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strategies. Education. Université Nice Sophia Antipolis; University of Sydney, 2013. English.
<NNT : 2013NICE4040>. <tel-00923173>

HAL Id: tel-00923173

https://tel.archives-ouvertes.fr/tel-00923173

Submitted on 2 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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SUMMARY (ENGLISH) 

The aim of this thesis was to analyse strategies to reduce muscular fatigue in trail running and 

potentially draw conclusions on the underlying mechanisms. Trail running is a new and upcoming sport 

that induces a combination of fatigue and muscle damage in the main locomotor muscles. To obtain 

conclusive evidence on the effect of intervention studies a preliminary descriptive study was undertaken 

to characterise typical fatigue and damage. Subsequently a model was developed and validated that 

would allow the investigation of interventions in an applied field setting. A popular current strategy in 

trail running is the use of compression garments; therefore the effect of these on performance was 

studied as an intervention. Furthermore, prior heating is anecdotally considered beneficial and recent 

research has suggested a potential mechanism to link this with reduced muscle damage. Therefore a 

controlled laboratory study was conducted, examining the effects of passive heating on functional 

consequences of downhill running in an untrained population. In synopsis, the research conducted for 

this thesis provides descriptive evidence and a validated terrain model to further investigate fatigue 

reduction strategies in trail running. Additionally it adds to the current literature in disproving a positive 

effect of compression garments on performance and demonstrating the functional link between heating 

and eccentric-induced muscle damage reduction. 

 

SUMMARY (FRENCH) 

L’objectif de ce travail de thèse a été d’analyser les stratégies de réduction de la fatigue musculaire en 

course de trail et potentiellement d’identifier certains paramètres d’influence de cette fatigue. La course 

de trail est un nouveau sport en essor qui induit une combinaison spécifique de fatigue et dommages 

musculaires des principaux muscles locomoteurs. Afin de pouvoir conduire des études 

interventionnelles, une étude descriptive préliminaire a été conduite pour caractériser la fatigue 

spécifique et les dommages musculaires induits par ce type d’épreuve de trail. Ensuite, la 

reproductibilité du trail comme modèle de fatigue a été verifiée afin de pouvoir l’utiliser dans un 

contexte d’intervention. Enfin, deux études visant à réduire la fatigue induite par le trail ont été 

conduites. D’une part l’utilisation des vêtements de compression - très à la mode en trail - a été 

analysée comme stratégie d’optimisation de la performance. D’autre part, a aussi été etudié l’effet d’un 

réchauffement préalable du muscle sur les dommages musculaires : Dans cette optique, une étude 

contrôlée en laboratoire a été menée, examinant les effets d’un réchauffement passif sur les 

conséquences fonctionnelles de course en descente chez une population non-entraînée. En résumé, les 

travaux conduits au sein de cette thèse fournissent une description de la fatigue en trail, et valident 

l’utilisation du trail comme modèle reproductible de terrain pour investiguer les stratégies de réduction 

de la fatigue. De plus, ils relativisent l’effet positif des vêtements de compression sur la performance et 

montrent le lien fonctionnel entre le réchauffement musculaire et la réduction des dommages 

musculaires induits par un travail excentrique. 
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Chapter 1 

Trail Running – What is it all 

about?  
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The best runner leaves no tracks. 

- Tao Te Ching 

 

1.1. WHAT IS TRAIL RUNNING? 

 

Trail running, once a fringe sport frowned upon by many, has moved more and more to the 

central focus of recreational and competitive runners alike in the past decades1–3. This increase 

in interest can be attributed to various factors throughout society including an oversaturation 

of the road running scene, an increased drive to experience solitude and natural surroundings, 

an emerging body of research on the detrimental effects of prolonged road racing, increased 

accessibility, equipment advances, and more. Trail running as a locomotion modality is nowhere 

near new to humankind and has been attributed a prominent place in the evolution of humans 

as early hunter-gatherers4–7. Yet the recent resurgence of participation in recreational running 

and organised competitive events invites a new response to the question: “What is it all 

about?”  

 

1.1.1. DEFINITION 

 

As there is lacking consensus between local, national and international groups as to what 

actually comprises a trail run, the creation of a working definition becomes slightly less 

straightforward. Trail running as a budding sport is still in the “Sturm und Drang”-phase, 

characterised by sport sociologists as the time in which a sport is not yet institutionalised and 

abides by a set of loosely defined rules which are generally accepted by the participants and are 

roughly similar throughout all games8. The further analysis will focus on competition-type 

encounters in order to simplify the definition process. Trail running competitions are currently 

being hosted by a plethora of groups including classical athletic associations, manufacturers, 

local interest groups, and adventure tourism hosts. One of the earliest classical athletic 
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associations to officially sanction and employ the term “trail running” was the British Athletic 

Federation (BAF) in a 1995 memorandum establishing trail races as: 

 

“In the context of athletics, trail races are primarily along footpaths and bridle paths marked on 

Ordnance Survey maps as ’public rights of way‘. They are ’highways’ to which pedestrians have 

unrestricted access in English law. Towpaths, forest drives, farm cart tracks and paths in parks 

and so on, from which motorised traffic is excluded, are also trails when the owners’ permission 

is obtained.”
9 

 

Trail running as a formal sport was thus established, and hence began the sprouting of further, 

trail-specific organisations – each with their slightly modified idea of what defines a trail race. In 

1996 the American Trail Running Association was created, followed by associations in France, 

Germany, Italy, England, Ireland, Australia and South Africa. Additionally, local trail running 

clubs spawned, hosting local competitions and providing a social hub for trail runners. 

Manufacturers and adventure tourism companies jumped on the bandwagon, organising 

events explicitly linked with a company name or location and using this as a marketing asset. 

This has led to a large number of very diverse events grouped under the banner of “trail 

running”. 

 

A biannual Trail World Championship (TWC) event hosted by the International Association of 

Ultra Runners (IAU) was inaugurated in 2007.The IAU was granted patronage by the 

International Association of Athletics Federations in 1988, when the 100 km distance became 

officially recognised as a running event. It is responsible for race certification, record keeping 

and the organisation of global competitions for all distances exceeding the marathon. The TWC 

has therefore generally been around 70 km in length with about 2500 m climb. The 2012 IAU 

Trail World Championship was the most popular ever with teams from over 20 countries 

competing. The IAU is also responsible for certifying trail races and distributing “quality” or 

“qualification” labels.  
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Additionally, there is a trail running series with associated national and world championships 

hosted by XTERRA. The XTERRA series concentrates mainly on shorter distances, with 

participants completing a number of races between 5 and 42 km to gain points for qualification 

for the 21 km world championships. In a sense, this series complements the IAU competition as 

it covers a completely different running duration. Interestingly, XTERRA was originally 

conceived by the Hawaiian company TEAM Unlimited LLC in response to a request to “amplify 

television exposure for the Hawaiian Islands”. Starting with a single mediatised adventure event 

in 1988, TEAM quickly expounded on its “sports fuelling tourism” concept and created the 

XTERRA off-road triathlon series, a strongly televised and sponsored event series culminating in 

the XTERRA World Championships on Hawaii. A 2007 spin-off is the XTERRA Trail Run Series, 

which focuses on the same values of media presence and sponsoring. 

 

To further complicate the setting, the International Association of Athletics Federations (IAAF) 

has provided an extension to the cross country section of its IAAF Distance Running Manual 

describing Mountain Races (Rule 250.1) and has endorsed the World Mountain Running 

Association (WMRA) as organiser of a qualification series and world championship. The 

definition of mountain running seems very similar to the definitions of trail running that have 

been described so far (< 20% macadamised surface), yet the IAAF also defines distance (12 km) 

and climb (either +1200 m or +750 m & -750 m) giving a closer guideline to be respected. A 

more precise definition has been decided at the 2013 WMRA conference and this will be 

proposed to reinstitute the existing auxiliary rule as a rule in its own right at the next IAAF 

meeting10. 

  

 

Figure 1.1: Trail distinctions as defined by the French Federation of Athletics. 
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From the large divergence of events termed trail running competitions, it becomes difficult to 

distil strict distance and elevation criteria for the trail to segregate this from other forms of off-

road running such as orienteering, hashing, cross-country, or fell running. The definitions 

proposed by most classical athletic associations tend to eschew precise distance and elevation 

concepts and prefer to concentrate on terrain denominators. The French Federation of 

Athletics, for instance, regards “trail” to incorporate anything from 5 km to open end under 

condition that over 75% of the distance is run off paved surfaces (Fig. 1.1). This seems the only 

way to assimilate all the different forms of trail under a single term – a criterion that is not 

distance-based, but terrain-based. Therefore, for the rest of this text trail run shall be defined 

as any footrace fulfilling the following: 

 

1) To qualify as a trail run, the main partition of the course should be on footpaths or cross 

country, minimising time on roads and other surfaced paths. Footpaths can vary from 

large cart tracks to steep mountain single-tracks – the only common factor is that the 

surface is rough, enforcing a certain adaptation of stride and footfall to compensate. 

 

2) In terms of climb, it is difficult to nominate an absolute value, as different distances 

entail different absolute climbs and descents. When analysing popular races, it becomes 

evident that while the absolute values diverge, climb expressed as a ration of distance 

remains comparable (around 50 m.km-1) in the majority of cases (Fig. 1.2). This ratio may 

be considered one of the performance determinants of the race and to an extent gives 

an idea of the “toughness” of a trail competition. To give an idea, the IAAF mountain 

race definition proposes an E/D ratio of up to 100 m.km-1 on 12 km distance. 
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Figure 1.2: The climb
.
distance

-1
 ratio of various trail races featured in peer-reviewed 

publications. Races are sorted by distance, increasing from left to right. 

 

3) The running distance and associated exercise duration is one of the most variable 

parameters encountered in trail races and is largely overshadowed in this definition by 

terrain and climb ratio. Yet exercise duration is one of the most important parameters 

when analysing performance, strain, intensity, and recuperation, therefore it should not 

go unmentioned. The shortest competitive trail races are generally longer than 10 km, 

and until about 55 to 60 km distance the population is largely shared. Longer distances 

such as the 100 miles (161 km) have been termed mountain ultra-marathons (MUM) or 

ultra-trails and are mainly run by a highly specialised population. These events fulfil all 

the earlier mentioned criteria, yet the rift in population and significant increase in 

exercise duration leads us to consider them as a specialised sub-class of trail run. The 

same applies to multi-stage events such as the famous Marathon des Sables. Although 
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the terrain and climb prerogatives are fulfilled, the drastic differences in exercise 

duration make it difficult to see these events on the same footing. 

 

4) Multi-sport, orienteering and map-reading skill components should not be part of the 

performance-determining parameters as this introduces a new component to be taken 

into account that is difficult to control. 

 

1.2. THE HERITAGE OF TRAIL RUNNING 

 

While the historical prerogative for trail races lies in the early reaches of biped locomotion 

history, organised trail running competitions have rapidly become more popular in the last two 

decades. While as little as 30 years ago trail running was mainly an unknown niche sport, data 

collected for instance in 2009 by the outdoor foundation for a special report, indicate that 

nowadays over 4.7 million people (around 1.7% of the US population) compete annually in the 

USA alone1. The most popular distances are fun runs and 5 km runs, together accounting for 

63% of the total participation volume while marathon distances and longer only comprised 

8.6% of the volume. A perhaps superficial Google web trend analysis shows that the term “trail 

run*” is nowadays roughly 50% more likely to be used in the search engine than in 2004 and 

has been featured in US newspaper headings with increasing frequency since 2008 (Fig. 1.3). 

 

 

 

Figure 1.3: A Google Trend analysis of the term “trail run” and related terms. 
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1.2.1. EVOLUTION AND TRAIL RUNNING 

 

A series of publications4–6 from the turn of the millennium has re-evaluated ideas advanced in 

anthropology in the 1980s7 concerning the probable connection between human locomotion 

capacity as an early hunter-gatherer culture and their ability to survive. These papers propose 

that trail running capability - i.e. the ability to move quickly over rugged terrain for a prolonged 

period of time - is directly linked to survivability through a number of factors. Early humans 

were neither very fast nor very strong compared to their adversaries, therefore it seems 

probable that the species hunted through persistence; running stronger and faster prey to the 

ground through continuous harassment (refer to McDougall11 for a highly entertaining narrative 

on the topic). Secondly, enhanced trail capability enrolled the early humans to source food 

more easily through enlarging the forage radius and distance a group could cover in a given 

time. Thirdly, through similar mechanics a stronger trail running group could better flee when 

danger was near. This triple, implicit connection of trail capabilities to survivability is in the 

authors’ opinion so consequential that trail capability may have become one of the key factors 

in evolution12. 

 

1.2.2. TRAIL RUNNING BEFORE THE 20TH CENTURY 

 

As early humans, having learned to master their environment, gradually left their nomadic 

ways, it could be expected that trail capability became less of an important trait than, for 

instance, farming. While this may remain true in the early stages of societal development, at 

some point societies became larger and better organised and the need to communicate across 

distances arose. Fast messengers were valued and once again trail capability rose to an 

important position in society. Even nowadays the exploits of famous fast messengers are 

retained. Pheidippides for example, who ran from Sparta to Athens in 2 days (246 km) and on 

another, better known occasion from Marathon to Athens (42 km) to deliver his famous 

message, “νικωμεν! - Joy, we win!” before dying13,14. The Aztec, Mayan and Native Indian 

cultures are widely respected for their messengers, who could on some occasions deliver 
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messages faster than men on horses. The Iroquois messenger Sharp Shins should be mentioned 

here, who was reported to run 90 miles from sunrise to sunset15. Also Big Hawk Chief, who is 

reputed to have covered 120 miles in around 20 hours as part of a wager, leaving the 

evaluation committee stranded on their horses in the desert and arriving quite a while before 

them16. These and other feats have been transmitted orally over the centuries and may or may 

not have been subject to gross exaggeration; yet the fact alone that they have been maintained 

in the collective conscience indicates their importance in the respective cultures. To this day 

there are isolated cultures that hold trail running in great importance to social status such as 

the Tarahumara in Northern Mexico11,17. 

 

1.2.3. TRAIL RUNNING IN MODERN SOCIETY 

 

A short look at the development of participant numbers and records of popular races can give 

an idea of the progression that trail running has experienced in the past two decades. A few 

races quickly crystallised as benchmarks of performance and have sparked scientific 

investigation. Without claiming to offer a complete or exclusive insight, a few of the more 

popular trail races are explained in the following. 

 

Western States Endurance Race (WSER) 

The WSER claims on its website to be the “oldest and most prestigious trail run”. While this may 

not be entirely exact in terms of heritage, the first run was completed earlier than most other 

ultra-distance races and the competition has secured a large following to this day. The race 

counts as one of the four races featured in the “Grand Slam of Ultrarunning”18, a competition 

series in the US. Originally an endurance horse race, the first runner joined the horses in 1974 

and completed the 160 km race in a gruelling 23 hours and 42 minutes. In 1977 the race was 

officially inaugurated and 14 runners signed up, three of which actually finished. In 1979 a 

qualifying standard and participation cap were put into place to curb popular demand and the 

race has been run more or less at maximum capacity (400 starters) ever since (Fig. 1.4). The 

current records for male and female were established 2012 with 14h 46m and 16h 47m 
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respectively. Five peer-reviewed publications have used this races as an intervention model in 

the last 10 years investigating mainly population statistics and modelling, as well as water and 

salt ingestion during the race3,19–22. 

 

 

Figure 1.4: Participation adherence in the WSER from inception until 2007
3
. On the left the original 

starting manifest with the first WSER runner ever documented.  

 

The Dipsea Race 

Some time before trail running even existed as an idea let alone an expression in Western 

society, some men from San Francisco’s Olympic Club engaged in a wager as to who of them 

could reach the newly opened Dipsea Inn the fastest. From this was born the Dipsea race, 

inaugurated in 1905 with over 100 participants. Since then the race has been in almost 

continual institution and is now in its 103rd iteration. The participant cap was first set in 1977 

and is now at 1500 runners. The race features a unique head start system aiming to mitigate 

differences in performance and age. Due to the head start system together with a penalty 

system for former champions, the 12 km long race is at the moment championed by a 74-year-

old with a time of 47 minutes. This is arguably the first ever recorded competitive trail run, yet 

no peer-reviewed publications have used this race as a model. 

 

The Ultra-Trail of Mont Blanc (UTMB) 

The originally 155 km Ultra-Trail of Mont Blanc was inaugurated in 2003 and the participant cap 

of 2300 runners was reached five years later, leading to the creation of a second, half-loop race. 
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To give an idea of the popularity of this course: in 2008, the 2000 registrations allowed were 

supposedly completed within 7 minutes of the launch of the registration site. This was a good 5 

months before the actual race (anecdotal evidence). To make for a more democratic selection 

process, a qualification series is in place since 2010 that awards starting positions based on 

performance. The evolution of records is rather difficult to contemplate, as the course length 

has been changed a number of times and in some years the course had to be extended or 

terminated early due to adverse weather conditions. The current record holder of the full 

distance is Kilian Jornet, who completed the 2011 course (170 km) in 20h 36m. The UTMB has 

also sparked a number of scientific publications concerning neuromuscular consequences23, 

changes in spring mass behaviour24, and changes in erythrocyte count25.  

 

1.2.4. POPULATION STATISTICS 

 

As mentioned in the introduction trail running is becoming more and more popular in Western 

culture. The steady increase in competitive events and net starters throughout the world can 

be interpreted as a direct index of this popularity. But there are more subtle indications that 

can underscore this direct index and give feedback on the number of adherents. In this sense, 

consumer industry research provides a rich source of information. The Outdoor Foundation 

(OF) is a not-for-profit association founded by the Outdoor Industry Association (OIA) to be a 

driving force behind the development and furthering of outdoor recreation in America. The OIA 

itself was founded in 1989 and represents over 1300 outdoor companies, compiling annual 

reports and trend analyses on the American outdoor recreation economy. According to its 2012 

report, the annual spending of Americans on trail-related sports in the past years has steadily 

increased by around 5% per annum, culminating in a massive US$ 80,628,545,863 spent in 

2012. This breaks down into 15% spent on gear and 85% spent on trail-related travelling costs. 

These figures naturally incorporate all trail-related sports including hiking, and trail running only 

makes for a small percentage. Nonetheless, the 2012 trend reports place trail running as the 5th 

fastest-growing outdoor activity with a 9% popularity increase and a 15.5% increase in 

participation from 2011 to 2012, while general participation in outdoor activities increased only 
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by 2.3%26 (Fig. 1.5). In addition, a special report was released in 2010 covering trail running as a 

separate discipline. According to the report, participant numbers in America have grown from 

4.6 million in 2006 to 4.8 million in 2009, with an 82.6% crossover to road running. New 

adherents made up 13.1% of the cohort and the main motivations given were “it’s relaxing”, 

and, ”it’s a great way to exercise”. Furthermore, the data collected goes on to describe 

demographic distribution, crossover sport participation and annual participation. According to 

the report, trail running in the US is most popular in Caucasian males aged 25 to 44 with a 

college education and an annual income of over US$ 100,0001. 

 

From a more classical scientific point of view, there are only few studies on participation 

development in trail running2,3,20,27–29. In 2010, Hoffmann et al.2 published a historic 

participation analysis for 161km ultra-marathons in North America. This only represents a part 

of all trail races – and one of the less popular according to the 2009 OF report – yet the 

participation numbers are conclusive: The number of 161 km trail events has increased 

exponentially from 0 in 1978 to over 50 in 2008. In the same period, the number of 161 km 

road events has remained constant, mirroring demand. Over 2500 finishes were recorded in 

161 km trail races in 2008 (Fig. 1.6). 

 

Recently, two articles gave insight on the position of trail running as a trending sport, 

elucidating participation in multi-stage ultra-marathon events such as the famous Marathon 

des Sables in Morocco27,28. As shown in figure 1.6 there has been exponential growth in the 

ultra-marathon sector between 1992 and 2010, mainly fuelled by growing numbers of 

competitors from France, the UK, Germany and the USA. Also the number of competitions held 

has increased following a similar pattern, 2002 registering only 3 events, compared with 26 in 

2009 and 22 in 2010. Ultra-marathons, however, remain rather less popular than trail running, 

the American Ultrarunning Association putting participation at a ballpark figure of 70,000 

worldwide, compared with the 4.8 million trail runners in America alone reported in the OF’s 

2009 trail special report. 
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Figure 1.5: Growth in trail running in North America compared to other outdoor sports
1,26

. 

 

Concerning single events, a paper published by Hoffman and Wegelin in 20093 directly regards 

participation and performance trends in the WSER. Main results include an increase in age and 

performance of the participants with unchanging participation since introduction of the cap. In 

conclusion, a synthesis of the data from consumer reports, scientific publications and 

independent organisation surveys make a strong case for an overall increase in trail running 

popularity, both competitive and recreational. Increased spending, high positions on consumer 

trend analyses, an increased number of finishers and increased event density can be seen as 

strong markers that trail running is indeed permeating the fabric of traditional road running. 
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1.3. TRAIL RUNNING AS A MODEL IN SCIENCE 

 

As argued above, trail running seems to be gaining more and more adherents annually. 

However, there is not much dedicated scientific literature or investigation on the physiology of 

trail running. The lack of literature can probably be attributed to a number of factors, including 

the only recent increase in popularity, the often demanding conditions in the field for 

conducting investigations, the perceived overlap with existing knowledge on long-distance 

endurance and the difficulties in simulating this kind of exercise. Nonetheless, the specifics of 

trail running offer a unique opportunity to investigate long-duration exercise in a challenging 

and hostile environment. 

 

 

Figure 1.6: Data drawn from the studies of Hoffman et al.
2
 and Shoak et al.

27
 indicate the growth of 

participation in trail running. 

 

1.3.1. PUBLICATION FREQUENCY 

 

To give a general idea of the publication frequency, a simple search on the internet portal of 

the US National Library of Medicine (http://www.pubmed.gov) using the search term (trail 

run[All Fields] OR trail runners[All Fields] OR trail running[All Fields]) OR (ultra[All Fields] AND 

marathon[All Fields]) was performed. While investigations on related fields such as 

orienteering and cross-country running are thus disregarded, employment of this highly 

directive search term also gives feedback about the employability of the term “trail”. In a 

preliminary search 141 results were recovered. This includes a large percentage of road races 

and a few unrelated hits; therefore a sounding process was necessary to eliminate these 
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investigations. This resulted in a final count of 31 trail-specific publications conforming to this 

search in this specific index (Fig. 1.7).  
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Figure 1.7: The amount of publications concerning trail races indexed by the US National Library of 

Medicine as a function of time (year). Quadratic modeling results in a correlation index of R
2
=0.93 

(p=0.01), suggesting that publication frequency will continue to increase. 

