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Abstract: Macroscopic traffic flow models allow describing the spatio-temporal evolution of
traffic density. Their sound mathematical structure consisting of partial differential equations of
hyperbolic type and the related efficient numerical schemes enable fast computations to moni-
tor traffic evolution. The aim of the internship was to validate these models against processed
data provided by the industrial partners Autoroutes Trafic and VINCI Autoroutes. Targeted
applications included congestion detection, congestion starting and ending points location, con-
gestion evolution in time and travelling time estimation. To this end, we used the first-order
Lighthill–Whitham–Richards model with a parabolic-linear flux function. The first part of the
internship has been devoted to parameters identification, performing different calibration methods
and finally choosing a hybrid compromise in order to exploit to the best the available data. After-
wards, numerical simulations have been performed on a selected case study, and results have been
compared to real data to assess the validity and relevancy of the model. Numerical simulations
consisted in established finite volume discretization of the hyperbolic partial differential equation.
Numerical results show that, while reproducing traffic evolution during all the morning is really
challenging, short term predictions are reliable.
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Validation de modèles de trafic routier avec des données
GPS

Résumé : Les modèles macroscopiques de trafic permettent de décrire l’évolution spatio-
temporelle de la densité du trafic. Leur structure mathématique constituée par des équations
aux dérivées partielles de type hyperbolique rend possible leur implémentation avec des schémas
numériques efficaces, permettant ainsi d’effectuer des calculs rapides pour suivre l’évolution du
trafic. L’objectif du stage était de valider ces modèles avec des données expérimentales fournies
par les sociétés Autoroutes Trafic et VINCI Autoroutes. Les applications visées incluent la
détection des embouteillages, la localisation de leurs points de début et de fin, leur évolution
dans le temps et l’estimation des temps de parcours. Pour cela, nous avons utilisé le modèle
du premier ordre de Lighthill-Whitham-Richards avec une fonction flux parabolique-linéaire. La
première partie du stage a été consacrée à l’identification des paramètres. Pendant cette phase,
plusieurs méthodes de calibration du modèle ont été testées, dans le but d’exploiter au mieux les
données que nous avions à disposition. Ensuite, des simulations numériques ont été réalisées sur
des cas d’études et les résultats ont été comparés aux données réelles afin d’évaluer la validité
et la pertinence du modèle. Les simulations numériques ont été faites parmi une méthode de
discrétisation aux volumes finis de l’équation aux dérivées partielles hyperbolique. Les résultats
numériques montrent que, grâce à ce modèle, des prévisions à court terme peuvent être facilement
effectuées, tandis que la reproduction de l’évolution du trafic pendant toute la matinée reste un
véritable défi.

Mots-clés : Modèles macroscopiques de trafic, EDP hyperbolique, calibration du modèle
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1 Introduction

Mathematical models for vehicular traffic have been investigated since long time. The traffic
simulation problem is challenging due to the rapid changes as well as random events which can
happen. It was attacked by means of macro-, meso-, and microscopic models, and a huge bulk
of literature is now available, see for example [Piccoli Garavello 2006].
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4 Cabassi & Goatin

In this essay we restrict ourselves to macroscopic models, i.e. models where the flow of cars
along a road is assimilated to the flow of fluid particles, for which suitable balance or conservation
laws can be written. For this reason, macroscopic models are often called in the present context
fluid dynamic or hydrodynamic models. This kind of models are particularly suitable to deal
with large data sets, as it is our case, and are able to describe collective phenomena such as
the evolution of congested regions or the propagation velocity of traffic waves. Whereas many
experiments using real data have been done using loop sensors’ data, only a few very recent works
have used mobile sensors data, coming from GPS units installed on mobile phones of the drivers
(see [Herrera Work et al. 2009] and [Cristiani de Fabritiis Piccoli 2010]). The predictions are
processed such that they can be distributed via traffic message channel, variable-message signs,
or serve as input for connected navigation devices.

Concerning this project, even if both types of data were available, the model we’ve conceived
exclusively needs GPS data. Loop detectors’ data have been used to validate and adjust the
model. The study aims at applying macroscopic traffic flow models to improve the process of
specific situations detection or prediction, with the global aim to contribute to sustainable traffic
management.

In particular, the portion of the A8 highway (also known as La Provençale) that runs between
Antibes and Nice has been studied. This section of highway is 17,5 km long and was selected
specifically for its complex traffic properties: in particular, the narrowing of the street in a highly
frequented area causes frequent congestions. The road is divided in several segments, and the
algorithm is executed in each segment separately (sharing information at the boundaries). In
this way it is possible to choose different model parameters in each segment, thus optimizing the
algorithm.

The essay is organized as follows. In chapters 2 and 3 we introduce a mathematical model of
traffic evolution and its numerical approximation. The first part of chapter 4 is dedicated to the
highway’s characteristics, while in the second one we present data at our disposal and explain
how they have been processed. In chapter 5 different methods of calibrating parameters are
listed, together with the results they lead to in our case. In chapter 6 we present the numerical
results. Finally some conclusions end the essay.

2 Mathematical model

Macroscopic traffic models describe the evolution of vehicle positions in term of macroscopic
variables as the density and the average speed of cars. An unidirectional road is modelled by an
interval I = [a, b] of R (a < b) and the density ρ(t, x) and the average velocity v(t, x) depend
on the time t and on x ∈ I. The simplest model is the scalar one proposed independently by
Lighthill and Whitham in 1955 and by Richards in 1956. It is based on the conservation of cars
and is described by a single equation in conservation form.

The main objective of this chapter is to describe this mathematical model of traffic evolu-
tion, which expresses conservation of vehicles, known as the Lighthill-Whitham-Richards (LWR)
partial differential equation (PDE), and review its important mathematical attributes.

The chapter is organized as follows. In Section 2.1 we recall the derivation of the LWR PDE
as an integral equation expressing conservation of vehicles on a stretch of roadway, and note that
when the density is smooth, it yields the well-known LWR PDE. Section 2.2 is dedicated to the
presentation of some typical flux functions for traffic models, and the following one presents the
solution of the Riemann problem for those models.

Inria
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Figure 1: Conservation of vehicle density on a highway stretch

2.1 Mass conservation law for traffic

Let ρ(x, t) be the vehicle density (the number of vehicles per unit length) at the point x in
space and t in time, and let f be the flux (number of vehicles per unit time) as a function of
the density. The flux function f is defined in an interval [0, ρmax], where ρmax is the maximal
density, sometimes referred to as jam density. The total number of vehicles on a segment between
two points x1 and x2 is given by

∫ x2

x1
ρ(x, t) dx. Assuming vehicles do not appear or disappear

within the segment, we have:

d

dt

∫ x2

x1

ρ(x, t) dx = f(ρ(x1, t))− f(ρ(x2, t)) = (1)

= −f(ρ(x, t))|x2
x1

=

∫ x2

x1

∂

∂x
f(ρ(x, t)) dx

Equation (1) can be understood in the following way. Consider a segment of roadway shown in
Figure 1, with vehicles entering from the left and exiting to the right. The change in the number
of vehicles in the segment over time is just the difference between the number vehicles which
entered at x1, given by f(ρ(x1, t)) and the number that leave at x2, given by f(ρ(x2, t)).

