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Abstract

This paper presents a method to evaluate the robustness of a cooperating flexible transport system
based on agents (taxis and clients) and simulated using NetLogo. Analysing a set of 124 scenarios of
simulations on a range of synthetic populations (clients) and on various space networks organizations,
we assess the sensitivity of a transportation model we proposed. Our main objective is to detect
robustness thresholds in flow configurations and system efficiency. The research leads to two main
results: (i) there exists an optimal balance between the frequency of system iterations (number of
clients generations) and the total number of clients involved in simulations, (ii) to some extend, the
network topological structure plays a non negligible role in transport efficiency.

Résumé

Cet article présente une méthode pour évaluer la robustesse d'un service de transport flexible modélisé
en multi-agent et simulé sur la plate-forme Netlogo. Nous analysons la sensibilité du modéle grace a
124 scénarios de simulation, chacun d'eux intégrant différentes quantités de population synthétique (les
clients), combinées a quatre formes d'organisation spatiale théoriques.Notre objectif est de révéler des
seuils de robustesse au dela desquels le systéme peut étre considéré comme efficace ou non. A 'aide de
plusieurs indicateurs, nous montrons qu'il existe un ratio optimal entre la fréquence et la quantité de
client a créer. Nous expliquons aussi dans quelle mesure la forme des réseaux routiers influence
l'efficacité du modele.
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1. Introduction

This proposition aims at defining a method to assess the flexible transport robustness using an approach
related to model validation and verification. After having given a few definitions of the experimental
context, we shall detail the application in flexible transport modelling and then provide a set of results
including statistical analysis.

1.1. Flexible transport

Flexibility is a concept widely developed in complex system science and operational research (Billaut
et al., 2005). It has many facets. A flexible transport is a public or private transportation service, whose
schedules and routes can vary according to immediate client needs (Castex, 2007). Flexibility depends
on the kind of service operating: a regular line activated with at least a single client, up to a fleet of
responsive taxis which define their routes on the fly, according to random reservations. A flexible
transport must be able to adapt to different (i) needs of mobility, (i1) different types of spatial network
configurations, (iii) technological and financial constraints of clients and carriers. There exist indeed
several types of flexible transport. For instance, Demand Responsive Transports (DRT) (Castex &
Josselin, 2007), in spite of their capacity to adapt to a varying mobility demand, are organized by a
high level authority (the 'management center of mobility') which optimizes vehicle routes according to
different criteria. On a more individual level, vehicles can behave in co-operation or competition in
order to satisfy the mobility needs. For example, this kind of service is observed in Africa, in the city of
Dakar, by different taxi corporate bodies and some non corporate services (taxis ‘clandos’) (Godard,
2002; Cervero & Golub, 2007).

1.2. Robustness and model sensitivity

Robustness is a methodological purpose. A clue or an estimator is considered as robust when (i) it can
only be affected by a large set of little deviations, or by (ii) a little quantity of large deviations from the
theoretical law or to the experienced data distribution (Hoaglin et al 1983; Hampel ef al., 1986). In the
case of transportation, this means the system can remain stable and efficient when some 'outlier’
demand occur. A transport can be considered as robust when it ensures a good quality of service, by
resisting to mobility demand fluctuation, in real time. We propose to extend this definition to
transportation model validation. In this particular case, it becomes possible to tune some criteria while
others remain stable and to figure out some thresholds over which the transport efficiency falls. This
process is often used to assess the sensitivity of the system to disruption (Drezner, 1986; Labb¢ et al.,
1990; Querriau et al., 2004). From the exploration of model parameters (number or frequency of
generated clients), we can provide a generalized study of the system sensitivity). We estimate the



influence of key parameters on the system efficiency, and define the conditions for getting an efficient
virtual transport system.

1.3. Model validation and verification

Model validation and verification (V&V) should take an essential place in complex system modeling
(Bommel, 2009). V&V intends to ensure: (i) the model reliability, (ii) truth of scientific hypothesis
assumed during the modeling process and (ii1) model representativeness according to the complex
system studied. V&V is a key process to give confidence to a model (Sargent, 2010). Nevertheless, this
is often reduced to the simplest process: a few experiments are chosen and applied to reproduce an
identified dynamic and to promote the model. It is generally due to the lack of data extracted from the
complex system. In addition, V&V is time consuming and needs some technical skills, sometimes
unavailable for modelers.

