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Abstract: A synthetic jet is an oscillatory jet, with zero time-averaged mass-flux, used to
manipulate boundary layer characteristics for flow control applications such as drag reduction,
detachment delay, etc. The objective of this work is the comparison and assessment of some
numerical models of synthetic jets, in the framework of compressible flows governed by Reynolds-
averaged Navier-Stokes (RANS) equations. More specifically, we consider three geometrical models,
ranging from a simple boundary condition, to the account of the jet slot and the computation of the
flow in the underlying cavity. From numerical point of view, weak and strong oscillatory boundary
conditions are tested. Moreover, a systematic grid and time-step refinement study is carried out.
Finally, a comparison of the flows predicted with two turbulence closures (Spalart-Allmaras and
Menter SST k − ω models) is achieved.
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Comparaison et validation de quelques modèles de jet
synthétique

Résumé : Un jet synthétique est un jet oscillant, avec un flux de masse nul en moyenne
temporelle, utilisé pour manipuler les caractéristiques de couche limite pour des applications au
contrôle d’écoulement, comme la réduction de traînée, le retard de décollement, etc. L’objectif
de ce travail est de comparer et valider quelques modèles numériques de jets synthétiques, dans
le cadre d’écoulements compressibles gouvernés par les équations de Navier-Stokes en moyenne
de Reynolds (RANS). Plus spécifiquement, on considère trois modèles géométriques, allant d’une
simple condition aux limites, à la prise en compte de la fente du jet et le calcul de l’écoulement
dans la cavité sous-jacente. Du point de vue numérique, des conditions aux limites oscillantes
faibles et fortes sont testées. De plus, une étude de raffinement systématique du maillage et du
pas de temps est réalisée. Finalement, on compare les écoulements prédits avec deux fermetures
turbulentes (modèles de Spalart-Allmaras et k − ω SST de Menter).

Mots-clés : jet synthétique, condition aux limites, turbulence, RANS
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1 Introduction
Flow control is an active research area for the last decade, which benefits from the progress
of simulation methods in terms of accuracy and robustness, and from the continuous increase
of computational facilities. Actuator devices, such as synthetic jets or vortex generators, have
proved their ability to modify the flow dynamics and represent a promising way to improve the
aerodynamic performance of a system, without modifying its shape. However, the determination
of efficient flow control parameters, in terms of location, frequency, amplitude, etc., is tedious
and highly problem dependent [7, 11].

To overcome this issue, the numerical simulation of controlled flows is often considered to
determine optimal control parameters, or at least a range of efficient parameters. This task can
be carried out in a systematic and parametric way [11], but the use of an automated optimization
procedure is more and more observed [2, 3, 9, 13, 19]. However, several studies have shown that
the simulation of controlled flows is a difficult task, because of the presence of complex turbulent
structures. Large Eddy Simulation (LES) is certainly the most appropriate approach for such
problems [5], but the related computational burden makes its use tedious for optimization or
exploration of control parameters. Reynolds-Averaged Navier-Stokes (RANS) models are more
suitable in practice, but the results obtained may be highly dependent on the turbulence closure
used. Moreover, the numerical assessment should be done carefully because the solution is
strongly influenced by the numerical parameters, such as the time step or the grid size. As
consequence, the simulation results exhibit modeling and numerical errors, which may lead the
optimization process to failure, or to unexpected low efficiency [8].

Therefore, this study is intended to provide a rigorous and systematic assessment of some
actuators models, and quantify the impact of the turbulence closures and numerical parameters,
as a preparatory phase before optimization of the control laws.

The first part of the report describes the numerical framework of the study and the actuator
models studied. Then, the selected test-case is presented. Finally, the results obtained are
analyzed, in terms of impact of the actuator model, impact of the numerical parameters, impact
of discretization level and impact of the turbulence closure.