 

Of these publications, 80% are based on competition analysis, 10% are simulation-based, and 

10% rely on an intervention field setting. The competition analysis papers mainly regard 

distances of over 80 km, thus qualifying for the MUM label given in the definition (17 

publications), while only a few publications concentrate on shorter distances (5 studies). 

Controlled studies generally focussed on shorter, more manageable distances (< 20 km, 4 

studies), and the simulation studies employed similarly short distances (< 20 km, 2 studies). Of 

the long-distance field trials several investigated multi-day trails (6 publications). 

 

Not included in the listed publications are a series of papers (5 publications) published on the 

2009 Trans Europe Footrace, a 4500 km run across all of Europe30–34 and a case study of an 

8500 km run35. These publications were excluded due to the extreme duration of the race 

coupled with highly variant elevation data for the individual running legs. 
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1.4. CONCLUSION 

 

Trail running has evolved since its beginnings in the early nineties into a fully-fledged sport with 

multiple world series and a large, dedicated fan base. This has led to an increase in scientific 

investigation centring mainly on the development of neuromuscular fatigue23,36–38 and 

associated strategies of amelioration, be it through supplementation39,40, hydration41–44, pain 

suppression21,32 or prior conditioning etc. The following fundamental statements set the 

framework of the present investigation: 

 

- Trails can be defined as any run over 10 km that is completed mainly on unsurfaced 

paths, has a significant elevation difference during the course and does not 

incorporate any other modality. 

- Trail running is becoming increasingly popular in Western culture, indicated by 

increasing revenue, increasing number of finishers per year, increasing number of 

events per year. 

- There is only little trail-specific scientific knowledge available, which is mainly of a 

descriptive nature. 

- The combination of increasing popularity and little prior knowledge makes trail 

running a particularly interesting model to investigate as: 

o A growing population and industry is engaged and R&D and health 

prevention should be backed up with independent research. 

o Increasing numbers of trail participants offer a possibility of conducting 

higher-powered studies on physiological and mental processes during long 

duration exercise. 

- Trail running offers a unique opportunity to investigate the effects of prolonged 

exercise on neuromuscular performance and cognitive drive.  

 

 

 



W h a t  i s  i t  a l l  a b o u t ?  | 17 

 

 

 

1.5. CHAPTER 1 BIBLIOGRAPHY 

 

1. Outdoor Industry Foundation. A Special Report on Trail Running. Boulder, Colorado: Outdoor Industry 

Foundation; 2010:1–12. 

2. Hoffman MD, Ong JC, Wang G. Historical analysis of participation in 161 km ultramarathons in North 

America. Int J Hist Sport. 2010; 27(11):1877–1891. 

3. Hoffman MD, Wegelin JA. The Western States 100-Mile Endurance Run: participation and 

performance trends. Med Sci Sports Exerc. 2009; 41(12):2191–2198. 

4. Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004; 

432(7015):345–352. 

5. Lieberman DE, Bramble DM, Raichlen DA et al. Brains, Brawn, and the Evolution of Human Endurance 

Running Capabilities. In: Grine FE, Fleagle JG, Leakey RE, eds. The First Humans – Origin and 

Early Evolution of the Genus Homo. Vertebrate Paleobiology and Paleoanthropology. 

Netherlands: Springer; 2009:77–92. 

6. Lieberman DE, Bramble DM. The evolution of marathon running : capabilities in humans. Sports Med. 

2007; 37(4-5):288–290. 

7. Devine J. The Versatility of Human Locomotion. Am Anthropol. 1985; 87(3):550–570. 

8. Pociello C. Sports et société: approche socio-culturelle des pratiques. Paris: Vigot; 1981. 

9. Trail Running Association. A guide to organising trail races. 2001. 

10. World Mountain Running Association. WMRA Championships - Technical Regulations. 2011. 

11. McDougall C. Born to run: a hidden tribe, superathletes, and the greatest race the world has never 

seen. New York: Vintage Books; 2011. 

12. Lieberman DE, Bramble DM, Raichlen DA et al. The evolution of endurance running and the tyranny 

of ethnography: a reply to Pickering and Bunn (2007). J Hum Evol. 2007; 53(4):439–442. 

13. Plutarch LM. On the Glory of the Athenians. In: Moralia. Vol IV. Loeb Classical Library; 1936:87–102. 

14. Lucian  of S. The Works of Lucian of Samosata. Adelaide: University of Adelaide @ eBooks; 2007. 

15. Fenton WN. The Journal of James Emlen Kept on a Trip to Canandaigua, New York. Ethnohistory. 

1965; 12(4):279–342. 

16. Nabokov P. Indian running: native American history & tradition. Santa Fe, New Mexico: Ancient City 

Press; 1987. 



W h a t  i s  i t  a l l  a b o u t ?  | 18 

 

 

 

17. Lumholtz C. Unknown Mexico  a record of five years’ exploration among the tribes of the western 

Sierra Madre  in the tierra caliente of Tepic and Jalisco  and among the Tarascos of Michoacan. 

New York: C. Scribner’s Sons; 1902. 

18. Boeder RB. Beyond the Marathon : The Grand Slam of Trail Ultrarunning. Vienna: Old Mountain 

Press; 1996. 

19. Nieman DC, Dumke CI, Henson DA et al. Immune and oxidative changes during and following the 

Western States Endurance Run. Int J Sports Med. 2003; 24(7):541–547. 

20. Hoffman MD. Performance trends in 161-km ultramarathons. Int J Sports Med. 2010; 31(1):31–37. 

21. Hoffman MD, Lee J, Zhao H et al. Pain perception after running a 100-mile ultramarathon. Arch Phys 

Med Rehabil. 2007; 88(8):1042–1048. 

22. Hoffman MD. Ultramarathon trail running comparison of performance-matched men and women. 

Med Sci Sports Exerc. 2008; 40(9):1681–1686. 

23. Millet GY, Tomazin K, Verges S et al. Neuromuscular Consequences of an Extreme Mountain Ultra-

Marathon. PLoS ONE. 2011; 6(2):e17059. 

24. Morin JB, Tomazin K, Edouard P et al. Changes in running mechanics and spring-mass behavior 

induced by a mountain ultra-marathon race. J Biomech. 2011; 44(6):1104–1107. 

25. Robach P, Boisson R-C, Vincent L et al. Hemolysis induced by an extreme mountain ultra-marathon is 

not associated with a decrease in total red blood cell volume. Scand J Med Sci Sports. 

2012:[Epub ahead of print]. 

26. Outdoor Foundation. Outdoor Recreation Participation Topline Report. Boulder, Colorado: Outdoor 

Industry Foundation; 2012:10. 

27. Abou Shoak M, Knechtle B, Rüst et al. European dominance in multistage ultramarathons: an 

analysis of finisher rate and performance trends from 1992 to 2010. Open Access Sports Med. 

2013; 4:9–18. 

28. Knoth C, Knechtle B, Rüst CA et al. Participation and performance trends in multistage 

ultramarathons—the “Marathon des Sables” 2003–2012. Extrem Physiol Med. 2012; 1(1):1–13. 

29. Eichenberger E, Knechtle B, Rüst CA et al. The aspect of nationality and performance in a mountain 

ultra-marathon-the “Swiss Alpine Marathon.” J Hum Sport Exerc. 2012; 7(4):748–762. 

30. Murray A, Costa RJ. Born to run. Studying the limits of human performance. BMC Med. 2012; 

10(1):76–79. 

31. Schütz U, Schmidt-Trucksäss A, Knechtle B et al. The Transeurope Footrace Project: longitudinal data 

acquisition in a cluster randomized mobile MRI observational cohort study on 44 endurance 

runners at a 64-stage 4,486 km transcontinental ultramarathon. BMC Med. 2012; 10(1):78. 



W h a t  i s  i t  a l l  a b o u t ?  | 19 

 

 

 

32. Freund W, Weber F, Billich C et al. Ultra-Marathon Runners Are Different: Investigations into Pain 

Tolerance and Personality Traits of Participants of the TransEurope FootRace 2009. Pain Pract. 

2013 [ePub]. 

33. Freund W, Faust S, Birklein F et al. Substantial and reversible brain gray matter reduction but no 

acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace 

Project. BMC Med. 2012; 10(1):170–181. 

34. Millet GP, Millet GY. Ultramarathon is an outstanding model for the study of adaptive responses to 

extreme load and stress. BMC Med. 2012; 10(1):77–79. 

35. Millet GY, Morin J-B, Degache F et al. Running from Paris to Beijing: biomechanical and physiological 

consequences. Eur J Appl Physiol. 2009; 107(6):731–738. 

36. Fourchet F, Millet GP, Tomazin K et al. Effects of a 5-h hilly running on ankle plantar and dorsal flexor 

force and fatigability. Eur J Appl Physiol. 2012; 112(7):2645–2652. 

37. Martin V, Kerhervé H, Messonnier LA et al. Central and peripheral contributions to neuromuscular 

fatigue induced by a 24-h treadmill run. J Appl Physiol. 2010; 108(5):1224–1233. 

38. Millet GY, Martin V, Lattier G et al. Mechanisms contributing to knee extensor strength loss after 

prolonged running exercise. J Appl Physiol. 2003; 94(1):193–198. 

39. Gauche E, Lepers R, Rabita G et al. Vitamin and mineral supplementation and neuromuscular 

recovery after a running race. Med Sci Sports Exerc. 2006; 38(12):2110–2117. 

40. Miller PC, Bailey SP, Barnes ME et al. The effects of protease supplementation on skeletal muscle 

function and DOMS following downhill running. J Sports Sci. 2004; 22(4):365–372. 

41. Casa DJ, Stearns RL, Lopez RM et al. Influence of hydration on physiological function and 

performance during trail running in the heat. J Athl Train. 2010; 45(2):147–156. 

42. Lopez RM, Casa DJ, Jensen KA et al. Examining the Influence of Hydration Status on Physiological 

Responses and Running Speed During Trail Running in the Heat With Controlled Exercise 

Intensity. J Strength Cond Res. 2011; 25(11):2944–2954. 

43. Stearns RL, Casa DJ, Lopez RM et al. Influence of hydration status on pacing during trail running in 

the heat. J Strength Cond Res. 2009; 23(9):2533–2541. 

44. Costa RJ, Teixeira A, Rama L et al. Water and sodium intake habits and status of ultra-endurance 

runners during a multi-stage ultra-marathon conducted in a hot ambient environment: an 

observational field based study. Nutr J. 2013; 12:13–29. 



 

 

 

 

 

 

 

 

 

 

CHAPTER 2 

THE AETIOLOGY OF FATIGUE 
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I’m pretty tired... Think I’ll go home now. 

- Forrest Gump 

 

2.1. BACKGROUND 

 

The single most important factor in determining trail performance is the capability of the 

runner to avoid and resist (neuromuscular and mental) fatigue. A runner that is fatigued is 

more likely to run inefficiently and injure himself on the course, is less capable of making 

positive strategic decisions, and of effectively actively monitoring physiological needs such as 

nutrition and hydration
1–6

. In order to develop strategies to help runners better resist both 

cognitive and neuromuscular fatigue, a better understanding of the fatigue processes specific 

to trail running is necessary. To this end some of the more popular fatigue models shall be 

presented and their relevance to trail running discussed in the following. Fatigue is generally 

defined as a “fully reversible decrease in muscular force output induced by intensive 

contractions”
7,8

. This definition of fatigue insinuates that fatigue is present from the moment 

that voluntary force output decreases. In the history of fatigue investigation, this perspective 

on fatigue is a rather modern approach. The prestigious Ciba symposium 82, which laid much of 

the foundation for modern fatigue research, defined fatigue as “as a failure to maintain the 

required force or power output” as late as 1981
9
. In effect, fatigue has been shown in all 

mammalian muscles and in all different kinds of contractions. This includes concentric (dynamic 

shortening muscle), isometric (static equidistant muscle) and eccentric (dynamic lengthening 

muscle) contractions and is valid for intermittent and sustained contractions. Generally 

speaking, intermittent contractions tend to cause less fatigue due to the short recuperation 

periods between contractions, while sustained contractions over 50% maximal voluntary 

contraction force (MVC) hamper the blood flow, causing ischemia and accelerating the rate of 

fatigue onset
10,11

.  
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2.2. HISTORY OF FATIGUE INVESTIGATION AND CLASSICAL CONCEPTS 

 

The earliest observers of human performance must have already noticed a progressive decline 

of performance in intensely-used muscles, although this did not become part of scientific 

discourse until Berzelius described high levels of lactic acid in the muscles of an exhausted stag 

in 1807
12,13

. Needham gives a detailed account of the history of muscle research in his Machina 

Carnis 
14

 tracing the aetiology of fatigue from Berzelius over Mosso’s 1904 book La fatica
15

, 

creating fatigue symptoms using electrical stimulation and the seminal paper of Hill and 

Kupalov
16

, indicating that muscular performance decrease was directly linked with lactic acid 

accumulation and dispersion
16

. These early studies gave rise to the notion that fatigue is a 

mainly peripheral phenomenon and strongly linked to lactic acid concentration. This idea was 

first challenged by Eberstein and Sandrow
17

, who perfused fatigued muscle fibres with caffeine 

and observed an acceleration of force production recovery, suggesting that fatigue may instead 

be linked to a failure of the excitation-contraction (E-C) coupling. Soon after, Bergström et al.
18

 

perfected a muscle biopsy technique, which allowed the extraction of muscle samples for 

biochemical analysis at specific time points during exercise. This facilitated more detailed 

analysis of the biochemical changes involved in the fatigue process and in turn led to research 

identifying the causes of fatigue as linked to glycogen depletion
19

 and phosphate metabolite 

and H
+
 accumulation

20
. These muscle-centric changes are collectively known as peripheral 

causes of fatigue, as they are locally restricted changes in the force producing units. 

Investigations of these peripheral changes are often based on electrical stimulation that 

circumvents possible confounders in the activation process. 

 

When the development of fatigue in an integrated physiological system is to be described, the 

activation process from the supraspinal level through the central nervous system (CNS) needs 

to be taken into account. Changes in α motor neuron drive may precede and modify peripheral 

fatigue manifestations and can account for an important part of the fatigue process. While this 

was in some form evident to the pioneers of fatigue research
15,21

, direct identification and 
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quantification of changes in the motor drive output that is finally effectuated at the level of the 

motor end plates, let alone at other points in the activation cascade, has proven to be 

technically challenging. Until appropriate methods were developed (notably fine-wire 

electromyography
22

), studies of changes in motor output were rather empirical and employed 

indirect markers such as hypnosis, prior mental conditioning and using conditioning cues
23

. This 

geographical and temporal dissociation of the phenomena has historically led to a distinctly 

dualistic perspective on fatigue, dividing processes into peripheral and central components. 

More recently, models have been proposed that re-unify the components and focus on the 

(afference and feed-forward based) interaction between central and peripheral components of 

fatigue
24–29

. 

   

2.3. PERIPHERAL FATIGUE 

 

Peripheral fatigue models focus on explaining fatigue processes in the actual movement 

effectuators, i.e. at a level lower than the neuromuscular junction. The notion that the primary 

source of muscle force output reduction lies in this area can be traced to the first experiments 

describing fatigue, in which isolated muscle fibres were continually stimulated electrically and a 

decline in force output was observed
16

. Since performance reduction was observed at a lower 

hierarchical level than the motor endplates and early examinations disclosed no changes in 

neuronal motor output
30,31

, it was only logical to investigate the muscle itself to identify the 

processes that lead to a reduction in force. Peripheral fatigue has been the focus of much 

investigation and numerous factors that are in some form implicated in the development of 

fatigue have been identified. Studies examining peripheral fatigue are often based on models 

such as electrically stimulated in-vivo muscles, isolated muscles, isolated single fibres and in 

some cases skinned fibres which allow the reduction of confounders but incur certain 

disadvantages (Table 2.1 taken from Allen 2008). To further elucidate the potential action 

points of fatigue in the periphery, a schematic of the mechanics of activation shall be presented 

in the following. 
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Table 2.1: Models used to investigate fatigue. Replicated from Allen, 2008
8
 

 

2.3.1. THE EXCITATION-CONTRACTION COUPLING 

 

From the arrival of an action potential (AP) at the motor endplate and the actual contraction of 

the muscle, a cascade of processes must take place, each component of which is potentially 

susceptible to fatigue. Motor endplates are distributed rather homogenously along the length 

of the muscle in order to achieve a simultaneous arrival of the AP. Arriving at the motor 

endplates, the AP leads to a secretion of acetylcholine (ACH), which incurs a membrane 

depolarisation. This travels longitudinally along the surface membrane of the muscle (2 to 

6 m
.
s

-1
)
32

 and transversely into the transverse tubules (T-system; 0.3 m
.
s

-1
)
33

. The depolarisation 

of the T-system stimulates dihydropyridine receptors (DHPRs) that are located along the T-

system, which in turn activate the ryanodine receptors (RyR) located in the membrane of the 

sarcoplasmic reticulum (SR). The RyR receptors have multiple channels through which calcium 
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(Ca
2+

) from the sarcoplasmic reticulum (SR) is released into the myoplasm. With Ca
2+

 release, 

the first phase of the E-C coupling is complete (Fig 2.2). 

 

 

Figure 2.2: Schematics of the excitation-contraction coupling. 

 

The increase of the myoplasmic Ca
2+

 concentration has a number of effects: (1) the actual 

contraction is initiated, (2) the oxidative processes of the mitochondrium are stimulated and 

adenosine tri-phosphate (ATP) production is enhanced, (3) the energy dependent SR Ca
2+

 pump 

is activated, removing Ca
2+

 from the myoplasm. Contraction initiation from this point is a rather 

well-investigated process – concentration increase of Ca
2+

 facilitates increased binding of Ca
2+

 

to troponin C, which in turn shifts the tropomyosin compound freeing the myosin binding sites 

and allowing the formation and cycling of cross bridges from actin to myosin filaments. This is 

the direct origin of muscular movement as the actin and myosin filaments in the muscle slide 

past each other shortening the serial-connected sarcomeres. Many of the described processes 

are energy driven and this energy is primarily derived from hydrolysis of adenosine tri-

phosphate (ATP) into adenosine di-phosphate (ADP) and inorganic phosphate (Pi). 

Rephosphorylation takes place through one of three pathways: (1) Aerobic: oxygen and glucose 

dependent mitochondrial process, (2) Anaerobic glycolysis: oxygen independent glucose 

dependent cytosolic pathway, (3) Phosphocreatine (PCr): oxygen independent donation of Pi to 

ADP molecules via kinase interaction. A simplified concept of predominant rephosphorylation 
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mechanisms in function of exercise time are represented in figure 2.3. Both the accumulation of 

ADP and related products as well as the rephosphorylation sites of ADP into ATP are further 

points at which fatigue processes may latch. 

 

Figure 2.3: Simplified concept of ATP re-synthesis processes over exercise duration. Figure reproduced 

from Howald et al. (1978)
34

.  

 

2.3.2. POTENTIAL FATIGUE PROCESSES AFFECTING THE PROPAGATION PHASE 

 

The propagation of the AP over the surface membrane into the T-system can be impaired by 

changes in membrane potential and sodium (Na
+
) and potassium (K

+
) gradients that may 

develop during intense work that leads to fatigue. In prolonged exercise, such as trail running, 

this is further provoked through sweat loss-induced dehydration. Effectively, the main 

influences on propagation are associated with increases of leaked ions such as K
+
 and Na

+
, 

which impede the conductivity of the T-system channels. While in vitro studies using skinned 

and stimulated fibres have identified that high extra-cellular K
+
 concentrations (7 to 13 mMol) 

create a graded reduction in force production (-30 to -100%), it is not certain that this is 

pertinent during exercise
35–38

. Physiological extracellular K
+
 concentrations at rest lie at around 

4 mMol
36

 and can locally increase up to 10 mMol in-vitro, but have not been shown to exceed 

6 mMol in muscle during exercise in-vivo
39

. Indirect conclusions concerning propagation 

velocity in humans have been drawn from measures obtained using peripheral nerve 

stimulation (PNS). As the electrical stimulus is induced into the α motor neuron, a direct 

muscular response (M-wave) is elicited at around 3-6ms delay along with a delayed 

monosynaptic response (H-reflex, 45 to 56 ms). The shape of the M-wave in fatigued and non-

fatigued muscles is very similar, leading to the conclusion that longitudinal propagation 
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properties remain unaffected by fatigue
10,11,40,41

. Studies employing a linear array of electrodes 

(high density electromyography – HDEMG), have on the other hand observed an decrease of 

propagation velocity with fatigue
42–45

. More studies are required to arrive at a definite 

conclusion, and any potential changes are likely to be task dependent
44

. In any case, a number 

of dedicated systems exist to ensure that K
+
 leakage does not become too pertinent and 

critically degrade propagation velocity. 

 

2.3.3. FACTORS INFLUENCING CALCIUM RELEASE AND CALCIUM RE-UPTAKE 

 

Once the AP has franchised the T-system, the next steps in the cascade leading to the release of 

Ca
2+

 from the SR are the activation of the voltage-sensitive DHPRs and the subsequent 

ryanodine receptor reaction. This sensitive part of the E-C coupling is termed the triad junction 

due to its three principle actors; the SR, the T-system and the DHPR-RyR sensor complex. In 

contrast to the actual processes in the T-system itself, the release of Ca
2+

 into the myoplasm is 

technically relatively straightforward to measure and provides an interesting outcome measure. 

In short, the interaction between the DHPRs and the associated RyRs calcium-release channels 

is currently a focal point of fatigue research
46

 and seems more bi-directional and complex than 

first assumed (for a detailed review consult Bannister
47

). Investigations of the triad junction 

indicate that the rate of Ca
2+

 release is dependent on myriad factors including the 

concentration
48,49

 and sensitivity of DHPRs and RyRs
50,51

 and stimulation type (caffeine, AP, etc). 