When ρ(x, t) is smooth, 1 can be rewritten as

x2∫
x1

(
∂ρ(x, t)

∂t
+
∂f(ρ(x, t))

∂x

)
dx = 0 (2)

Since (2) holds for any x1 and x2, we obtain the seminal LWR PDE model

∂ρ(x, t)

∂t
+
∂f(ρ(x, t))

∂x
= 0 (x, t) ∈ (−∞,+∞)× [0,+∞) (3)

ρ(x, 0) = ρ0(x) x ∈ (−∞,+∞) (4)

which is the macroscopic traffic flow model expressing conservation of vehicles along and infinite
stretch of roadway from time t = 0 through t = T , augmented with the initial condition ρ0. In

RR n° 8382
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f(ρ)

ρρc

fmax

Figure 2: Greenshield’s fundamental diagram

this case, the average speed v is assumed to be a function depending only on the density, and
the flux is given by ρv. For simplicity we suppose that

1. f is a C2 function;

2. f is a strictly concave function;

3. f(0) = f(ρmax) = 0.

2.2 Fundamental diagrams

The main assumption for the Lighthill-Whitham Richards model is that the average velocity v
depends only on the density of the cars. A reasonable property of v is that it is a decreasing
function of the density. The law giving the flux as function of the density is called fundamental
diagram.

Extensive studies of the empirical correlation between flow rate and density have been per-
formed in the traffic flow literature. We describe here various fundamental diagrams assigning
the velocity function v = v(ρ), thus the flux is simply obtained multiplying by the density ρ.

Greenshield’s fundamental diagram The simplest fundamental diagram is obtained
setting v to be a linear function of the density i.e.

vG(ρ) = vmax

(
1− ρ

ρmax

)
, (5)

(cf. Fig. 2) where vmax is the free speed or desired speed and corresponds to the minimum of
the actual desired speed of the drivers, the physically possible attainable speed and, possibly, an
administrated speed limit.

Daganzo-Newell’s fundamental diagram The widely used Daganzo-Newell velocity
function assumes a constant velocity in free-flow and a hyperbolic velocity in congestion (cf.
Fig. 3)

vDN (ρ) =

{
vmax if ρ ≤ ρc
−ωf

(
1− ρmax

ρ

)
otherwise

. (6)

Inria
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f(ρ)

ρρc

fmax

Figure 3: Daganzo-Newell’s fundamental diagram

f(ρ)

ρρc

fmax

Figure 4: Quadratic-linear fundamental diagram

Here ρc represents the critical density (the limit density between the fluid and congested phases)
and ωf is the backwards propagating wave-speed.

Daganzo-Newell’s modified fundamental diagram Because the Daganzo-Newell ve-
locity function is not strictly monotonic in free-flow, it cannot be inverted. In order to use the
Daganzo-Newell model in situations where invertible velocity functions are needed, it has been
approximated in [Work et al. 2010] by velocity function with a linear expression in free-flow and
a hyperbolic expression in congestion

vHL =

 vmax

(
1− ρ

ρmax

)
if ρ ≤ ρc

−ωf
(

1− ρmax

ρ

)
otherwise

, (7)

see Fig. 4. For continuity of the flux at the critical density ρc, the additional relation

ρc
ρmax

=
ωf
vmax

(8)

must be satisfied.

Moreover, looking at our GPS data, we found that the two ρmax in the first and second line
cases are not necessarily equal. So we called the first one ρa and let the second one be ρmax,

RR n° 8382
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f(ρ)

ρρc

fmaxF

fmaxC

Figure 5: Quadratic-linear fundamental diagram with capacity drop

as it is the value that will actually represent the maximal number of cars that can stay in one
kilometer of road. The continuity condition must be changed accordingly.

vHL =

 vmax

(
1− ρ

ρa

)
if ρ ≤ ρc

−ωf
(

1− ρmax

ρ

)
otherwise

. (9)

2.2.1 Capacity drop

A striking feature of many experimental results is the presence of an apparent discontinuity that
separates the free flow (low density) and congested (high density) states. This phenomenon is
also referred to as capacity drop. In this case traffic shows hysteresis effects, i.e. the dynamics
does not only depend on the traffic demand but also on the history of the system. According to
this theory, the velocity function is defined as

vCD =

{
vf (ρ) if 0 ≤ ρ < ρc
vc(ρ) if ρc ≤ ρ ≤ ρmax

, (10)

where it holds vf (ρc) > vc(ρc). The resulting discontinuous velocity function for the HL model
is shown in Fig. 5. When the traffic breaks down, the system state switches from the free branch
vf onto the congested branch vc, lowering the maximum possible flow. This implies that once a
traffic jam has emerged, the traffic demand has to fall to a much lower value to dissolve the jam.
The flow-density diagram describing this phenomenon is also said to have an inverse-λ form.

2.3 Riemann problems

Assumptions 1 and 2 in Section 2.1 imply that equation (3) is strictly hyperbolic and the char-
acteristic field is genuinely nonlinear. Consider the Riemann problem for (3) with initial datum

ρ(0, x) =

{
ρ− if x < 0
ρ+ if x > 0.

(11)

If ρ− < ρ+, then 1 and 2 imply that f ′(ρ−) > f ′(ρ+) and so the entropy-admissible solution
is given by the shock wave

ρ(x, t) =

{
ρ− if x < λt
ρ+ if x > λt

(12)

Inria
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where, by the Rankine-Hugoniot condition

λ =
f(ρ+)− f(ρ−)

ρ+ − ρ−
. (13)

The speed of the wave is positive if f(ρ+) > f(ρ−), while is negative if f(ρ+) < f(ρ−).
If instead ρ− > ρ+, then f ′(ρ−) < f ′(ρ+) and so the entropy-admissible solution to the

Riemann problem is given by the rarefaction wave

ρ(x, t) =

 ρ− if x < f ′(ρ−)t
(f ′)−1(xt ) if f ′(ρ−)t < x < f ′(ρ+)t
ρ+ if x > f ′(ρ+)t.

(14)

3 Numerical scheme

The numerical algorithm we use to simulate the behaviour of the traffic flow is the Godunov
scheme, which is a conservative finite-volume method that solves exact or approximate Rie-
mann problems at each inter-cell boundary, suggested by S. K. Godunov in 1959. Hereafter
we give the most important features of the scheme, for more details see [Godunov 1959] and
[Piccoli Garavello 2006].

3.1 Numerical grid

A numerical grid has been defined using the following notations:

• ∆x is the space grid size,

• ∆t is the time grid size,

• (xm, tn) = (m∆x, n∆t) are the grid points.

For a function defined on the grid we write vnm = v(xm, tn) for m,n varying on a subset of Z
and N respectively.

3.2 Godunov scheme

The idea underlying Godunov scheme is the following:

1. the initial datum is approximated by a piecewise constant function

v0
m =

1

∆x

xm+ 1
2 ∆x∫

xm− 1
2 ∆x

u0(x)dx, m ∈ Z (15)

2. the corresponding Riemann problems are solved exactly and a global solution is simply
obtained by piecing them together: if we call v∆ the exact solutions at points

(
m− 1

2

)
,

m ∈ Z then the projection of the solution is defined as

vn+1
m =

1

∆x

xm+ 1
2 ∆x∫

xm− 1
2 ∆x

v∆(tn+1, x)dx (16)

RR n° 8382



10 Cabassi & Goatin

3. one takes the mean and proceeds by induction on every tn.