RR n° 8409



4 Duvigneau, Labroquère

2 Numerical framework

2.1 Discretization

The compressible flow analysis is performed using the Num3sis platform developed at IN-
RIA Sophia-Antipolis (see http://num3sis.inria.fr). For this study, we consider the two-
dimensional Favre-averaged Navier-Stokes equations, that can be written in the conservative
form as follows:

∂W

∂t
+
∂F1(W)

∂x
+
∂F2(W)

∂y
=
∂G1(W)

∂x
+
∂G2(W)

∂y
, (1)

where W are the conservative mean flow variables (ρ, ρu, ρv, E), with ρ the density, ~U = (u, v)

the velocity vector and E the total energy per unit of volume. ~F = (F1(W),F2(W)) is the
vector of the convective fluxes and ~G = (G1(W ),G2(W )) the vector of the diffusive fluxes. The
pressure p is obtained from the perfect gas state equation p = (γ−1)(E− 1

2ρ‖
−→
U ‖2) where γ = 1.4

is the ratio of the specific heat coefficients.

Provided that the flow domain Ω is discretized by a triangulation Th, a discretization of
equation (1) at the mesh node si is obtained by using a mixed finite-volume / finite-element
formulation [6, 14]. The finite-volume cell Ci is built around the node si by joining the midpoints
of the edges adjacent to si to some points inside the triangles containing si. The latter points
could be the barycenter of the triangles in the case of rather isotropic cells, or the orthocenter in
the case of anisotropic cells, as in the boundary layers, to avoid the definition of stretched cells.
Finite-elements correspond to classical P1 elements constructed on each triangle. Finally, the
following semi-discretized form is obtained:

V oli
∂Wi

∂t
+
∑

j∈N(i)

Φ(Wi,Wj ,
−→σ ij) =

∑
k∈E(i)

Ψk, (2)

where Wi represents the cell-averaged state and V oli the volume of the cell Ci. N(i) is the set
of the neighboring vertices and E(i) the set of the neighboring triangles. Φ(Wi,Wj ,

−→σ ij) is an
approximation of the integral of the convective fluxes over the boundary ∂Cij between Ci and Cj ,
which depends onWi, Wj and −→σ ij the integral of a unit normal vector over ∂Cij . The convective
fluxes are evaluated using upwinding, according to the approximate HLLC Riemann solver [1]. A
high-order scheme is obtained by reconstructing the physical variables at the midpoint of [sisj ]
using Wi, Wj and the upwind gradient (β-scheme), before the fluxes are evaluated. Ψk is the
contribution of the triangle k to the diffusive terms, according to a classical P1 description of
the flow fields.

The inlet and outlet boundary conditions are imposed weakly, using a modified Steger-
Warming flux [6], whereas the no-slip boundary condition at the wall is strongly enforced by
an implicit condition.

An dual time-stepping procedure is used for the time integration of (2). For the physical
time, a classical three-step backward scheme ensures a second-order accurate discretization. An
implicit first-order backward scheme is employed to solve the resulting non-linear problem at
each time-step. The linearization of the numerical fluxes yields the following integration scheme:

(
(
V oli
∆t

+
V oli
∆τ

) Id+ Jp
i

)
δWp+1

i = −
∑

j∈N(i)

Φp
ij +

∑
k∈E(i)

Ψp
k−

3

2

V oli
∆t

δWn
i +

1

2

V oli
∆t

δWn−1
i (3)

Inria

http://num3sis.inria.fr


Some Synthetic Jet Models 5

with:

δWp+1
i = (Wn+1

i )p+1 − (Wn+1
i )p δWn

i = (Wn+1
i )p −Wn

i δWn−1
i = Wn

i −Wn−1
i (4)

Jp
i is the Jacobian matrix of the convective and diffusive terms and ∆τ is the pseudo time-step.

For the computation of the convective Jacobian, we employ the first-order flux of Rusanov [14],
while the Jacobian of the diffusive terms is computed exactly. The right hand side of (3) is evalu-
ated using high order approximations. The resulting integration scheme provides a second-order
solution in space and time. The linear system is inverted using the GMRES method, including
an ILU preconditionner.

2.2 Turbulence closures

Two linear eddy-viscosity models are used in this study, namely the Spalart-Allmaras and Menter
SST k − ω models, which are commonly employed for industrial problems.

The Spalart-Allmaras model is a one-equation closure calibrated on simple flows, which is
intensively used in aerodynamics. It provides satisfactory results on attached flows and gives a
better description of velocity fields for detached flows than zero-equation models. Several ver-
sions and variants of this model, including curvature corrections, have been developed since the
original version was written. The details are not described here, but the implemented compress-
ible version [10] corresponds to the standard model.

