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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

The Clock Constraint Specification Language (CCSL) proposes a rich polychronous time model dedicated to the specification of
constraints on logical clocks: i.e., sequences of event occurrences. A priori independent clocks are progressively constrained through
a set of clock operators that define when an event may occur or not. These operators can be described as labeled transition systems
that can potentially have an infinite number of states. A CCSL specification can be scheduled by performing the synchronized
product of the transition systems for each operator. Even when some of the composed transition systems are infinite, the number
of reachable states in the product may still be finite: the specification is safe. The purpose of this paper is to propose a sufficient
condition to detect that the product is actually safe. This is done by abstracting each CCSL constraint (relation and expression) as a
marked graph. Detecting that some specific places, called counters, in the resulting marked graph are safe is sufficient to guarantee
that the composition is safe.

I. INTRODUCTION

The Clock Constraint Specification Language (CCSL) [1] was initially introduced as a companion language of the UML
profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE). Its purpose is to provide a language to specify
functional and non-functional requirements on top of UML models. It relies on a logical notion of time that can be uniformly used
to describe causal constraints in the application part of a system, physical and temporal dependencies in execution platforms as
well as new constraints coming from the allocation of the application onto the execution platform or from external requirements
from the designers.

The semantics of CCSL constraints was defined formally [2] to support exhaustive analyses of CCSL specifications. Until now,
most work [3], [4], [5] on the exhaustive verification of properties on a CCSL specification was assuming a bounded subset of
CCSL operators. Indeed, having a finite state-space is required to do standard state explorations. Assuming bounded primitive
constraints is an easy way to guarantee that the whole specification is bounded.

In [6], we have given a state-based representation of CCSL constraints and we have shown that even though the primitive
constraints were unbounded, the composition of these primitive constraints could lead to a system where only a finite number
of states were accessible. In this paper, we define a notion of safety for CCSL and establish a condition to decide on whether a
CCSL specification is safe. Having such a condition is an important and necessary step to allow co-design, code generation and
model-checking.

We propose an abstraction of a CCSL specification as a Marked Graph (MG) and we use classical results on marked graphs
to decide on the safety of a CCSL specification. The contributions consist in formally defining a safety condition for a CCSL
specification and proposing a transformation into marked graphs to check this condition. A simple algorithm is given to perform
the analysis.

Section II introduces the considered CCSL constraints and presents their state-based semantics. Section III defines formally
the notion of safety for a CCSL specification. It also introduces a clock causality graph to capture the causality relations extracted
from each CCSL constraint. Section IV recalls the definition of a MG, its execution semantics and some useful classical results.
Then, Section V gives the rules to transform the clock causality graph in a MG and shows the semantic equivalence between
CCSL causality and a place in MG. Finally, it gives a sufficient condition to decide whether a CCSL specification is bounded
and provides an algorithm to check this condition. Section VI discusses a simple example and Section VII browses the related
works. Finally Section VIII concludes with some views on possible extensions.

II. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

This section briefly introduces the logical time model [1] of MARTE and the Clock Constraint Specification Language (CCSL).
A technical report [2] describes the syntax and the semantics of a kernel set of CCSL constraints. We only describe the constraints
that are used for the discussion.

The notion of multiform logical time has first been used in the theory of Synchronous languages [7] and its polychronous
extensions [8]. The use of tagged systems to capture and compare models of computations was advocated by [9]. CCSL provides
a concrete syntax to make the polychronous clocks first-class citizens of UML-like models.



A. Logical time model

Clocks in CCSL are used to measure dates of occurrences of events in a system. Logical clocks replace physical dates by a
logical sequencing. We never presume that clocks or events are described relative to a global physical time but we rather consider
that clocks are independent of each other.

Definition 1 (Logical clock): A clock c belongs to a set of propositions C.

Clocks are assumed to be independent of each other. During the execution of a system, clocks tick according to occurrences
of related events. The schedule captures what happens during one particular execution.

Definition 2 (Schedule): A schedule is defined as a function Sched : N>0 → 2C . Given an execution step s ∈ N>0, and a
schedule σ ∈ Sched, σ(s) denotes the set of clocks that tick at step s.

For a given schedule, it is useful to know the relative advance of clocks, i.e., their configuration.

Definition 3 (Clock configuration): For a given schedule σ, the configuration is defined as χσ : C × N → N. ∀c ∈ C, it is
defined recursively as:

• χσ(c, 0) = 0, the initial configuration,

• ∀n > 0, χσ(c, n) = χσ(c, n− 1) if c /∈ σ(n),

• ∀n > 0, χσ(c, n) = χσ(c, n− 1) + 1 if c ∈ σ(n).

For a clock c ∈ C, and a step n ∈ N, χσ(c, n) denotes the number of times the clock c has ticked at step n for the given
schedule σ.

The Clock Constraint Specification Language is used to specify a set of valid schedules. Since a CCSL specification does not
assume a global time, there is usually an infinite number of schedules that satisfy a given specification. If there is no satisfying
schedule, then the specification is ill-formed.

Definition 4 (CCSL specification): A CCSL specification Spec is a tuple 〈C, Rel,Def〉, where C is a set of clocks, Rel and
Def are two disjoint sets collectively called CCSL constraints, Rel is a set of clock relations whereas Def is a set of clock
definitions.

1) Clock relations:

Definition 5 (Primitive CCSL relations): We define the set of primitive relation operators: RelOp = { ⊂ , # , ≺ , 4 }.
A Clock relation is Rel : C × RelOp × C. Let left : Rel → C be the function that gives the left clock involved in a relation.
Let right : Rel → C be the function that gives the right clock involved in a relation. Let op : Rel → RelOp be the function
that gives the operator involved in a relation.