Under the CFL condition,

∆t sup
m,n

{
supu∈I(un

m,u
n
m+1) |f ′(u)|

}
≤ ∆x (17)

the waves, generated by different Riemann problems, do not interact.

We can use the Gauss-Green formula to compute vn+1 and the flux in x = xm − 1
2∆x for

t ∈ (tn, tn+1) is given by

f(u(t, xm −
1

2
∆x)) = f(WR(0; vnm−1, v

n
m)), (18)

where WR(xt ; v−, v+) is the self-similar solution between v− and v+. Similarly for the point
x = xm + 1

2∆x:

f(u(t, xm +
1

2
∆x)) = f(WR(0; vnm, v

n
m+1)). (19)

As the flux is time invariant and continuous, we can put it out of the integral and, setting

gG(u, v) = f(WR(0;u, v)) (20)

under the condition (17), the scheme can be written as

vn+1
m = vnm −

∆t

∆x

(
gG(vnm, v

n
m+1)− gG(vm−1, v

n
m)
)
. (21)

The expression of the numerical flux for Godunov method is in general given by

gG(u,w) =

{
minz∈[u,w]f(z) ifu ≤ w
maxz∈[w,u]f(z) ifw ≤ u (22)

As we supposed f to be concave, (22) is equivalent to

gG(u,w) = min(D(u), S(w)) (23)

where

S(u) =

{
fmax ifu ≤ ρc
f(u) ifu ≥ ρc

(24)

and

D(u) =

{
f(u) ifu ≤ ρc
fmax ifu ≥ ρc

. (25)

Above, ρc is the critical density and fmax the maximum of the f function. D is called demand
and S supply. These functions have been introduced by J.P. Lebacque in [Lebacque 1996]. The
demand function measures the maximum flux that an incoming road may demand to send, while
the supply function measures the maximum flux that an outgoing road may supply space for.

Inria
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In the case of a flux function that presents a capacity drop, a small correction must be made,
see [Wiens Stockie Williams 2013]. In particular, we set

if uj < uc D(uj) = min(f(uj), fc(uc))
if uj > uc D(uj) = ff (uc)
if uj = uc if uj+1 < ucD(uj) = D(uc) = ff (uc)
. if uj+1 > ucD(uj) = D(uc) = fc(uc)
if uj+1 < uc S(uj+1) = ff (uc)
if uj+1 > uc S(uj+1) = f(uj+1)
if uj+1 = uc l̄ = min {l : j + 1 < l ≤ N and ul 6= uc}

if ul̄ < uc S(uj+1) = S(uc) = ff (uc)
if ul̄ > uc S(uj+1) = S(uc) = fc(uc)
if 6 ∃l̄ S(uj+1) = S(uc) = ff (uc)

if uj = uj+1 = uc D(uj) = S(uj+1)

(26)

3.2.1 Boundary conditions

Suppose to have the Cauchy problem

ut + f(u)x = 0
u(x, 0) = u0(x) x ≥ 0

(27)

and to assign a condition at the incoming boundary x = 0

u(0, t) = u0(t) t ≥ 0 . (28)

It is not always possible to find a function u that satisfies (28) in a classical sense, because, in
general, the boundary data cannot be assumed. One seeks a condition which is to be effective
only in the inflow part of the boundary. The rigorous way to assign the boundary condition is

max
k∈I(u(0,t),u0(t)

{sgn(u(0, t)− u0(t))[F (u(0, t))− F (k)]} = 0, (29)

see [Bardos Le Roux Nédélec 1979]. With regard to the implementation of the numerical scheme,
we then have three ways of assigning boundary conditions:

1. We add two ghost cells, at the beginning and at the end of the space grid. Their indexes
are 0 and M + 1 respectively. We assign the value of density in these cells:

u0(t) = U0(t) for t ≥ 0
uM+1(t) = UM+1(t) for t ≥ 0

(30)

At the inflow part of the boundary we define

vn+1
1 = vn0 −

∆t

∆x

(
gG(vn1 , v

n
2 )− gG(vn0 , v

n
1 )
)

(31)

where

v0(t) =
1

∆t

tn+1∫
tn

U0(t)dt (32)

The outgoing boundary is treated analogously.

vn+1
N = vnN −

∆t

∆x

(
gG(vnN , v

n
N+1)− gG(vnN−1, v

n
N )
)

(33)

RR n° 8382



12 Cabassi & Goatin

where

vnN+1(t) =
1

∆t

tn+1∫
tn

UM+1(t)dt (34)

2. We assign the flux at boundaries

f(u(t, x1 − 1
2∆x)) = Fin(t) for t ≥ 0

f(u(t, xM+1 + 1
2∆x)) = Fout(t) for t ≥ 0

(35)

and then compute the corresponding numerical flux at x1 − 1
2∆x and xM+1 + 1

2∆x as

gG(vn0 , v
n
1 ) = min(Fnin, S(vn1 )) n = 1, ..., N

gG(vnM , v
n
M+1) = min(D(vnM ), Fnout) n = 1, ..., N

(36)

3. We just observe that boundary conditions become uninfluential in points quite far from
the boundaries, because there the density depends only on what happens in the considered
road segment (at least for a certain time). We assume absorbing boundary conditions in
x = xentry and x = xexit: two ghost nodes are added at the beginning and at the end of
the road and we set ρn0 = ρn1 and ρnM+1 = ρnM .

3.2.2 Conditions at junctions

On-ramps: We call Fon(t) the flux of cars that is running in the on ramp located at interface
j + 1

2 , we want to understand how this influences the flux Fj+ 1
2
.

If cell j + 1 can meet the demand of cell j plus that of the ramp, then the outgoing flux of
cell j will be equal to his demand, while the incoming flow of cell j + 1 will be the sum of the
2 demands. Thus, we have to distinguish the two fluxes: from now on, we will call F−

j+ 1
2

the

outgoing flux of cell j and F+
j+ 1

2

the incoming flux of cell j + 1. Now we can write

if min(D(vj) + Fon, S(vj+1)) = D(vj) + Fon

then F−
j+ 1

2

= D(vj)

F+
j+ 1

2

= D(vj) + Fon

(37)

On the contrary, if the supply of cell j + 1 is smaller than the sum of the two demands, we
have introduce a right of way parameter, q, that indicates which portion of cars that are already
in the highway and cars that want to enter will fill cell j + 1.

if min(D(vj) + Fon, S(vj+1)) = S(vj+1)
then F−

j+ 1
2

= (1− q)S(vj+1)

F+
j+ 1

2

= S(vj+1)
(38)

Off-ramps: In the case of off-ramps, we consider that all cars can exit the highway, then
the resulting fluxes are

F−
j+ 1

2

= min((1− α)D(vj), S(vj+1)) + αD(vj)

F+
j+ 1

2

= min((1− α)D(vj), S(vj+1))
(39)

where α is the portion of cars in cell j that want to exit the highway.

Inria



Validation of traffic flow models 13

Figure 6: The considered part of the A8 highway

4 Experimental data

4.1 La Provençale

Data provided from the two partners correspond to a part of the A8 highway, also called la
Provençale, that links Aix-en-Provence and the A7 highway to the Côte d’Azur. The part under
consideration spans from exit 45 (Antibes) to exit 49 (Nice St Isidore) for a total of 17,5 km, see
Fig. 6. The whole portion is in general highly congested, and long queues are usual.