Validation and Verification are performed during the modeling process. First, verification checks or
proves that the model complies scientist modeling specifications (Brocard, 2008). Due to the
complexity of the studied systems and their unpredictable behavior at a microscopic level, it seems
hopeless to give a proof ensuring the correctness of a model. Despite this statement, the validation
intends to analyse the model, to experience it to ensure that it gives a response to the scientific question
(Petty, 2009). Therefore, many experiments must be done to explore the model parameters.

Agent Based Models (ABM) is indeed a powerful approach for modeling mobility systems (Meister et
al., 2010). By identifying agents behavior, it enables to simulate various flexible transports, to monitor
and to analyse a global service functioning. It becomes then possible, using simulations, to accurately
follow along the mobility system, according to a set of pertinent statistical parameters (Lammoglia,
2011). The characteristics of the complex system and the scientific lead this exploration: a running
ordered process and several parameter values are fixed according to distinct assumptions. That is the
way we proceed.

1.4. Issue and implementation of a flexible DRT

In our virtual DRT experiments, transport efficiency bases on several components to be assessed: (i)
evolution of clients quantity, (ii) road network and (iii) spatial distribution of urban places of interest.
Many geo-computation algorithms and methods for simulating and optimizing DRTs have been
provided in the literature as mentioned in several papers (Garaix et al. 2011, 2007, Chevrier et al.
2008). In our case, there is no optimization kernel and we propose to focus on cooperating agents
behavior to assess how robust can be a flexible transport. Thence, we apply V&V method to evaluate
the robustness of a theoretical and simulated transport. The model has been implemented and simulated
using the NetLogo Multi-Agent System (MAS) (fig.1) (Ferber, 1995 ; Tisue & Wilensky, 2004 ;
Amblard & Phan, 2006). We performed many simulations, according to a series of virtual client
quantities, several road network patterns and a suitable set of statistical indicators of efficiency (e.g.
3.2).
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Figure 1: The platform of simulation
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2. Application od Validation and verification on flexible transport simulation

2.1. A model for simulating flexible transport

To describe and to explain how the model operates, we first propose to use the standard ODD protocol
(Grimm et al., 2006; Grimm et al., 2010).

2.1.1. Purpose

From a K.I.S.S. ("Keep it simple and short") model, we have developed an Agent-Based Model (ABM)
reproducing demand transport system. The main objective of this ABM is to evaluate the ability of
cooperating taxis to respond to a spontaneous and non organized demand-side of mobility. Throughout
hundreds simulations, we want to exhibit and evaluate transportation strategies. For that, we test the
efficiency of the virtual transport servicing, using statistical clues and visual analysis of spatial patterns.



Due to our theoretical objectives, the KISS oriented modeling approach, and the number of simulation
we have to do, we chose the Netlogo (Wilensky & Rand, 2013) framework to design and develop our
model because: (i) it is a simple way to develop a KISS agent-based model; (i1)) a large community
used this plateform; (iii) it can be used by scientific who have a short experience in computer sciences;
(iv) Netlogo contains features to automize model exploration, the behavior space toolbox.

2.1.2. Entities, state variables and scales

As we can see in the class diagram (fig. 2), we distinguish two species of individuals: clients and taxis.
Each species is modeled by a population of agents (one agent per individual). Agents of a species are
qualified with the same behavior. Nevertheless, they are differentiated by their limited knowledge
about the network, their location and the transportation system. Agents move on a virtual network
made up of continuous land and a road network. To evaluate the efficiency of the virtual transport on a
given spatial configuration, we designed four different theoretical networks (e.g. 3.1.). For each of
them, the graph is non planar, not complete, not directed. Stops (where taxis can pick up clients) and
markets (where clients want to go) are vertices or nodes of the edges of the network.

The model (without space and time measure unit) is focused on pickup and delivery strategies of taxi.
All simulations run during 15 000 time steps (time units in major ABM) because the process often
converges beyond 5 000 steps although it may change a little during the last 10 000 steps.