The first two relations are synchronous. They force clocks to tick or not to tick depending on whether another clock ticks or
not. Subclocking prevents a subclock c1 from ticking when its super clock c2 does not tick. In other words, c1 is a subclock of
c2 for a given schedule iff c1 only ticks when c2 ticks. Exclusion prevents two clocks from ticking simultaneously. Synchrony
forces two clocks to tick always simultaneously. Their satisfaction rules are given below.

Definition 6 (Synchronous relations): The satisfaction rules for the synchronous constraints with regards to a given schedule
σ are:

σ |=ccsl c1 ⊂ c2 iff ∀n ∈ N>0, (Subclocking)
c1 ∈ σ(n) =⇒ c2 ∈ σ(n) (1a)

σ |=ccsl c1 # c2 iff ∀n ∈ N>0, (Exclusion)
c1 /∈ σ(n) ∨ c2 /∈ σ(n) (1b)

Note that by definition, Subclocking is a pre-order on C, i.e., it is reflexive and transitive.

The latter two relations are asynchronous. They forbid clocks to tick depending on what has happened on other clocks in the
earlier steps. Causality requires a clock c1 to be always in advance on another clock c2 but allows the case where the two clocks
tick synchronously. Precedence is a stronger form that forbids pure Synchrony and requires c1 to be strictly in advance on c2.

Definition 7 (Asynchronous relations): The satisfaction rules for the asynchronous constraints with regards to a given schedule
σ are:

σ |=ccsl c1 4 c2 iff ∀n ∈ N, (Causality)
χσ(c1, n)− χσ(c2, n) ≥ 0 (2a)

σ |=ccsl c1 ≺ c2 iff ∀n ∈ N, (Precedence)
(χσ(c1, n) = χσ(c2, n)) =⇒ c2 /∈ σ(n+ 1) (2b)



Note: Causality is another pre-order on C.

Proposition 8 (Precedence implies causality): The Precedence is a stronger form of causality:
σ |=ccsl c1 ≺ c2 =⇒ σ |=ccsl c1 4 c2

The proof is given in [10].

2) Clock definitions: A clock definition is of the form c , e where c ∈ C and e is a clock expression. We consider two kinds
of expressions the binary expressions and the unary expressions.

Definition 9 (Primitive CCSL binary expressions): The primitive binary expressions are BinExpr : C×ExprOp×C, where
ExprOp = { + , ∗ , ∧ , ∨ }.
Let first : BinExpr → C be the function that gives the first clock involved in a binary expression.
Let second : BinExpr → C be the function that gives the second clock involved in a binary expression.
Let op : BinExpr → ExprOp be the function that gives the operator involved in a binary expression.

The first two clock expressions are based on Subclocking. Union builds the slowest super clock of two given clocks. Intersection
builds the fastest clock that is a subclock of two given clocks.

Definition 10 (Union and intersection): The satisfaction rules of Union and Intersection for a given schedule σ are:

σ |=ccsl u , c1 + c2 iff ∀n ∈ N>0, (Union)
u ∈ σ(n)⇔ c1 ∈ σ(n) ∨ c2 ∈ σ(n) (3a)

σ |=ccsl i , c1 ∗ c2 iff ∀n ∈ N>0, (Intersection)
i ∈ σ(n)⇔ c1 ∈ σ(n) ∧ c2 ∈ σ(n) (3b)

The following clock expressions are based on Causality. Infimum builds the slowest clock that is faster than two given clocks.
Supremum builds the fastest clock that is slower than two given clocks.

Definition 11 (Infimum and Supremum): The satisfaction rules of Infimum and Supremum for a given schedule σ are:

σ |=ccsl inf , c1 ∧ c2 iff ∀n ∈ N, (Infimum)
χσ(inf, n) = max(χσ(c1, n), χσ(c2,n)) (4a)

σ |=ccsl sup , c1 ∨ c2 iff ∀n ∈ N, (Supremum)
χσ(sup, n) = min(χσ(c1, n), χσ(c2, n)) (4b)

All the unary expressions are bounded, we only consider here one of them, the Delay: e := c $ d, where d ∈ N. This
expression models a pure delay. It is used to produce a clock that is always a given number of ticks d late compared to its
original clock. d is a positive integer.

Definition 12 (Delay): The satisfaction rule of Delay for a given schedule σ and for a given natural number d ∈ N is:

σ |=ccsl del , c $ d iff ∀n ∈ N, (Delay)
χσ(del, n) = max(χσ(c, n)− d, 0) (5)

To help the reader understand the semantics of the expressions, Figure 1 gives an example of schedule σ that satisfies several
expressions. Check marks represent the steps where a given clock ticks.

step 1 2 3 4 5 6 7
c1 X X X
c2 X X X X

u , c1 + c2 X X X X X X

i , c1 ∗ c2 X
inf , c1 ∧ c2 X X X X
sup , c1 ∨ c2 X X X
d , c2 $ 2 X X

Fig. 1. An example of schedule σ



B. State-based representation of CCSL constraints

The time model gives a base to reason on clocks. CCSL constraints are predefined patterns often encountered in system
specifications. The semantics of those constraints can be defined using predicate logics (as in the previous subsection), as a
Structural Operational Semantics (SOS) [2] or equivalently as transition systems [10]. The latter is used to support verification
of properties on CCSL specifications through model-checking.

The encoding as transition systems shows that some constraints can be encoded using finite-state transition systems. Others
require the use of transition systems with an infinite number of states. A CCSL constraint that can be represented by a transition
system with a finite number of state is called a bounded constraint. Other constraints are unbounded.1

1) Relations: Subclocking (Eq. 1a, Figure 2.(a)) and exclusion (Eq. 1b, Figure 2.(b)) are bounded constraints. They only
impose conditions on what can happen during the current step, without depending on what has happened in the previous steps,
i.e., they are stateless. Transitions are labeled with a tuple in 2C . The initial state is drawn with a double line. In Figure 2.(a),
for a given schedule σ and ∀s ∈ N>0, there are three solutions:

• 〈c1, c2〉: c1 and c2 tick together, c1 ∈ σ(s) ∧ c2 ∈ σ(s);

• 〈c2〉: c2 ticks alone, c1 /∈ σ(s) ∧ c2 ∈ σ(s);

• ∅: none of the two clocks tick2: c1 /∈ σ(s) ∧ c2 /∈ σ(s).