Data concern both directions. From now on, we will call Direction 1 the one that goes from
Antibes to Nice St Isidore, Direction 2 the opposite one.

The discretization of the highway into cells (see Section 3.1) has been done such that the
speed limit and the number of lanes is constant on each cell, all cells are approximately 200 m
long and all on and off ramps are located at interfaces between two cells. This criteria lead to a
subdivision in 89 cells per direction. The resulting repartition into cells is given in Tables 1 and
2.

4.2 Raw data

Traffic data available for the project were collected on four Tuesdays (March 19 and 26 and April
2 and 9, 2013) from 6 a.m. to 11 a.m. and are mainly divided into two categories:

GPS data provided by the company Autoroutes Trafic which correspond to data supplied
by Coyote systems, of which we discuss in more detail in Section 4.3. Each observation includes
the position and the velocity of the car, as well as its ID. The percentage of cars equipped with
GPS is estimated to represent approximately 2% (see Section 4.5) of the total volume of traffic,
and each GPS sends data every minute, so that we have between 8000 and 10000 measurements
per day. In traffic engineering literature (see [Treiber Kesting 2013]), these data are classified as
trajectory data and, in particular, they are called extended floated-car data (xFCD), which is the
term that indicates data coming from GPS receivers equipped with extra sensors, such as the
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3

4

5
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7

8

Antibes Est

Villeneuve Loubet Plage
Villeneuve Loubet

Cagnes-sur-Mer

St Laurent du Var

Nice Promenade
Nice St Augustin

Carros

Nice St Isidore

Km 172.44

Km 190.00

Figure 7: Highway’s scheme. Direction 1. Blue spots indicate loop detectors’ locations. Light blue lines
indicate toll stations’ locations. Black arrows indicate the direction of cars flow, where those on the left
are on and off ramps. Highway’s sections limited by green lines are those where the speed limit is 100
kilometers per hour, while in the orange ones is 90 and in the red one is 70 kilometres per hour. Width

is proportional to the number of lanes: 2, 3 or 4.
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Subset Cells Speed limit Number of lanes Kmmin Kmmax

1 1 to 44 110 3 172.44 181.20
2 45 to 62 110 4 181.20 184.70
3 63 90 4 184.70 184.97
4 64 to 66 90 3 184.97 185.60
5 67 90 2 185.60 185.80
6 68 - 69 70 2 185.80 186.20
7 70 to 72 90 2 186.20 186.76
8 73 to 89 110 3 186.76 190.00

Table 1: Discretization. Direction 1

Subset Cells Speed limit Number of lanes Kmmin Kmmax

1 1 to 18 110 2 190.00 186.50
2 19 90 2 186.50 186.32
3 20 - 21 90 2 186.32 185.97
4 22 90 2 185.97 185.80
5 23 - 24 90 3 185.80 185.40
6 25 - 26 90 4 185.40 185.00
7 27 to 45 110 4 185.00 181.23
8 46 to 89 110 3 181.23 172.47

Table 2: Discretization. Direction 2

one that records the vehicle speed, as in our case. These data have been used both to constantly
feed the algorithm by experimental data and to compare the numerical results at the end of the
simulation. In Fig. 8 we report in the space-time plane all the registered data on March 19th.

Inductive-loop vehicle detectors’ data provided by the highway operator VINCI Au-
toroutes. These are static sensors installed beneath the road surface located at toll stations and
some other strategic locations along the highway. They fall under the category of cross-sectional
data, as they measure the number of cars passing through a fixed cross-section on the road. This
kind of data is usually represented in time series of some aggregated quantity like we have done
for flux in Fig. 13. Traffic flow is easily derived from such values as f = ∆N

∆t where ∆N is the
value provided by the induction loops and ∆t is the time interval at which we make the average.
They are necessary for the estimation of the real amount of cars travelling on the considered
section and also represent an ulterior support to the validation of the model. Both the flux
averages over one hour and six minutes have been provided.

4.3 The Coyote system

Data used for the project are those sent by Coyote radars. Coyote is a European system that
warns users about the location of dangerous areas through the exchange of information entered
by users, through the GSM network. The system is based on a process of sharing information by
members in order to prevent each others of the presence of a radar, a disturbance or an accident
on the way as soon as it is spotted on the road. The user that wants to warn the other simply
presses a key on the screen so that his position is detected by Coyote and is transmitted via
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Figure 8: GPS data of March 19th.
Spots sizes are proportional to speed.
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Figure 9: GPS data of March 26th.
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Figure 10: GPS data of April 2nd.
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Figure 11: GPS data of April 9th.
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18 Cabassi & Goatin

Figure 12: A Coyote radar

the GSM network to update a common database. The system is then capable of giving drivers
a lot of informations about traffic conditions such as traffic light and mobile camera locations,
speed limits, traffic incidents and more. Of course, the quality of information is related mainly
to the freshness of the information, and therefore dependent on the seriousness and the number
of service users. These systems are sometimes integrated with GPS. Its built-in GSM/GPRS
modem constantly communicates with the Coyote servers to send drivers the right information
at the right time, according to the location and speed of their vehicle.

4.4 Data processing

GPS data had been previously treated by Autoroutes Trafic, who selected the data related to the
considered stretch of highway and repositioned them in the best way. The files they provided
were .csv files containing, for each observation, the GPS ID, the day and hour when the signal
was sent from the GPS, the speed of the car at that time, its position expressed as latitude,
longitude and orientation, direction (1 or 2) in which it was travelling, the section of the highway
where it was and percentage that it already covered. Knowing the starting kilometer of each
road section, it has been possible, using the percentage, to compute the position of each car.

GPS data had then been used in order to compute:

Fluxes at boundaries at km x have been computed counting the number of probe cars
passing between km x and km x+ 2.5 each minute. These values, multiplied by 60, give the flux
in cars per hour. More details about this computation are given in Algorithm 1.

On the contrary, VINCI Autoroutes’ data were ready to use. The given values have been
considered to be constant during all the 6 minutes (or 1 hour) of the measurement. An example
is shown in Fig. 13.

Ghost cells densities To obtain these values, the average velocities of all the observations
over one minute in the chosen 0 and M + 1 cells have been computed. Then, the corresponding
density has been found according to the velocity function in use.

Approximated real values The estimated speed field, i.e. the continuous function of
local speed average v(x, t), has been derived from the discrete GPS measurements as the ghost
cells densities, the only difference is that the average of velocities is computed on 2 consecutive
cells and 6 consecutive minutes and all over the space-time grid. An example is given in Fig.
14a. They will be compared with the simulation results to verify the goodness of the model.
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Validation of traffic flow models 19

Data: .xslx files of GPS data
Result: .csv file containing flux at each minute from 6am to 11am

choose km x, day and direction at which compute the flux;
load data of the corresponding day from excel file;
if direction 1 then

control zone goes from km x to km x + 2.5;
else

control zone goes from km x to km x - 2.5;
end
create a sorted list of minutes in excel format;
create an empty flux vector of the same size;
create an empty vector of car IDs;
if data belongs to the control zone and the chosen direction and the car’s ID isn’t in
the list of counted IDs then

increment the flux of 1 unit at the position of the corresponding minute;
add the car’s ID to the list of counted IDs;

end
multiply the flux by 60;
make the average of flux over 5 minutes;

Algorithm 1: Compute fluxes at boundaries from GPS data
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Figure 13: Loop detectors’ data at km 180, March 19th direction 1.
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(d) April 9th, direction 1.

