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Abstract. Three-dimensional images of confocal laser scanning microscopy suffer from a
depth-variant blur, due to refractive index mismatch between the different mediums composing
the system as well as the specimen, leading to optical aberrations. Our goal is to develop an
image restoration method for 3D confocal microscopy taking into account the blur variation with
depth. The difficulty is that optical aberrations depend on the refractive index of the biological
specimen. The depth-variant blur function or the Point Spread Function (PSF) is thus different
for each observation. A blind or semi-blind restoration method needs to be developed for this
system. For that purpose, we use a previously developed algorithm for the joint estimation of
the specimen function (original image) and the 3D PSF, the continuously depth-variant PSF
is approximated by a convex combination of a set of space-invariant PSFs taken at different
depths. We propose to add to that algorithm a pupil-phase constraint for the PSF estimation,
given by the the optical instrument geometry. We thus define a blind estimation algorithm
by minimizing a regularized criterion in which we integrate the Gerchberg-Saxton algorithm
allowing to include these physical constraints. We show the efficiency of this method relying on
some numerical tests.

1. Introduction

Confocal laser scanning microscopy allows to observe in three dimensions (3D) biological living
specimens, at a resolution of few hundred nanometers. However, 3D images coming from this
system are mainly affected by two types of distortion: a depth-variant (DV) due to the refractive
index variation between the different mediums composing the system as well as the specimen,
and a Poisson noise due to the photon counting process at the sensor. The knowledge of
the Point Spread Function (PSF) is crucial for the restoration of these images. Theoretical
models for the 3D PSF computation were previously developed in the literature based on the
geometrical optics. For example, we use the model described in [3, 5] for the simulation of
blurred confocal microscopy images. Nevertheless, this model relies on the knowledge of some
physical acquisition parameters which are inaccessible in practice such as the refractive index of
the biological specimen. The estimation of the 3D DV PSF is an important problem which is
highly under-determined.

In our previous work, we considered an approximation of the 3D DV PSF by a convex
combination of a set of space-invariant (SI) PSFs taken at different depths [1]. A method for the
joint estimation of the specimen function (the original image) and the 3D DV PSF is proposed



in [1] and summarized in section 2.
In this article, we propose to add an additional constraint on the PSF coming from modeling

the optical instruments. In fact, the PSF of confocal microscopy can be computed from the
magnitude of a complex function known as the complex valued-amplitude PSF [3, 5]. The shape
and the support of this complex function are given in the Fourier domain by the numerical
aperture of the optical system (this latter is known since it is fixed by the system manufacturer)
[5]. We propose to incorporate these constraints in the joint image and PSF estimation algorithm
presented in [1]. For that, we use the Gerchberg-Saxton algorithm [4] which allows to impose
these constraints on the PSF (i.e. constraints on the pupil phase).

This article is organized as follows : We first recall the DV PSF model and the joint estimation
algorithm proposed in [1]. We then describe the constraints to be imposed on the estimated
PSF, arising from the optic modeling. We present the proposed algorithm for incorporating these
constraints in the estimation algorithm. We finally present some numerical results showing the
interest of these constraints.

2. Joint image and PSF estimation algorithm

Let f, g : I ⊂ N
3 → R

+ be two functions denoting respectively the original and the degraded
discrete 3D images (I being the image support). The forward degradation model is given by

the following Poisson statistics: g ∼ P
(
H̃ (f) + bg

)
where bg > 0 is a strictly positive constant

modeling the background noise, coming from the specimen auto-fluorescence or light scattering.
bg is assumed to be known since it can be estimated from a dark region which does not contain the

object. The DV blur operator H̃ can be modeled as follows [1]: H̃ (f) =
∑

1≤i≤M

hi ∗ (ψi.f) where

hi, i = 1, ..., M is a set of SI PSFs taken at different depths and ψi : I → [0, 1], i = 1, ..., M
is a set of weighting functions such that

∑
1≤i≤M

ψi(x, y, z) = 1, ∀(x, y, z) ∈ I. The choice of

these weighting functions is discussed in [3] where it is shown that piecewise-linear functions are
sufficient to obtain a good restoration. We thus consider that ψi (x, y, z) are varying along (OZ)
axis and constant along (OX) and (OY ) axis. For fixed weighting functions, the image and the
PSFs can be estimated by minimizing the following criterion [1]:

J
(
f, h1, ..., hM

)
=

∑

(x,y,z)∈I

[
H̃ (f) (x, y, z)− g(x, y, z) log

(
H̃ (f) (x, y, z) + bg

)]

+ α ‖∇f‖1 +
∑

1≤i≤M

βi ‖∇hi‖
2
2

(1)

The first term is the data fidelity term arising from the Poisson statistic. The second term
defines the total variation for the image smoothing while preserving edges. The last term
promotes regular and spread PSFs in order to capture all the blur of the observed image in
the PSF. α and βi, i = 1, ..., M are regularization parameters. We define the set of admissible
images as follows: Cf = {f ; f ≥ 0; ‖f‖1 = ‖g − bg‖1} and the set of admissible PSFs as follows:
Ch = {h;h ≥ 0; ‖h‖1 = 1; supp (h) ⊂ B}, B ⊂ I being the PSF support. The joint image and
PSF estimation can be performed as in [1] by alternatively minimizing the criterion (1) w.r.t f
and hi, i = 1, ..., M , the constraints of Cf and Ch being involved using a fast scaled gradient
projection (SGP) [2]:

(i) Object estimation using SGP [2]: f̂ (k+1) = argmin
f∈Cf

J

(
f, ĥ1

(k)
, ..., ĥM

(k)
)

(ii) PSF estimation using SGP [2]: For i = 1, ..., M , ĥi
(k+1)

= argmin
hi∈Ch

J

(
f̂ (k+1), ĥ1

(k)
, hi, ..., ĥM

(k)
)



It is worth stressing that the minimized criterion is non-convex w.r.t all the variables
(f, h1, ..., hM ) but it is convex w.r.t. each of the variables separately. Thus the proposed
algorithm seeks for a local minimum which depends on the PSF initialization. In our tests,
the PSFs are initialized from the theoretical PSF model that we present in the following section
by setting approximately its physical parameters (namely the refractive index of the immersion
medium and the sample).

3. Pupil phase constraints for the PSF estimation

Since the problem of blind restoration is under-determined, it is important to inject as much
information as possible on the unknown variables. In particular, the PSF comes from modeling
the optical instrument and can be written as follows [3, 5]:

hi (x, y, z) = |hAi (x, y, z) |
4 (2)

where hAi is a complex function hAi(x, y, z) ∈ C called complex valued-amplitude PSF or
coherent PSF. In that model, excitation and emission wavelengths are assumed to be sufficiently
close in such a way that their associated coherent PSFs could be considered of the same
magnitude. Moreover, the pinhole diameter is assumed to be sufficiently small in such a way
that it could be modeled by a Dirac distribution and thus does not appear in the PSF model
(2). Furthermore, we have :

hAi (x, y, z) = TF−1
2D (Pi (kx, ky, z)) (3)

where Pi (kx, ky, z) ∈ C is the 2D pupil function computed for each Z-slice, TF−1
2D is the 2D

inverse Fourier transform, and kx, ky are the 2D frequency coordinates. This pupil function can
be decomposed into two terms:

Pi (kx, ky, z) = Pai (kx, ky) Pd (kx, ky, z) (4)

The term Pd (kx, ky, z) models the defocus of the optical instruments and is assumed to be
known since it is given by the system physical parameters [5]. The term Pai (kx, ky) ∈ C models
the aberrations affecting the wavefront when traveling through the different system mediums.
It is unknown since it is related to the biological specimen. Note that the aberration term
does not depend on the z coordinate while the defocus term depends on that coordinate, which
allows us to introduce constraints on the PSF in the Fourier domain. The support C of the
aberration term is a disk of radius given by the numerical aperture (NA) of the microscope:

C = {(kx, ky) ∈ N
2;

√
k2x + k2y <

2π
λ
NA}. This model allows us to impose additional constraints

on the PSF (shape and support).

