.



12

FIG. 4. Quantitative sensitive analysis of the parameters Tgrowth and F latness on the labeling of bubbles using the FOAM-M
system. In a,b,d, and f, F latness is shown on the X-axis and Tgrowth on the Y-axis. The parameters are varied around the
selected values with Tgrowth going all the way to Tfill. The point where the blue lines indicate the value used for the analysis
of FOAM-M and FOAM-P. (a) Shows the number of large (>10,000 voxels) bubbles. (b) Shows the number of total bubbles.
(c) Shows the volume distribution (x-axis) against probability (y-axis) of bubbles based on only the F latness (colored lines)
parameter with Tgrowth fixed at 0.9. (d) Shows the percentage of bubbles which invading or creep bubbles assessed by counting
the number of bubbles with more than 20 faces. (e) Shows the mean volume of bubbles, which contain more than 10,000
voxels (f) Shows the bubble count for large and small bubbles against the F latness parameter with a fixed Tgrowth of 0.9. The
definitions of large and small are indicated by the blue and green colored regions respectively in (c)
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FIG. 5. Reconstruction and labeling of two different foams using the same F latness = 0.375 and TGrowth = 0.9. The foams
examined were FOAM-P (poly-dispersive foam) and the FOAM-M (monodisperse foam) with (a) and (d) showing the segmented
Plateau borders for the two foams. (b) and (e) show the labeled bubbles colored by the number of facets the given bubble has.
(c) shows the histogram of bubble volume with number fraction plotted on the Y-axis and bubble volume plotted on the X-axis.
Number fraction indicates the number of bubbles with this volume over the total number of bubbles. The standard-deviation
of the FOAM-P distribution is 7 times larger than FOAM-M. (f) shows the histogram for face count with the Y-axis being
number fraction.
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FIG. 6. Comparison between the techniques developed in this paper (red) and those used in [8] (green) using the FOAM-P
measurement analyzed with both techniques. (a) shows the visual comparison with red spheres being bubbles coming from
the tools we developed and green spheres being bubbles from the former paper, [8]. (b) shows an XY slice taken from the
absorption data with the region of interest compared highlighted (c and d) show comparison of bubbles matched between the
two methods. The red line in both images indicates a perfect matching between the methods (c) shows a 2D histogram of the
volume. The X-axis shows the volume in the Lambert labeling and the Y-axis shows the volume from the labeling introduced
in the manuscript. The color indicates the number of bubbles with black being 0 and white being more than 100. The volume
axis in this graph is limited due to the sparsity of bubbles larger than 0.1 where agreement was also good (not shown). The
inset shows two volume distributions plotted against each other. The two distributions seem to match very well in shape, mean,
and standard deviation. (d) shows a 2D histogram of the face count. The X-axis shows the face count in the Lambert labeling
and the Y-axis shows the face count from the labeling introduced in the manuscript. The color indicates the number of bubbles
with black being 0 and white being more than 100. The inset shows the face count distribution plotted on a linear scale. The
mean faces numbers equal to 9.9 ± 4.7 (Lambert) and 11.1± 4.4 (Mader).