Figure 14: GPS average data
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Figure 15: Data used for parameter calibration

Data used for parameter calibration Data used for parameter calibration are the aver-
ages over one minute and a whole subset of cells of tables 1 and 2 of densities, velocities and flux.
In particular, we call k the ID of the considered subset of cells (see the first column of tables 1
and 2), nkj the number of cars that are in subset k at minute j, vkj the average speed of cars
in subset k at minute j, ki the starting kilometer of the considered highway portion, kmf the
ending kilometer of the considered highway portion, Nobs the total number of observations. The
minute number j is counted starting from 6.00 a.m. which corresponds to minute 1 and goes up
to 300.

First of all, we compute the total number of cars equipped with a Coyote system which occupy
the considered portion during minute j in the subset of cells named k. From this we can derive
the density, the average speed and, of course, the flux.

% Number o f ca r s
f o r i =1:Nobs

i f t ( i )==j && km( i )>kmi && km( i )<kmf
nkj = nkj +1;
vkj = vkj + v ( i ) ;

end
end

% Density
dkj = nvk (kmi−kmf ) ;

%Average speed
vkj = vkj / nkj ;

%Flux
f k j = dkj ∗ vkj ;

These values are then scaled with percentages listed in Section 4.5. We obtain, for the subset
1 of the Antibes-Nice direction, which is composed by the first 44 cells, the points shown in Fig.
15.

The sparseness of data is due to several factors: the varying percentage of trucks at differ-
ent times of the day, different weather conditions (lighting, precipitations), etc. Moreover, the
relation f = ρv, which is the foundation of the LWR model, assumes that traffic flow and speed
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Figure 16: Loop detectors and GPS data at km 180. March 19th, direction 1.

Day 6-7 a.m. 7-8 a.m. 8-9 a.m. 9-10 a.m. 10-11 a.m.
1 1.38 % 1.73 % 2.66 % 2.95 % 2.91 %
2 1.36 % 1.74 % 2.31 % 3.00 % 2.28 %
3 0.88 % 1.70 % 2.30 % 2.30 % 2.18 %
4 1.12 % 1.70 % 2.61 % 2.60 % 2.14 %

Table 3: Incoming flux percentage. Km 180, direction 1

are always in local equilibrium with respect to the density, i.e. they simultaneously follow the
density, not only for steady-state traffic but in all situations, which is not always the case.

4.5 Data percentage

Knowing both the values of GPS and loop detectors’ fluxes, allowed us to compute the percentage
of cars equipped with GPS with respect to the total amount of cars. This has been done by
comparing the sum of the 1 hour values of loop detectors’ flux at the toll stations of Antibes
Est, Antibes West and Sophia Antipolis to the average GPS flux over one hour just after the last
of these three toll stations. Notice that there are no off ramps in the considered part and that
Antibes Est toll station counts all the cars that are travelling on the highway, while the others
two count those who are entering in the Antibes area, so the sum of cars that pass through these
three toll stations corresponds to the exact entering flux (unless there are some errors in the
counting). An example of visual comparison is given in Fig. 16. All the percentages per hour
and per day are collected in Table 3.

As we can easily see, the percentage of available data is not constant during the day, but
it has the same pattern every day: early in the morning the percentage of cars equipped with
a Coyote system is very low (0.9-1.4%), then it starts growing until it reaches the maximum
between 9 and 10 a.m. (2.3-3%). Finally it starts decreasing again. This is probably due to
the fact that Coyote systems are mainly used by some specific categories of people such as taxi
or truck drivers. Data suggest that the presence of this kind of vehicles is regular and is not
proportional to the total number of cars.

As we wanted to estimate the real amount of cars that were travelling along the highway
at any time and at any point of the considered stretch from the Coyote data, we used a linear

Inria



Validation of traffic flow models 23

0 50 100 150 200 250 300
0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

Time (min)

P
er

ce
nt

ag
e 

of
 c

ar
s 

eq
ui

pp
ed

 w
ith

 a
 C

oy
ot

e 
sy

st
em

Figure 17: Percentages interpolation. March 19th, direction 1.
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Figure 18: Loop detectors data (6 minutes average) and GPS data after rescaling according to the
interpolated percentages. March 19th, direction 1.

interpolation of the percentages obtained before in order to rescale the GPS data. To do this, we
computed the value of the interpolation at each minute and assigned it to the corresponding GPS
flux obtained as explained in Section 4.4. This allowed us to rescale each flux with a percentage
as precise as possible. We report in Fig. 17 the percentage interpolation and in Fig. 18 the
comparison between LD data and rescaled GPS data for March 19th.

5 Parameters calibration

Data obtained as explained in Section 4 have been used in order to calibrate the model parame-
ters. Calibration is the estimation of parameters to maximize the model’s descriptive power to
reproduce collective traffic-flow characteristics. The chosen fundamental diagrams are modified
Daganzo-Newell (Fig. 4) and modified Daganzo-Newell with capacity drop (Fig. 5). For each
cell, all five parameters of the flux function: vmax, ρmax, ωf , ρa and ρc and the critical speeds
(speeds corresponding to the critical density, one or two depending if we assume that there’s a
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capacity drop or not) have to be determined from experimental data.

5.1 Least squares regression

We make the calibration for each subset of cells that have the same speed limit and number of
lanes. Data used for the calibration are those obtained as explained in Section 4.4.

Given the shape of the function v(ρ), we decided to split the calibration in two subsequent
parts: first we use Matlab’s polyfit function to do the linear regression on the non-congested
set, then we find the other parameters with the nlinfit command, that uses the Levenberg-
Marquardt algorithm. The advantage of this method is that it tries to combine the advantages
of the gradient descent (robustness) and Gauss-Newton (fast convergence) by making a smooth
transition between these methods during optimization. The transition is governed by an adaptive
trust region preventing the Gauss-Newton method from stepping too far. This is the most popular
method for standard problems of calibration.

% Data load ing
load ( ’ x ’ ) % Vector o f d e n s i t i e s
load ( ’ y ’ ) % Vector o f the corre spond ing speeds

% S e l e c t i o n o f uncongested data
xNC = [ ] ;
yNC = [ ] ;

f o r j =1:max( s i z e ( y ) )
i f y ( j )>=vv ( i )

yNC = [yNC y ( j ) ] ;
xNC = [xNC x ( j ) ] ;

end
end

% F i r s t r e g r e s s i o n
p= p o l y f i t (xNC, yNC, 1 ) ;

vmax( i ) = p ( 2 ) ;
rhoa ( i ) = −vmax( i )/p ( 1 ) ;
rhoc ( i ) = (vmax( i ) − vv ( i ) )∗ ( rhoa ( i )/vmax( i ) ) ;

% S e l e c t i o n o f congested data
xC = [ ] ;
yC = [ ] ;

f o r j =1:max( s i z e ( y ) )
i f y ( j )<vv ( i )

yC = [ yC y ( j ) ] ;
xC = [ xC x ( j ) ] ;

end
end

% Second r e g r e s s i o n
beta0 = 100 ;
r2 = @(b , x ) ( x<=rhoc ( i ) ) . ∗ ( p(2)+p ( 1 ) . ∗ x ) + . . .