Figure 2: Class diagram of the flexible transport model
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2.1.3. Agent behaviour overview

Along the network, taxis continuously move from stops to stops and pick up clients to carry them to a
market. Clients are randomly and regularly generated in a constant quantity. Pedestrians wait at a stop
station to take a taxi to reach a market. After their generation, they walk to the most attractive and the
closest stop. Next, they catch a taxi and they are “satisfied” when they arrive at the market (fig. 3).

Figure 3: Activity diagram of the agents
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In our experiments, the transport service involves only 3 taxis and each taxi can carry a maximum of 10
clients. When these taxis pick up clients and if there are still some clients waiting, they transmit the
information to all the other taxis, using marks on certain stops, as insects let pheromones on their paths
(fig. 4). Taxis randomly move on the network and foremost target these tagged stops. The section 2.1.7
provides more details about agent behavior with coding examples.



Figure 4: Cooperation process between taxis
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2.1.4. Design concepts

Basic principles: (i) Clients target the most attractive stops and markets by using a sort of gravity
model measured by the potential of attractiveness (depending on the frequenting of stops and markets),
divided by the euclidean distance between the clients and the stops. The potential of attractiveness of
each stop is added during the routing process and depends on routes frequency. More visited the stop
by agents, more attractive.

(i1) Taxis communicate and cooperate using an optimization principle of pheromone as in the ant
colony algorithm (Dorigo ef al., 2006). Once a taxi has picked up clients at a given stop and if there are
still some clients waiting at the stop, the taxi tags the stop. Thus other taxis foremost target this stop.

Emergence: During the simulation, the spatial structure evolves and emerges, according to agents
journeys. Road width is drawn proportionally to the flows of taxis. The stop and market sizes are also
proportional to the number of vehicles and client visits. So at the end of the simulations, we can
observe the most frequented roads and the most attractive stops and markets.



Objectives: Each type of agents owns a single objective: clients want to reach the most attractive
market and taxis want to pick up the maximum of clients.

Sensing: Clients can feel the attractiveness of stops and markets. Taxis can target the tagged stops.
Interactions: There is no direct interaction between clients and taxis, but clients and taxis interact when
they meet at a stop. They deal about their destination: if the taxi is empty, it picks up clients who have a
common destination. Otherwise it picks up the client(s) who share its own destination.

Stochasticity: Clients are randomly and regularly generated in a constant quantity during the
simulation. Taxis move randomly on the road network, except when one or more stops are tagged.
Observation: For each simulation, we export a data base from Netlogo. The *.csv files contains the
values of taxi variables and the values of each indicator recorded for all iterations.

2.1.5. Initialization

We defined 124 scenarios of simulation. For all the simulations, parameters are previously fixed, such
as the number of taxis (3), the maximum capacity of taxis (10 clients), the number of stops (100) and
the number of markets (3). Some parameters can vary: number and frequency of clients generated
during the simulation, spatial distribution of stops and markets. The scenarios are precisely described in
the third part of the paper.

2.1.6. Input data

Because we use scenarios in simulating, there is no input in this model, i.e. parameters do not vary
during the simulation and the model is completely reset before each simulation.

2.1.7. Details: optimization processes

In this last section, we explain the two major optimization processes of the model. Two algorithms
respectively define how taxis and clients choose stops to move on the network.



Taxis process

NetLogo code

Explanation

to choix-noeud-cooperation

[

ifelse empty? list-stations-villageois-restant
[
let na noeud-actuel
set noeud-actuel noeud-suivant
set noeud-suivant one-of [link-neighbors] of noeud-actuel
while [noeud-suivant = na]

[

set noeud-suivant one-of [link-neighbors] of noeud-actuel
]
let ns noeud-suivant
ask noeud-actuel
[ ask link-with ns [ set traffic-brut (traffic-brut + 1) ]]

]
[

let na noeud-actuel

set list-stations-villageois-restant sort-by [[distance myself] of ?1
< [distance myself] of ?2] list-stations-villageois-restant

let station-a-desservir first list-stations-villageois-restant

set noeud-actuel noeud-suivant

set noeud-suivant min-one-of [link-neighbors] of noeud-actuel
[distance station-a-desservir]

let ne max-one-of [link-neighbors] of noeud-actuel [distance
station-a-desservir|

while [noeud-suivant = na]