Acutely, the Ca
2+

 rate of release is reduced by a decrease in amplitude of the arriving AP, 

increase of cytoplasmic ionic magnesium (Mg
2+

) levels
52–54

, decrease in myoplasmic ATP 

concentration
55,56

, and a decrease in SR Ca
2+

 levels
57,58

. Calcium reuptake into the SR is central 

to keeping the diffusion gradient stable. The reuptake rate is negatively affected by fatigue 

processes, namely by increased levels of inorganic phosphate and ADP and the associated 

decreases in ATP
55,59–61

. Inorganic phosphate can seep into the SR through the ionic chloride 

channels at high intracellular concentrations, leading to CaPi precipitation effectively lowering 

free Ca
2+

 concentration and blocking the calcium release channels
49

. This mechanism is also 

susceptible to oxidative stress and increased reactive oxygen species (ROS) such as hydrogen 
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peroxide
62

. Especially in prolonged exercise where the mitochondria adopt a high rate of ATP 

rephosphorylation, the development of ROS is an important contributor to the development of 

fatigue. Not only do ROS increase the influx of Pi into the SR, but they are also directly 

associated with c-Jun N-terminal kinase (JNK) -mediated necrotic cell death via the Tumour 

Necrosis Factor (TNF) Receptor super family
63–65

. Furthermore, ROS are implicated in the 

mediation of the inflammatory response, being secreted by myokines to induce mononuclear 

cell apoptosis
66

. The lack of Ca
2+

 re-uptake into the SR has also been demonstrated to be central 

in prolonged endurance exercise, as Ca
2+

 content has been shown to increase to over 30% of 

resting level following runs over 20 km
67,68

. Increased Ca
2+

 concentration and associated 

membrane leakage trigger signalling cascades via calpain activation, which ultimately result in 

further cell necrosis and mononuclear cell invasion
69

. 

 

2.3.4. ATP SUPPLY AND METABOLIC BY-PRODUCTS 

 

Adenosin tri-phospate (ATP) is the muscle cell’s primary source of energy. An ATP depletion 

lead to a loss in force production, as the unlatching of myosin cross bridges (CB) becomes 

impeded and cycling becomes impossible. Additionally, a number of ATP or ADP to Pi ratio 

sensitive mechanisms that can hinder the E-C coupling exist. A decrease in the ATP to ADP ratio 

for instance leads to a down-regulation of the Ca
2+

 release at the RyR site, a reduction in CB 

cycling velocity, a mitigation of CB catching force, a reduction in Ca
2+

 sensitivity, a decrease in 

Ca
2+

 resorption rate and increased CaPi precipitation in the SR. A fall of the ATP to ADP ratio 

also leads to an increase in adenosine monophosphate (AMP), which gives a strong signal to the 

AMP-activated protein kinase (AMPK) to curb energy depletion and reactivate catabolic ATP 

synthesis pathways
70

. ATP production is principally dependent on ready supplies of ADP, Pi, PCr, 

substrates and oxygen among others. Potential limitations in the substrates required for ATP 

synthesis can lead to a shift in synthesis pathways leading to a less optimal ratio of ATP to 

waste products. ATP during prolonged effort is mainly synthesised in the mitochondria through 

the aerobic pathway, this being by far the most efficient ATP synthesis process
71

. Without going 

into too much detail, mitochondrial abundance is one of the potentially limiting factors. Type 1 
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muscle fibres (red muscle) tend to represent the primary fibre type in endurance runners and 

exhibit greater mitochondrial abundance. Further bottlenecks are oxygen and nutrient supply. 

Oxygen supply is dependent on oxygen uptake at the level of the lungs, cardiac output and 

diffusion capacity (capillarisation) at the muscle site. A number of different energy sources can 

be used at the nutrient level, the main sources in prolonged exercise being composed of 

carbohydrates and fat. Glycogen is stored in the muscle cells themselves and primarily in the 

liver, providing a fast and highly effective energy source. Triglycerides and fatty acids on the 

other hand are a less optimal energy source, as cross-membrane transport is energy driven, and 

fatty acids must undergo oxidation before they can enter the Krebs cycle
72,73

. Substrate 

utilisation is finely regulated using different messaging cascades, the most central and well-

known being the AMPK-insulin cascade
71

. The aerobic ATP synthesis pathway is also considered 

the main source of radical oxygen species (ROS) which have been shown to incite signalling 

cascades leading to inflammation and protein degradation. As the muscle becomes fatigued, 

the ATP synthesis provided by the aerobic pathway alone is no longer sufficient to meet the 

cell’s energy demands and the anaerobic pathway is re-stimulated. By-products of the 

anaerobic pathway include lactate (Lac), Pi, and H
+
 ions, both of which have detrimental effects 

on the force generating capacities of the cell. As [H
+
] increases, the pH of the cell drops 

decreasing Ca
2+

 sensitivity and Ca
2+

 resorption in the SR. Increased [Lac] was for a long time 

considered the primary instigator of fatigue, yet more recent studies indicate that the 

concentrations reached during exercise (< 30 mMol) are far below the threshold for force 

depression (50 mMol), Ca
2+

 release inhibition and Ca
2+

 sensitivity depression
74

. As lactate 

diffuses through the cell membrane, a diffusion gradient is created draws cellular water (H2O) 

into the extracellular matrix. This leads to a drop in intracellular [H2O] and an associated 

inhibition of force production. In short exercise this may be negligible, yet in prolonged exercise 

global dehydration frequently onsets and the muscular drainage process is exacerbated. In 

summary, the metabolic component of fatigue can be seen as the driving mechanic of the 

process. The compounds stemming from the metabolisation and rephosphorylation of ATP, 

mainly H
+
, Mg

2+
, ROS, and Pi, result in the processes ultimately leading to contraction failure 

through various interrelated pathways
75

. 
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2.3.5. MYOSIN CROSS BRIDGE LATCHING AND CYCLING 

 

As already touched upon in the preceding section, the final possible site of fatigue is within the 

latching and cycling of the myosin cross bridges (CB) themselves. The process can be 

differentiated into a number of phases starting with the Ca
2+

 induced shift of the troponin 

complex, MHC latching (weak phase), ATP hydrolysis and power stroke, ATP binding (strong 

phase) and MHC release, Ca
2+

 regulation and movement of the troponin complex. Fatigue has 

been found to slow CB cycling, reduce maximal CB latching force and reduce myofibrillar Ca
2+

 

sensitivity therefore decreasing the number of open binding sites for a given amount of Ca
2+ 8

. 

Discretely, Ca
2+

 sensitivity is reduced by an increase in [Pi], [ROS]
76

 or [H
+
]. Increases in [Pi] have 

also been associated with reduction in latching force, which may lead to a “slipping” of the 

myosin heads, making each cycle less effective. Increases of [ADP] have been shown to 

negatively impact CB cycling velocity, although the precise mechanisms are not yet fully 

elucidated. 

  

2.3.6. METHODS USED TO DETERMINE PERIPHERAL FATIGUE IN TRAIL RUNNING 

 

During trail running, the determination of peripheral fatigue is difficult due to limited available 

non-invasive methodologies. In order to stabilise and maximise motor drive, techniques such as 

evoked contractions and twitch trains of different lengths are frequently employed. The main 

muscle groups investigated are the knee extensors and the plantar flexors, both of which have 

shown force depression post trail running in function of exercise duration
77–81

. Stimulation is 

generally applied either neutrally (PNS) or percutaneously (Estim) at various frequencies. Millet 

et al.
79

 for instance employed PNS at stimulation frequencies of 20 and 80 Hz after a 30 km trail 

run (E/D = 27) in the knee extensors. Different frequencies were use in stimulation to try and 

identify low frequency fatigue (LFF), which is associated with peripheral alterations. They 

observed a depression in peak-to-peak amplitude of the electromyographic response to PNS 

(M-wave), and a decrease in mechanical twitch response amplitude and contraction time, 

although no changes were reported in the rate of twitch force development or relaxation. Both 
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stimulation frequencies exhibited a similar decline in evoked force, leading to an unchanged 

frequency ratio
79

. Recently, LFF was observed for the first time in trail running
77

, yet this 

remains a novel occurrence and was recorded after a 161 km race, so might represent a special 

case. Similar methodologies have been used following mountain ultra marathons
77

 and 

prolonged trails
81

. Apart from these non-invasive strategies, it is feasible to recover tissue 

samples using muscle biopsies, although there is currently no published study examining tissue 

samples in trail runners. This would allow protein analysis, although the samples are probably 

prone to streaming due to the damaging nature of the exercise and there is an impact of the 

procedure itself
82,83

. Similar peripheral fatigue has also been extensively investigated in 

prolonged flat running
84–86

 of similar duration, although it has been suggested that the greater 

eccentric strain encountered during trail running evokes a specific type of peripheral 

fatigue
77,87

. Further investigation is warranted to determine whether or not trail running results 

in a different peripheral fatigue profile than other types of endurance exercise. 

 

2.4. CENTRAL FATIGUE 

 

In the preceding, the peripheral processes leading to a reduction in force production have been 

discussed on the prerogative that the neuronal drive arriving at the neuro-muscular junction 

(NMJ) remains maximal throughout exercise. In real-life exercise this has been shown to be only 

feasible in short maximal contractions and in most cases there are myriad factors that influence 

the synchronisation and amplitude of the activation pattern that reaches the NMJ
15,88

. A 

progressive reduction in motor neural drive through prolonged or repeated contractions has 

been termed central fatigue
89

. Simply put, during a fatigue task, as the muscle becomes 

fatigued evoked force output decreases at a lower rate than the voluntary force output 

(Fig. 2.4). 
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Figure 2.4: Voluntary and evoked torque decline. The upper panel depicts a strong voluntary torque 

decline, while the evoked torque stays almost stable. In the bottom panel, participants were exhorted to 

produce a “super effort” at the end of each contraction. This led to a more pronounced decline of evoked 

force. Reproduced from Bigland-Ritchie, 1981
90

 

 

This leads to the conclusion that the motor drive to the muscles is not invariably maximal, but is 

reduced progressively while fatigue occurs. While physiologists concur that both peripheral and 

central factors are involved in fatigue processes, there has been prolonged discussion over 

which site is the limiting factor. Although demonstrations of central fatigue reach back as far as 

the end of the 19
th

 century
15

, quantification has proven difficult due to limited tools available. A 

number of techniques were pioneered in the mid 1950s which allowed a first ingression on the 

topic of central fatigue, namely the interpolated twitch technique and the first insights on 

surface electromyography (sEMG) recordings and force production
22,30

. This revitalised the 

topic by enabling qualitative assessment of the motor drive, and subsequently studies on 

central fatigue gained momentum. In the same period, Bigland and Lippold
22

 first deployed fine 

wire EMG and the identification and analysis of single motor unit action potentials (MUAPs) 

became feasible. Contrary to what is assumed in peripheral fatigue models, motor drive is not 

invariably maximal and is subject to modulation depending on various factors. This has already 

been demonstrated in some of the early experiments on fatigue (Fig. 2.5). 
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Figure 2.5: Finger flexion moment in a submaximal task before and after a cognitive task (lecturing). 

Note that the decline in moment is stronger and onset is earlier post-intervention, although the cognitive 

intervention did not involve any muscle-fatiguing task. Reproduced from Mosso, 1904
15

 

 

One of the most accessible indications that motor drive is not a fixed constant are the 

adaptations engendered through training in both regulatory domains; firing frequency and 

recruitment rate. Additionally training has been demonstrated to increase synchronicity and 

optimise global motor strategies. Results include contra-lateral increases of force in untrained 

muscle
91,92

, increases in EMG surface potential following training (although this is often not 

considered a valid indicator
36

), increases in the ability to sustain high discharge 

frequencies
93

,increase of doublet discharges
94

and an increase in rate of force development
94,95

. 

Neither muscle cross sectional area
96

 nor maximal evocable force
97,98

 increase as much as 

maximal voluntary force. Also, imagined training has also been reported to increase MVC in the 

abductor digiti minimi, although there is no peripheral training component involved
99

. A 

number of studies suggest that increases in task force are also produced by the optimisation of 

motor patterns
100,101

 

 

2.4.1. CHARACTERISTICS AND INVESTIGATION METHODS IN CENTRAL FATIGUE 

 

The original twitch interpolation method introduced by Merton
30

 relies on the decline of a 

superimposed twitch with increasing activation of the muscle compared to a control twitch at 

rest. This method has been refined over the past and nowadays twitches of under 0.1% of 
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maximal force can be resolved.
102,103

 Different muscles have been identified to have different 

maximal voluntary activation ratios
104,105

 and no muscle has been recorded to achieve 100% 

voluntary activation. A number of methodological constraints must be respected when relying 

on voluntary activation measurement and this has led to an unreliable reputation of the 

measure which is not fully justified
7
. More precisely, central fatigue manifests itself mainly as a 

drop in the firing rate of the recruited motor units
106,107

, but motor unit recruitment is also 

reduced
108,109

. This leads to the observation of decreased voluntary activation
107,110,111

 and is 

accompanied by an increase in force fluctuation
20,112

 leading to a higher control cost and 

interfering with accurate task performance. The site of origin for the decline in motor drive is 

not completely determined to-date, and it seems probable that there are interactions between 

multiple sites at multiple levels that contribute to down-regulation of firing rates and 

recruitment. 

 

2.4.2.  THE MUSCLE WISDOM HYPOTHESIS – SPINAL FACTORS 

 

The “muscle wisdom” hypothesis relies on a matching of motor drive decline to changes in the 

mechanical properties of the contractile element. As the contractile element is activated, 

tetanic fusion frequency drops as muscle relaxation speed increases. Therefore, an inhibition of 

motor drive would engender no loss of force and represents an energy optimisation strategy. 

When the regulative mechanisms become overloaded, regulation precision is compromised and 

stronger down-regulation could lead to a drop in force production
95

. Research on the auto-

regulative mechanisms on a spinal level abounded in the years following the proposal of this 

hypothesis and identified numerous pathways that may be involved. Generally, any of the 

afferents from muscle receptors could potentially be implicated, especially those modulating 

drive through spinal reflex inhibition loops such as the spindle-driven Ia afferents and Golgi-

driven Ib afferents. Also, the group III and IV afferents, which respond to numerous changes in 

the muscle including biochemical parameters, muscle stretch, pressure, contraction and 

nociceptor activation
113–117

, play a role in motor drive regulation
109,118

. Finally there may be a 

form of pre-synaptic inhibition leading to inhibited motor drive as a function of metabolite 
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accumulation and local concentration changes. While there is varying evidence for implication 

of each of these mechanisms, so far no consensus has been reached as to how precisely this 

reflexive regulation functions. A number of weaknesses of the muscle wisdom hypothesis have 

surfaced which make this form of regulation rather improbable. For instance, changes in the 

mechanical properties of the contractile unit through temperature changes
95,119

 and unit 

length
120,121

 did not have the predicted impact on firing rates. Furthermore, interactions 

between firing rate and muscle relaxation time are different in intermittent
122

 and 

submaximal
123,124

 contractions, suggesting that reflexory regulation is task dependent. Although 

the “muscle wisdom” hypothesis itself seems unlikely at this point in time, the research 

conducted has illuminated various reflexory contributors to central fatigue. 

 

2.4.3. CONTRIBUTORS TO CENTRAL FATIGUE – SUPRASPINAL FACTORS 

 

Supraspinal factors play an integral role in central fatigue and are defined as a reduction in 

output from the motor cortex. Transcranial magnetic stimulation (TMS) has recently provided 

the research landscape with a ready tool to investigate the effects stimulation of the motor 

cortex itself in fatigued states
125–127

. Briefly, supraspinal stimulation leads to a lower evoked 

force than peripheral stimulation in a fatigued state, indicating that drive modulation occurs 

not only at spinal sites, but also at supraspinal sites. Supraspinal motor drive modulation is a 

rather contemporary research field and the discrete mechanisms driving central fatigue are yet 

to be concurred upon
89

. At the moment, supraspinal factors are presumed to be mechanisms 

either acting upon the motor cortex and reducing its drive output (“supra” motor cortical), or 

factors reducing the sensitivity of the corticospinal neurons to excitation. Mechanisms of the 

second group would insinuate that a given drive output from the motor cortex would result in 

less motor drive in the corticospinal neurons
7
. As changes in the conduction properties of 

corticospinal motor neurons have been observed during voluntary contractions
128,129

, this could 

be a likely interaction. On the other hand, supra motor cortical effects such as 

neurotransmission factors, motor cortical inhibition and afference modulation
130,131

 have also 

been observed in animal models and it is difficult to distinguish between the two with the 



T h e  A e t i o l o g y  o f  F a t i g u e  | 36 

 

methods available at the moment. Supraspinal factors in central fatigue are hence not yet fully 

elucidated in their causality, yet their existence is unequivocally accepted
132

. 

  

2.4.4. THE “CENTRAL FATIGUE HYPOTHESIS” – NEUROTRANSMISSION FACTORS 

 

First proposed in 1987, the “central fatigue hypothesis” takes a different approach on the origin 

of a decline in motor drive
133

. Regrouping a series of changes in blood composition and the 

blood brain barrier (BBB), the theory basically hinges upon certain amino acids gaining 

unregulated access to the brain and initiating a series of up-regulations which ultimately lead to 

decreased motor drive. More precisely, the large neutral amino acid (LNAA) transporter located 

in the BBB is, during normal operation, almost saturated with transporting branched chain 

amino acids (BCAAs) into the brain circuit. During exercise, blood BCAA concentration drops 

and competing aromatic amino acids can use the free valences of the LNAA-transporter. 

Additionally, in the case of Tryptophan (TRP), the mobilisation of free fatty acids from the 

adipose tissue during exercise leads to an increase in unbound plasma TRP (f-TRP), that 

increases the probability of transport
134

. Three compounds especially are transported, TRP, 

Phenylalanine (PHE), and Tyrosine (TYR)
135

. Both TRP and TYR are the limiting factors in the 

catalysed synthesis pathway of serotonin (5-HT)
135

. Increases in 5-HT are associated with 

feelings of tiredness and lethargy and have been suggested to decrease motor drive and motor 

unit recruitment
136

. Since its proposition, the “central fatigue hypothesis” has been modified to 

include mediators in the form of changes in the noradrenaline (NA) and dopamine (DA) 

systems. Both systems are central to motivation, memory, reward and attention processes and 

are dependent on TYR for synthesis. Evidence for this hypothesis stems mainly from the animal 

domain, although several studies have attempted to modify central fatigue (or at least 5-HT 

concentration) through supplementation or pharmacological intervention in humans. In a 2007 

review, Meeusen and Watson conclude that, “although the rationale for a central fatigue 

hypothesis is solid, the largely inconsistent findings of many manipulation studies make it 

difficult to draw any conclusions regarding the role of central neurotransmission in the fatigue 

process.”
137
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Figure 2.6: Contributors to central fatigue. Replicated from Ranieri and Lazzaro, 2012
132

 

 

2.4.5. METHODS USED TO DETERMINE CENTRAL FATIGUE IN TRAIL RUNNING 

 

Central fatigue in trail running seems to be a main focal point, due to some of the more recent 

observations concerning peripheral fatigue. The main components of central fatigue are 

recapitulated above in figure 2.6. Recently, neuromuscular fatigue in the knee extensors has for 

instance been measured after running races of 10
67

, 20
67

, 30
79

 42
138,139

, 50
140

, 55
80

, 65
81

 and 

166
77

 km distance. Lab studies also assessed neuromuscular fatigue after 2, 5 and 24 hour 

treadmill runs
84–86,141

, 45 mins of simulated trail running
142

 and 90 mins of intermittent versus 

continuous running
143

. Earlier studies have assessed similar variables, and have recently been 

reviewed
87

. Although there is a need for more studies examining force loss in prolonged 

exercise of over 450 mins, it seems that knee extensor force loss increases with increasing 

exercise duration in a non-linear fashion, levelling off around the 8 hour mark (Fig. 2.7). 
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Figure 2.7: Knee extensor strength loss in running endurance tasks of different duration. Reproduced 

from Millet, 2011
25

 

 

In addition to the generic decreases in knee extensor force production, indicating that a form of 

fatigue has been induced, a number of indexes were assessed that are conclusive as to the 

origins of the measured decrease. Primarily, contractile element properties were examined 

using the M-wave, mechanical twitch properties and peripheral stimulation at high and low 

frequencies as presented earlier. Also, although suffering from high inter-individual variability, 

an accumulation of indirect plasma markers of muscle damage has been reported after 

prolonged running, supporting the presented data on peripheral alterations
80,85,140,144–147

. In 

summary, peripheral alterations are present, but – following the logic of Marcora et al.
27,148

 that 

muscle contractions during running are not at a high percentage of maximal force – should not 

inherently lead to termination of exercise. 

 

Therefore central activation changes must play a focal role in prolonged running exercise. Using 

the interpolated twitch technique and M-wave normalised EMG, it has been shown that central 

factors play a large role in muscle fatigue
79,81,84,85,141,143

. As previously discussed, central fatigue 

spans several areas, the biochemical, spinal and supraspinal. On the biochemical plane, Ohta et 

al.
149

 reported increases in serum serotonin and f-TYR levels, suggesting a form of biochemically 
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driven inhibition. Another potential pathway could be the reduction of cerebral blood flow due 

to a reduction in arterial CO2 and the competition for oxygen
150

. Spinal mechanisms have been 

investigated using the Hoffmann reflex (H-reflex), a monosynaptic spinal reflectory action 

induced through electrical stimulation of the Ia afferents, which has been observed to be 

depressed following prolonged (90 mins) running exercise
143

. Furthermore, Millet and Lepers
87

 

observed that post-exercise voluntary activation depression was more pronounced in 

modalities involving muscle damage such as running, therefore maybe implicating nociceptor 

and metaboreceptor afferences in voluntary drive regulation. This indicates that group III and IV 

spinal inhibition or pre-synaptic inhibition is present. Supraspinal changes are therefore likely 

not only to be driven by biochemical changes, but also by afferent muscular feedback
89

. With 

the advent of TMS, the contribution of supraspinal and spinal factors can be better 

differentiated. Momentarily there is still a lack of data in this field but Ross et al.
139

, for 

instance, reported that post-marathon motor evoked potential is depressed by as much as 67%, 

indicating a substantial central component. 