The solution where c1 would tick alone is forbidden (see Eq. 1a). Similarly in Figure 2.(b), c1 and c2 can never tick together as
stated in Eq. 1b.

〈c1, c2〉 〈c2〉 〈c1〉 〈c2〉

(a) c1 ⊂ c2 (b) c1 # c2

Fig. 2. Primitive CCSL relations as Labeled Transition Systems

On the contrary, Precedence (Eq. 2b) and Causality (Eq. 2a, Figure 3) are unbounded constraints. Those constraints require
counting the difference of occurrences between the two clocks, i.e., δ = χσ(c1, n)−χσ(c2, n). The definitions of those constraints
impose δ to be positive or null, but δ can be arbitrarily big. Each state encodes a different value of δ. Since δ can take any value
in N, then there are an infinite number of states.

δ = 0 δ = 1 δ = 2 δ ∈ N

〈c1〉

〈c1, c2〉

〈c1〉

〈c1, c2〉

〈c2〉

〈c1〉

〈c1, c2〉

〈c2〉

〈c1, c2〉

〈c2〉

Fig. 3. CCSL Causality (infinite state LTS): c1 4 c2.

2) Expressions: Union (Eq. 3a, Figure 4.(a)), Intersection (Eq. 3b, Figure 4.(b)) and Delay (Eq. 5) are bounded expressions.

〈c1, c2, u〉

〈c2, u〉〈c1, u〉

〈c1, c2, i〉

〈c2〉〈c1〉

(a) u , c1 + c2 (b) i , c1 ∗ c2

Fig. 4. Union and intersection of clocks

On the contrary, Infimum (Eq. 4a, Figure 5) and Supremum (Eq. 4b) are unbounded CCSL expressions. Here again, we need
an unbounded integer counter to count δ = χσ(c1, n) − χσ(c2, n). The main difference with Precedence here is that δ can be
positive or negative δ ∈ Z, but it is still unbounded.

1Here the notion of boundness is loosely defined as the ability to have a finite representation. The next subsection refines this notion.
2The transition where nothing happens are never drawn, but in any CCSL constraints it is always possible to do nothing at each step.



s0 s1 . . .s−1. . .

〈c1, i〉

〈c2, i〉

〈c1, c2, i〉
〈c1, i〉

〈c2〉

〈c1, c2, i〉

〈c2〉

〈c1, c2, i〉
〈c1〉

〈c2, i〉

〈c1, c2, i〉
〈c1〉

〈c1, c2, i〉

Fig. 5. CCSL Infimum (infinite state LTS): i , c1 ∧ c2.

III. COMPOSITION AND SAFETY ISSUES

The previous section has given the semantics of each constraint. We consider now a whole specification and we consider
more closely the notions of boundedness and safety. We also finally state the problem and propose a solution.

A. Composition

Definition 13 (CCSL specification satisfaction): A schedule σ satisfies a CCSL specification SPEC, iff it satisfies all of its
constraints: σ |=ccsl SPEC ⇔ (∀rel ∈ Rel, σ |=ccsl rel) ∧ (∀def ∈ Def, σ |=ccsl def )

Definition 14 (Bounded CCSL relations): For a given CCSL specification SPEC, a relation r ∈ Rel is bounded iff (σ |=ccsl

SPEC) =⇒ (∃m ∈ N,∀n ∈ N, |χσ(left(r), n)− χσ(right(r), n)| ≤ m).

Note that, by definition of Causality and because of Proposition 8, we always have op(r) ∈ { ≺ , 4 } =⇒ ∀n ∈
N, χσ(left(r), n)− χσ(right(r), n) ≥ 0, so we do not have to worry about finding a lower bound.

Definition 15 (Bounded CCSL expressions): For a given CCSL specification SPEC, a binary expression e ∈ BinExpr is
bounded iff (σ |=ccsl SPEC) =⇒ (∃m ∈ N,∀n ∈ N, |χσ(first(e), n) − χσ(second(e), n)| ≤ m)). Unary expressions are
always bounded.

In [6], we have shown that the behavior of a CCSL specification was captured by the synchronized product of the transition
systems for each constraint. Obviously, when all the composed transition systems are finite, then the result is necessarily finite.
However, the result can also be finite when some of the composed transition systems have an infinite number of states. This is
because we only consider the states that are reachable. So safety amounts to having only a finite number of states in the product
reachable from the initial state. This is equivalent to being able to bound the counters used in unbounded constraints.

Let us illustrate that on a simple example. Consider, for instance the following CCSL specification: (c1 ≺ c2)∧ (c′1 , c1 $

1) ∧ (c2 ≺ c′1). In this specification, the second constraint (Delay) is bounded, but the two others are unbounded. However,
the result is still considered to be safe since there is only a finite number of reachable states in the synchronized product as
shown in Figure 6. This comes from the fact that counters used in the two Precedences are bounded by the Delay of the second
constraint. This particular composition pattern is frequently used and is called Alternation.

s0 s1 s2

〈c1〉 〈c2〉

〈c1, c′1〉

Fig. 6. A safe composition of unbounded constraints

Definition 16 (Safe CCSL specification): A CCSL specification is safe iff ∀σ, σ |=ccsl SPEC:

• all the relations are bounded: ∀r ∈ Rel, r is bounded,

• all the binary expressions within a clock definition are bounded: ∀e ∈ BinExpr, e is bounded

Definition 17 (Bounded precedence): We define a new composite CCSL constraint called Bounded precedence by the follow-
ing satisfaction rule (n ∈ N):

σ |=ccsl c1 ≺n c2 iff (Bounded precedence)

σ |=ccsl c1 ≺ c2

∧ σ |=ccsl c
′
1 , c1 $ n

∧ σ |=ccsl c2 ≺ c′1



We call alternation the case where n = 1:

σ |=ccsl c1 ∼ c2 ≡ σ |=ccsl c1 ≺1 c2 (Alternation)

Proposition 18 (The bounded precedence is safe): Let c = c1 ≺d c2, constraint c is safe.