The k-ω model is a two-equation turbulence closure. It is based on the transport equations
of the turbulent kinetic energy k and the characteristic frequency of the largest eddies ω. It
is well known that the simple k-ω closure is sensitive to boundary conditions, but can be inte-
grated to the wall. This drawback is alleviated by the SST (Shear Stress Transport) k-ω model
from Menter [16], which is far more employed now. The domain of validity of the latter model
is larger than the Spalart-Allmaras one, but it is still limited by the linear Boussinesq assumption.

From numerical point of view, the additional transport equations for turbulent variables are
discretized using similar principles as the equations for the mean-flow variables. They are treated
in a segregated way, by solving the equations for turbulent variables with frozen flow variables,
and vice-versa.

3 Synthetic jet models

A synthetic jet is a fluidic actuator that injects momentum in the boundary layer by the mean of
oscillatory blowing and suction phases. It has been found efficient for flow vectorization, mixing
enhancement or detachment delay [12, 17, 18]. This actuator is especially interesting for real-life
flow control problems, because it is compact and does not require air supply, contrary to pulsated
jets for instance.

As illustrated in the previous references, practical synthetic jets can be of different types.
Nevertheless, they are usually composed of a cavity with a moving surface, which generates in-
flow and outflow though a slot, as shown in Fig. (1). The numerical simulation of a synthetic
jet in interaction with the flow in the outer domain is tedious, for several reasons. If one intends
to represent exactly the device, the simulation of the flow in the deformable cavity should be

RR n° 8409



6 Duvigneau, Labroquère

achieved, which requires to use sophisticated methods like automated grid deformation, ALE
(Arbitrary Lagrangian Eulerian) formulation, etc. Moreover, a significant part of the computa-
tional time could be devoted to the simulation of the flow inside the cavity, which is usually not
the main purpose. Obviously, the introduction of the actuator makes the grid generation step
more complex and the automatization of the process could be tedious, if possible. This is espe-
cially dommageable in a design optimization framework, if one intends to optimize the actuator
location, for instance. These reasons motivate the development and the use of simplified models
in an industrial context. Some of them are detailed below.

Figure 1: Synthetic jet principle.

3.1 Cavity model

A first simplification consists in using a fixed computational domain. In that case, the move of
the bottom surface of the cavity is modeled by imposing a prescribed boundary condition for the
flow velocity [5] and possibly for the normal pressure gradient [15], as illustrated by Fig. (2).

In this study, we impose the value of the velocity at the bottom surface, as:

~U = UcAc(ξc) sin(2πft) ~ηc (5)

where Uc is the oscillation amplitude of the velocity at the cavity bottom surface, (ξc, ηc) a local
frame system and f is the actuation frequency. Ac(ξc) describes the velocity profile along the
surface, which is here defined as:

Ac(ξc) = sin2

(
2π

ξc − ξmin
c

ξmax
c − ξmin

c

)
(6)

Inria



Some Synthetic Jet Models 7

Figure 2: Cavity model.

where ξmax
c and ξmin

c are the maximum and minimum abscissae of the boundary considered
(bottom cavity). Thus, the actuation is finally defined by the two parameters (Uc, f).

Practically, this boundary condition can be implemented in several ways. A first (weak)
approach consists in imposing the velocity value (5) during the computation of the numerical
flux at the boundary. Other variables used for the flux definition are computed from the interior
of the computational domain. An alternate (strong) approach consists in imposing the value of
the velocity field itself, by modifying the linear system (3) to verify implicitly the condition (5).

3.2 Slot model

The major drawback of the cavity model is related to the computational time used to simulate
the flow inside the cavity, which is usually not negligible due to the necessity to use a refined
grid in the cavity. Therefore, a second simplification level consists in replacing the cavity by a
simple boundary condition located at the slot extremity, as illustrated by Fig. (3). This shortcut
reduces the computational burden, but does not allow to describe the flow in the cavity and the
possible Helmholtz resonance phenomenon that can occur inside [4].

Figure 3: Slot model.