[

set noeud-suivant one-of [link-neighbors] of noeud-actuel

]

if noeud-suivant = station-a-desservir and destination-marche-
taxis = 0 [ set list-stations-villageois-restant remove-item 0 list-stations-
villageois-restant]

let ns noeud-suivant

ask noeud-actuel

[ ask link-with ns [ set traffic-brut (traffic-brut + 1) ]]

]
]
[

let na noeud-actuel
let dest destination-marche-taxis
set noeud-actuel noeud-suivant
set noeud-suivant min-one-of [link-neighbors] of noeud-actuel
[distance dest]
let ns noeud-suivant
while [noeud-suivant = na]
[set noeud-suivant one-of [link-neighbors] of noeud-actuel]
ask noeud-actuel
[ ask link-with ns [ set traffic-brut (traffic-brut + 1) ]]
]
set nb-noeuds-passes (nb-noeuds-passes + 1)
set etat 3
end

START

If the taxi is empty and no stop is tagged, the
taxi randomly chooses an adjoining stop. This
stop is necessarily different from the previous
traveled stop.

Otherwise the taxi chooses the nearest tagged
stop.

If the taxi is already carrying clients, it chooses
the nearest stop of the market.

END

Clients process




Code Netlogo Explanation

to choix-villageois-stations-marches START
ask villageois
[ Client chooses the market or the stop that
if destination-marche = 0 maximizes the ratio : potential of attractivity /
[ distance.
set destination-marche max-one-of stations with [ marche? = 1 ]
[ potentiel-brut / (distance myself) ] If the stop is more distant than the market, the

set destination-noeud max-one-of stations with [distance myself < | client directly reaches the market.

distance-marcher-max and marche? = 0] [ potentiel-brut / (distance
myself) |

if distance destination-noeud > distance destination-marche END

[ set destination-noeud destination-marche |

]
]

end

2.2. Flexibility and robustness of the transport service

The service we simulate can be considered as flexible for two reasons. First, taxis never pre-select
routes. They do not have any cognitive behavior. Secondly, they do not have any information about the
client location, except when a stop is tagged. They neither have information about the number of clients
generated during the simulation or waiting at the station. That is why they systematically need to check
the mobility demand by randomly travelling from stop to stop. So, the system is self-organized and we
analyze its performance at a global level. It is similar to the taxis fleet existing in many countries
(Brazil, Senegal...) and working, for many of them, on their own.

A part of the taxi efficiency is due to their capability to communicate using tags let at certain stops,
information which is then suited to the fleet. Another part of the efficiency results from the
attractiveness of the most growing markets where the clients want to go. Whereas client spatial origins
often differ from each others, most of time their destinations are closed. In this case, the flows of taxis
are highly polarized. The robustness of such a simulated transport system is set in its capacity to
properly serve the territory through the network whatever the conditions. Using a set of adequate
indicators, it is possible to evaluate the efficiency variation in the simulated configurations due to some
parameters changes.

3. Protocol for evaluation

3.1. Scenarios of simulation

To study the efficiency of the transport service, we simulated 124 scenarios of our system and we
analyzed the variation of three main parameters of the model. All the parameters concerning the taxis
are fixed (e.g. §2.1.). In parallel, the initial number of clients (from 5 to 1500) and the frequency of
clients generations (from 5 to 500 iterations) can vary. After a large number of simulations, we selected
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124 scenarios presented in the figure 5 to reduce simulation cost and to cover parameter range in the
best way. On the one hand, it performs a scalability process, on the other hand, a progressive change of
time granularity, linked to the mobility demand of moving population. To complete our analysis, we
could vary the number of vehicles but such experiments are not developed in this paper.

Figure 5: Matrix of client generation and simulation IDs

Frequency
(iteration)
Number of 3 50 100 250 500
clients created
2 S1 S5 59 S16 S23
10 52 56 510 S17 524
20 S3 57 511 518 S5
20 54 58 512 519 576
100 S13 S20 S27
200 514 S21 528
500 315 S22 S29
1000 5730
1500 5737

This experimental plan is designed according to two main features: (i) the complex system we study
and (ii) the computing power limitations. The range of frequency and clients number follows a logistic
law often observed in real services. Nevertheless, the model exploration is limited by technical issues.
When the number of agents simulated increases too much (around 2000), simulations slow down and
freeze. It is the consequence of the NetLogo 4.0.5 limitation which is a useful framework to quickly
develop models, to test hypothesis, and to change the model structures and rules. In spite it does not
support large samples, Netlogo capacity is sufficient to test the tested (KISS) transport model.