 

2.5. FATIGUE IN PROLONGED EXERCISE 

 

To recapitulate, the theories presented above mainly address the question of how fatigue 

develops in an isometrically contracted muscle performing maximally. This model is chosen as it 

limits possible confounders such as motion artefacts, changes in sarcomere overlap and shifts 

on the force-velocity relationship. In these well-controlled models already, the precise 

mechanisms of fatigue are hard to unequivocally determine. When regarding an endurance 

exercise paradigm using dynamic and intermittent contractions, the system complexity 

increases substantially. More components are involved and have an impact on the 

development of fatigue such as substrate availability, the lungs, and the heart. This leads to 

more intricate model designs and adds complexity to the interpretation of results. Therefore a 

number of theories have been advanced as to how fatigue develops in endurance exercise. 

These shall be briefly presented in the following. 
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2.5.1. THE “CATASTROPHE THEORY” 

 

The explanation reaching back the furthest in time was probably coined by AV Hill
16,21

 based on 

the experiments of Fletcher and Hopkins
151

, storing frog muscles in oxygenated and anaerobic 

environments. Simply put, an accumulation of peripheral metabolites was observed in both 

sets, yet reached a maximum more quickly in the anaerobic set, leading to the idea that 

exercise was terminated due to metabolite accumulation. Simplifying and fast forwarding the 

history of fatigue models, it can be stated that this concept was transferred to the integrative 

human system principally by Edwards
152

 and termed the “catastrophe theory” in the 1980s. 

“Catastrophe” in this case describes the depletion of ATP leading ultimately to the inability to 

contract. Historically, the catastrophe model centres on a limit in oxygen transmission due to a 

bottleneck in cardiac output (CO). CO is thought to plateau due to insufficient oxygen supply to 

the myocardium, thus mitigating the heart’s potential to contract and increase CO. This leads to 

an upper limit in oxygen supply to the muscles and therefore in aerobic ATP resynthesis. 

Anaerobic glycolysis becomes more strongly implicated in resynthesis and metabolites build up, 

leading to the mechanisms discussed in the section covering peripheral fatigue (Section 2.3). 

The original model interpreted lactate accumulation as a peripheral governor that hindered the 

muscle from continuing to contract, thus avoiding muscle rigor onset (Fig. 2.8). 

 



T h e  A e t i o l o g y  o f  F a t i g u e  | 41 

 

 

Figure 2.8: The catastrophe model of fatigue. Limits in CO bottleneck coronary blood flow leading to a 

plateau in cardiac output. Due to the limited oxygen supply, muscles switch to anaerobic glycolysis and 

metabolites accumulate leading to fatigue and ultimately task failure. Reproduced from Noakes and 

Gibson, 2004
153

 

 

In contrast to the fatigue models discussed in the first section, this model is more applicable to 

endurance exercise, as it takes into account the different limiting factors and cross-references 

various physiological systems (coronary and muscular). Since the original invocation, a number 

of modifications have been made to adjust the concept to new findings, yet the basic paradigm 

remains unchanged. In some form or another an accumulation
154

 or depletion of a substrate
155

 

often induced by a lack of oxygen, leads to the breakdown or bottlenecking of a system 

resulting in exercise termination (fatigue). 

  

2.5.2. TELEO-ANTICIPATORY MODELS (CGM) 

 

Probably the earliest model to challenge the catastrophe model of fatigue was the central 

governor model (CGM) proposed by Noakes at the turn of the 21
st

 century
24,156,157

. Instead of 
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seeing the disruption of peripheral homeostasis in the muscle as the reason for exercise 

termination, Noakes argues for a protective mechanism that terminates exercise before 

catastrophe occurs – the “central governor”. While its authors trace the CGM theory back to 

A.V. Hill, various modifications have been made to the original model due to the strong degree 

of circumspection raised through scepticism encountered in the scientific community
158–161

. In 

general, the CGM model attempts to resolve a number of contradictions and omissions in the 

catastrophe model using a cerebral feed-forward regulation mechanism. As catastrophic failure 

and the onset of skeletal muscle rigor have to date seldom been observed as a result of 

exercise, the notion of a governor of some form persists. This governor must therefore in some 

way effect a limitation of ATP depletion in order to maintain homeostasis and to hinder the 

onset of muscle rigor (Fig. 2.9).  

 

 

Figure 2.9: Glycogen and ATP concentrations during prolonged exercise. Note that although glycogen 

concentrations fall drastically, ATP remains at a stable concentration. Thus there is some form of exercise 

intensity regulation active to stabilise ATP concentrations. Reproduced from Febbraio and Dancey, 

1999
162

. 

 

As presented in the peripheral fatigue section, it is now known that lactate accumulation plays 

only a minimal role in contraction impediment. This has also been confirmed in patients with 

McArdle’s syndrome
163–165

. Hence the original idea proposed by Hill that lactate accumulation 

prevents the onset of rigor through creating an acidic environment that prevented contraction 
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loses the regulative element which must in some form be replaced. The CGM advances that the 

regulator is not a peripheral impediment of contraction, but resides in the subconscious brain 

and interfaces afferent neural drive from exercising muscles, cardiac and pulmonary systems, 

blood oxygenation receptors, metaboreceptors, motivational factors and task-dependant 

factors in a conglomerate fashion to determine motor drive. This conceptualisation allows for 

explanation of exercise regulation and termination, especially in varying environments and with 

varying motivational status and pharmaceutical intervention
153,161

. Also it explains the 

reduction in motor drive that has frequently been observed as fatigue develops. In Table 2.10, a 

recent comparison is made between the catastrophe model and the CGM model concerning 

some specific cases. 

 

 

Table 2.10: Differences of the CGM and catastrophe model in specific circumstances. Retrieved from 

Noakes, 2012
156

. 

  

The central governor model is diagrammatically presented in figure 2.11 with the causality 

chain for motor drive generation. Especially during endurance exercise, evidence is 

accumulating that fatigue is a composite process which is actively regulated to optimise results. 

For instance, the beneficial effects of external focus strategies and cortically functioning 

pharmaceutics would also not be explainable
156,166,167

. Changes in motivation could not 

generate more performance. Pacing strategies such as negative splits (increasing speed 

throughout the race) or final bursts would not be possible using an only peripherally regulated 

model
29,168

 although it has been argued both that pacing does not take place in high-level 

sporting competitions
169

 and that pacing involves conscious decision making and therefore 

exercise planning cannot take place solely in the subconscious
170–172

. Effectively, in the CGM, 
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many of the factors discussed in the section on central fatigue are present. The CG is populated 

with information from various sites throughout the system via afferences (Group III and IV) and 

biochemical environment changes, which provide sufficient information to determine the 

general status. From this status report a subconscious teleoanticipatory function is assumed, in 

which the CG matches the current snapshot to an optimal performance template and, 

depending on their congruence subconsciously modulates motor drive and a conscious 

representation of fatigue. Based on the consciousness of fatigue, the model additionally allows 

for a voluntary modulation of motor drive, which can be impacted by external factors such as 

motivation boosts or psychological strategies.  

 

 

Figure 2.11: The Central Governor model. Replicated from Marcora, 2008
173

 

 

Since the inception of the CGM, numerous studies have been conducted to clarify if the CGM 

predictions hold true and to examine in more detail the causative links between the different 

components of the model. For instance, Marcora et al. have introduced Brehm’s general 

motivation theory to the model, explaining why motor drive is ultimately limited by 

motivation
27,174

, and has proposed a dissociation of the sensation of fatigue from the 

afferences
175

. Nybo et al. conducted a series of very interesting experiments on hyperthermia 
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and exercise, determining that exercise in hot environments is terminated earlier
176,177

, while 

rate of perceived exertion (RPE) is consistently higher
178

 and is accompanied by cerebral 

perturbations
179,180

. These results support the concept that both motor drive and RPE are 

afference-mediated. Amann et al.
181

 impeded afferences pharmaceutically and reported higher 

peripheral fatigue markers and improved performance, suggesting that there is a negative 

feedback loop linking afference and motor drive
181–183

. Additionally, they have demonstrated a 

link between muscle afferents and cardiovascular control
184

, supporting the presence of an 

interconnected regulation mechanism. In the most recent iteration of the teleo-anticipatory 

model that started out with the CGM, fatigue is defined as an emotion rather than a 

physiological process that leads to the regulation of exercise
185,186

. 

 

2.5.3. THE FLUSH MODEL 

 

The CGM model represented the first rift from peripheral driven models to a more integrative 

view, yet more recent models have been proposed that are better adapted to trail running. 

Recently, Millet
25

 proposed an RPE-regulated fatigue model that combines peripheral, central 

and motivational factors in a framework specifically reflecting the constraints of prolonged 

endurance exercise (> 4 hours). Studies on ultra-long endurance have evidenced that both 

central and neuromuscular alterations play a role in fatigue aetiology in this task type.  
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Figure 2.12: The Flush model. The Flush model consists of 4 main components: 1) The “ball-cock”, 2) the 

filling rate, 3) the waste pipe and 4) the security reserve. Reproduced from Millet, 2011
25

 

 

Drawing from the data presented in the fatigue sections and the observation that runners tend 

to adopt a positive racing strategy in which running speed declines throughout the effort, the 

Flush model depicts the accumulation of fatigue and the regulation of pace. In coherence with 

other teleoanticipatory regulative models, the flush model assumes that the athlete 

endeavours to keep the rate of perceived exertion (RPE) under a maximal tolerable level until 

the end of the exercise. Effectively the model consists of 4 main parts: the regulator (“ball-

cock”), the filling rate and waste pipe, and the security reserve (Fig. 2.12). The “ball-cock” 

regulator represents the RPE, which can increase or decrease depending on the water 

accumulation level. The athlete plans exercise in a feed-forward manner in order to avoid the 

RPE (1) mounting into the security reserve (4). If RPE does reach this level, it results in 

premature exercise cessation or catastrophic failure. RPE rises in function of the filling rate (2) 

and the evacuation rate (3). The filling rate is determined by the energy output of the athlete 

based on his iterative planning of the race
187,188

. The planning is iterative as it relies on both 

feed-forward and feed-back mechanisms, each of which aims towards constant optimisation. 
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Feedback mechanisms can be mainly considered the group III and IV afferences described in the 

central fatigue section (Section 4), indirectly projecting to the anterior cingulate cortex
28,189

. 

Feed-forward mechanisms rely on the experience of the athlete and his planning 

competence
188

. Both of these process groups can be affected by environmental factors such as 

hypoxia
183,190

, hypoglycaemia
191

 or heat
177,192

, leading to adapted exercise planning and/or cut-

off. The other determinant of RPE rise is the evacuation rate (3). The most obvious process to 

increase evacuation rate is rest, yet there are other possibilities such as nutritional strategies, 

carbohydrate mouthwash
193

, cooling mouthwash
194

, and dissociation strategies
167

. The initial 

RPE level is dictated by preceding circumstances such as sleep deprivation
195,196

, mental 

fatigue
174

 and pre-fatigue, thus feed-forward influencing the initial filling rate. One interesting 

characteristic of the flush model is that the RPE sensor can become deregulated through 

pharmaceutical manipulation (amphetamines etc.
181,197

) leading to a transgression into the 

security reserve.  

 

The flush model, at this given moment in time, represents what the author would regard as the 

most applied fatigue model for trail running. While certainly it rests a representation and 

detailed mechanics are not represented, the model supplies an idea of why prolonged 

endurance is terminated and how exercise is optimised to avoid termination yet produce the 

best performance. To better understand fatigue in trail running though, it is also necessary to 

take into account the exercise-induced muscle damage occurring on the downhill segments of 

the courses. 

 

2.6. ECCENTRIC MUSCLE DAMAGE 

 

Exercise-induced muscle damage (EIMD) is frequently encountered during daily life and is, as 

such, a well-described phenomenon. Since the first description of EIMD
198

 in the early 20
th

 

century, a growing body of literature has sought to describe and find cures for EIMD. The 

induction of muscle damage is mainly effectuated through lengthening (eccentric) contractions 

of the muscle. This occurs quite frequently during everyday life, for instance when descending a 
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staircase, or setting something down. When regarding the classical force-velocity relationship 

of a muscle fibre, the eccentric contraction is capable of maintaining around 1.4 times the 

maximal isometric force output. The exact molecular mechanics of the eccentric contraction are 

not fully clarified, but it is assumed that there is a form of slippage between the heavy myosin 

chains (MHC) and the actin filaments, leading to partial and then complete rupture of the 

connections. Therefore a very slow cycling of myosin cross bridges (CB) is necessary in all 

muscle contractions, independent of type. This cycling speed is minimal during eccentric 

contractions, leading to a higher maximal force. Higher maximal muscle forces also lead to 

higher forces on the structural components of the myofibril, which can lead to eccentric-

induced muscle damage.  

 

Exercise-induced muscle damage is already a topic in flat running, as in the elongation phase of 

the stretch-shortening cycle an eccentric contraction is effectuated. This is all the more 

pertinent in trail running, as the large downhill component exacerbates the eccentric section of 

the contraction, leading to a greater strain on the muscle.  

 

2.6.1. MUSCLE FATIGUE AND MUSCLE DAMAGE 

 

Within this framework it is important to understand the difference between peripheral muscle 

fatigue and muscle damage. While, at first glance, these two processes may seem similar, there 

are distinct differences in the mechanics and functional parameters. As a very general 

distinction, the aetiology is different, EIMD being induced through mechanical myofibrillar 

stress, while peripheral fatigue is mainly caused by metabolite accumulation in some form. 

EIMD creates structural damage that is generally visible using light microscopy. While both 

insults incur lysosomal activity, there is a marked bimodal inflammatory response following 

EIMD. While these differences can be observed experimentally, the easiest way to tell the two 

processes apart is through the functional consequences.  
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2.6.1.1. FUNCTIONAL CONSEQUENCES OF EIMD 

 

The occurrence of EIMD leads to a number of functional consequences that hamper 

performance and, depending on severity, quality of life. Common effects are swelling, reduced 

range of motion, pain and reduced force capacity
199–202

. A recent review has proposed 

discrimination into mild (< 20%), moderate (20 to 50%) and severe (> 50%) muscle damage 

depending on initial force depression
203

. Protocols examining downhill running, as it is 

encountered in trail races, generally induced mild to moderate muscle damage
204–206

. Maximal 

force can remain reduced for 48 (mild) to 168 (severe) hours. Following exercise, the muscle 

develops tenderness to palpitation and pressure, referred to as delayed onset muscle soreness 

(DOMS), as it onsets around 6 to 8 hours after exercise cessation and peaks between 48 and 72 

hours post-exercise, depending on the severity
207,208

. Swelling and the associated decrease in 

range of motion and increase in passive stiffness peaks at around 24 hours post-exercise and 

declines at around 4 days, again depending on the severity of the damage
208

. This is 

accompanied by increases in bulk proxy damage markers such as creatine kinase (CK), lactate 

dehydrogenase (LDH) and plasma interleukin-6 (Il-6). In figure 2.13, an overview of the different 

phases that damaged muscles go through is presented. As is evident through the first two 

phase blocks, metabolic fatigue declines rather quickly (hours), while muscle damage persists 

over a longer period (days). The generation and response mechanisms to EIMD will be further 

iterated in the following. 
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Figure 2.13: Functional consequences of exercise-induced muscle damage. Replicated from Paulsen, 

2012
203

 

 

2.6.2. MECHANISMS OF EIMD 

 

As previously described, EIMD is characterised by a bimodal response, which, in effect, is 

related to the different kinetics of the main processes underlying the functional changes. In the 

following, these processes shall be briefly presented. 

 

2.6.2.1. MECHANICAL INDUCTION 

Eccentric contractions result in a high strain on the structural components of the contractile 

unit, which leads to morphological damage. The high strain developed by eccentric contractions 

can be traced to two interrelated properties. Firstly, the contractile unit is capable of producing 
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the highest forces during eccentric contractions. Secondly, the recruitment profile is different, 

fewer units being recruited for the same amount of force production
209

. In combination, this 

suggests that a high contractile load is placed on a relatively small number of fibres, 

independent of the absolute load amount
209

. While there is still insufficient and contradictory 

evidence, the “sarcomere popping theory” proposed by Morgan
210

 is accepted by general 

consensus to explain the ensuing muscle damage. Morgan
210

 proposed that sarcomere 

lengthening is non-uniform and that certain sarcomeres stretch more than others. Given the 

serial nature of the myofibril and the force-length relationship of the sarcomere
211

 (Fig. 2.14), 

this could explain muscle damage apparition in relatively focused areas as it is seen using light 

microscopy on tissue samples. As the myofibril lengthens non-uniformly, the stronger 

sarcomeres move toward more optimal striation spacing, while the weaker sarcomeres are 

progressively disadvantaged. As force production declines in the weaker sarcomeres and they 

elongate, the load is transferred to the passive structures. In Morgan’s terminology, the 

sarcomeres have “popped”
212

. There is some indirect evidence at hand that supports this 

concept, namely muscle damage being exacerbated at longer sarcomere lengths
213,214

 and 

higher contraction speeds
201

. Light microscope analysis of damaged muscle tissue indicates that 

EIMD is frequently “localised” – i.e. not homogenously distributed throughout the sample but 

focused on certain areas
215

. This supports the idea that the passive structures carrying the load 

can rupture, leading to a transverse propagation of damage due to the higher loads incurred on 

surrounding structures. After an intense bout of eccentric exercise, a disruption of up to 50% of 

the muscle volume has been reported
216

. Direct evidence for the sarcomere popping theory 

was presented by Talbot and Morgan
217

, although this was not reproduced in follow-up 

experiments by Telley et al.
218

 who longitudinally labeled rabbit psoas muscle and observed the 

changes in striation distance during eccentric contractions. Although irregular striation 

distances were recorded, there was no evidence of sarcomere popping, potentially due to 

insufficient stretch and activation
219

 . 
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.  

Figure 2.14: The force-length relationship of the sarcomere. Based upon Gordon et al. 1966
211

 and 

modified to include an approximation of the passive structural component. 

 

Following EIMD induction, there is a distinct loss of desmin staining
220–222220,223

 in damaged 

muscle samples. Desmin is a protein related to structural integrity and is localised near the z-

disk in sarcomeres. The loss of desmin supports the light microscope imagery, in which the bulk 

of the damage is seen around the z-disk
224

. The mechanical disruption documented to 

accompany EIMD through electron micrographs
216,224–226

 (Fig. 2.15) and in some cases T2 

magnetic resonance imaging
227–229

 ensues an inflammatory reaction and remodelling process 

that can take multiple weeks to complete. 

 

Figure 2.15: Electron micrographs from control and exercise samples (1h post exercise). Reproduced 

from Paulsen et al., 2009
226
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2.6.2.2. BIOCHEMICAL RESPONSE TO EIMD 

 

Since the first description of EIMD in the early 20
th

 century, a large body of literature has been 

developed leading to a well-founded, if not complete, understanding of the inflammation 

processes involved. Several complete and recent reviews
199,203,207,230–233

 already cover this topic, 

therefore only an outline will be given here. Generally, the aetiology of EIMD is considered 

bimodal
208,234,235

 and can be divided into a number of intertwined responses following the 

mechanical induction: disturbance of Ca
2+

 homeostasis, inflammatory response and stress 

protein signalling. The sum of these responses ultimately leads to protein degradation and 

subsequent restructuring of the damaged tissue. Mechanical disruption of the muscle 

membrane and the sarcoplasmic reticulum (SR) increases permeability and leads to a severe 

Ca
2+

 leakage
221,236–238

 into the intracellular space. In addition to the leakage, intracellular Ca
2+

 is 

further augmented by the activation of strain-dependent trans-membrane calcium channels
221

. 

This sudden influx of calcium is probably the first signal for an inflammation response triggering 

Ca
2+

 dependent degradation pathways, notably calpains
69,222,239

. Calpains are a neutral protease 

that is mainly concentrated around the z-disk in human muscles. Activated by Ca
2+

, calpains 

have been observed to play a role in the cleaving of cytostructural proteins such as desmin. As 

mentioned earlier, desmin plays a large role in the inter-myofibrillar connections and its 

suppression post-damage is considered one of the hallmarks of EIMD. On the other hand, 

neither actin nor myosin are targets for calpain degradation and are not suppressed post-

damage. This may explain why muscle damage is primarily localised around the z-disks
69

. 

Calpains are also implicated in type III cell death (necrosis) signalling, and has been suspected of 

playing a key role in lysosome rupture
240

. Following calpain activation, a lysosomal reaction 

ensues and frequent ruptures of the lysosomal membranes lead to necrosis followed by an 

invasion of fluid, neutrophiles, leukocytes and macrophages
208,239,241,242

 – a classical 

inflammatory response. Without delving deeper into the mechanisms and kinetics of the 

inflammation processes, the rise in bulk plasma markers such as inflammatory cytokines can be 

retraced to this phase in the biochemical response to EIMD. The inflammation response also 
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engenders an influx of xanthine oxidase, which is associated with the initiation of a myokine 

regulation cascade and a concurrent increase of reactive oxygen species (ROS)
243–246

. 

Finally, EIMD has been linked to increases in heat shock protein (HSP) expression
226,247,248

, a 

highly-conserved, ubiquitous stress response pathway. HSPs were originally discovered in 

drosophila following heat shock
249

 and have since been found to be active in most mammalian 

species
250

. The heat stress protein family consists of a large number of HSP, which are classified 

according to their molecular weight. Each class or family of HSPs has specific functions to which 

they are adapted and expressed accordingly. For instance, small HSPs specialise in the inhibition 

of protein aggregation, HSP60 and 70 families assist in protein folding and refolding, and the 

HSP90 family stabilises substrate proteins
251

. Eccentric muscle damage is mainly associated with 

changes in HSP27 and the inducible form of HSP72
252

. HSP27 belongs to the family of “small 

heat shock proteins” and is believed to play a role in maintaining the cytostructure. Inducible 

HSP72 is a rather generic HSP and is implicated in numerous processes. HSPs are considered 

molecular chaperones in that they assist with protein folding and prevent protein 

agglomeration by facilitating cross-membrane transport of damaged proteins to the 

proteasome. Heat shock proteins have been found to respond to a large bandwidth of different 

stressors such as heat
253–255

, infection and inflammation
251

, exercise
256

, hypoxia
257,258

, ROS
257,259

, 

and mechanical stress
260

. When comparing the inducing stressors to the mechanisms involved 

in muscle damage, it already becomes apparent that HSP expression will be up-regulated 

almost throughout the whole process of EIMD.    