Proof of Proposition 18: Let us take a σ such that σ |=ccsl c1 ≺d c2. The first constraint gives ∀n ∈ N, χσ(c1, n) −
χσ(c2, n) ≥ 0. The third one gives ∀n ∈ N, χσ(c2, n) − χσ(c′1, n) ≥ 0, so ∀n ∈ N, χσ(c1, n) − χσ(c′1, n) ≥ 0. For the
specification to be bounded, we need to show that ∃m ∈ N,∀n ∈ N, |χσ(c1, n)− χσ(c′1, n)| ≤ m.
If χσ(c1, n) ≤ d, then Eq. 5 gives χσ(c′1, n) = 0 and therefore χσ(c1, n)− χσ(c′1, n) ≤ d.
If χσ(c1, n) ≥ d, then Eq. 5 gives χσ(c′1, n) = χσ(c1, n)− d and also χσ(c1, n)− χσ(c′1, n) ≤ d.

Here, the axiomatic definitions of CCSL constraints give us the result on safety. What we propose in the following is a
sufficient condition and an algorithm to decide that a given CCSL specification is safe.

B. Safety issues

We consider an abstraction of the CCSL specification that we call a causality clock graph. Indeed, Causality is the foundational
construct that introduces unbounded integers in a CCSL specification. Then, we use this abstraction to show that counters included
in Precedence, Causality, Infimum and Supremum constraints are bounded. For that purpose, we consider the causal relations
includes in a CCSL specification, but we also consider causal relations induced by other constraints. The causality clock graph
captures all the causal relations, whether directly specified or induced. The remainder of this subsection discusses the induced
causal relations.

Definition 19 (Causality clock graph): A Causality clock graph (CCG) is a directed graph D = (C, A,∆). C is a set of nodes
denoting clocks. A ⊂ C × C is a set of arcs (directed edges). ∆ ⊂ C × C is a set of counter-arcs between two clocks.

In a CCG, an arc a = (c1, c2) is directed from c1 to c2 and denotes a causality c1 4 c2. A counter-arc δ = (c1, c2) is used to
identify a constraint that would generate an infinite number of states if left unbounded. With each counter-arc δ = (c1, c2), we
associate a function δc2c1 :

δc2c1 : N→ N
n 7→ χσ(c1, n)− χσ(c2, n)

The safety analysis must show that for each counter-arc, for each schedule σ, ∃m ∈ nat,∀n ∈ N, |δc2c1 (n)| ≤ m.

Definition 20 (Complete causality clock graph): Given a CCSL specification SPEC, a causality clock graph DSPEC is
complete with regards to SPEC when all the causal relations implied by SPEC are captured in the graph and only those
relations. ∀σ, σ |=ccsl SPEC, ∀(c1, c2) ∈ C × C, (∃d ∈ nat, ∀n ∈ N, δc2c1 (n) ≥ −d⇔ (c1, c2) is an arc in DSPEC)

The notion of completeness is necessary to show that no causal relation has been ‘forgotten’ in the graph. It means that as
soon as a constraint implies that the counter between two clocks can be bounded (either with a lower or an upper bound) then
(and only then) there should be a counter-arc in the causality clock graph. Indeed, if arcs are missing, then the safety analysis
might conclude that a graph is not safe, while a CCSL specification is actually safe.

C. Building the causality clock graph

Obviously, the constraint c1 4 c2 always induces a lower bound. For the CCSL specification to be bounded, we need to
establish an upper bound. An arc from c1 to c2 denotes that we have a lower bound (∀n ∈ N, δc2c1 (n) ≥ 0). A counter-arc between
c1 and c2 denotes that we need to establish the upper bound. More formally, for a given CCSL specification SPEC, we build the
causality clock graph DSPEC = (C, A,∆) such that ∀r ∈ Rel, op(r) = 4 =⇒
(left(r), right(r)) ∈ A ∧ (left(r), right(r)) ∈ ∆.

Building arcs only for these relations would lead to an incomplete graph. Other bounds are indeed indirectly induced by
most CCSL constraints. The first obvious example is given by Proposition 8. Hence, every Precedence also leads to an arc and
a counter-arc in the CCG. ∀r ∈ Rel, op(r) = ≺ =⇒ (left(r), right(r)) ∈ A ∧ (left(r), right(r)) ∈ ∆.

In the remainder of this section, the other implied causality relations are discussed. All the proofs are available in the
Appendix.

The first family of implications comes from the relationship between Subclocking and Causality.

Proposition 21 (Subclocking implies causality): When c1 is a subclock of c2 then c2 is faster than c1:
σ |=ccsl c1 ⊂ c2 =⇒ σ |=ccsl c2 4 c1

From Proposition 21, we deduce that we need to build an arc in the CCG from c2 to c1 every time we find a constraint of
the form c1 ⊂ c2. However, because this constraint is bounded (see Definition 14), we do not build any counter-arc in that
case.



All the expressions based on Subclocking, i.e.,Union and Intersection, also imply some causality relations. Here again, the
constraints are bounded relations and consequently, no counter-arc is added to the CCG. Let us show these implications.