The boundary condition is formally equivalent to (6), but with different parameters:

~U = UsAs(ξs) sin(2πft) ~ηs (7)

As(ξs) = sin2

(
2π

ξs − ξmin
s

ξmax
s − ξmin

s

)
(8)

The local frame (ξs, ηs) is now attached to the bottom slot surface. ξmax
s and ξmin

s are the
maximum and minimum abscissae of the boundary considered (bottom slot). To impose an

RR n° 8409



8 Duvigneau, Labroquère

equivalent flow rate, the following relationship should be verified:

Us = Uc
ξmax
c − ξmin

c

ξmax
s − ξmin

s

(9)

The practical implementation of the boundary condition is exactly the same as the one used for
the cavity model.

3.3 Boundary condition model

Finally, the simplest model just consists in imposing a boundary condition for the velocity at the
slot exit, as illustrated by Fig. (4). This model makes the grid generation process slightly easier,
but the benefit is not significant, because the mesh should anyway account for the jet, as shown
in the following numerical study. This model does not allow to describe the interaction between
the flow in the outer domain and the flow exiting the slot. However, this model is certainly the
most used in the literature due to its implementation ease.

Figure 4: Boundary model.

In practice, the boundary condition is the same as previously, defined by (7-8).

4 Test-case description
To compare the flows predicted by the different models and quantify the impact of the numerical
parameters, we consider as test-case a single synthetic jet located on a flat plate and interacting
with a boundary layer, as illustrated by Fig. (5). The baseline case, without actuator, corresponds
to the zero pressure gradient flat plate verification case proposed by NASA and fully defined at
http://turbmodels.larc.nasa.gov/flatplate.html. The plate length is 2 m, whereas the
computational domain height is 30 cm. The distance between the inlet boundary and the plate
is 40 cm, and the distance between the stagnation point and the jet center is 50.25 cm. The slot
width measures h = 5 mm. The length of the slot is twice its width 2h. The cavity dimension is
9h× h.

The reference flow conditions are the following :

ρref 1.363 kg/m3

uref 69.437 m/s
pref 115056 Pa
µref 1.9 10−5 Pa s

The resulting Mach and Reynolds numbers are respectively Mref = 0.2 and Reref = 5 106.
Note that the resulting boundary layer thickness at the actuation location is about twice the
slot width. A validation of the flow simulation without actuation is first achieved, in terms of
skin friction coefficient and velocity profile by comparing with experiments and other codes, as

Inria
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Figure 5: Test-case description.

Figure 6: Comparison of the friction coefficient along the plate (without actuation).

illustrated by Figs. (6-7) for the Spalart-Allmaras model.

All inlet / outlet boundary conditions are imposed weakly. At the inlet boundary, the veloc-
ity value uref and density ρref are imposed, while the pressure is computed from the interior
domain. On the contrary, an imposed pressure condition of value pref is prescribed at the outlet
boundary. For the far-field condition, boundary values are computed thanks to Riemann invari-
ants.

Two sets of actuation parameters are tested. The first one corresponds to a rather low
frequency - low amplitude actuation, whereas the second one exhibits high frequency - high

RR n° 8409



10 Duvigneau, Labroquère

Figure 7: Comparison of the velocity profiles at outlet (without actuation).

amplitude characteristics:

Actuation 1 f = 50 Hz Us = Uref/2 = 34.72 m/s
Actuation 2 f = 500 Hz Us = 2Uref = 138.87 m/s

For all the computations below, the time-step is chosen to account for 200 steps for each actu-
ation period. Therefore, the time-step is defined as ∆t1 = 1. 10−4 s for the first actuation, and
∆t2 = 1. 10−5 s for the second one. The unsteady simulations are initialized by the steady state
solutions corresponding to the flows without actuation. For each time-step, a stopping criterion
corresponding to a reduction of 3 orders of the non-linear residuals is adopted.

The baseline grids used for the three models are depicted on Figs. (5-11) and count Nc =
36848, Ns = 19304 and Nb = 17424 vertices respectively, for the cavity model, the slot model
and the boundary model respectively. The maximal aspect ratio of the cells is about 40000. The
number of vertices located on the jet exit is 40. Note that the grids are identical in the outer
domain.