 

2.6.2.3. POST-RECOVERY ADAPTATIONS TO A SINGLE BOUT OF EIMD 

 

Three basic concepts underlie the adaptations to EIMD: Structural adaptations, biochemical 

adaptations and neural changes. Generally it is accepted that regeneration is driven by the 

migration of satellite cells into the damaged regions
261–263

, which then differentiate and either 

form new myofibres or fuse with existing ones
203,264

. A number of researchers have proposed 

that EIMD induces structural remodelling favouring longitudinal sarcogenesis, thus lengthening 

the muscle fibre and making it less susceptible to muscle damage at similar contraction 
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lengths
265–268

. This is indirectly supported through the common observation that there is a shift 

in the optimal contraction angle toward longer lengths. In a series of studies, Yu et al. 
265

 

directly observed the pattern of sarcogenesis, which conforms well to the proposed hypothesis. 

A further structural hypothesis proposes that weaker fibres are restructured or eliminated 

following EIMD, reducing non-uniformity and thereby sarcomere popping
269,270

. Considering 

biochemical changes in the muscle, it is mainly believed that neutrophil invasion is accelerated 

and HSP response is ameliorated
226,271,272

. An elevated kinetic of the HSP response could 

already reduce the amount of structural damage limiting Ca
2+

 leakage and the ensuing 

destructive cascade
215,226,252,271,273

. Additionally raised HSP levels post exercise have a beneficial 

effect on protein synthesis, increasing synthesis rate by assisting in the folding and rapidly 

chaperoning the synthesised proteins
274,275

. An blunted neutrophil response may be related to 

less lysosomal membrane rupture and reduces the magnitude of the inflammation reaction
272

. 

As a final point, it is often proposed that activation strategies of the damaged muscles are 

modified to spread the load of the contraction over more motor units, thus reducing the 

individual strain
198,276,277

. This can lead to less sarcomere popping and limits the muscle damage 

in its very genesis. 

 

2.6.3. THE REPEATED BOUT EFFECT 

 

As the induction of EIMD in a muscle engenders adaptations on a number of levels, it seems 

probable that a subsequent bout of the same stimulus will result in relatively less EIMD. This 

adaptation effect is well documented in the literature
271,278–281

, yet the underlying mechanisms 

are unclear. Recent reviews
203,207,231

 conclude that multiple mechanisms are probably 

implicated which account for all system levels differentiated above. Functionally, the reduction 

in EIMD is dependent on the initial training status
282

, the magnitude of the first 

stimulus
202,276,283,284

 and the inter-bout delay before the second stimulus
284–286

. Functional 

adaptations include reduced force depression and accelerated recovery, reduced pain 

sensation, increased range of motion, and reduced swelling.  
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Figure 2.16: Force reduction in two bouts of downhill running exercise interspersed by two weeks rest. 

Adapted from Eston et al., 2000
287

 

 

Studies investigating downhill running
279,287–289

 generally record a force depression of < 20% of 

maximal isometric force in the knee extensors in the initial bout, classifying them as “mild” 

inducers of EIMD. The employed downhill running protocols, however, were not of a prolonged 

type (< 1 h) and not at very high intensity (< 80% V�O2max). Force returned to baseline values 

within 5 days post-exercise in most cases. In a second bout of exercise, force depression is 

limited and recuperation accelerated (Fig. 2.16). Also, muscle soreness is attenuated and 

plasma CK response is mitigated (Fig. 2.17). This indicates that downhill running, even at a low 

intensity over a relatively short time, leads to the same type of adaptations as moderate or 

severe EIMD, albeit in lesser form. 

 

 

Figure 2.17: Muscle soreness and CK profile in two bouts of downhill running exercise interspersed with 

six weeks rest. Replicated from Byrnes et al., 1985
279
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2.7. CONCLUSION: FATIGUE IN TRAIL RUNNING   

 

Although trail running is still a rather recent field of investigation, a number of studies have 

examined the effects of trail running on neuromuscular fatigue. As presented in the 

introductory section, most of the published investigations examined changes in parameters 

brought about through a competitive trail race. The studies examining trail races are not 

exclusively focussed on fatigue in trail running, but often on the impact of a competition on 

nutrition
290–295

 and hydration status
296–298

, hyponatremia
299–303

, and running kinematics
304

. An 

intervention approach is less common, notably being employed by some studies on vitamin 

supplementation and hydration
80,305–307

 and some studies on cooling as a recovery strategy 

using trail running (field and simulated) as an exercise model
142,308,309

. That being said, the bulk 

of studies on trail running do revolve around fatigue or neuromuscular damage markers. It has 

been proposed that trail running elicits greater changes in neuromuscular alteration that 

running comparable distances with no elevation changes
77,85

, indicating that trail running 

indeed results in a specific fatigue profile. Specifically, the studies conducted by Millet et 

al.
77,79,81,87

 and Gauche et al.
80

 enable the conception of a voluntary force profile induced by 

trails of different distances in the knee extensors (see Fig. 2.7). The plateau of force depression 

after around 8 hours exercise duration and the moderate loss relative to the required 

locomotive muscle force indicate that central fatigue is involved to a certain extent. Supporting 

this, while muscle damage markers are frequently elevated following trail running, they remain 

less potent than after other intense eccentric exercise types
203,259,310,311

. Furthermore, using 

peripheral nerve stimulation and evoked contractions, there has been little difference recorded 

in high and low frequency fatigue
77,79

 and mechanical twitch properties
77,79

. Regarding central 

fatigue, not a whole lot more is known about trail running. Peripheral twitch techniques 

indicate that there is a reduction in voluntary activation of around 10-20%
77,79

. Furthermore, in 

a study comparing damaging and non-damaging prolonged exercise, Millet and Lepers
87

 

observed that post-exercise voluntary activation depression was more pronounced in the 

damaging modalities. To date, no studies using TMS in trail running have been published, 

therefore it is mainly speculative as to what the supraspinal contribution to fatigue is. In 
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conclusion, there is a distinct lack of literature on the characteristics of trail-specific fatigue, 

although the fatigue profile is distinctly different from running in the flat. 
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3.1. GENERAL INVESTIGATION DESIGN 

 

Before presenting the experimental studies conducted, the overlying rationale shall be 

depicted, followed by a more detailed overview of the employed methodology. As trail running 

is a rather new field of study, there is still a distinct lack of descriptive literature on the subject. 

Therefore, before embarking on intervention-based investigation, it was paramount to develop 

a descriptive basis to ensure that the intervention models effectively targeted the subject 

matter. To this end, classical fatigue indices following a trail run were assessed in different 

populations. The results allowed for the designation of an appropriate population for further 

studies. After this descriptive information was compiled, an investigation model was developed 

and tested for reproducibility. In the intervention-based section, the focus was placed on 

during-effort and pre-effort strategies that could improve performance and recovery. As a 

during-effort strategy, the effects of lower limb compression garments on performance and 

fatigue indexes were evaluated using the prior validated intervention model. In a final study, a 

completely laboratory-based intervention study was conducted on passive heat exposure as a 

pre-race strategy of minimising exercise-induced muscle damage. During these studies, a 

number of common techniques were used, which shall be elaborated in the following. 

 

3.1.1. SUBJECTS 

In all studies barring the final study on muscle damage, a population of experienced male trail 

runners from 20 to 55 years of age was investigated. Several minimal requirements for 

participation in the studies were established, which included > 50 km
.
wk

-1
 training in the 

preceding 3 months, > 2 years trail running experience, no smoking, no history of any lower 

limb muscle-skeletal injuries in the past year, no history of coronary or pulmonary disease, no 

type of regular medication or supplementation, etc. For the final study on heat exposure, a less 

trained cohort was desired in order to maximise muscle damage and training effects. Therefore, 

the population sourced from university Health Science students was subject to quite different 

criteria. Students were required to have no experience in any sport involving eccentric 

contractions of the lower limb, no history of heat sickness or heat conditioning, no lower limb 
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muscle-skeletal injures in the past year, no intake of regular medication or supplementation 

and no history of pulmonary or coronary disease. Additionally, a regular alcohol intake of > 5 

standard drinks per week or smoking in the past year were considered distinct exclusion 

criteria. Subject characteristics throughout the trail studies (masters excluded) were similar, 

averaging to a mean age of 33.4 ± 4 years, a weight of 71.7 ± 6 kg, a height of 178.9 ± 5 cm and 

a V� O2max of 59.7 ± 7 mL
.
min

-1.
kg

-1
. Respectively, with no significant differences in groups, 

subjects for the heat study averaged an age of 27.1 ± 4 years, weighed 69.2 ± 11 kg, were 

174.1 ± 8 cm tall and displayed an average V� O2max of 48.8 ± 9 mL
.
min

-1.
kg

-1
. 

 

3.2. METABOLIC RESPONSES 

3.2.1.  MAXIMAL OXYGEN CONSUMPTION AND VENTILATORY THRESHOLD 

 

Maximal oxygen uptake (V� O2max) is considered the single best 

indicator of aerobic and cardiovascular fitness, which plays an 

important role in trail running performance. Conceptually, the 

assessment of oxygen consumption relies on gas volume and 

component analysis and is effectuated by collecting and 

analysing fractions of the expired gas. This type of measurement 

was pioneered by Douglas in 1911 by collecting expired gases in 

sealed canvas bags and has remained the golden standard of 

respiratory exchange measurement for over a century
1,2

. Due to 

convenience and certain constraints in using the Douglas bag 

method (notably the intermittency of the method and 

subsequent determination of V� O2peak instead of V� O2max), computerised systems known as 

metabolic carts now frequently replace the original method (see image above). These systems 

rely on the same principles and analyse samples either on a breath-by-breath basis or temporal 

basis using a mixing chamber. All systems used during the presented studies (Cosmed K4 B2, 

Rome, Italy; Medgraphics Ultima, Norfolk, UK) used breath cycle detection, which results in a 
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higher resolution measurement but increases susceptibility to artefacts. By analysing volume 

and expired gas fractions, the metabolic cart allows assessment of: 

 

- Minute ventilation (V� e): the volume of air that is expired in 1 minute in standard 

temperature and pressure (STP). Values in males range from 5 to 8 L
.
min

-1
 at rest to over 

100 L
.
min

-1
 during heavy exercise

3
. 

- Oxygen consumption (V� O2): the volume of O2 that is consumed during 1 minute, 

calculated reversely by assessing the difference of inspired and expired O2 fraction and 

multiplying with the minute ventilation (STP). 

- Carbon dioxide elimination (V� CO2): the amount of carbon dioxide produced during 1 

minute of exercise, assessed from in/out fraction differences and the Ve. 

- Respiratory exchange ratio (RER): the ratio of V� CO2 / V� O2 which is used as a rough 

measure of the main energy repletion processes
4
. An RER of < 0.7 is associated with fat 

oxidation, 0.7 < RER < 1 defines mixed metabolisation of carbohydrates and fats while 

1 < RER designates a pure carbohydrate-driven metabolism
5–7

. 

 

The determination of maximal oxygen uptake was conducted using an incremental step 

protocol in which work output of the subject was continually increased until volitional 

exhaustion
8–11

. As there is an influence of testing modality on V� O2max, especially in trained 

subjects, the exercise modality is generally chosen to reflect the subject matter
12

. In most of the 

presented studies, testing was therefore conducted on a treadmill at a 4% gradient to simulate 

variant environmental conditions and wind resistance
13

. In the first descriptive study, since a 

comparison between young and master athletes was to be made, an ergometer test was opted 

for as this is less susceptible to age-dependent differences in musculoskeletal stiffness. Initial 

speed and increment duration varied between studies and was generally chosen to ensure that 

the test would be terminated in less than 20 minutes. Subsequent analysis of the V� O2 data 

entailed smoothing with moving averages and identification of the highest 30 s average from 

the data set once a plateau (V� O2 time slope < 0.05 L
.
min

-1
)
14

 during the last 30 s in V� O2 had 
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been reached. Further criteria were an RER of greater than 1.1 and a heart rate above 90% of 

the age-predicted maximum
15

. 

 

The ventilatory thresholds (VT1 and VT2) were determined using the ventilatory equivalent 

breakpoint method pioneered by Wasserman
16,17

. These points of disproportionate increase in 

V� O2 are considered important indicators of aerobic fitness
18

. The first ventilatory threshold was 

defined as the first increase in the V� e / V� O2 equivalent that is not proportional to the increase in 

the V� e / CO2 equivalent and corresponds to the onset of HCO3
-
 buffering of lactic acid 

production
19

. This is often interpreted as the point at which aerobic mechanisms alone can no 

longer sustain the necessary ATP concentration to continue the effort. The second ventilatory 

threshold (VT2) is reached at a high work intensity at which blood lactate accumulation 

increases sharply and the clearance mechanisms are overwhelmed. In an attempt to buffer 

acidosis, hyperventilation is induced, which leads to a substantial increase in both ventilatory 

equivalents
19,20

. 

 

The ventilatory equivalent method used in the presented studies relies on the graphical 

determination of breakpoints in the V� e / CO2 to V� e / O2 graph. As this determination can vary 

between interlocutors, analysis was in all cases completed by two experienced parties 

(blinded), and in case of a substantial disagreement a third party was invited. The values 

determined for VT1 & VT2 were then transferred into the temporal domain and the 

corresponding heart rate and speed or power output was noted. 

 

3.2.2. HEART RATE 

 

Throughout the presented studies, HR was recorded using Polar or Garmin heart rate monitors 

that function using a chest-based sensor which telemetrically transferred the data real-time to 

a wrist-based recording unit. These devices have been validated in comparison to more 

sophisticated ECG units and are frequently used in the literature to monitor HR during 

exercise
21

. Data collection commenced generally at least 15 min before begin of exercise and 
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the subjects autonomously set markers at exercise initiation and cession. After collection data 

was transferred to a computer for analysis. Marker positions were verified and the data cut and 

filtered to correspond to the investigated exercise segment and eliminate any potential 

transmission defects. Using the maximal heart rate (HR) determined during incremental 

exercise along with the HR corresponding to VT1 and VT2, exercise intensity could be 

discriminated into moderate, heavy, and severe exercise, using guidelines defined elsewhere
22

.  

 

3.2.3. LOCOMOTION EFFICIENCY 

 

As stated earlier, V� O2max is considered a reliable indicator of aerobic fitness, yet it does not 

correlate well with running performance, as maximal oxygen uptake is only one component in a 

complex weave of processes that result in running performance. One further important 

indicator of performance is locomotion efficiency
23,24

, defined as the amount of mechanical 

work that can be completed at a given oxygen consumption. Locomotion efficiency is a 

compound measure that represents system properties on a number of levels including gross 

motor coordination, activation and contractile properties, burst synchronisation, mechanical 

properties of the muscle-tendon unit, substrate availability and feedback loop optimisation
25,26

. 

As locomotion efficiency can already be seen as an integrative measure of sorts, it is not 

surprising that it correlates well with running performance
27,28

. There are a number of ways to 

calculate locomotion efficiency, two of the most common being known as gross efficiency (GE) 

and delta efficiency (DE). Both rely on a similar design, in which the subject completes an 

exercise similar to the target modality for around 5 to 10 minutes after a metabolic steady state 

has been attained, while respiratory exchange is consistently monitored. Gross efficiency is 

calculated as the quotient of external work rate and internal energy consumption, in this case 

estimated from oxygen consumption and respiratory exchange ratio
29

. Delta efficiency on the 

other hand is calculated from a series of gross efficiencies which is subjected to linear 

regression analysis. Delta efficiency is often considered the most robust method of determining 

running economy
30

. To summarise: 
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3.2.4. BLOOD LACTATE CONCENTRATION 

 

Probably the most historical of fatigue indexes, lactate analysis has 

been in existence since the very beginning of fatigue studies. Most 

of the modern hand-held analysers are based on reflectance 

photometry or amperometric techniques, both of which show good 

correlation with classical laboratory methods
31,32

. In the following 

studies, blood was sampled from the earlobe into a self-vacuuming 

Lactate Pro (ARKRAY, Kyoto, Japan) device, which had been 

calibrated prior to use (see image to the right). Operating 

temperatures were respected and results were returned by the 

amperometric-based unit within 60 seconds. The Lactate Pro was 

shielded from excessive temperature changes (e.g. direct sunlight) 

throughout each study. 

 

3.2.5. NEAR INFRA-RED SPECTROSCOPY 

 

Investigating the muscular oxygen consumption and the oxygenation of the blood can be very 

informative regarding the energy demands of the region of interest (ROI). Recently, it has 

become popular to use near infra-red spectroscopy (NIRS) to elucidate these values. NIRS relies 

on the chromophoric properties of haemoglobin (Hb), which change between its oxygen-free 

(HHb) and oxygen-bound state (HbO2). Simply speaking, a NIRS system consists of an emitter 

that emits low-energy photons, which are recorded again by a detector. Placing both emitter 

and detector on the skin, different tissue depths are probed by varying the inter-optode 
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distance (IOD). Deep-penetrating photons are prone to increased scattering and absorption, 

while shallow protons tend to leave the ROI before being detected. Therefore, the mean 

photon path is a curved shape, penetrating roughly half the depth of the IOD
33,34

. Once the IOD 

exceeds roughly 5 cm, the signal becomes too weak and is eclipsed by noise, therefore limiting 

NIRS penetration depth. This behaviour is described by an equation derived from the modified 

Beer-Lambert law: 

∆
 =  ∆$!% � & � !'( 

In this, ∆
 represents a change in concentration of the chromophore, ∆$! is the change in 

optical density, % is the chromophore extinction coefficient, & is the inter-optode distance and 

the !'( is the differential pathlength factor which accounts for tissue-induced scattering. By 

using two wavelengths which correspond to an elevated extinction coefficients in either deoxy- 

or oxy- haemoglobin, a relatively robust assessment of changes in components can be made 

using a set of linear equations
35

. 

 

The Portamon system used in the presented studies uses a single compound detector and 3 

emitters (IOD: 30, 35, 40 mm). This results in penetration depths of 1 to 2 cm. The wavelengths 

used are 760 and 850 nm, which are some of the commonly encountered frequencies in 

commercial spectroscopes and correspond with elevated extinction coefficients in deoxy- and 

oxy- haemoglobin, respectively. Both wavelengths are also absorbed by oxy- and deoxy- 

myoglobin, which exerts a confounding influence
36,37

, but do not seem to negatively impact the 

measurement of muscular V� O2 consumption (mV� O2) and blood flow (BF)
38

. While NIRS gives 

conclusive information on HbO2 and HHb concentrations, the assessment of mV� O2 and BF 

requires an occlusion of some sort (venous or arterial) to control blood influx. In the presented 

case, a venous occlusion was elicited at 70mmHg and the early time derivatives of total Hb 

were analysed to divulge blood flow. Muscular V� O2 consumption was regarded as the time 

derivate of HHb. Occlusions were duplicated in each testing session with the subjects sitting in a 

reclined position with their legs stretched out. The NIRS was attached and marked over the 

muscle belly of the M. Vastus Lateralis (VL), around 15 to 20 cm above the patella. Before 
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commencing measurement, the system was securely attached and shielded from external light. 

The duplicate occlusions were separated by 2 minutes rest and only the first 20 seconds of 

occlusion time were analysed, while the BF influx was still relatively linear. 

 

3.3. PSYCHOLOGICAL PARAMETERS 

3.3.1.  RATE OF PERCEIVED EXERTION 

 

While there are a plethora of objective markers to describe exercise intensity, it is also possible 

to quantify effort through the individual perception of the subject. Borg devised a scale of a 

“rate of perceived exertion”, which has remained in popular use over the past 40 years
39,40

. 

Interestingly, RPE in well-trained subjects correlates well with more objective indices of 

exercise intensity
41,42

. In the presented studies, RPE was collected in order to give conclusive 

information on how the subject assessed the exercise. The original Borg scale ranging from 6 to 

20 was used for in-exercise assessment using a visual scale detailing both numeric and 

expressive gradients for subjects to gesture-indicate their perceived exertion: 6 anchors for 

“very, very light” and 20 anchors for “very, very hard”.  

 

3.4. MUSCULAR FUNCTION 

3.4.1. MAXIMAL VOLUNTARY ISOMETRIC CONTRACTION 

 

The golden standard measurement for neuromuscular fatigue, if adhering to the definition of 

fatigue as a “loss in maximal force generating capacity”, is the maximal voluntary isometric 

contraction (MVIC)
43

. In the presented studies, the main muscle group of interest was the 

Quadriceps Femoris muscle group (QF), consisting of the M. Rectus Femoris, M. Vastus 

Lateralis, M. Vastus Medialis and M. Vastus Intermedius. Together with the triceps surae 

muscle groups, these muscles provide the main propulsive force during running
44

 and are 

classically tested for fatigue during and after running
45–47

. The QF is a rather large and 

superficial muscle group, therefore absolute effects are more pronounced and the muscle is 

easily accessible for surface electromyography, superficial stimulation or tissue sampling. 



E x p e r i m e n t a l  W o r k  | 88 

 

Specific activation is a common everyday task and subjects 

therefore do not need a long training phase to synchronise 

activation patterns
48–50

. Isometric force testing is probably the 

easiest genre of force testing to investigate
51

. While not being fully 

representative of the dynamic contraction encountered in 

locomotion, it simplifies a number of possible confounders. 

Notably, there is less change in muscle length
52–54

 and less skin-

muscle motion, making the collection of EMG data substantially 

easier. 

 

Testing in the presented studies was conducted with an isokinetic 

dynamometer (Biodex System 2 & System 3, NY, USA) into which 

subjects were strapped by use of two cross-shoulder attachment belts and a fixation sling for 

the leg (see image above). A standardised position was adopted by the subjects in which their 

arms were crossed over the chest and the hands gripped the contra-lateral shoulder. The 

dynamometer was then positioned by an experienced operator to ensure that, during 

contraction, the axis of the knee was precisely aligned with the axis of the dynamometer itself. 

A complete leg extension was assigned with a 0° angle and a 90° -flexed leg was assigned as 90°. 

As, depending on segment mass and angle, there is a component of force eschewed by 

counteracting gravity, a correction was made by determining the mass moment at 0° and 90° 

and performing a quasi-linear correction using the rotational circumference of the mass lever. 

Testing was performed at 70° and 90° flexion, depending on the protocol. Subjects were fully 

briefed using standard terminology (“extend the leg as hard and fast as possible!”)
55–57

 and 

completed a warm-up before commencing the three second MVICs. The warm-up consisted of 

20 contractions (1 s contraction, 1 s rest) at 50% MVIC followed by 3 ramp contractions over 

3 seconds to 70% MVIC. Three minutes rest were given before subjects commenced MVIC 

testing. During MVIC, subjects were continuously verbally motivated and their position was 

closely monitored by the operator to foreclose any torsional motion of the pelvis or use of the 
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arms to enhance force production. Moment [Nm] was captured at an acquisition rate of 100 Hz 

and saved for further analysis. 