Furthermore, to analyse the influence of the spatial configurations on the transportation service, we
systematically simulated each combination of frequency and number of clients (see the dark squares in
the figure 4) on four types of network (fig. 6). On the first network, the three markets are grouped
together somewhere on space. The roads are somewhat dense on this area. For the second tested
network, a market is situated on the densest area of the network and the two other markets are located
on the edge of the space extent. Within the third network, we can locate three spread polarities, like
three small cities. Last, the fourth configuration is a theoretical Manhattan Street Network (MSN)
(Maxemchuk, 1987), showing a market in the center and two markets on the edges of the network
extent. This last case is theoretical and less realistic than the three other experienced networks.
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Figure 6: The four simulated networks

Network 4

3.2. Indicators

In order to analyze the global performance of the service, we defined three main indicators:
e The servicing rate is the ratio between clients who arrived at the market and the total number of
clients generated during the simulation (a high value indicates a good service efficiency) ;
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e The clients-station rate is the proportion of clients who are waiting at a stop compared to the
total number of clients generated (a low value shows a good transport efficiency) ;

e The taxi occupancy rate is depicted by the distribution of the number of passengers in the
vehicles, processed for the whole iterations. It gives an idea of the taxi occupancy rate. A taxi
can carry a maximum of ten clients. Highest the frequency in the important occupancy rates,
better the service efficiency.

4. Statistical analysis of the simulated scenarios

For each simulated scenario, we processed four sets of plots for depicting the servicing rates, the
clients-station rates and the occupancy rates (with a total of 124 plots by indicator). Sometimes
statistics are gathered in a single graph to allow a comparison of transport efficiency between the 4
experienced networks.

4.1. Influence of frequency and number of clients generations

Globally, the results on monitored indicators show that the transport model is relatively sensitive to the
various parameters related to the clients generation. Indeed (fig. 7), the servicing rate strongly depends
on the frequency and on the number of clients initiated. For the whole simulations, the lowest value of
this indicator is lower than 10% (scenario 23), whereas the best rate reaches 80% (scenario 19). The
worst results concern the scenarios with extreme parameters, i.e. the scenarios either (i) with a very low
quantity of clients rarely generated (for example the scenario 23 with 5 clients created every 500
iterations), or (ii) with a very high quantity of clients frequently generated (for example the scenario 4
with 50 clients created every 5 iterations). In the first case, the efficiency is weak because the density of
clients is too low to fill the taxis. As taxis always travel with at most one or two clients (this is
confirmed by taxi occupancy rates), operating is very slow and only a few clients arrive to a targeted
market. The second case is the opposite. Too many clients are present at the same time and the taxis do
not succeed in picking up them all, despite very good taxi occupancy rates. In this case, the service
would need more taxis or a larger capacity of seats per vehicle. Thus, the best servicing rate obtained
involves parameter intermediate values of clients generation. They range from 60% to 80% of clients
arrived at a market (for example, in scenarios 9, 18, 26). There exists indeed an optimal ratio linking
the taxi fleet and the demand. As the curves presented in the figure 6 show, this relevance also depends
on the kind of networks and on the virtual networks which are drawn.
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Figure 7: Comparison of the servicing rates for various numbers of clients generated every 100
iterations
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The clients-station rate is easier to analyze, because it depends on the number of clients generated
along the simulation. The best results (corresponding to the lowest rate) are obtained in the scenarios
which frequently generate little groups of clients. In this case, taxis can easily carry most of the clients.
The best rate obtained is around 5% (scenario 23). The worst cas of clients-station rate is above 90%
(scenario 15): too many clients are generated during the simulation. In such a configuration, taxis
cannot empty the stations and we can conclude that the system is completely saturated.

About the taxi occupancy rate, we detected three forms of distributions, characterized by the number of
generated clients (fig. 8). The first one shows a clear peak in the first class of occupancy rate (close to
0%), occurring each time the client density is too low. In this particular case, most of time taxis are
empty. In the best configurations, they only carry 2 clients. It happens when the time granularity is
loose or when the number of clients is not sufficient (e.g. scenario 16). However, these simulations
obtain better results in terms of servicing and clients-station rates.