Figure 8: Global view of the mesh.

Inria



Some Synthetic Jet Models 11

Figure 9: Mesh in the vicinity of the actuator, cavity model.

Figure 10: Mesh in the vicinity of the actuator, slot model.

Figure 11: Mesh in the vicinity of the actuator, boundary model.

RR n° 8409



12 Duvigneau, Labroquère

5 Comparison of the synthetic jet models
Computations are carried out until a periodic flow is observed. Comparisons of the two velocity
components for the three models, in the vicinity of the actuator, are provided by Figs. (12-19)
for the first actuation, and by Figs. (20-27) for the second actuation. On these figures, the phase
Φ = 0 corresponds to the maximum blowing time and Φ = π to the maximum suction time. The
SST k − ω turbulence closure is used here.

Clearly, the flows obtained using the three models are close to each other. The boundary
model generates obviously a more symmetric flow at the slot exit, due to the boundary condition
on the velocity. The slot and the cavity models allow to compute the flow in the slot, which is
characterized by strong asymmetry and generates a more intense flow at the slot corners. One
can notice that the cavity and slot models only differ at the bottom part of the slot, with a
negligible influence on the flow in the outer domain. The second actuation, with high frequency
and amplitude, exhibits larger discrepancies.

A comparison of the drag coefficient is also performed, as a more global assessment criterion.
Fig. (28) confirms that the cavity and boundary models predict very similar flows, whereas the
boundary model slightly underestimates the drag coefficient value, especially for the second ac-
tuation parameters.

The conclusions of these comparisons are the following: although the cavity model is far more
CPU-demanding than the slot model, the discrepancy between the two predicted flows is weak,
in terms of local field values and global drag coefficient. The boundary model predicts similar
flows. However, some differences are reported for high-frequency high-amplitude actuation. In
the perspective of more complex studies, the slot model seems to be the best compromise, in
terms of CPU cost and flow prediction. An alternate approach could be to capture the velocity
profile computed at the slot exit using the cavity model, and use it as boundary condition for the
boundary model. However, if one considers a jet with varying parameters (amplitude, frequency,
location), it is not clear that the selected profile will correspond to the new conditions. For these
reasons, the boundary model could be considered as reasonable for design optimization purpose,
provided that actuation characteristics are moderate.

Inria



Some Synthetic Jet Models 13

Figure 12: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 0 (50 Hz).

RR n° 8409



14 Duvigneau, Labroquère

Figure 13: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π/2 (50 Hz).

Inria
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Figure 14: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π (50 Hz).

RR n° 8409



16 Duvigneau, Labroquère

Figure 15: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 3π/2 (50 Hz).

Inria
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Figure 16: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 0 (50 Hz).
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18 Duvigneau, Labroquère

Figure 17: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π/2 (50 Hz).
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Figure 18: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π (50 Hz).
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20 Duvigneau, Labroquère

Figure 19: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 3π/2 (50 Hz).
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Figure 20: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 0 (500 Hz).

RR n° 8409



22 Duvigneau, Labroquère

Figure 21: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π/2 (500 Hz).
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Figure 22: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π (500 Hz).
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Figure 23: Iso-u contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 3π/2 (500 Hz).
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Figure 24: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 0 (500 Hz).
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Figure 25: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π/2 (500 Hz).

Inria



Some Synthetic Jet Models 27

Figure 26: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = π (500 Hz).
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Figure 27: Iso-v contours for the cavity (top), slot (middle) and boundary (bottom) models, for
Φ = 3π/2 (500 Hz).

Inria
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Figure 28: Time evolution of the drag coefficient, for the first actuation (top) and second actu-
ation (bottom).
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30 Duvigneau, Labroquère

6 Impact of numerical parameters
In this section, we investigate the influence of some numerical parameters on the flow predicted.
In the perspective of design optimization, we restrict this study to the boundary condition model
for the actuation 1 and we use the drag coefficient as main comparison criterion. More precisely,
we test the influence of the choice of the boundary condition type for the jet (weak vs. strong)
and we measure the impact of the convergence criterion used for each time step. The SST k−ω
turbulence closure is used here again.