Proposition 22 (Union and subclocking): A clock is always a subclock of the union of itself with any other clock: σ |=ccsl

u , c1 + c2 =⇒ (σ |=ccsl c1 ⊂ u ∧ σ |=ccsl c2 ⊂ u).

Corollary 23 (Union and causality): The union of two clocks is faster than both clocks: σ |=ccsl u , c1 + c2 =⇒
(σ |=ccsl u 4 c1 ∧ σ |=ccsl u 4 c2).

The corollary comes directly from Propositions 21 and 22.

Proposition 24 (Intersection and subclocking): The intersection of two clocks is a subclock of both clocks: σ |=ccsl i ,
c1 ∗ c2 =⇒ (σ |=ccsl i ⊂ c1 ∧ σ |=ccsl i ⊂ c2).

Corollary 25 (Intersection and causality): The intersection of two clocks is slower than both clocks: σ |=ccsl i , c1 ∗
c2 =⇒ (σ |=ccsl c1 4 i ∧ σ |=ccsl c2 4 i).

To be complete, one should also show that Union (resp. Intersection) does not imply any causality relations between the clocks
themselves but only between the union clock u (resp. the intersection clock i) and the clocks c1 and c2. To do so, consider a
schedule, where c1 would tick alone. None of the binary relations can prevent c1 from ticking and thus, the distance between
c1 and c2 can grow infinitely large, thus preventing from having an upper bound. If now, we consider a schedule were c2 ticks
alone and c1 never ticks, then such a schedule does not violate an union or intersection constraint and still prevents us from
having a lower bound.

The next step is to determine what causality relations are implied by expressions Infimum and Supremum.

Proposition 26 (Infimum and causality): The infimum of two clocks is always faster than both clocks: σ |=ccsl inf , c1 ∧
c2 =⇒ (σ |=ccsl inf 4 c1 ∧ σ |=ccsl inf 4 c2).

Proposition 27 (Supremum and causality): The supremum of two clocks is always slower than both clocks: σ |=ccsl sup ,
c1 ∨ c2 =⇒ (σ |=ccsl c1 4 sup ∧ σ |=ccsl c2 4 sup):

The same reasoning as for the Union and Intersection can be used again to show that there is no causality relation between
c1 and c2 imposed by either Infimum or Supremum. However, these binary expressions are unbounded (see Definition 15), then
we need to add a counter-arc (c1, c2) in the CCG (see Figure 7). We know that inf is faster than both c1 and c2 but we need
to bound the counter δc2c1 between c1 and c2. Similarly, we know that both c1 and c2 are faster than sup.

c1

c2

inf supδc2c1

Fig. 7. Causality Clock Graph for Infimum and Supremum.

The last step is to consider the unary expression Delay.

Proposition 28 (Delay and causality): A clock is always faster than any clock that is delayed from it: ∀d ∈ N, σ |=ccsl del ,
c $ d =⇒ 0 ≥ δcdel ≥ −d

Proof of Proposition 28: If χσ(c, n) ≤ d then Eq. 5 =⇒ χσ(del, n) = 0. Otherwise, χσ(del, n) = χσ(c, n)− d. In both
cases, 0 ≥ δcdel ≥ −d.

From Proposition 28, we can deduce that we have both a lower and an upper bound, therefore we must add two arcs: one
from c to del and one from del to c. Since the constraint is bounded, no counter-arc must be added in the CCG.

In the following section, we use the complete causality graph to decide whether the CCSL specification is safe.

IV. MARKED GRAPHS

A Marked Graph (MG) is a graph where vertices can have two types: transitions and places. A place can store tokens. The
arcs of a MG cannot connect two vertices of the same type. A source is a transition without incoming arcs. A sink is a transition
without outgoing arcs.



A. Structure

Definition 29 (Marked Graph): A marked graph is a structure G = 〈T, P, F 〉 where

• T is a set of transitions;

• P is a set of places. T ∩ P = ∅;
• F ⊆ (T ×P )∪ (P × T ) is a set of arcs. If t ∈ T and p ∈ P , (t, p) and (p, t) are two arcs resp. from t to p and from p

to t;

• Each place has exactly one incoming and one outgoing arcs: ∀p ∈ P , |{(t, p) | ∀t ∈ T}| = |{(p, t) | ∀t ∈ T}| = 1.

The constraint on the number of place inputs and outputs guarantees that a token can be used by only one transition.
Consequently, the MG is said to be conflict free or deterministic. Figure 8 presents a MG with 4 transitions (rectangles) and 5
places (ovals).

   B 

   A 

   C 

   U 

Fig. 8. An example of MG.

Notation 30 (Predecessor, successor): Let G be a MG, t ∈ T and p ∈ P . We note :

• •t is the preset of t, •t = {p | (p, t) ∈ F};
• t• is the postset t, t• = {p | (t, p) ∈ F};
• •p is the transition entering p, •p = t ⇐⇒ (t, p) ∈ F ;

• p• is the transition exiting p, p• = t ⇐⇒ (p, t) ∈ F .

A MG is connected if there exists a path, in the underlying undirected graph, relating any pair of vertices. When it is not
connected, every part is called a partition. It is strongly connected if there exists a path, in the MG itself, relating any pair of
vertices. A strongly connected component (SCC) of a MG is a sub-graph that is strongly connected (a sub-graph of a MG is
a MG composed of a subset of T , a subset of P , and a subset of F ); A cycle is a path from a transition to itself. It is called
elementary if all the transitions of the cycle are different. A Direct Acyclic Component (DAC) is a sub-graph that does not
contain any cycle.

B. Execution semantics

Definition 31 (Marking): The marking of a MG is the number of tokens in the places. M : P → N is a marking. M0 usually
denotes the initial marking.