A second kind of distribution enhances two opposite peaks (respectively at the lowest and highest
occupancy rates, and between those, a slow decrease of values). This has often been observed for many
previous simulations. It corresponds to an intermediate efficiency case (e.g. scenario 14).

Finally, a third distribution stands at the opposite of the first case, where a peak in the highest
occupancy rate is noticeable. In this case, the client density is rather high and taxis do not need to drive
a lot to get new clients. When they arrive at a station, they directly fill their vehicle and go to the
market. This process is repeated during all the simulations and unfortunately provides a very limited
exploration of the geographical space. However, these simulated scenarios do not correspond to the
most efficient services, due to the global system saturation we already explained.
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Figure 8: Three different observed shapes in the occupation rate distributions (number of iterations is
equal to statistical frequency)
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Another interesting observation is the similar occupancy rate in some distributions illustrated by the
figure 9. Indeed, there seems to be a specific ratio between time granularity (client generation
frequency) divided by scale (quantity of clients). For instance, a ratio of 1 or 2 between these two
parameters generally induces a bimodal distribution of equivalent occupancy rate (P,=P,y). Beyond,
when this ration is around 5 or 10, the transport efficiency allows very good grouping in the vehicles
(Po<Py). All the other cases (with generation frequency / number of clients less than 1) correspond to a
lower efficiency in terms of occupancy rate (generally (Py>Py¢), because the taxis often travel with
available seats. This means the relation between the number of clients and their generation frequency is
an important criterion in finding an optimal service configuration. This conveys a good correspondence
between the fleet capacity and the transportation demand, whatever the network shape.

Figure 9: Comparison of taxi occupancy rates. 0 identifies the peak of travels without any clients in the
taxi (Py), 10 corresponds to a peak of frequency with 10 clients (Pyo), Po>P1o means that there is more
frequently no client in the vehicle than 10 clients (in average), Py<P, tells the opposite, P=P,o means
that the two peaks are somewhat similar.
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4.2. Influence of the network on transportation efficiency

We can observe that the network form influences the service efficiency in a certain way. The resulting
differences are not very visible for the three realistic networks. That depicts three spatial structures
supposed to be typical in terms of market locations and topology structure. This means the randomness
of the operating system permits to easily adapt to any network configuration and spatial distribution of
client demand. Moreover, some variations in the efficiency due to the network structure appear
obvious. The most visible differences concern the (4™) rectilinear network (fig. 10), which reduces the
connectivity to explore the territory to serve in the best way, due to arcs shape. This rectilinear network
is often less performing than the others, especially regarding the servicing and clients-station rates, in
any of the simulated configurations, sometimes with noticeable differences (about 20%). This means
that the topological structure plays a non negligible role in the capacity of a given service to efficiently
operate. This factor seems to have more influence than any change in the demand or places of interest
locations (cases of the 3 'realistic' networks).

Figure 10: Servicing rates for the scenario 21 (4 spatial configurations)
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The comparison between the 4 spatial configurations as depicted in the figure 10 shows that:
e for the 3 random configurations (networks 1, 2 and 3), there is almost no difference in
convergence ; agent randomness is probably the explanation;
* But the network 4 has a lower servicing rate 2 which seems more restricting for agents because
it impairs the shortest path efficiency.
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In the figure 11, we use the servicing rate to classify the simulations on the whole networks. In
complement (figure 12), we process the deviation between the best and the worst simulations of the
servicing rate, the worst simulation always being the one of the network 4.

Figure 11. Classification of the simulations according to the average servicing rate for the 4 networks
(for instance, S21 of figure 9 belongs to the second class [40;60[ of servicing rate)

Frequency

(iteration)
Number of 3
clients
created

10 52

100
200
500
1000
1500

[0;40]

Figure 12. Classification of the simulations according to the deviations between the worst and the best
servicing rates obtained (for instance, S21 of the figure 9 belongs to the second class [8-16] of

deviations)

Frequency
(iteration)
Number of 5 50 100 250 500
clients
created
5 =5 S9 S16 523
10 S6 510 S17 524
20 S3 S11 518 525
30 S4 S 519 526
100 S20 827
200 4 528
500 515 9
1000 0
1500 531
oo [IEA