. . . ( x>rhoc ( i ) ) . ∗ ( b . / x+vv1 ( i )−b . / rhoc ( i ) ) ;
mdl = n l i n f i t (xC , yC , r2 , beta0 ) ;

omegaf ( i ) = − vv ( i ) + mdl/ rhoc ( i ) ;
rhomax ( i ) = mdl/omegaf ( i ) ;

For the critical speed, we first tried to choose it by computing the residual sum of squares of
the interpolation with different critical speeds and taking the one that gave the minimal RSS,
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Figure 19: Critical speed

see Algorithm 2. We had to abandon this technique because data are so sparse that the RSS
turned out to be a misleading indicator.

vv = 60:0.05:100;

for Each value of vv do
Make the two regressions as before;
Compute the residual sum of squares;

end
Choose the critical speed that produces minimal RSS;

Algorithm 2: Find the value of vv that minimizes the error

We then decided to choose the critical speed according to a simple visual criterion. In fact,
in the speed-density plot, it can be easily noticed that data are divided in two parts, that we
considered as the congested and uncongested set of data . For the first subset of cells, the
critical density chosen in this way is vlim = 70km/h (see Fig. 19). For the fundamental diagram
with capacity drop, the values of vlim1 and vlim2 have been chosen by looking at the velocities
histogram, reported in Fig. 20. It has been easy to understand from it which velocities appear
rarely. Then, the same kind of regression as for the first fundamental diagram has been used.

The results for the first subset in the Antibes-Nice direction, the longest one, that includes 44
cells, are shown in Fig. 21a and 21b, corresponding to the modified Daganzo-Newell fundamental
diagram with and without capacity drop. The method exposed just before can’t be applied to
the smallest subsets of homogeneous cells, i.e. subsets 3 to 8. Problems arise because of the
excessive sparseness of data. The issue has been overcome by extrapolating a linear trend in
parameters linked to the theoretical speed limit and the number of lanes from the sections
where the regression could be performed. Thanks to the so obtained coefficients we have been
capable of estimating parameters for every cell, knowing only their characteristics. The identified
parameters are listed in Tables 4 and 5.
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Figure 21: Parameter calibration for the homogeneous section from km 172.44 to 181.2 (Antibes-Nice).
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Subset ρmax vlim ρa ρc vmax ωf
# (car/km) (km/h) (car/km) (car/km) (km/h) (km/h)

1 165.83 70.00 313.22 118.86 112.81 177.16
2 248.18 70.00 462.96 176.04 112.95 170.83
3 329.40 57.27 598.96 227.52 92.35 127.91
4 247.05 57.27 449.22 170.65 92.35 127.91
5 247.05 57.27 449.22 170.65 92.35 127.92
6 164.70 57.27 299.48 113.76 92.35 127.92
7 247.05 57.27 449.22 170.65 92.35 127.92
8 247.05 70.00 449.22 170.65 112.88 156.34

Table 4: Linear regression and extrapolation results without capacity drop. Direction 1

Subset ρmax vlim1 vlim2 ρa ρc vmax ωf
# (car/km) (km/h) (km/h) (car/km) (car/km) (km/h) (km/h)

1 182.27 70.00 85.00 389.87 98.00 113.54 81.40
2 237.63 70.00 85.00 559.88 145.55 114.86 110.65
3 221.44 57.27 69.55 680.04 173.88 93.44 209.39
4 166.08 57.27 69.55 510.03 130.41 93.44 209.39
5 110.72 57.27 69.55 340.02 86.94 93.44 209.39
6 110.72 44.55 54.09 340.02 86.94 72.67 162.86
7 110.72 57.27 69.55 340.02 86.94 93.44 209.39
8 166.08 70.00 85.00 510.03 130.41 114.20 255.93

Table 5: Linear regression and extrapolation results with capacity drop. Direction 1
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(a) Hyperbolic-linear fundamental diagram.
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Figure 22: Parameter calibration result, direction 1.
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5.2 L1 error

The second method is the one proposed in [Blandin et al. 2013]. It consists in comparing the
time-space diagrams derived from the experimental data presented in Section 4.4 with the sim-
ulation results. To do this, we define the following cost function

L1(u) =

∑
n

∑
j |usim(n∆t, j∆x)− udata(n∆t, j∆x)|∑

n

∑
j |udata(n∆t, j∆x)|

(40)

in which we note udata(n∆t, j∆x) the average density computed from data as described in Section
4.4 on 2 cells and 6 minutes and usim(n∆t, j∆x) the average on the same grid of the numerical
value of ρ. Then we run the simulation with different parameters and try to identify the set of
parameters at which the minimum of the cost function is attained for the reconstructed time-
space diagrams.

We chose to evaluate the cost function on all the points of a grid with parameters gapvector,
vmaxvector, rcvector in Algorithm 3. The other parameters are those identified in Section 5.1.
This choice of the parameters allows us to move all the parts of the fundamental diagram in the
(ρ− v(ρ)) space maintaining some points of reference that we consider as plausible.

Data: A set of plausible parameters
Result: Best parameters

gapvector = [15 10 5 0];
vmaxvector = [105 109 113 117 121 125];
rcvector = [70 75 80 85 90 95 100 105 110 115 120];

for All values in gapvector do
for All values in vmaxvector do

for All values in rcvector do
Run simulation;
Compute error;

end

end

end
Choose parameters that produce minimal error;

Algorithm 3: Find parameters that minimize the error

To this end, we use data of April 2nd, when the best-shaped traffic profile has been recorded.
We obtain, for subset 1, ρmax = 241.01 car/km, vlim1 = 70 km/h, vlim2 = 85 km/h, ρa = 484.26
car/km and ρc = 120 car/km, vmax = 113 km/h and ωf = 54.54 km/h.

Values for the second subset can be obtained by keeping the first ones fix and doing the same
optimization running the simulation on subsets 1 and 2 together.

5.3 Graphical estimation

Another way of estimating parameters is to derive some of them directly from the data scatter-
plots. In fact, in Fig. 8, 9, 10 and 11, we can easily recognize ωf , which is the speed of
propagation of the congestion wave, and the slopes that correspond to the shocks produced by
the formation and the extinction of the traffic jam, that in the fundamental diagram of Fig. 23
correspond to lines 1 and 2 respectively. These three values have been measured from data as
shown in Fig. 24a and 24b. We find ωf = 17 km/h, s1 = 8.85 km/h and s2 = −14.06 km/h.

Inria



Validation of traffic flow models 29

f(ρ)

ρρc

fmaxF

fmaxC

ρmax

C

D

A

B

1

2

Figure 23: Shocks corresponding to queue formation and extinction waves

From the previous chapter, we can suppose that, in subset 1, vlim1 = 70 km/h, vlim2 = 85 km/h,
ρmax = 450 car/km and vmax = 120 km/h. We obtain, for the others parameters ρa = 238.44
car/km and ρc = 99.35 car/km.