We define an execution semantics of a MG based on a logical time with a synchronous semantics. At the instant 0, the MG
is in its initial marking. Then, an execution step leads to another marking at instant 1 and so on. During a single execution step,
several firable transitions can be fired simultaneously (synchronously) but each transition can be fired only once.

Definition 32 (Firable transition at a marking M in a MG): In a MG G, a transition t ∈ T is firable at a marking M if
∀p ∈ •t, M(p) > 0. A source is always firable. FM is the set of firable transitions at a marking M .

Definition 33 (Execution model of a MG): Let G be a MG and M its current marking. An execution step is a transition
relation from M to M ′ denoted M FT−→M ′ with FT ⊆ FM , ∀p ∈ P , M ′(p) = M(p) + FT (•p)− FT (p•). (FT (t) = 1 if and
only if t ∈ FT . FT (t) = 0 otherwise).

An execution (Exec) of a MG is a finite or infinite sequence of execution steps: Exec = M0
FT1−→ M1

FT2−→ M2
FT3−→ ...

FTi−→
Mi

FTi+1−→ ... where FTi ⊆ FMi−1
.

Definition 34 (Scheduling and schedule): Let G be a MG with an execution Exec. Let t ∈ T be a transition of G. The
schedule of t is the binary word relating the activity of t: Sched(t, i) = FT1(t).FT2(t) · · ·FTi(t). In case of infinite execution,
Sched(t,∞) is noted Sched(t).

The scheduling of G for an execution Exec is the mapping t→ Sched(t) | ∀t ∈ T .

The successive steps of an execution can be deduced from its scheduling. Consequently, a scheduling defines an execution
and vice versa.



C. Classical results

Definition 35 (Liveness): A MG is live if there exists an execution where every transition is fired infinitely often.

F. Commoner et al. [11] show that the number of tokens on a cycle remains constant through execution. They deduce a
MG is live iff all its cycles contain at least one token. Moreover, the maximum number of tokens in a place is bounded by the
number of tokens in the cycle in which the place belongs. Thus every place of a SCC is bounded.

As a corollary, J. Carlier and P. Chrétienne [12] prove that the relative execution rates of two transitions from the same SCC
is bounded. Let t1 and t2 be two transitions from the same SCC, at some point during the execution, t1 can execute more than
t2 but eventually t1 will be stuck until t2 catches up.

Property 36 (Bounded relative execution rate): Let G be a MG that contains at least one SCC and Exec one execution of
G. t1 and t2 are two transitions from the same SCC. ∃n0 ∈ N such that:
∀i ∈ N, −n0 ≤ |Sched(t1, i)|1 − |Sched(t2, i)|1 ≤ n0
(where |u|1 returns the number of 1 in the binary word u).

V. DETECTING SAFE CCSL SPECIFICATIONS

The purpose of this section is to present rules to transform a CCSL specification into a Marked-Graph (MG) and express a
sufficient condition on the MG that implies the safety of the original specification. We present the transformation rules and we
show that the exact semantics of a Causality relation in CCSL

(
4

)
is captured by a place in MG. Then, we explain the condition

to declare a CCSL specification safe and how classical algorithms from graph theory allows for automating the analysis.

A. From CCSL to MG

Definition 37 (Transformation from CCSL to MG): Let 〈C, A,∆〉 be the clock causality graph extracted from a CCSL spec-
ification where C is a set of clocks and A be the set of CCSL causality relations that can be derived from all the relations and
expressions in the original CCSL specification (as it is presented in Section III). ∆ is the list of δ counter-arcs. A CCSL causality
relation a ∈ A is modeled as an element of C × C such as c1 4 c2 gives a = (c1, c2) where c1, c2 ∈ C, a ∈ A. Similarly, a δ
counter is modeled as a pair (c1, c2) ∈ C × C.

The CCSL specification 〈C, A,∆〉 is transformed as follows. Let G be a MG with G = 〈C,P, F 〉 where

• C = C: one transition for each clock;

• P = A: one place for each arc;

• ∀p ∈ P where p = (c1, c2)⇔ (c1, p) ∈ F and (p, c2) ∈ F .

The MG presented in Figure 8 is the MG transformation of the following CCSL specification:

B 4 C | U , A + B | U ∼ C (6)

The first constraint leads to a place between B and C. U is the clock representing the union (A + B). The alternation is
translated in the two places from U to C and vice-versa (see Proposition 18). The two last places are derived from the definition
of union expression (see Proposition 23). Figure 12 shows the corresponding clock causality graph.

A

B C

U

δCB

Fig. 9. Causality Clock Graph for Figure 8

According to the execution semantics of a MG, a transition is firable when every incoming place holds at least a token. This
reflects the fact that a clock can tick only when the causality constraints are satisfied. Then the transition produces one token
in every place in output of the transition. Similarly, when a clock ticks, it releases the causality constraints for which it is the
source.



Causality (c1 4 c2) is encoded as ∀n ∈ N, δc2c1 (n) ≥ 0 (see Proposition 2a). Definition 37 transforms each Causality into a
place p from transition c1 to c2. Initially, M0(p) = 0 (δc2c1 (0) = 0) and c2 is not firable. c1 can tick any time and if it ticks n
times, it produces n tokens in p and c2 can tick no more than n times because a marking is never negative. So the semantics
of Causality is preserved and ∀n ∈ N, Mn(p) = δc2c1 (n).

B. Boundedness

In a SCC of a MG, every transition indirectly depends upon every other transition. The relative execution rate of any two
transitions is bounded (Property 36). We deduce that for a given δc2c1 ∈ ∆, c1 and c2 belongs to the same SCC if and only if
δc2c1 is bounded. Consequently, the original CCSL specification that is captured by the SCC can be expressed as a finite transition
system.