From these figures and simulations, we can get a few interesting results. Firstly, the simulations with
the lowest deviations involve two distinct “extreme” cases. In saturated situation taxis do not succeed
in manage too many clients. We conclude that these critical situations are not valid for studying the
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network influence. Secondly, let us notice that all the simulations with valuable servicing rates are
rather close to each others and generally belong to the middle class of the classification, except the
simulations S7 and S12 (for those, the network 4 obtains a worse servicing rate value). This confirms
the fact that the network 4 is less efficient than the other networks. Thirdly, intermediate simulations
between ideal and critical conditions globally show important deviations of servicing rates (i.e. a large
variability). At the opposite, client density is so weak that taxis remain almost empty and any
cooperation becomes useless, whatever the simulated networks.

By comparing these two figures 10 and 11, we can conclude that:

* whatever the network shape (fig. 6), networks created randomly have a low influence on the
system performance;

* the Manhattan network implies a certain agent behavior: taxis reach less easily the targeted
stops on such a rectilinear network;

* this study enables to define a range for optimal conditions according to two parameters
(iteration frequency and number of generated clients) to simulate our model, which correspond
to a set of configurations (s5, s6, s9, s10, s11, s18, s19, s20, s26, s27, s28), all having ratio
between the two parameters more or less similar.

5. Conclusion and discussion

This paper provides some methodological propositions for a robust validation of a transport system
model. It is a first step progress in transport model robustness assessment using ABM. The first results
seem promising. The robustness analysis is fruitful and show that it is possible to get transport
efficiency improvement thanks to a set of weakly cognitive co-operating agents in a random
exploration environment. However, an important part of this efficiency is included in a few determinant
parameters. Indeed, there somehow exists an optimal ratio for a good service efficiency between the
vehicle fleet and the client time-space density. This optimal ratio depends on the territory to serve,
described by its topological network structure. Thus, this papers deals with a complex methodological
issue composed of three interacting dimensions: the scalability, tested with regular increase of
generated clients, the space-time granularity, represented by the frequency of these generations, and
the space effect, realized by a few specific topological networks.

In terms of transport outcoming contribution, this work, even theoretical, shows that it is convenient,
using a short sensitivity analysis process, to figure out some threshold values in transport efficiency.
Those thresholds can significantly vary according to the service configuration. It is indeed quite
difficult to state whether or not a flexible transport is efficient without considering all its parameters,
and tuning them on their whole validity interval(s). It takes a long time to perform these kinds of
analysis (many clients generated and many scenarios of simulation), but it seems to us a relevant way
to test the system robustness and to clearly set the influences from some key parameters through the
model behaviour.
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More precisely, studying the different efficiency rates show that some configurations frequently have
good efficiencies on both criteria (fig. 12). In middle condition simulations, it is then enabled to
determine which configurations reach the best rates, providing a kind of optimal liberty space for the
taxis to operate. This space would be the one in which the proposed service fits the best way to the
environment requirements (clients demand, market locations, network structure). This is our point of
view for considering the model validation. Further simulations and parameter variations, including
peculiar territories and networks, should allow us to provide an overview of our virtual flexible
transport behavior, in terms of efficiency and robustness.

When can a model be finally validated? Considering our case study, we can argue that model validation
must be done according to the studied complex systems and the scientific question. Verification is often
assimilated as a formal proof of the model by using predicates written within a formal algebra.
Contrary to model verification, model validation seems to us that experience, data knowledge of the
complex system, combined to suitable statistical clues such as the ones we proposed in this paper, are
probably the keys for a successful validation process.

Introducing expert experience of the domain in the validation process leads to define an interactive
interface that drives the model exploration. In our case, domain experts have directly participated in the
modelling process. The model has been both assessed through a set of quantified parameters and a
simple visualization analysis (like a dynamic map). It allows us to reduce the number of simulations
necessary to be computed while ensuring a suitable model analysis. Also it permits to keep a low
validation cost and to give confidence in the validation process, due to an interdisciplinary team joining
computer scientists and geographers who cooperate in the field of geomatics applied to transportation
for a long time. The next step of this research is to simulate real networks and possible flexible
transport servicing for planning decision help.
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