 

3.4.2. PERCUTANEOUS ELECTRIC STIMULATION 

 

Peripheral electrical stimulation is useful in elucidating the difference between maximal 

voluntary contraction, and maximal evoked contraction, and allows assessment of a voluntary 

activation (VA) ratio using a number of methods
58,59

. Peripheral stimulation can be applied 

either percutaneously by attaching large electrodes directly on the proximal and distal ends of 

the muscle (Estim), or as neuromuscular stimulation, by stimulating the alimenting α motor 

neurones, which then in turn activate the muscle (peripheral nerve stimulation, PNS). Both 

methods were employed during the presented studies using a Digitimer DS7A (Welwyn Garden 

City, England) rectangular pulse generator and shall be further elaborated upon after describing 

the common principles. Peripheral stimulation relies on an electrical pulse that traverses the 

epidermal layer and innervates the tissue underneath. By modulating the amount, shape, 

duration, frequency and intensity of the invoked pulses, the muscle response can be changed. 

The pulses used in the presented studies were 400 V and rectangular in shape with a duration 

of 200 µs. For twitch elicitation, a 100 Hz doublet profile was chosen
60

, as this provides a good 

compromise between twitch amplitude and distinction and subject discomfort (which ensues 

performance decrease
61

). Other studies have employed single twitches or short pulse trains, yet 

results from an unpublished pilot study indicated that twitch amplitude gains were less 

pronounced and offset by a distinct increase in subject discomfort at more than 5 sequential 

twitches. Intensity calibration technique varied, depending on the technique used. Following 

data collection, voluntary activation was estimated using the interpolated twitch technique 

(ITT)
58

 by contrasting the twitch amplitudes
62

. 

)* %� = +1 − -.����	/����� �0	�
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Neural stimulation has the benefit that it incorporates the neuromuscular junction into the 

assessed circuit and aliments the muscle with a physiological supra-maximal stimulus. 

Placement of the stimulation node was determined by excitability at low intensities and was 

marked to ensure identical placement at each testing session. Calibration of the 100 Hz doublet 

stimulation intensity was assessed using real-time analysis of the M-wave, intensity being 

increased until the M-wave amplitude no longer increased and the H-wave was no longer 

discernible. During MVC testing a 100 Hz doublet was superimposed on the MVIC around 

400 ms after the rate of force development stagnated, i.e. a stable force plateau had been 

reached (> 250 ms)
60

. A control doublet was given 2 seconds after finishing the contraction in 

order to avoid differences in force potentiation between the two conditions. 

Peripheral percutaneous stimulation induces the current straight over the muscle, directly 

effectuating a depolarisation of the muscle membrane and t-tube system. The placement of the 

stimulation nodes is less critical than in neural stimulation and the sustained twitch intensities 

are somewhat higher (400 - 800 mA). However, this type of stimulation conveys a rather large 

component to the antagonists, which have a confounding effect on the estimation of VA
63

. In 

the presented study, two large oval carbon-rubber electrodes (8 x 13 cm) were placed 

proximally and distally over the quadriceps. Stimulation intensity was calibrated by repeatedly 

giving doublets and increasing intensity gradually until either 70% MVIC was obtained, or the 

subject declined further increase
64

. The MVIC protocol consisted of a doublet 5 s before 

contraction onset, a superimposed doublet at 1 s after contraction onset and 3 post-

contraction doublets at 5 s, 10 s and 15 s after contraction end.  

 

3.4.3. SURFACE ELECTROMYOGRAPHY 

 

Surface electromyography (sEMG) is used to quantify onset, duration and amplitude of the 

depolarisation stimulus that is transferred to the muscle. This is usually done by attaching two 

gel-based (silver chloride) electrodes on the muscle body of interest (double differential 

method, inter-electrode distance = 20 mm) and running the signal difference through a series 

of amplifiers and filters to enhance the signal-to-noise ratio. The electrode placement on the 
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three superficial muscles of the QF is well-known and guided mainly by anatomical landmarks, 

although there are some approaches that rely on identification of the motor point (innervation 

zone). For the presented studies, the classical guidelines of Basmajian
65

 and SENIAM
66,67

 were 

followed. In all studies a similar methodology was adapted. Individual subjects’ test-retest 

sessions were at similar times during the day and electrode placement was marked as to render 

it invariable. Subjects were asked not to use skin care products on the areas that were to be 

treated 24 hours pre-session and were asked to arrive well-hydrated. Skin preparation 

consisted of removing dead skin particles (and hair where necessary) with a razor, alcohol 

swabbing, scrubbing with abrasive cream and a final pass with an alcohol swab to ensure 

residue removal. A short moment was respected for the alcohol to fully evaporate before the 

electrodes were placed and connected to the EMG unit (Noraxon TeleMyo 2400T, Scottsdale, USA). 

Skin impedance was verified to be less than 5 kΩ. A mass electrode was attached to a bony 

landmark in the vicinity of the recording site (iliac crest, patella). The signal (pre-amplification: 

common-mode rejection ratio = 100 dB; Z input = 10 GΩ; gain = 600; bandwidth frequency = 

6 - 1600 Hz) was verified to be responsive and noise-free and was sampled at 1000 Hz during 

testing. Post-acquisition, a 50 Hz notch filter was applied along with a 2
nd

 order Butterworth 

band-pass filter from 6 to 500 Hz. The maximal root mean squares (RMS) were calculated by 

squaring the signal, averaging and then calculating the square root within a moving linear 

envelope of 500 ms. The highest RMS was retained for further processing. 

The EMG recordings were also used to determine the properties of the M-wave elicited by the 

doublets given at rest. Key points of interest were the peak-to-peak amplitude (PPA) and peak-

to-peak duration (PPD), which have been shown to closely relate to neuromuscular fatigue
68

. As 

the muscle and alimenting motor neurons grow fatigued, the PPA decreases and PPD increases 

due to a loss in action potential transmission and a decreasing ability to propagate action 

potentials
69

. This can be related to a decrease in blood ammonia concentration
70

, or a reduced 

Na
+
 and K

+
 gradient across the sarcolemma

71
. 
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3.4.4. COUNTER MOVEMENT JUMP 

The counter movement jump (CMJ) allows a simple functional 

assessment of explosive force production of the knee extensors. 

The outcome measure is maximal jumping height from a 

standardised starting position. As this is a functional assessment, it 

is susceptible to changes anywhere in the motor skill, 

neuromuscular and mechanical chain. CMJ height was tested using 

a Bosco Ergojump System, which records flight time of the subject 

and then, using an internal algorithm, displays the jump height. 

While this is less accurate than using a force plate or motion 

capture system, it is highly portable and frequently used in field 

testing
72

. While the loss of accuracy using the Bosco system is 

negligible, large variability of jumping height can be procured by 

non-standard jumping techniques. Therefore initial position and landing technique were closely 

monitored by the operator throughout testing and the subjects were extensively familiarised 

before testing. To initialise the jump, subjects placed their hands on their hips and took a 

shoulder-wide stance with knee and hip angles both at around 150°. After the initial position 

was deemed satisfactory, they were free to initiate the jumping motion at their own choosing. 

The jumping motion consisted of descending the centre of mass as needed and directly jumping 

as high as possible while keeping the hands on the hips (see image above). Landing was to be 

completed on the toes with an almost full leg extension in order to recreate (as close as 

possible) the take-off position without compromising the knees. 

 

3.4.5.  CREATINE KINASE AND LACTATE DEHYDROGENASE 

 

  Throughout studies, both creatine kinase (CK) and lactate dehydrogenase (LDH) were assessed 

in blood that was drawn from the antecubital veins using a vacutainer system. Samples were 

shuffled and directly centrifuged (3000 Rot
.
min

-1
, 4 °C, 10 min) to separate the phases. Plasma 

was then aliquoted and stored at -80 °C until analysis in duplicate (first thaw) for CK and LDH. 
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Analysis was effectuated using an automated Roche Hitachi 911 chemistry analyser (Roche 

Diagnostics Corporation, Indianapolis, USA), which uses IFCC-recommended 

spectrophotometric analysis to determine CK activity. The analysis kits were acquired directly 

from the manufacturer. 

 

3.5.  THERMAL INDEXES 

3.5.1. CORE TEMPERATURE 

 

Core temperature was monitored during passive heating by means of 

a rectal thermometer. During passive heating, participants were 

immersed up to the waist (see image on the right) in hot water 

(41.5 °C) in a hot and humid environment (27 °C and 60% RH). Heart 

rate and RPE were monitored as described earlier and additionally 

core temperature was recorded. Blood pressure was verified every 

5 minutes using a commercial automated blood pressure unit. To 

ensure accurate measurement of temperatures, each thermocouple 

wire was sheathed and then cross checked against a platinum 

resistance thermometer (Leeds & Northrup Type 8926, Minworth, UK) connected to a 

temperature bridge readout (Leeds & Northrup 8078, Minworth, UK) and the temperature-

voltage curve defined for the thermal region of interest. During recording, a two channel 

voltage logger was used with two thermocouples: one for water temperature and one for core 

temperature. Post recording, voltages curves were cross-referenced with the calibration and 

temperatures calculated. 
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4.1. INTRODUCTION 

 

This first descriptive study was designed to investigate and quantify the physiological reactions 

of two populations of different ages to a trail running competition. A young (30 years) and older 

cohort (46 years) were recruited and muscular performance and cycling economy were 

assessed before and in the 3 days following the competition. This collection of data allowed the 

quantification of fatigue parameters that would be of importance in designing the following 

experiments. The trail competition chosen for investigation was a 55 km race with 3000 m 

climb, as in this initial experiment we wanted to choose a common competition distance that 

was long enough to ensure differential effects. The concept governing this study was to 

quantify the differences between age groups in trail to subsequently define age-selection 

criteria for further studies. Changes in both neuromuscular function and gait adaptation 

(running economy) were of interest, as was exercise-intensity distribution during the effort. In 

synthesis, the older cohort achieved similar performance in the race and demonstrated similar 

amounts of fatigue and muscle damage, yet recuperated more slowly than the young cohort. 

Cycling economy was reduced post-race in both groups, and delta economy showed a greater 

depression in the older cohort. From a descriptive perspective, the fatigue encountered was 

more pronounced than in equidistant flat road races and enabled envisioning shorter races as 

valid intervention models. These results also led to the exclusion of older (> 46 years) subjects 

from the following studies, irrespective of training status, as they would potentially distort 

recuperation results. The study was published in late 2010 in the European Journal of Applied 

Physiology. 
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4.2. EFFECTS OF A TRAIL RUNNING COMPETITION ON MUSCULAR PERFORMANCE AND EFFICIENCY IN WELL-

TRAINED YOUNG AND MASTER ATHLETES  

 

 
 

Abstract 

To determine the acute effects of a trail running competition and the age-dependent 

differences between young and master athletes, 23 subjects (10 young (30.5±7 yrs ) 13 master 

(45.9±5.9yrs) participated in a 55km trail running competition. The study was conceived as an 

intervention study compromising pre, post 1h, 24h 48h and 72h measurements. Measurements 

consisted of blood tests, ergometer cycling and MVC contractions. Parameters monitored 

included MVC, Twitch- and M-wave properties, EMG (RMS) of the vastus lateralis, two 

locomotion efficiency calculation and muscle damage markers in the blood (CK, LDH). Results 

indicate post-race increases in CK and LHD, decreases in MVC values (-32% vs. -40% in young 

and master), decrease in EMG, increase in contraction time and concomitant decrease in peak 

twitch values, and a decrease in locomotion efficiency (-4.7% vs. -6.3% in young and master). 

Masters showed greater fatigue and muscle damage than young, but managed to achieve 

similar race times. This study shows that trail runs are more detrimental to muscle function 

than level runs, and gives indication that training may not halt muscle deterioration through 

aging, but can help maintain performance level. 

Keywords: trial running, ultra long distance, master, eccentric contractions, muscle damage, 

efficiency 
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Introduction 

While the popularity of running trail events has increased over the past five years (Hoffman and 

Wegelin 2009), limited information is available concerning the physiological responses of the 

runner occurring during this type of contest. Trails can be defined as ultra long distance runs 

lasting over than 5 hours in duration which are performed in a mountain context involving 

extensive vertical displacement (both uphill and downhill). One of the main performance 

determining components of trail runs is exercise duration. In general, ultra endurance exercises 

such as marathon running, road cycling, or Ironman triathlon are well-known to impose a 

strenuous physical load on the organism, which leads to decreases in locomotion efficiency an 

concomitant substrate changes (Brisswalter et al. 2000 ; Fernström et al. 2007), thermal stress 

and  dehydration (Sharwood et al. 2004), oxidative stress (Nieman et al. 2004; Suzuki et al. 

2006) and, specifically in running events, structural muscle damage (Overgaard et al. 2002; 

Suzuki et al. 2006). The second major characteristic of trail running events is the large 

proportion of eccentric work performed during the downhill segments of the race. Eccentric 

contractions involve force generation in a lengthening muscle, and are known to procure severe 

structural damage on muscles, affecting their contractile and recuperative properties (Nicol et 

al. 2006). Several studies in the last decade have investigated the effects of long distance runs 

performed on level courses. Results show a structural disruption of the sarcomere, an increased 

release of muscular enzymes into the plasma and a substantial impairment in maximal force 

generating capacity (Lepers et al. 2000a ; Millet et al. 2002, 2003; Overgaard et al. 2002; Place 

et al. 2004) or a decrease in post-race locomotion efficiency (Millet et al. 2000, 2009), indicating 

that muscles are progressively damaged during the exercise. Specifically, maximal isometric 

knee extension force has been reported to decrease by 24% after a 30-km running race (Millet 

et al. 2003), by 28% after 5h of treadmill running (Place et al. 2004) and by 30% after a 65-km 

ultra-marathon (Millet et al. 2002). Recently, Millet et al. (2009) reported a 6.2 % decrease in 

running efficiency three weeks after a 8500-km run between Paris and Beijing performed in 161 

days. Gauche et al. (2006) have reported that maximal voluntary force decreased by 37% at the 

end of a prolonged trail run. Repeated eccentric contractions may also affect locomotion 

efficiency, as demonstrated by Braun and Dutto (2003), who observed a decrease of 3.2% in 

running efficiency 48h after a 30-min downhill run. In a similar vein, Moysi et al. (2005) found a 

6% decrease in cycling efficiency after 10 series of 25 repetitions of squats, an eccentric 

exercise. Repeated eccentric contractions, independent of their context, seem to induce a 

decrease in locomotion efficiency, even if efficiency is evaluated in concentrically dominated 

cycling. Based upon the reviewed literature, it was assumed that trail-running races would 

accentuate muscle damage when compared to level running, due to the large proportion of 

eccentric contractions occurring in the successive downhill segments of courses and therefore 

lead to both a decrease in muscular performance and locomotion efficiency. Few studies so far 

have analyzed physiological aspects of trail running. The existing studies mainly focused on the 
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origin of the decline in contraction capacity (e.g.  Miles et al. 2006; Gauche et al. 2006) or on 

pacing strategies during the race (Stearns et al. 2009). To our knowledge, only limited data is 

available on the impact of this type of events on locomotion efficiency (Millet et al. 2000). 

A further characteristic of trail running competitions is the increasing participation of master 

athletes (Hoffman and Wegelin 2009). People who regularly participate in endurance training 

and who try to maintain their physical performance level despite the aging process (Tanaka and 

Seals 2008) are generally considered master athletes. In a competition context, competitors are 

traditionally classified as master athletes when over 40 years of age, the age at which a first 

decline in endurance peak performance is observed (Lepers et al. in press; Sultana et al. 2008; 

Tanaka and Seals 2008). The ageing process induces a great number of structural and functional 

transformations, which lead to an overall decline in physical capacity (Thompson 2009). The 

general ageing of to population procures the need to design strategies which on one hand 

increase functional capacity in older people (e.g. Henwood and Taaffe 2006), and on the other 

enhance the performance of master athletes. Supportively, recent studies have shown that 

master endurance athletes are able to maintain their performance despite structural changes in 

muscle performance or in maximal aerobic power, which are classically associated with aging 

(Lepers et al. in press; Tanaka and Seals 2008; Bieuzen et al. 2009; Louis et al. 2009).  

In this context, the first purpose of our study was to evaluate muscle performance and 

efficiency of runners participating in a long distance trail competition. The second purpose was 

to compare the changes in these parameters between young and master runners competing in 

the same long distance running trail.  

Materials and methods 

Subjects 

Eleven young and 15 well-motivated master athletes volunteered to participate in this study. 

The characteristics of the subjects are shown in table 1. All subjects had to be free from present 

or past neuromuscular and metabolic conditions that could have affected the recorded 

parameters. The subjects had regular training experience in long distance running prior to the 

study (8.4 ± 6.0 yrs for the young vs. 13.3 ± 7.8 yrs for the master runners), and had performed 

a training program of  72.1 ± 25.1 and 74.1 ± 23.6 km/wk for young and masters respectively 

during the 3 months preceding the experiment. The local ethics committee (St Germain en 

Laye, France) reviewed and approved the study before its initiation and all subjects gave their 

informed written consent before participation. 
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Table 1. General characteristics and performance parameters of subjects as: [Means (SD)] 

 Young (n= 10) Master (n=13) 

Age (years) 30.5 (7.0) 45.9 (5.9) 

Height (m) 1.8 (0.0) 1.8 (0.1) 

Weight (kg) 70.6 (5.5) 70.7 (8.1) 

VO2 peak (ml
.-1

min
.
kg

.-1
) 58.8 (6.5) 55.0 (5.8) 

Marathon record (hrs:min) 03:02 (00:26) 02:58 (00:13) 

Time to complete intervention 

(hrs:min) 
06:42 (00:51) 06:51 (00:47) 

 

Experimental procedure  

The study was divided into four phases; preliminary testing and familiarization, pre-testing, trail 

race intervention and post-testing (see figure 1) . During the first phase, subjects were 

familiarized with the various laboratory techniques to be used and preliminary tests were 

performed. During the third phase, subjects had to perform a 55-km trail running race in a 

medium altitude mountain context. During the second and the fourth phases, muscle 

performance and efficiency were analyzed and blood samples were collected. All physiological 

parameters were recorded one day before (pre) and three days after the trail running race 

(post 1h, post 24 h, post 48 h, and post 72 h). 

 

Fig. 1 A schematic representation of the experimental protocol: VO2max  and VT are the 

incremental cycling exercise aimed at determining maximal oxygen uptake and ventilatory 

threshold. CTRL denominates the control cycling exercise, while MVC represents maximal 

voluntary contraction and neuromuscular tests.  

 

 

Preliminary session 

During a preliminary session that took place one month before the experiment, 26 subjects 

(11 young and 15 masters) underwent an incremental cycling test at a self-selected cadence on 
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an electromagnetically braked ergocycle (SRM, Schoberer Rad Messtechnik, Jülich, Welldorf, 

Germany). In accordance with the recommendations of the ethic committee, a cycle ergometer 

protocol was chosen rather than a running protocol. The ergocycle allows subjects to maintain 

a constant power output which is independent of the selected cadence, by automatically 

adjusting torque to angular velocity. This test was performed in compliance with the guidelines 

of the French sport medicine society. The test began with a warm-up lasting 6 min at 100 W, 

after which the power output was increased by 30 W each minute until the subjects were 

exhausted. During this incremental cycling exercise, oxygen uptake (VO2), minute ventilation 

(VE), and respiratory exchange ratio (RER) were continuously measured every 15 s using a 

telemetric system (Cosmed K4b2, Roma, Italy). The criteria used for the determination of 

VO2max were a plateau in VO2 despite an increase in power output, a RER above 1.1, and a heart 

rate (HR) above 90% of the predicted maximal HR (Howley et al. 1995). Maximal oxygen uptake 

(VO2max) was determined as the average of the last three highest VO2 values recorded 

(58.8 ± 6.5 ml/min/kg for the young vs. 55.0 ± 5.8 ml/min/kg for the masters athletes). The 

ventilatory threshold (VT) was determined according to the method described by Wasserman 

et al. (1973). The maximal aerobic power output (MAP) was the highest power output 

completed in 1 min (352.5 ± 41.1 W for the young vs. 347.6 ± 62.9 W for the masters athletes).  

Race conditions 

The running event was a 55-km trail race involving a 6000-m vertical displacement (3000-m up 

and 3000-m down). The starting point and finishing line were at 694-m altitude, and the highest 

point of the race was at 3050 m. Due to the competitive nature of the intervention, each 

subject was well motivated to perform maximally over the distance. From the initial group 

(11 young and 15 masters) only three subjects (one young and two master athletes) did not 

finish the course. Therefore all data presented corresponds to the finalist group (10 young and 

13 master athletes). Physical activity after the race was controlled (walking activities were 

limited and massages were prohibited). Mean race times performed by subjects are shown in 

table 1.  

Maximal isometric force and muscle properties  

Ten minutes after the submaximal cycling exercise, the maximal voluntary isometric force of 

the right knee extensor (KE) muscles was determined using an isometric ergometer chair 

(type: J. Sctnell, Selephon, Germany) connected to a strain gauge (Type: Enertec, schlumberger, 

Villacoublay, France). Subjects were comfortably seated and the strain gauge was securely 

connected to the right ankle. The angle of the right knee was fixed at 100° (0° = knee fully 

extended). Extraneous movement of the upper body was limited by two harnesses enveloping 

the chest and the abdomen. For each testing session, the subjects were asked to perform three 

2-3 s maximal isometric contractions (0 rad
.
s

-1
) of the KE muscles. The subjects were verbally 
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encouraged and the three trials were executed with a 1-min rest period. The best performance 

consecutive to the three trials was selected as the maximal isometric voluntary contraction 

(MVC, in Newton). In addition to MVC, the M-wave of the vastus lateralis was recorded from a 

twitch evoked by an electrical stimulation. Changes of neuromuscular properties were 

evaluated through all testing sessions (Lepers et al. 2000b; Place et al. 2004). Electrical 

stimulation was applied to the femoral nerve of the dominant leg according to the 

methodology previously described by Place et al. (2004). The following parameters of the 

muscular twitch were obtained: (a) peak twitch (Pt), i.e. the highest value of twitch tension 

production and (b) contraction time (Ct), i.e. the time from the origin of the mechanical 

response to Pt.   