Concerning Figure 8, the CCSL union expression has a state based semantics composed of only one state. So the addition of
this expression to an existing specification does not turn it into unbounded if it was bounded. However, the relation B 4 C

introduces a δCB counter but this counter is bounded since B and C belongs to the same SCC composed of the transition B,
C, and U . One should also note that the place between U and A is unbounded in the usual sense of MG, i.e., it exists an
execution where the number of tokens in that place goes to infinity. However, there is no δAU counter-arc and so the original
CCSL specification remains bounded.

Theorem 38 (Safe CCSL specification): Let 〈C, A,∆〉 be the causality clock graph extracted from a CCSL specification. Let
G be the MG derived from 〈C, A,∆〉.
∀δc2c1 ∈ ∆,

(1) ∃n0 ∈ N such that −n0 ≤ δc2c1 ≤ n0
(2) c1 and c2 belongs to the same SCC.
(1) is equivalent to (2)

Proof: Property 36 proves this result.

Figure 10 presents the MG representation of the following specification:

B 4 C | I , A ∧ B | I ∼ C | A 4 C (7)

The second example (B) is similar but S = A ∨ B replaces I = A ∧ B. In both cases, the ∆ = {δCA , δCB , δBA}.
The first specification is safe because the MG is strongly connected but the second is not because the transition A and C (as

well as B and C) are not in the same SCC.
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   S 

A) B)

Fig. 10. A) MG for a safe specification. B) MG for an unsafe specification.

C. Resolution

The following algorithm performs the safety analysis as it is defined above. The function buildMGfromCausalityClockGraph()
follows the rules given in Defintion 37. It has a linear complexity. Then the function computeStronglyConnectedComponents()
is implemented by Tarjan’s algorithm [13] with a complexity O(|C|+ |P |). Each operator from the CCSL specification introduces
at most four places in the causality clock graph so the complexity is bounded by O(5 ∗ |C|). SCCs is the decomposition of G
in strongly connected components. One should note that a simply connected transition would appear to be the only transition of
its own SCC. Finally, every δ counter is tested once to know whether the pair of clocks is in the same SCC. If not, the counter
is unbounded so δ is added to ∆u.

VI. EXAMPLE: CCSL FOR CAPTURING THE ARCHITECTURE, APPLICATION AND ALLOCATION

To illustrate the approach, we take an example inspired by [14], that was used for flow latency analysis on AADL3

specifications [15]. However, with CCSL we are conducting different kinds of analyses, section VII discusses common points.

3AADL stands for Architecture & Analysis Description Language



Algorithm 1 Safety analysis
INPUT: 〈C,P,∆〉 {a causality clock graph.}
OUTPUT: ∆u {The list of unbounded counters.}
∆u = ∅
G = buildMGfromCausalityClockGraph(〈C,P,∆〉)
SCCs = computeStronglyConnectedComponents(G)
for all δc2c1 ∈ ∆ do

if SCCs(c1) 6= SCCs(c2) then
{SCCs(c) returns the SCC of c}
∆u = ∆u ∪ {δc2c1}

end if
end for
return ∆u {if ∆u = ∅, the CCSL specification is safe.}

Figure 11 considers a simple application described as a UML activity. This application captures two inputs in1 and in2,
performs some calculations (step1, step2 and step3) and then produces a result out. This application has the possibility to
compute step1 and step2 concurrently depending on the chosen execution platform. This application runs in a streaming-like
fashion by continuously capturing new inputs and producing outputs.

ad application

step1

step2

step3

in1

in2

out

Fig. 11. Simple application

To abstract this application as a CCSL specification, we assign one clock to each action. The clock has the exact same name as
the associated action (e.g., step1). We also associate one clock with each input, this represents the capturing time of the inputs,
and one clock with the production of the output (out). The successive instants of the clocks represent successive executions of
the actions or input sensing time or output release time. The basic CCSL specification is:

in1 4 step1 ∧ step1 ≺ step3 (8)

in2 4 step2 ∧ step2 ≺ step3 (9)

step3 4 out (10)

Eq. 8 specifies that step1 may begin as soon as an input in1 is available. Executing step3 also requires step1 to have
produced its output. Eq. 9 is similar for in2 and step2. Eq. 10 states that an output can be produced as soon as step3 has
executed. Note that CCSL precedence is well adapted to capture infinite FIFOs denoted on the figure as object nodes. Such a
specification is clearly not safe. One way to reduce the state-space is to bound the drift between the inputs and the outputs. This
means limiting the parallelism by slowing down the production of outputs when several computations are still on-going. This
can easily be done by adding a CCSL constraint like Eq. 11.(

in1 ∨ in2
)
∼ out (11)



However, results from the previous section shows that this new specification is still not safe because bounds on Supremum
do not imply bounds on both in1 and in2. Figure 12 gives the corresponding clock causality graph. None of the counters are
bounded.

in1

in2

step1

step2

step3outin1 ∨ in2

Fig. 12. Causality Clock Graph with Eqs. 8,9,10, and 11

To have a complete finite system, we can for instance replace Eq. 11 by Eq. 12.(
in1 ∧ in2

)
∼ out (12)

This time, the specification becomes safe (see Figure 13) since all the counters are bounded. The most difficult to establish
is δin2in1 , which is not directly implied by any causality relation4. This example is further discussed in [10].

in1

in2

step1

step2

step3outin1 ∧ in2δin2in1

Fig. 13. Causality Clock Graph with Eqs. 8,9,10, and 12

VII. RELATED WORK

In [16], a technique was provided as an effort to automatically analyze CCSL specifications through a transformation into
signal. The purpose was to generate executable specifications through discrete controller synthesis. However, this work did not
consider the Infimum and Supremum operators that introduce unbounded counters and did not address the problem of deciding
whether the specification was safe or not.