4. Blind restoration with pupil phase constraints

To take into account the constraints given in section 3, we add to the previous algorithm (section
2) an additional step allowing to estimate the complex function hAi, by estimating in the Fourier
domain the aberration term Pai, the defocus term Pd is fixed by the acquisition system. In order
to estimate the term Pai from the PSF hi, we propose to use the Gerchberg-Saxton algorithm
which was successfully applied in [4] to wide field microscopy. The global estimation algorithm
is the following, k being the iteration counter:

(i) Object estimation using SGP algorithm [2]: f̂ (k+1) = argmin
f∈Cf

J

(
f, ĥ1

(k)
, ..., ĥM

(k)
)

(ii) PSF estimation: For i = 1, ..., M , iterate the following steps:



(a) Estimation of the PSF using SGP [2]: ĥi
(k+1)

= argmin
hi∈Ch

J

(
f̂ (k+1), ĥ1

(k)
, hi, ..., ĥM

(k)
)

(b) Estimation of the aberration term Pai
(k+1) from the PSF ĥi

(k+1)
using the Gerchberg-

Saxton algorithm as described below.

(c) Compute the new PSF: ĥi
(k+1)

(x, y, z) = |TF−1
2D

(
Pd (kx, ky, z)Pai

(k+1) (kx, ky)
)
|4

Gerchberg-Saxton algorithm [4] allows the estimation of Pa
(k+1)
i by alternating constraints in

the spatial domain (magnitude of hAi given by hi) and in the frequency domain (the shape of
hAi and the support of Pai given by C) as follows:

(i) For each z-slice compute hAi
(k+1) (x, y, z) = TF−1

2D

(
Pd (kx, ky, z) .Pai

(k) (kx, ky)
)

(ii) Replace the module of hAi
(k+1) by

4

√
ĥi

(k+1)

(iii) For each z-slice compute Paiz
(k+1) (kx, ky) = TF2D

(
hAi

(k+1) (x, y, z)
)
Pd

−1 (kx, ky, z),

then compute Pai
(k+1) as the average of these estimated aberration terms for different

z-slices.

(iv) Project Pai
(k+1) in the set of function having their support included in C = {(kx, ky) ∈

N
2;

√
k2x + k2y <

2π
λ
NA}.

The convergence of the Gerchberg-Saxton was proved in [7]. The convergence of the proposed
minimization algorithm under a set of constraints to a local minimum of J will be the goal of
our future work. Numerical results show however a good behavior of such an estimation scheme.

5. Numerical experiments
We numerically generated a 3D image of a bead shell of thickness 400nm and of internal diameter
of 5µm. The image size is of 140× 140× 70 voxels, the voxel size being 50nm along (Y, Y ) axis
and 140nm along Z axis. An (Y, Z) slice of that image is shown in figure 1 (b). We degraded
this image by a DV blur (for each z-slice, we used a new 3D PSF calculated by the model
described in [3, 5]) and a Poisson noise, the background noise is set to bg = 10−4 (see figure 1
(a)). Note that a high value of the background constant decreases the signal to noise ratio. We
then restored this image using a combination of 3 PSFs. The regularization parameters are set
by try/error as follows: α = 10−3, β1 = 4. 104, β2 = 5. 105, β3 = 5. 105. The automatic estimation
of these parameters will be the goal of our future work [8]. The comparison of the estimated
image and one of 3 PSFs (figures 1 (c) and (f)) with those obtained by an algorithm without the
pupil phase constraint [1] (figures 1 (d) and (g)) and comparison with the true image and PSF
(see figures 1 (a) and (e)) show the advantage of the proposed approach. Our method allows to
constrain the shape of the PSF. Note that the lobe of the original PSF is shifted from its central
plane due to spherical aberration effects (see figure 1 (e)). Nevertheless, the estimated PSFs
(figures 1 (f) and (g)) are centered because this shift is actually not estimated by the proposed
method, even when considering the pupil phase constraints. An interesting future work is to
estimate the PSF shift by introducing a strong constraint about this parameter. For example,
one can obtain an information about the true object position (i.e. an information about the
shift parameter) from a diffractive tomography microscopy system which can be coupled with
the confocal microscopy system [9].
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Figure 1. (Y, Z) of the (a) observation, the original image (b), the estimated image (c) and
one of the 3 PSFs (f) using the proposed method, the estimated image (d) and one of the 3
PSFs (g) using the algorithm proposed in [1], the true PSF (e).
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