EMG recordings 

During the MVC, electrical activity of the vastus lateralis (VL) muscle was monitored using 

bipolar surface electrodes (Blue sensor Q-OO-S, Medicotest SARL, France). The pairs of 

pregelled Ag/AgCl electrodes (interelectrode distance = 20 mm; area of electrode = 50 mm²) 

were applied along the fibers at the height of the the muscle belly, as recommended by the 

SENIAM. A low skin impedance (< 5kΩ) was obtained by abrading and cleaning the area with an 

alcohol wipe. The impedance was subsequently measured with a multimeter (Isotech, IDM 9 N). 

To minimize movement artifacts, the electrodes were secured with surgical tape and cloth 

wrap. A ground electrode was placed on a bony site over the right anterior superior spine of the 

iliac crest. To ensure that the electrodes were precisely at the same place for each testing 

session, the electrode location was marked on the skin with an indelible marker. EMG signals 

were pre-amplified (Mazet Electronique Model, Electronique du Mazet, Mazet Saint-Voy, 

France) close to the detection site (common-mode rejection ratio = 100 dB; Z input = 10 GΩ; 

gain = 600; bandwidth frequency = 6-1,600 Hz). EMG data were sampled at 1000 Hz and 

quantified by using the root mean square (RMS). Maximal RMS EMG of VL muscle was set as 

the maximal 500-ms RMS value found over the 3-second MVC (i.e., 500-ms window width, 1-ms 

overlap) with Origin 6.1 software. During evoked stimulation performed before the MVC, peak-

to-peak amplitude (PPA) and peak-to-peak duration (PPD) of the M-wave were determined for 

the VL muscle. Amplitude was defined as the sum of absolute values for maximum and 

minimum points of the biphasic (one positive and one negative deflection) M-wave. Duration 

was defined as the time from maximum to minimum points of the biphasic M wave. 

Blood markers of muscle damages 

For each evaluations series, 15 ml of blood was collected into vacutainer tubes via antecubetal 

venipuncture. The pre-exercise sample was preceded by a 10 minutes rest period. Once the 

blood sample was taken, tubes were shuffled by turning and placed on ice for 30 s before 

centrifugation (10 min, 3000 T/min, 4°C). The obtained plasma sample was then stored in 
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multiple aliquots (Ependorf type, 500 µl per samples) at -80°C until analyzed for the markers 

described below. All assays were performed in duplicate on first thaw. As a marker of 

sarcolemma disruption, muscle enzymes activity in plasma, creatine kinase (CK) and 

lactodeshydrogensase (LDH) were measured spectrophotometrically using commercially 

available reagents (Roche/Hitachi, Meylan, France).  

Locomotion efficiency 

Subjects were asked to perform a cycling control exercise (CTRL) at a self-selected cadence on 

the same ergocycle as used in the preliminary session. This cycling exercise involved 6 min at 

100 W followed by 10 min at a relative power output corresponding to the ventilatory 

threshold. For each subject and each cycling session, metabolic data were continuously 

recorded to assess the efficiency in cycling. 

Efficiency can be expressed as a ratio between (external) power output and the ensuing energy 

expenditure (EE). Efficiency may, however, be calculated in a variety of ways (Martin et 

al. 2005). In this study, two types of efficiency calculation were employed, gross efficiency (GE), 

and delta efficiency (DE). GE is defined as work rate divided by energy expenditure and 

calculated using the following equation (Gaesser and Brooks 1975): 

 

Gross efficiency (%) = 
���� ���� (�
,� ������)

����� ���������� (��,� ������)
 x 100 

 DE is considered by many to be the most valid estimate of muscular efficiency (Gaesser and 

Brooks 1975; Coyle et al. 1992). DE calculations are based upon a series of work rates which are 

then subjected to linear regression analysis.  

Delta efficiency (%) = 
∆ ���� ���� (�
,� ������)

∆ ����� ���������� (��,� ������)
 x 100 

In order to obtain precise values for work rate utilized in the efficiency calculations, power 

output was assessed from the set work rate and the true cadence as monitored by the SRM 

crank system. EE was obtained from the rate of oxygen uptake, using the equations developed 

by Brouwer (1957). These equations take the substrate utilization into account, by calculating 

the energetic value of oxygen based on the RER value. To minimize a potential influence of the 

VO2 slow component, which might vary between subject groups, the mean EE during the 3
th

 to 

6
th

 minute was used in the calculations of GE and DE. 

Statistical analysis 

All data presented are means ± SD (tables and figures). Each dependent variable was then 

compared between the different testing conditions using a two-way ANOVA with repeated 

measures (period vs group). Newman-Keuls post-hoc tests were applied to determine the 

between-means differences, if the analysis of variance revealed a significant main effect for 
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period or interaction of group x period. For all statistical analysis, a P < 0.05 value was accepted 

as the level of significance. 

 

Results 

Muscular performance  

In all evaluations, MVC values of master athletes were significantly lower than young’s values 

(-1.8 ± 4.6%, see Figure 2). One hour after the intervention (post), maximal isometric strength 

values of knee extensors decreased significantly when compared with pre-race values, in non 

significantly different  proportions for young (-32%) and master athletes (-40%). MVC values for 

young subjects returned to baseline at Post 24h, at which time the MVC reduction in masters 

remained significant (-13.6%). A significant decrease in EMG activity (RMS) during MVC of the 

vastus lateralis (VL) muscle was observed at 1h and 24h post-exercise without any differences 

between groups or periods. Compared with pre-race values, post-exercise MVC RMS values 

decreased in young by -40.2 ± 19% and in masters by -42 ± 19.2%.  

 

Fig. 2 Changes in knee extensors’ maximal isometric strength for young and master athletes 

before (Pre) and 1h (Post), 24h (Post 24), 48h (Post 48) and 72h (Post 72) after the intervention.  

*Significantly different from pre-exercise (P < 0.05); †significantly different from young 

(P < 0.05). 

 

Muscular twitch and M-wave properties 

Before the race, no significant effect of age was observed on peak twitch torque (Pt) or 

contraction time (Ct). One hour after the race, no effect was recorded on Ct or Pt whatever the 

groups. Post 24h, a slower contraction time (Ct) and a lower peak twitch torque (Pt) were 
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recorded in both groups. Compared to pre-race values, Pt decreased by 18.2% in young and by 

23.5% in masters runners at post 24. These alterations in twitch properties returned close to 

pre-test values in young subjects, but remained significant 48h and 72h in masters subjects 

(table 2). 

 

Before the race no significant effect of age was observed on PPA or PPD values of the M-wave 

for VL muscle (table 2). One hour after the race a significant increase in PPD was observed in 

both group and this increase remains significant post 24h but only in masters athletes. 

Furthermore, in masters, PPA values decreased below pre-race values, 48h and 72h after the 

race and no effects were observed in young subjects.   

 

 

Table 2 Twitch and M-wave parameters of the vastus lateralis muscle before (Pre) , 1h (Post), 

24h (Post24), 48h (Post 48) and 72h (Post72) after the race. 

 

 

    

 Variable (Units)  Pre Post Post 24 Post 48 Post 72 

Twitch 

Pt (N)  Young 36 (9) 35 (11) 29 (11)* 34 (9) † 35 (12) † 

 Master 36 (11) 34 (12) 27 (12)* 28 (08)* 29 (12)* 

Ct (ms) Young 63.3 (13.7) 63.4 (10.6) 68.8 (11.2)* 64.7 (9.5) † 66.9 (10.3) † 

 Master 61.3 (15.6) 64.9 (17.4) 71.1 (12.9)* 73.2 (10.8)* 76.2 (12.7)* 

M-

Wave 

PPA (mV) Young 3.5 (1.4) 3.6 (1.6) 3.9 (1.5) 3.4 (1.7) 3.0 (1.4) 

 Master 3.4 (1.5) 3.1 (1.3) 3.1 (1.5) 2.4 (1.4)* 2.3 (0.7)* 

PPD (ms) Young 7.6 (1.5) 9.2 (1.2)* 7.0 (2.2)† 7.0 (2.5) 7.3 (2.8) 

 Master 7.9 (1.5) 9.5 (2.5)* 9.3 (2.8)* 7.8 (2.7) 7.6 (3.3) 

 Mean (SD) values of 10 young and 13 master athletes are shown.    

 

*Significantly different from pre-exercise (P < 0.05); †significantly different from master 

(P < 0.05); 

 

Pt - peak twitch. Ct - contraction time. HRt - half-relaxation time. PPA - peak-to-peak 

amplitude. PPD - peak-to-peak duration 

      

 

 

Blood markers of muscle damages 

Twenty four hours (Post 24h) after the race, the plasma activities of CK and LDH increased 

significantly in comparison to pre-race values, with a greater increase for master subjects. CK 

and LDH values remained significantly elevated at post 48h and post 72h, without any 

difference between groups (Table 3). 
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Table 3. Changes in muscle damage indicating blood markers for young and master athletes before 

(Pre), 24h (Post 24h), 48h (Post 48h) and 72h (Post 72h) after the race. 

 

Variable (Units) Group 
Normal 

range 
Pre Post 24h Post 48h Post 72h 

CK (U/l) Young 50-230 135 (26) 1470 (565)*† 909 (303)* 430 (251)* 

 Master 50-230 138 (107) 1559(593)* 920 (298)* 531 (271)* 

LDH (U/l) Young 120-245 229 (52) 528 (164)* 453 (65)* 410 (65)* 

  Master 120-245 194 (63) 482 (142)* 468 (105)* 473 (165)* 

   

*Significantly different from pre-exercise (P < 0.05); †significantly different from masters (P < 0.05). 

CK - creatine kinase. LDH - lactate dehydrogenase    

 

  

Locomotion efficiency and cycling cadence 

Gross efficiency (GE), delta efficiency (DE) and cadence values are presented table 4.  No 

significant difference in GE, DE or cadence was observed between groups before the race. After 

the race, results indicated a non-group specific, significant decline in GE from post 24h to post 

72h (GE mean decrease in young vs. masters in % of pre-race values: -4.7% vs. -6.3%, 

respectively).  In both groups VE increased post 24h, post 48h and post 72h in comparison to 

pre-test values (VE mean increase in young vs. masters in % of pre-race values: + 11.7 % vs. 

+ 10.1%, respectively).  No significant change in DE was observed in young subjects after the 

race. Par contrary, a significant decrease in DE was recorded in master subjects (DE decrease in 

masters athletes at post 24h, post 48h and post 78h in % of pre-race values: -10.6% ; -10.4% ; 

-1.5%, respectively).  

Post-race cadence was significantly higher in all post-race evaluations for young subjects when 

compared with masters. Results indicate a significant increase in cycling cadence post 24h 

(+ 4.4%), post 48h (+ 10.6%), and post 72h (+ 17%) for young, and only in post 48h (+ 3.9%) and 

post 72h (+ 10.8%) for master athletes.  
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Table 4. Changes in efficiency, ventilation  and cycling cadence for young 

and masters during cycling exercises performed before (Pre), 24h (Post 24), 48h  

(Post 48) and 72h (Post 72) after the race. 

    

Variable (Units)   Pre Post 24 Post 48 Post 72 

GE (bpm) Young 19.6 (2.4) 18.8 (1.5)* 18.2 (2.9) * 19 (2.1)* 

 Master 19.9 (1.3) 19.1 (1.5)* 18 (1.9)* 18.8 (1.7)* 

DE (l.min
-1

) Young 23.1(5) 22.3 (2.6)† 23.4(3.6)† 23.4(5.8)† 

 Master 22.5(2.6) 20.1 (2.4)* 19.9 (3.7)* 20.6 (3.2)* 

VE (l.min
-1

) Young 74 (9) † 81 (12)* † 85 (13)* † 82 (15)* † 

  Master 83 (11) 90(11)* 94 (14)* 90 (14)* 

Cad (rpm) Young 83 (8) 86 (12)* † 92 (15)* † 97 (17)* † 

  Master 82 (9) 80 (8) 85 (10)* 90 (8)* 

Mean (SD) values of 10 young and 13 master athletes are shown.  

*Significantly different from pre-exercise (P < 0.05); †significantly different from  

masters (P < 0.05)      

GE - gross efficiency. DE - delta efficiency VE - minute ventilation. Cad - pedaling 

cadence  

 

 

Discussion  

The objective of the present study was to investigate changes in muscular performance and 

locomotion efficiency in well-trained endurance runners engaged in a trail running competition. 

The participation of two age groups of runners (young vs. masters) allowed us to additionally 

study the effect of aging on the previously enumerated physiological parameters. The main 

results of our study indicate that: (1) post-run muscular performance and locomotion efficiency 

decline while the associated concentrations of muscle damage indicating blood markers rise, 

regardless of age, and (2) there are significant differences between age groups in both muscular 

performance and locomotion efficiency in both pre-race and post-race conditions. Results 

indicate no differences between groups in blood marker concentrations.  

The running event analyzed in this study was a 55-km trail race featuring a 6000-m vertical 

displacement (3000-m up and 3000-m down). The average race time was 06:45 ± 00:45. As 

stated, the main performance components of trail running are exercise duration and vertical 

displacement (uphill and downhill). From this perspective, trail running competitions induce an 

intensive physical work load on the organism. Considering the popularity of trail running and 

the abundance of competitions over the world, it appears important to precisely characterize 

the acute physiological reactions consecutive to such events. One of the most significant 

consequences of the race was a reduction in muscular performance. The recorded data 

manifests a significant decline in maximal force generating capacities in young (-32%) and 
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master athletes (-40%) one hour post-race. This MVC decline is in accordance with data 

previously reported in the literature (Gauche et al. 2006; Millet et al. 2003, 2009). The 

intervention seems to have decreased MVC in a slightly greater magnitude than races on level 

courses (Millet et al. 2009; Millet et al. 2003; Place et al. 2004), whereas one would have to 

adapt for workload for a precise comparison. It is generally accepted, that the eccentric muscle 

contractions occurring in running generate structural muscle damage leading to MVC loss 

(Millet et al. 2002, 2003; Overgaard et al. 2002; Place et al. 2004). After the race (post 24 to 

72h), MVC values progressively returned to their pre-race level. In addition, results indicate a 

significant decrease in VL muscle activity (i.e. RMS values) recorded during MVC performed one 

hour after the race, and persisting until 72h after the race. Further parameters used to 

characterize muscular fatigue included muscular twitch and M-wave properties. Pt decreased 

significantly 24h after the race, accompanied by a concomitant increase in Ct from 24 to 72h 

after the race, albeit only in masters. The main explanation for these perturbations of 

contractile parameters could be an alteration of the excitation-contraction coupling process 

that can be attributed to several mechanisms including, but not limited to, reduced Ca
2+

 release 

from the sarcoplasmic reticulum (Westerblad et al. 1991), a decrease in blood pH and a 

reduced rate or force of crossbridge latching (Metzger et Moss 1990). An increase in Ct after 

the race could also indicate an impairment in type II muscles fibers (i.e. fast contraction fibers) 

which may be compensated for by the more fatigue resistant type I muscle fibers (i.e. slow 

contraction fibers). Twitch muscle properties were unchanged at 1 hour post-race, alterations 

appearing only 24h after the race and later. This phenomenon might suggest that muscle 

fatigue was counterbalanced by potentiation mechanisms occurring immediately after the race 

(Baudry et al. 2005; Shima et al. 2007; Bieuzen et al. 2009). By contrary, PPD was significantly 

reduced immediately after the race (post) and tended to return to basal values 24 to 72h after 

the race. The master group exhibited increased PPA at 24h post-race. As previously described in 

the literature, these increases in M-wave parameters suggest an alteration in muscle 

excitability; probably generated by impairments in neuromuscular propagation due to an 

increase in sarcolemma permeability to sodium, potassium and chloride (Lepers, 2009). These 

results support the assumption of muscle damage development through trail running. The data 

recorded for muscle damage indicating blood markers underscores this observation. A post-

race increase in the plasma activity of muscle enzymes (CK and LDH), which persisted for 

several days after the race (table 3), was recorded. Similarly, Suzuki and al. (2006) reported a 

significant increase in CK and LDH activities in the plasma soon after an Ironman triathlon, 

which remained elevated until one day after the race. Intracellular enzymes such CK and LDH 

indicate muscle injury arising from myofibrillar disruption (Clarkson et al. 1992; Noakes 1987), 

and are classically used to assess the loss of sarcolemmal integrity after strenuous exercises 

(Overgaard et al. 2004). As neither CK or LDH are considered redundant indicators (Warren et 

al. 1999) the analysis was augmented by the acquisition of further physiological variables.  
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As an important determinant of performance in endurance events, locomotion efficiency is 

classically surveyed in athletes in order to evaluate the effects of particular training periods 

(Santalla et al. 2009). It has been reported, that even small increments in cycling efficiency may 

lead to major improvements in endurance (Moseley and Jeukendrup 2001). The efficiency of 

physical work is a measure of the body’s effectiveness in converting chemical energy into 

mechanical energy. Efficiency was here calculated as described in the methods section; the 

quotient of work rate and energy expenditure (Gaesser and Brooks 1975). A decrease in 

locomotion efficiency can therefore be interpreted as either a relative increase in energy 

expenditure, or a relative decrease in work rate. Considering that work rate was kept constant 

in our study, increased energy expenditure remains the only viable option. Recorded values 

show a decline in GE in both groups of athletes after the race, which persisted until 72h post-

race. Although commonly employed, GE has been criticized for its inclusion of energy-delivery 

processes that do not contribute to production of mechanical work in the denominator. 

Therefore, in this study, locomotion efficiency was also evaluated through DE calculation, which 

is considered to be the most valid estimate of muscular efficiency (Gaesser et Brooks 1975; 

Coyle et al. 1992; Mogensen et al. 2006). Interestingly, only DE values determined for master 

athletes at 24, 48 and 72h after the race declined, confirming the increase in energy 

expenditure to ensure a continuous power output. This phenomenon is largely related to a 

decline in muscular performance. In order to produce the same locomotive work as in the pre-

race condition, strategies such as an increase in spatio-temporal recruitment of muscle fibers or 

an increase in cycling cadence, involving a concomitant increase in VE (table 4) could be 

engaged. The attained results provide evidence of an alteration of cycling efficiency in both 

groups tested, whereas the masters group suffered a greater decline.  

The second aim of this study was to analyze age-related effects on muscular performance and 

cycling efficiency after the running trail race by comparing physiological variables recorded in 

young and master athletes. Race completion time did not significantly differ between groups 

(06:42 ± 00:51 vs. 06:51 ± 00:47, for young vs. masters respectively). Despite the structural and 

functional alterations typically observed during the aging process, master athletes were able to 

produce the same level of performance as the young group. This observation confirms the 

realistic possibility of preventing the age-related decline of physical performance through 

physical activity.    

The analysis of muscular performance in the two groups of athletes shows a classical decline in 

maximal force generating capacity in masters (-21,8 ± 4,6%), when compared with young for all 

testing sessions performed before and after the race (Louis et al. 2009; Bieuzen et al. 2009). 

Results additionally indicate a similar decrease in MVC values at one hour post-race in both age 

groups which, in the master subjects only, persisted until 24h after the race, suggesting a 

slower recovery. Based on the results of Coggan et al. (1990), which could be confirmed by 
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Tarpenning et al. in 2004, the global decrease of MVC values in master athletes similar to our 

experimental population can be mainly explained by neural factors, such as muscle recruitment 

and/or specific tension. The twitch analysis based assessment of muscular function seems to 

confirm this hypothesis. This study is the first to present twitch and m-wave data for master 

athletes after a trail running competition. As previously described in studies on long-distance 

exercise induced fatigue in young subjects (e.g. Millet et al. 2002), Pt and Ct parameters 

increased 24 h after the race. The proportions were similar in both groups tested. The increase 

in the mechanical response to twitch persisted several days after the race in masters only, 

suggesting greater muscle damage in this group. Concurrently master PPD values increased 

proportionally to the development in the young group at 1h post-race, and returned to pre-race 

values in all the following testing conditions. By contrary, master PPA values decreased 

significantly from 48 to 72h after the race, while this decline was marginal in young. These 

results indicate that the aging process inevitably accentuated the decline in post-race maximal 

force generating capacity. Despite a similar training status in young and master athletes, the 

values of these parameters show a greater alteration in muscular function (i.e. contractivity and 

excitability) after the race, involving a slower recovery of muscle strength. However, an 

assessment of VL muscle activity supports the speculation that muscle activation was not 

impaired by aging, as MVC RMS values declined in similar proportions between groups after the 

race.  

As depicted in table 3, CK and LDH activity in plasma increased in similar proportions after the 

race, indicating a similar level of muscular deterioration between groups following the trail 

competition. Surprisingly, despite an age-related decline in muscle strength, the competition 

induced reduction of MVC was similar between groups. This might support the idea that regular 

endurance training reinforces active muscles, and therefore limits the structural and functional 

changes classically associated with aging (Lexell 1995).  

Results of this study show an effect of aging on cycling efficiency before and after the running 

race. While GE declined in similar proportions in both groups after the race, DE declined only in 

masters 24, 48 and 72h after the race (table 4). The GE decline in both groups could be mainly 

related to increases in energy-delivery processes that do not contribute to mechanical work. 

Variations in these processes originate through modifications in cycling kinematics (e.g. cycling 

cadence) or muscular contraction patterns (e.g. recruitment of subsidiary muscles, increase in 

antagonistic co-activation) in fatigued muscles and must be considered when regarding the GE 

(Braun and Dutto 2003). The decline of DE in masters could be strongly related to alterations in 

muscular performance, provoking an increase in muscle activity in cycling to produce the same 

external work. Gleeson et al. (1998) suggested that an increase in type II fiber recruitment may 

occur when exercise is performed in a fatigued state. In addition, if force-generating capacity 

was compromised, more motor units would have to be activated to achieve the same sub-



D e s c r i p t i v e  s t u d y  | 115 

 

maximal force output, resulting in a concomitant increase in metabolic cost (Braun and Dutto 

2003). Such an effect could contribute to the significantly higher VE shown in the present study. 

The results demonstrate, that master athletes reached a higher level of fatigue through the 

race, when compared to young athletes. However, the increase in energy-delivery processes 

through aging could be considered as a natural adaptation in master athletes in order to 

maintain performance. 