4The algorithm is available as an Eclipse update site on
http://timesquare.inria.fr/sts/update site/



Exhaustive analysis of CCSL through a transformation into labeled transition systems has already been attempted in [5], [4].
However, in those attempts, the CCSL operators were bounded because the underlying model-checkers cannot deal with infinite
labeled transition systems. The purpose of this work is to deal with unbounded operators and provide an algorithm to decide
that a CCSL specification is safe.

In [17], there was an initial attempt to provide a data structure suitable to capture infinite transition systems based on a lazy
evaluation technique. A similar structure could be used in our case except that we consider clocks with only two states (instead
of three): tick or stall. Clock death is still to be further explored.

The kind of applications addressed with CCSL is very close to models usually used in real-time scheduling theories. However,
such theories usually rely on task models that abstract real applications. Originally they were rather simple (e.g., independent
periodic tasks only for Rate Monotonic Analysis). Always more sophisticated models now appear in the literature. They are all
based on numerous distinct parameters, providing numerical constraint values for timing aspects (dispatch time, period, deadline,
jitter drift. . . ). Tasks are considered as iterations of jobs (or jobs as instances of tasks). In our view, the successive timing
values for characteristic feature of successive jobs can each be seen as a logical clock, and the time constraint relations between
such clocks are usually expressed as simple equalities and bounded inequalities that fall well into the range of CCSL constructs
descriptive power.

Classical (non real-time) scheduling, on its side, provides generally models where the initial constraints are less on timing
and more on dependencies or on exclusive resource allocation. But resulting schedules are almost always of modulo periodic
nature, here again matching the CCSL expressiveness.

Usually, authors [18], [19], [20] rely on ”physical-by-nature” timing, found in theoretical models such as Timed Automata [21].
The distinctive difference is that timed automata assume a global physical time. Timed events are then constrained by value
relations between so-called clocks (a different notion from our logical clocks), which are devices measuring physical time as it
elapses.

Our work also bears some similarity with previous attempts by Alur and Weiss [22], [23], which define schedules as infinite
words expressed in regular expressions and then construct corresponding Büchi automata.

VIII. CONCLUSION AND FUTURE WORKS

The article presents a set of rules to derive CCSL causality relations from every CCSL constraint. These relations are used to
abstract a CCSL specification as a MG where each clock becomes a transition and each causality relation a place. In addition, the
δ counters are defined to be the only counters that need to be bounded in order to ensure the safety of the CCSL specification.
Thanks to classical results from MG analysis, we express a sufficient condition to decide when a CCSL specification is safe
while analyzing the representation of the δ counters in the MG. Finally we provide an algorithm based on Tarjan’s algorithm to
automate the verification.

In future work, we plan to improve the transformation rules from a CCSL specification to MG so as to have a more accurate
(less abstract) MG representation. The goal is to perform liveness analysis in addition to safety. Such an extension requires to
have a closer look to the tokens in the MG and possibly to enrich the transformation with ratios à-la SDF [24] in order to
properly capture CCSL periodic expressions.
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APPENDIX
PROOFS

Proof of Proposition 21: By recursion on χσ .
HR(n) = χσ(c2, n) ≥ χσ(c1, n).
HR(0) is true since χσ(c2, 0) = χσ(c1, 0) = 0.
Assume HR(n-1).

• If c1 /∈ σ(n) ∧ c2 /∈ σ(n) then χσ(c1, n) = χσ(c1, n− 1) ∧ χσ(c2, n) = χσ(c2, n− 1) then HR(n).

• If c1 /∈ σ(n) ∧ c2 ∈ σ(n) then χσ(c1, n) = χσ(c1, n− 1) ∧ χσ(c2, n) = χσ(c2, n− 1) + 1 then HR(n).

• If c1 ∈ σ(n) then c2 ∈ σ(n) and χσ(c1, n) = χσ(c1, n− 1) + 1 ∧ χσ(c2, n) = χσ(c2, n− 1) + 1 then HR(n)

Eq. 1a forbids the fourth case.

Proof of Proposition 22: Let us assume σ |=ccsl u , c1 + c2.
(c1 ∈ σ(n) =⇒ (c1 ∈ σ(n) ∨ c2 ∈ σ(n)) =⇒ u ∈ σ(n)) =⇒ σ |=ccsl c1 ⊂ u.
(c2 ∈ σ(n) =⇒ (c1 ∈ σ(n) ∨ c2 ∈ σ(n)) =⇒ u ∈ σ(n)) =⇒ σ |=ccsl c2 ⊂ u.

Proof of Proposition 24: Let us assume σ |=ccsl i , c1 ∗ c2.
(i ∈ σ(n) =⇒ (c1 ∈ σ(n) ∧ c2 ∈ σ(n)) =⇒ c1 ∈ σ(n)) =⇒ σ |=ccsl i ⊂ c1.
(i ∈ σ(n) =⇒ (c1 ∈ σ(n) ∧ c2 ∈ σ(n)) =⇒ c2 ∈ σ(n)) =⇒ σ |=ccsl i ⊂ c2.

Proof of Proposition 26: Let us assume σ |=ccsl inf , c1 ∧ c2.
(χσ(inf, n) = max(χσ(c1, n), χσ(c2,n)) =⇒ χσ(inf, n) ≥ χσ(c1, n)) =⇒ σ |=ccsl inf 4 c1.
Similarly, χσ(inf, n) ≥ χσ(c2, n)) =⇒ σ |=ccsl inf 4 c2.

Proof of Proposition 27: Let us assume σ |=ccsl sup , c1 ∨ c2.
(χσ(sup, n) = min(χσ(c1, n), χσ(c2,n)) =⇒ χσ(c1, n) ≥ χσ(sup, n)) =⇒ σ |=ccsl c1 4 sup.
Similarly, χσ(c2, n) ≥ χσ(sup, n)) =⇒ σ |=ccsl c2 4 sup.