5.4 The hybrid solution

Considering what has been highlighted up to this point, the best solution is an hybrid calibration
method. First, we make a coarse calibration with the least-squares method, that provides the
first set of parameters. Afterwards, we use the graphical estimation in order to find a more
accurate value of ωf . In fact, due to the sparseness of data in the congested phase, the value
found with the last method (17 km/h) is much more reliable than the previous one and it is
in accordance with values suggested in [Treiber Kesting 2013] (between 12 km/h and 20 km/h
depending on the region and the highway’s characteristics). Moreover, substituting the value of
this parameter, only influences the right part of the function, which is the more uncertain one
and leads to more lifelike values of ρmax, too. Lastly, we adjust those values finding in their
neighbourhood those that minimize the cost function 40.

6 Numerical results

In this chapter we present the numerical results obtained so far by means of the model described
above. We report various combinations of the presented boundary conditions and input data
and some tests that validate the predictive power of the model. In all simulations parameters are
those chosen in Section 5.4. We don’t show here any simulation that takes into account fluxes in
the on- and off-ramps because their contribution to the final result is insubstantial. In addition,
we avoid presenting simulations that contain the last 25 cells as the parameters estimated for
those cells are not relevant, due to the fact that traffic evolution in this area is so complicated
that a first-order model is not able to reproduce its behaviour in an utter way.
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(b) s1 and s2. April 2nd.

Figure 24: Graphical estimation
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(a) March 19th, sim.
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(b) March 19th, data
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(d) April 2nd, data

Figure 25: Simulation of speed field from 6 am to 11 am, cells 1 to 62, GPS flux as boundary condition.

6.1 Long term reconstructions

This section is dedicated to simulations that start at 6 am with a null initial condition and are fed
with the first two boundary conditions presented in Section 3.2.1: density and flux. Simulation
stops at 11 am, when no more data are available.

The first simulations we present (Fig. 25) have been done with the GPS flux as boundary
condition and on the first 62 cells. The first one corresponds to day 1 (March 19th) and the
second one to day 3 (April 2nd). We also report simulations done with loop detectors’ fluxes
(Fig. 26). As they’re located in specific places, we only could do the computation between cell
21 and cell 64. Comparing the two, it is evident that, with the same parameters, loop detectors
are much more accurate than GPS fluxes. This is due to the fact that the very small percentage
of probe cars and trucks are not representative of the whole traffic situation. Lastly, we show
simulations done with the second type of boundary conditions: density in ghost cells (Figures
27 and 28), that in our case are the first and the last available cells. First there are simulations
done only on the first subset of cells (1 - 44), then come those made on the ensemble of the first
and the second (1 - 62).

Inria



Validation of traffic flow models 31

Space

T
im

e

 

 

177 178 179 180 181 182 183 184 185

50

100

150

200

250

300

0

20

40

60

80

100

120

(a) March 19th, sim.

Space

T
im

e

 

 

177 178 179 180 181 182 183 184 185

50

100

150

200

250

300

0

20

40

60

80

100

120

(b) March 19th, data.
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(d) April 2nd, data.

Figure 26: Simulation of speed field from 6 am to 11 am, cells 21 to 64, loop detectors’ flux as boundary
condition.
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(b) March 19th, data.
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(d) April 2nd, data.

Figure 27: Simulation of speed field from 6 am to 11 am, cells 1 to 44, density as boundary condition.
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(b) March 19th, data.
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(d) April 2nd, data.

Figure 28: Simulation of speed field from 6 am to 11 am, cells 1 to 62, density as boundary condition.
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Figure 29: Data weights

6.2 Short term forecasts

In this section, we use the third type of boundary conditions presented in Section 3.2.1. As we
don’t use real data to feed the simulation, we can only run it for a short time. So we choose a
starting time t0, which can be different from 6 am and then run the simulation for 30 minutes.

6.2.1 Initial condition

When we start the simulation at a time which is not 6 am, we cannot suppose that the highway is
initially empty. We present here the two methods suggested in [Cristiani de Fabritiis Piccoli 2010]
to estimate the initial condition from data.

First method We denote by ρni the numerical solution, by ρ̃(x, t) its extension on all over the
space-time box and by σni the average density in the cell (i, n) computed by means of the data
and the function ρ(v).

We start the simulation at time t = 6am with groundless pre-initial condition ρ(x, 0) ≡ 0.
Then, by means of the numerical scheme, we compute the approximate solution until time t0,
correcting it with experimental data. More precisely, once ρni is computed, we check if σni (n) is
available, i.e. there are available data the approximate solution can be corrected with. If this is
the case, we set

ρn,corrected
i = λni σ

n
i (n) + (1− λni )ρni (41)

where λni ∈ [0, 1] and it is chosen depending on how many data concurred to the computation of
the average value σni (n) (the more the data the more reliable the value). In particular, we chose
λni = min(log4(dni + 1), 1), where dni is the number of data available at minute n in cell i. Weight
values are shown in Fig. 29a.

In this fitting stage, the solution assimilates all the available data, and becomes reliable all
over the road. Then, the function ρ̃(x, t0) is used as initial condition, and no more data are used
to correct the solution.
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Figure 30: 30 minute-ahead speed forecast (left) vs. actual value (right). March 19th, Antibes - Saint-
Laurent-du-Var

Second method For every i = 1, . . . , Nx at time-step n corresponding to time t0 we define

ρni :=
1

n∑
k=0

Ci(k, n)

n∑
k=0

Ci(k, n)σki (n) (42)

where Ci(k, n) is an exponentially decreasing function of (tn− tk) if 0 < (tn− tk) ≤ 60 min, and
Ci(k, n) = 0 if tn − tk > 60 min or σki (n) is not available. In particular, we set

Ci(k, n) =


0 if n− k < 0,

e
(k−n)

2 if 0 ≤ n− k < 60,
0 if n− k ≥ 60.

(43)

The resulting values are shown in Fig. 29b. Roughly speaking, φ(n) is a weighted average of
the data measured in the hour preceding time tn. Then we take as initial condition the extension
ρ̃(x, t0) of the so computed ρn.

6.2.2 Congestion formation

We run the algorithm choosing t0 = 8am and the Antibes-Nice direction. We make a forecast
over the following 30 minutes. Results obtained with methods 1 and 2 are shown in Fig. 30.
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Figure 31: 30 minute-ahead speed forecast (left) vs. actual value (right). March 19th, Antibes - Saint-
Laurent-du-Var

6.2.3 Congestion extinction

We run the algorithm choosing t0 = 9am and the Antibes-Nice direction. We make a forecast
over the following 30 minutes. Results obtained with methods 1 and 2 are shown in Fig. 31.

6.2.4 Distribution of errors

In order to have a global idea of the abilities of the model, we compute the error distribution for
several forecasts. In more detail, we run simulations with tp0 = 60 + 5p minutes, p = 1, . . . , 36,
and ∆t = 10q minutes, q = 1, . . . , 5. Denoting by np0 the time steps corresponding to tpo and
by ∆nq the number of time steps corresponding to ∆tq, q = 1, . . . , 5, we define an error variable
Ep,qi at every space node i = 1, . . . , Nx

Ep,qi =
1

v(ρ
np
0+∆nq

i )
− 1

v(σ
np
0+∆nq

i )
. (44)

Ep,qi is the error made in approximating the time needed to cover 1 km at the velocity
computed at node i at the end of the simulation. This error measurement is probably more
meaningful than the absolute or relative error over the velocity because it is the information that
drivers are interested in. In Fig. 32 we show the distribution of the errors for the chosen ∆tq.
The distribution has a classical Gaussian behaviour, concentrated around zero. As ∆t becomes
higher, the graph becomes less symmetric, but always with a pick in zero.
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Figure 32: Distribution of forecast errors

6.2.5 Travelling times

Once a forecast of the traffic condition is available, an estimate of the travelling time can be
made. Thanks to the app developed by Eneina Gjata, Myriana Rifai and Salim Afra, interns
at INRIA’s OASIS team, a driver can ask for the time he/she will need to reach some desti-
nation, departing at a specified time in the future and receive an answer in a few seconds by
means of the numerical scheme and parameters previously explained (for further details, see
[Afra Gjata Rifai 2013]). This is made on a sophisticated platform, named PLAY, designed by
the EU funded STREP project PLAY (see news.play-project.eu), where users will be able to
receive and share information about traffic in real time.