0.04 0.05 0.06 0.07 0.08
time

0.0053

0.0054

0.0055

0.0056

0.0057

dr
ag

 c
oe

ffi
ci

en
t

Weak
Strong

Figure 29: Time evolution of the drag coefficient, for weak and strong boundary conditions.
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0.0053

0.0054

0.0055

0.0056

0.0057

dr
ag

 c
oe

ffi
ci

en
t

2 orders
3 orders

Figure 30: Time evolution of the drag coefficient, for different non-linear convergence criteria.

The evolution of the drag coefficient computed using weak and strong boundary conditions
is depicted in Fig. (29). As seen, the discrepancy is not relevant. Indeed, the iterative process

Inria



Some Synthetic Jet Models 31

carried out at each time-step makes the two approaches nearly identical.

Fig. (30) shows the same quantity, when different parameters are used as stopping criterion
for the non-linear iterative process. Here again, the discrepancy is small, which indicates that
the flow at each time-step is well converged.

7 Refinement study
To assess the computations, we finally perform a refinement study, by reducing the physical time
step by a factor two, while applying a uniform grid refinement by a factor

√
2 in each direction,

yielding a fine mesh counting 32010 vertices. The comparison of the time evolution of the drag
coefficient for the two meshes is depicted in Fig. (31). As can be observed, the use of finer grid
and time-step slightly modifies the drag coefficient value during the suction phase. However, the
change is rather moderate. In particular, the time-averaged drag coefficient is not significantly
affected by the refinement.

0.04 0.05 0.06 0.07 0.08
time

0.0053

0.0054

0.0055

0.0056

0.0057

dr
ag

 c
oe

ffi
ci

en
t

coarse
fine

Figure 31: Time evolution of the drag coefficient, for two meshes.

8 Impact of turbulence closure
As the synthetic jet generates detached flows, it is of particular interest to compare the flows
predicted by different turbulent closures. We consider for this study the SST k−ω from Menter
and the Spalart-Allmaras closures, using the boundary model for both actuations.

The time evolution of the drag coefficient for the two closures is represented in Fig (32). As
seen, the SST k−ω closure predicts a lower drag than the Spalart-Allmaras one, especially during
the blowing phase and for the high-frequency actuation. Nevertheless, the discrepancy between
these values has the same magnitude as that observed for the steady flow without actuation
(about 10−4).

Figs (33-40) show velocity contours for the two closures at some actuation phases (maximum
blowing and maximum suction). One can notice that the flows are globally close to each other. It
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Figure 32: Time evolution of the drag coefficient for different turbulence closures, for the first
actuation (top) and second actuation (bottom).

is confirmed that they differ mainly during the blowing phase, the SST k− ω closure generating
a more vortical flow, with more intense gradients, than the Spalart-Allmaras one.
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Figure 33: Iso-u contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = 0 (50 Hz).

Figure 34: Iso-u contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = π (50 Hz).
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Figure 35: Iso-v contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = 0 (50 Hz).

Figure 36: Iso-v contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = π (50 Hz).
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Figure 37: Iso-u contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = 0 (500 Hz).

Figure 38: Iso-u contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = π (500 Hz).
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Figure 39: Iso-v contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = 0 (500 Hz).

Figure 40: Iso-v contours for the SST k − ω (top) and Spalart-Allmaras (bottom) closures, for
Φ = π (500 Hz).
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9 Conclusion
The objective of the current study was to simulate a synthetic jet in a turbulent boundary layer
flow, compare the flows predicted by some actuator models and assess the turbulence closures in
this context. This study can be considered as a preparatory work before optimization of control
parameters for more complex problems.

It has been found that the actuator model including the slot description is a satisfactory
compromise between the complexity of including the whole cavity and the simplicity of using
only a boundary condition. The numerical parameters (convergence criterion, grid size, time
step, type of boundary condition) have been set to reasonable values for the problem considered.

Regarding the influence of turbulence closures, a moderate discrepancy between the Spalart-
Allmaras and the SST k − ω closures has been reported, the latter generating a more intense
flow at blowing. However, it would be interesting to consider more different models for future
studies, such as non-linear algebraic stress models.
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