To this end, it is important to notice that even if we can rely on an accurate forecast of the
average velocity, this is not enough to get an accurate estimate of the travelling time. Let us
assume for example that a driver has to cover 10 km. If the estimated average velocity is 60
km/h, the estimate travel time is 10 min. On the other hand, if the real velocity is 20 km/h for
the first half of the road and 100 km/h for the second half (60 km/h in average), the travel time
is 18 min. It is clear how important it is to compute velocity on a space grid which is as fine as
possible.

In order to test the reliability of the travelling times given by the numerical simulation, we
deduce from data the real travelling time between km 172.44 and 180 and compare it this value
to the numerical ones. We chose to follow two cars, that we will denote by A and B respectively.
Car A departed from Antibes (km 172.44) on April 2nd at 6.28 am and reached Cagnes-sur-Mer
(km 181.2) 5 minutes later. Car B departed from the same point, the same day at 8.16 am, and
the journey took 12 minutes. The tracking of the two cars are shown in Fig. 33 and 34. We
computed the initial condition for numerical simulation by means of the first method, supposing
that user asks for the estimate 5 minutes before entering the highway. Values are reported in
table 6.

As expected, results are more reliable during the non congested phase. In fact, it is clear
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Figure 33: Tracking of car A
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Figure 34: Tracking of car B

Leaving at Real value (min) Estimated value (min)
6.28 am 5.0 4.9
8.16 am 12.1 14.4

Table 6: Comparison between real values and estimate values of travelling time.
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Figure 35: Initial conditions computed with methods 1(left) and 2(right).

t0 Section March 19th March 26th April 2nd April 9th

8 am Antibes - Cagnes-sur-Mer 43 % 41% 54 % 59 %
9 am Antibes - Cagnes-sur-Mer 13 % 12 % 25 % 17 %
8 am Antibes - St-Laurent-du-Var 41 % 47% 45 % 44 %
9 am Antibes - St-Laurent-du-Var 19 % 11 % 22 % 21 %

Table 7: 1st Method

t0 Section March 19th March 26th April 2nd April 9th

8 am Antibes - Cagnes-sur-Mer 39 % 41% 51 % 49 %
9 am Antibes - Cagnes-sur-Mer 20 % 12 % 25 % 22 %
8 am Antibes - St-Laurent-du-Var 40 % 42% 45 % 38 %
9 am Antibes - St-Laurent-du-Var 25 % 18 % 20 % 21 %

Table 8: 2nd Method

from Fig. 30 and 31 that the numerical scheme is not able to reproduce all the small local speed
variations that we observe in real data.

6.2.6 Comparison between the two methods

Initial condition In Fig. 35 we show the initial conditions computed for March 26th at 8 am
with the first and the second methods.

Relative errors We compare here the relative errors of the two methods, defined as

L1(u) =

∑
j |usim(t0 + ∆t, j∆x)− udata(t0 + ∆t, j∆x)|∑

j |udata(t0 + ∆t, j∆x)|
(45)

where ∆t = 15 min, udata(t0 + ∆t, j∆x) is the average density computed from data and
usim(t0 + ∆t, j∆x) the average on the same grid of the numerical value of density. We obtain
values reported in tables 7 and 8.

Relative errors are very high when the estimated situation is congested. In fact, macroscopic
models are not able to describe the stop-and-go waves, always present in congested situations (see
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Figure 36: Congestion extinction, approximate real density and simulation at simulation result at t0 +
15 min.

for example Fig. 8, stop-and-go waves are the blue lines in the light-blue zones). This happens
because they only focus on integrated quantities such as the travel time, the aggregated number
of vehicles, or the propagation of the congested fronts. In essence, a first order model like LWR,
reproduces only the kinematics aspects of traffic evolution, and it is not sensitive to dynamic
parameters determining accelerations. This allows to have a global idea of traffic evolution in
time and to make good predictions, without increasing the number of parameters of the model.

On the contrary, for the non congested situations, we find values around 20%. All calibration
studies in traffic estimation literature show consistently that there is a residual error of the order
of 20% that not even the best model can beat. While it is not completely understood, it is known
that two factors that surely play a role in this phenomenon are the choice of inappropriate fitting
functions and the omitting of intra- and inter-driver variations (augmenting the model does not
necessarily help since this increases the number of parameters and possibly worsens its predictive
power).

Density at t0 + ∆t We can conclude that the two methods are equivalent but the second one
is more adapted to simulations that take into account the delay between the time at which data
are registered and sent and time at which they are effectively received and used in the simulation.

7 Conclusions and future work

Results presented in the previous section show that, while predicting traffic evolution during
all the morning is really challenging, short term predictions can be easily made. Difficulties
in calibrating the model raised not only because of the complication of the concerned highway
section, but they are also due to the fact that data used for the calibration came from an exiguous
percentage of the total number of vehicles, which are not always representative of the average
vehicle-driver unit. Moreover, using the LWR mathematical model, we assumed that local speed
and flow are statically coupled to the density by the fundamental relation. This assumption
implies instantaneous adaptation to new circumstances and leads to unbounded accelerations
and other unrealistic consequences.

Inria



Validation of traffic flow models 39

There are several lines of study arising from this work which could be pursued. For example,
it would be interesting to test the same kind of data on some second order models. These models
take into account the fact that local speed possesses its own dynamical acceleration equation,
describing speed changes as a function of density, local speed, their gradients and possibly other
exogenous factors. Thanks to this, they are able to describe traffic-flow instabilities leading to
traffic waves and scattered flow-density data.

In addition, some aspects of this study may be improved: first, the spatio-temporal interpola-
tion of raw data, that we used in order to have an approximated representation of the real traffic
state in space and time. A recently published book by M. Treiber and A. Kesting reports an
accurate way of doing the interpolation without producing artefacts such as wrong propagation
velocities or even wrong propagation of congestion waves when reconstructing the continuous
function of local speed average from raw data. Secondly, a deeper study of the most suitable cal-
ibration method should be done. Probably, a Monte Carlo approach or a genetic algorithm would
be more effective in order to optimize parameters, see for example [Tossavainen Work 2012]. Fi-
nally, in view of applications such as the one developed by the OASIS interns, a more complete
model capable of gradually incorporate data when they are available, adjusting the traffic forecast
accordingly, should be implemented.

8 Acknowledgements

This research was supported by Autoroutes Trafic and the KIC EIT ICT Labs Activity no. 13052
Multimodal Mobility.

References

[Afra Gjata Rifai 2013] Salim Afra, Eneina Gjata, Myriana Rifai
Internship report
INRIA Research Report. September 2013
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