Conclusion  

The aim of this study was to assess physiological responses to an exhaustive trail running 

competition and to analyze possible differences between young and master athletes. A 55 km 

ultra-endurance event was used as a fatigue-generating intervention. An especially large 

amount of muscular fatigue was generated through the large proportion of eccentric 

contractions occurring during the downhill sections of the race. Results indicate an acute 

fatigue in all subjects (young and masters), which is mainly represented by decreases in muscle 

performance. Despite similar race performances between groups, the extent of decline in 

strength production and locomotion efficiency after the race was greater in master than in 

young athletes, suggesting a greater fatigue-resistance in the young subjects. The results 

attained in this study give indication that regular endurance training cannot halt the age related 

decline in muscle performance, but can help maintain performance level by generating 

adaptive physiological mechanisms and strategies.  
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Chapter 5 

Reproducibility study 
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5.1. INTRODUCTION 

 

After making informed choices on cohort and running distance parameters, a model was 

developed to test future interventions. A new group of trail runners was recruited locally to 

quantify and validate the reproducibility of performance, fatigue and muscle damage 

parameters after three circuits of a 5 km loop course that was marked in the mountains near to 

the laboratory. An outdoor course was chosen in order to avoid the possible caveats of 

simulation and to make the intervention easily adoptable and directly applicable to the study 

matter. Subjects completed the course 4 times in 4 weeks (7 days between runs) and 

parameters were assessed before and for 3 days after each repetition. Results indicate that 

reproducibility parameters are not compromised significantly when compared to laboratory-

based reproducibility studies. The first repetition of the course resulted in significantly different 

values in a number of variables, indicating that at least one familiarisation bout is of paramount 

importance. For the following three repetitions, performance, MVC and CMJ demonstrated 

high to very high reproducibility. There was however significant variation in CK and lactate 

analysis, making these parameters unsuitable for investigating small effect sizes. The study was 

recently accepted for publication in the Journal of Science and Medicine in Sport and is currently 

in press. 
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5.2. REPRODUCIBILITY OF PERFORMANCE AND FATIGUE IN TRAIL RUNNING 

 

 

Abstract 

Objective. This study aimed to test the reproducibility of running performance, neuromuscular 

fatigue markers and indirect muscle damage indicators in a field-based trail time-trial. Design. 

Running performance and changes in classical physiological parameters were analysed in 11 

experienced trail runners before and in the days following four bouts of outdoor trail running 

(15.6 km), 7 days apart. Methods. Heart rate, running time and lactate concentration were 

monitored in each running bout. Maximal voluntary contraction torque (MVC), counter 

movement jump height (CMJ), plasma creatine kinase (CK) activity and muscle soreness were 

assessed before and 1, 24 and 48 hours post-race. Within-bout changes were elucidated using a 

two-way repeated measures ANOVA. Inter-repetition reproducibility was examined using an 

intraclass correlation coefficient (ICC, R) and the mean intra-subject coefficient of variation (CV) 

at each measurement time point. Results. Running time was longer (p<0.05) for the first bout 

compared with the other three bouts. Magnitude and time course of changes in CMJ, CK 

activity and muscle soreness were similar among all four bouts (overall peak means: -17%, 

+35% and 54/100 mm respectively). The acute reduction in MVC (peak mean: -17%) was 

attenuated exclusively in the fourth bout (p<0.05). The two middle bouts showed good 

reproducibility (ICC and CV) for running time, MVC and CMJ, but low to moderate for CK 

activity, muscle soreness, blood lactate and rate of perceived exertion. Conclusions. A short 

outdoor trail run is a reliable model for investigations of fatigue and muscle damage, but 

certain methodological precautions should be respected. 
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Keywords: Physical exertion; Aerobic exercise; Reliability and Validity; Field study; Eccentric 

exercise 

Introduction 

Trail races are off-road endurance runs covering distances from 15 to 75 km (>90 km for ultra 

trails) on unsurfaced mountain trails with extensive vertical displacement
1
. Distance and the 

climb
.
distance

-1
 ratio (E/D, normal range: 40 to 65 m

.
km

-1
; 8–13%) are the main performance 

parameters
1,2

. Recent studies investigating trail races reported aspects of neuromuscular 

fatigue mainly assessed by maximal voluntary contraction (MVC) torque and changes in twitch 

and activation parameters
1–3

. For example, MVC torque of the knee extensors has been 

reported to decrease 23.5% after a 30 km trail run
4
, 32% after a 55 km trail run

1
 and 35% after a 

166 km mountain ultra-marathon
2
. The neuromuscular fatigue is often accompanied by 

increases in self-reported muscle soreness ratings and plasma bulk damage markers, such as 

creatine kinase (CK)
1,2,5

, lasting for several  days. This is associated with an exacerbated 

eccentric component invoked in the downhill phases. The physiological stress profile elicited 

through combined fatigue and muscle damage is specific to trail running. 

Participant increases
6
 invite the investigation of and development of strategies to minimise 

neuromuscular fatigue and structural damage to the muscle. However, evaluating trail-specific 

interventions is challenging, as trail race simulation in a laboratory is difficult due to terrain and 

grade variability. It may therefore be more effective to assess strategies and modalities that 

could affect performance and recovery in a field setting. Under this constraint, two factors 

might affect reproducibility of parameters examined in field trail runs. 

 Firstly, studies conducted in the field are associated with higher variability induced, for 

example, through environmental factors (temperature, wind, humidity and surface conditions). 

While the test-retest reproducibility of treadmill-based protocols has been frequently 

evaluated
7,8

, no previous study has investigated the reproducibility of variables associated with 

running performance, neuromuscular fatigue and muscle damage in a field-based trail run.  

Secondly, it is well known that an initial bout of eccentric exercise induces a protective effect 

which decreases muscle damage and ameliorates recovery in subsequent bouts. This protective 

effect is referred to as “the repeated bout effect” and is generally observed from 2 to 6 weeks 

following the initial intervention in untrained muscles
9,10

. There have been several reports of 

diminished effect magnitude in trained muscle
11,12

 yet, to the best of our knowledge, no 

previous study has investigated the repeated bout effect in a trail running model, especially 

performed by trained runners.  

Classical fatigue-induction models are not suited to examining trail running as they do not take 

into account the rather severe gradients and variable surface encountered on typical courses. 

Prior trail investigations employed either treadmill simulation
13,14

, which disregards the terrain 

component completely, or competition analysis
1,2,4

, which is unsuited to intervention type 

investigations and involves a complicated measurement set-up. Therefore this study employed 
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a short (<20km) short distance trail with a medium E/D
1, 2

 of 52.88. This model is 

straightforward to implement and has the additional advantage that it reflects a typical training 

distance for recreational trail runners and entails a short recuperation time.  

The aim of this study was therefore to examine the feasibility of using an outdoor trail run to 

evaluate future intervention strategies. To this end, the reproducibility of neuromuscular 

fatigue and structural muscle damage markers over 4 bouts of a 15.6 km trail run was 

determined in experienced trail runners.  

 

Methods 

Eleven actively competitive male trail runners (age: 34.7 ± 9.8 years, body mass: 72.3 ± 6.8 kg, 

height: 178.4 ± 7.0 cm, maximal oxygen uptake: 60.1± 6.5 mL·min
-1

·kg
-1

) participated in this 

study. Inclusion criteria included a minimum of 2 years trail racing experience and a training 

volume of 40–100 km·wk
-1 

(mean: 60 ± 20 km·wk
-1

) in the 3 months preceding initial testing. For 

2 days before and after each trial, the runners were requested to refrain from exercise and to 

adhere to a standardised nutritional routine. Written informed consent was obtained and the 

study was approved by the Institutional Human Research Ethics Committee. 

After an initial maximal oxygen uptake (V�O2max) test on a treadmill, all participants performed 

four bouts of trail running on the same course with 7 days rest between bouts. In each bout, 

running time, heart rate, post-run ratings of perceived exertion and blood lactate concentration 

were recorded. Immediately before (pre) and 1(post), 24 and 48 hours after the run the 

following parameters were assessed: maximal voluntary isometric knee extension (MVC) 

torque, counter movement jump (CMJ) height, plasma creatine kinase (CK) activity and muscle 

soreness. These variables were examined over time in each bout and each time point was 

compared between bouts. 

Two weeks before the first bout, all participants completed a maximal incremental running 

protocol on a treadmill (+4%, Gymrol S2500, HEF Tecmachine, Andrezieux-Boutheon, France) in 

the lab while heart rate (RS800, Polar, Kemple, Finland) and pulmonary gas exchange (Oxycon 

Alpha, Jaeger, The Netherlands) were recorded. All instruments were calibrated before each 

test as described by the manufacturers. The protocol consisted of a 6 minute warm-up at 

9 km
.
h

-1 
followed by an increase of 1 km

.
h

-1 
every two minutes

 
until volitional exhaustion. 

Maximal heart rate (HRmax) and oxygen uptake (V�O2max) were determined as the highest 30 s 

mean, fulfilling the classical criteria of a respiratory equivalent greater than 1.1, a HR greater 

than 90% of the age prediction and a plateau in V�O2 despite an increase in mechanical 

intensity
15

. 

The trail time-trial consisted of 3 laps of a 5.2 km course (total distance: 15.6 km) starting close 

to sea level. Each lap was composed of a climbing segment (2200 m, 13%, 275 m climb) 

followed by a downhill segment (3000 m, -9%, 275 m descent). The course was exclusively on 

mountain single tracks with repeated technical sections on rocky and root-covered paths. Each 
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participant was weighed and equipped with a Polar RS800 heart rate monitor, 680 ml of fluid 

containing carbohydrates (74 g·L
-1

) and 2 energy gels (carbohydrates: 18 g·gel
-1

). All participants 

were asked to wear similar clothes for each bout and to aim for the best completion time 

possible. Starting times were staggered, allowing 20 minutes between participants. 

Immediately after the run, a blood sample was taken from the ear lobe for lactate analysis 

(Lactate Pro, Arkray, Amstelveen, The Netherlands), participants were weighed, and RPE was 

verbally queried while standing using standard terminology and a 6–20 point Borg Scale
16

.  

MVC testing took place in the laboratory about 10 minutes drive from the time-trial course 

before and 1, 24 and 48 hours after the run. Following the motorised transfer, participants 

were securely strapped into an isokinetic dynamometer (Biodex System 3, Shirley, New York, 

USA) with the knee joint angle of the right leg at 90° (full leg extension = 0°). The axis of the 

knee joint was carefully aligned with the rotational axis of the dynamometer and all settings 

were kept constant throughout the experiment. Before each MVC, participants warmed up on 

the isokinetic dynamometer by repeating 10 one-second isometric contractions at 50% MVC 

(one second rest between contractions). After 3 minutes rest, in which participants were asked 

to indicate perceived muscle pain of the knee extensors on a 10 cm visual analogue scale visibly 

anchoring zero for ‘no pain’ and 10 for ‘maximal pain’, testing commenced. Participants were 

instructed to “extend the knee as hard and fast as possible” for the three 5-second MVC 

measures (55 s rest between attempts) while standardised verbal encouragement was given. 

The highest MVC value achieved in the three attempts was used. 

Ten minutes after MVC testing, participants were positioned on an Ergo Jump system 

(Boscosystem, S. Rufina, Italy) and instructed to place their hands on their hips and to jump as 

high as possible and land with extended legs. Jumping position was standardised as described 

previously
17

, and the participants practised extensively under supervision before the 

measurements. Three jumps with 30 seconds rest between attempts were then recorded. The 

maximum jump height achieved was used for further analysis. 

Blood samples were drawn from the antecubital vein using a standard vacutainer system and 

centrifuged for 10 minutes to obtain plasma. Plasma samples were aliquoted and stored in a 

freezer (-80°C) until analysed for CK activity by a Roche Hitachi 911 chemistry analyser (Roche 

Diagnostics Corporation, Indianapolis, IN, USA). 

A two-way repeated measures ANOVA (TIME (4) X BOUT (4)) was conducted on the absolute 

values of MVC torque, CMJ height, plasma CK activity, muscle soreness and lap times. A 

Newman-Keuls post-hoc test was used for multiple comparisons to identify differences 

between individual time points. Reproducibility of parameters across bouts was examined with 

an intraclass correlation coefficient (ICC, R) and the mean intra-individual coefficient of 

variation (CV) was calculated for each time point
18

. Reproducibility was judged by the R values 

of ICC
19

: 0–0.25: little, 0.26–0.49: low, 0.50–0.69: moderate, 0.70–0.89: high, and 0.9–1.0: very 
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high. The significance level was set at p<0.05 and all data are presented as means ± standard 

deviation (SD). 

 

Results 

All bouts were performed in sunny conditions at similar temperatures (20–24°C), low wind 

speeds (0–5 km
.
h

-1
), dry conditions and good visibility. There were no significant differences in 

the amount of fluid ingested during the run (444 ± 53mL), weight loss from pre (72.3 ± 7.6 kg) 

to post (71.2 ± 6.5 kg) run, and the number of energy gels ingested (1.5 ± 0.2) among the four 

bouts.  

Completion time was significantly elevated in the first bout compared to other bouts (p<0.05, 

Table 1). Blood lactate was reduced following the first bout, but no significant differences were 

found for RPE or mean HR. The reproducibility was high for completion time, especially when 

the first bout was excluded, but low for mean HR, RPE and blood lactate. 

 

Table1. Mean ± SD values for total running time, mean heart rate [%HRmax], rate of perceived 

exertion (RPE [6-20pt]) and blood lactate [mmol
.
L

-1
] measured immediately after the run for the 

first (1), second (2), third (3) and fourth (4) bouts of trail running. Reproducibility determined by 

an intraclass correlation coefficient (ICC, R) and coefficient of variation (CV in %) for all four 

bouts (1-4), the last three bouts (2-4), and the middle two bouts (2-3), is shown on the right. 
a
 indicates a significant difference from other bouts (p<0.05).  

Parameter 1 2 3 4

ICC CV ICC CV ICC CV

Running time [s] 5842 ± 521a 5511 ± 440 5623 ± 378 5628 ± 438 0.78 3.5 0.85 2.5 0.82 2.3

Heart rate [%] 91.8 ± 4.6 89.2 ± 5.7 90.1 ± 4.8 90.1 ± 3.5 0.54 3.2 0.49 3.0 0.55 3.4

RPE [6-20 pt] 17.9 ± 2.1 16.6 ± 1.9 17.6 ± 1.7 17.9 ± 2.0 0.33 8.4 0.52 7.1 0.56 5.9

Lactate [mmol/L] 3.9 ± 1.7a 6.4 ± 1.1 5.3 ± 2.0 5.4 ± 1.6 0.38 27.6 0.41 22.8 0.66 16.1

Bout Reproducibility

1–4 2–4 2–3

The pre values for MVC torque and CMJ height showed no significant differences between 

bouts (Figure 1). A significant interaction effect was found for MVC torque; in contrast to bouts 

1 to 3, acute torque reduction was no longer significantly different from baseline in bout 4 

(Figure 1a). The reproducibility of post-exercise MVC torque was high (ICC 0.82–0.93;       

CV 5.3–8.7%), especially when only bouts 2–3 were considered (Table 2). No significant 

interaction effect was found for CMJ height, but CMJ height decreased significantly by post 24 

hours in all bouts and in no case returned to baseline by 48 hours post-run. The reproducibility 
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of CMJ height was moderate to high (ICC 0.55–0.82; CV 3.6–7.9%), and increased with exclusion 

of bouts 1 and 4 (Table 2).   

 

Table 2. Reproducibility of knee extensor maximal voluntary isometric contraction torque 

(MVC), counter movement jump height (CMJ), plasma creatine kinase concentrations (CK) and 

visual analogue scale for muscle soreness determined by an intraclass correlation coefficient 

(ICC, R) and coefficient of variation (CV in %) for the four bouts (1-4), the last three bouts (2-4), 

and middle two bouts (2-3).  

 

Parameter Time

ICC CV [%] ICC CV [%] ICC CV [%]

Pre 0.62 10.7 0.83 6.6 0.95 4.6

Post 0.82 8.5 0.81 8.6 0.93 5.3

24 h post 0.84 8.7 0.83 8.1 0.84 7.5

48 h post 0.88 7.3 0.91 6.6 0.89 7.3

Pre 0.60 8.7 0.69 6.7 0.59 7.0

Post 0.78 7.9 0.79 7.1 0.74 7.2

24 h post 0.77 6.1 0.82 4.5 0.82 3.6

48 h post 0.75 6.2 0.68 6.2 0.55 7.0

Pre 0.46 19.3 0.41 20.0 0.46 15.6

Post 0.59 16.2 0.51 17.1 0.44 15.8

24 h post 0.28 34.0 0.20 34.4 0.12 32.9

48 h post 0.37 26.6 0.29 28.6 0.13 24.3

Pre 0.89 17.10 0.88 16.1 0.89 11.00

Post 0.16 48.8 0.29 50.3 0.67 51.5

24 h post 0.25 47.0 0.22 52.6 0.31 49.0

48 h post 0.51 55.0 0.55 60.1 0.61 51.4

CK       

[IU.L-1]

Muscle 

Soreness 

[mm]

Reproducibility

1–4 2–4 2–3

MVC   

[N.m]

CMJ     

[cm]

 

Baseline values were similar among bouts for plasma CK activity and self-reported muscle 

soreness (Figure 1). Both plasma CK activity and muscle soreness were significantly increased 

for all post-run time points in all bouts compared to baseline. No significant differences were 

evident for changes in plasma CK activity (Figure 1c) and muscle soreness (Figure 1d) among the 

bouts. As shown in Table 2, plasma CK activity showed low to moderate reproducibility post-run 

(ICC 0.12–0.59; CV 15.6–34.4%). Muscle soreness reproducibility was low to moderate 

(ICC 0.16–0.89; CV 11–60.1%), independent of exclusions. 
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Figure 1. Changes in maximal voluntary isometric contraction torque of the knee extensors (a), 

counter movement jump height (b), plasma CK activity (c) and muscle soreness (d) before (Pre) 

and 1 hour (Post), 24 hours and 48 hours after the first (1
st

), second (2
nd

), third (3
rd

) and fourth 

(4
th

) trail running bouts.  

* Significant (p<0.05) difference between bouts based on two-way ANOVA 

# Significant (p<0.05) difference from the baseline (Pre) values for all bouts 

‡ Significant (p<0.05) difference from the baseline (Pre) values for 1
st

 2
nd

 and 3
rd

 bouts 

ns: No significant differences between bouts 

 

 

 

Discussion 

To the best of our knowledge, this was the first investigation of reproducibility of performance, 

neuromuscular fatigue and indirect muscle damage indexes over four outdoor trail runs 

performed by experienced runners. The primary results are an increased running time in the 

first bout accompanied by lower blood lactate concentrations, which we attribute to the lack of 



R e p r o d u c i b i l i t y  s t u d y  | 129 

 

prior experience on the course. Furthermore, the indexes of neuromuscular fatigue and muscle 

damage were similar throughout bouts 1 to 3 and reduced in the last, maybe due to a repeated 

bout effect. These results indicate that the amount of bouts should be taken into account when 

using a short outdoor trail run as a fatigue or muscle damage model in order to evaluate 

intervention strategies to ameliorate performance or recuperation. 

To characterise the effectiveness of the intervention, the time courses of parameters were 

examined. We observed a decrease in MVC torque post run (peak: -17%), which returned to 

baseline by 24 h in all bouts, CMJ decreases persisting until 48h (peak: -17%) and increases in 

plasma CK activity (peak at 24h: +35%) and muscle soreness (peak bout 1 at post: 54/100mm; 

peak bouts 2-4 at post 24: 47/100mm) (Figure 1). These alterations are similar to those 

reported in previous studies examining fatigue and muscle damage in a trained cohort following 

long distance trail runs (30, 55 and 166km), which report MVC reductions of 20–40%
1,2,4

. No 

studies examining fatigue after short distance field based trail runs exist to our knowledge.  

In this study, ICC and CV values showed that reproducibility was high for running time, MVC 

torque and CMJ height – especially for the two middle bouts. Considerable variability existed 

for changes in blood lactate, plasma CK activity, RPE, and muscle soreness, making these 

parameters unsuitable as main outcome variables.  

The reproducibility of completion time in the present study (Table 1) appears to be comparable 

to that of ‘indoor’ settings, especially when excluding bout 1. For example, Nicholson & 

Sleivert
20

 reported a CV of 3.7% for completion time of two 10 km time trials 7 days apart on an 

indoor track. A review indicates that time trials (1500–5000m) run on an indoor track have 

average CV values of ~2.5% for completion time
21

. 

Despite similar running times among the last three bouts, RPE and post-run lactate 

concentration were largely variable (Table 1). This is not uncommon, Saunders et al.
22

, for 

instance, reporting a CV of 10–52% in lactate concentration in two repetitions of 3 four-minute 

bouts of treadmill running 7 days apart. RPE reliability has been reported to decrease rapidly 

with increasing exercise intensity and duration
23

. The relatively low reproducibility in RPE and 

lactate may be further accentuated in a trail race scenario due to the continuous variation of 

pace and terrain-induced changes in dissociation strategies and subsequent reduction in 

sensitivity to physiological cues.  

MVC values were well reproducible for all time points in the examined scenario (Table 2), 

especially when excluding the very first test and the post-exercise test in the fourth bout. This 

concurs with results reported by Maffiuletti et al.
24

, who observed an ICC of 0.97 and CV of 

5.5% for peak knee extensor MVC torque in 2 sessions 7 days apart. Changes in CMJ height 

following the trail run showed similar reproducibility for the two middle bouts and for the last 

three bouts as was reported previously
17,25

. It appears that the reproducibility of muscle 

function changes (MVC torque and CMJ) in outdoor trail running is comparable to that of 

laboratory based studies
24,25

. 
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Plasma CK activity and muscle soreness showed only moderate reproducibility in the presented 

study. A large variability in the CK responses to exercise has previously been reported
11,26,27

, 

and this is also reflected in the present study. The qualitative time profile of muscle soreness 

was similar in all four bouts. The reproducibility remains low in all time points, even after 

exclusion of bouts 1 & 4. 

Reproducibility increased considerably in this study when only bouts 2 and 3 were considered. 

The dissimilarity of the first MVC test and running time from the others is probably related to 

task learning and highlights the importance of a familiarisation session in an ecological context. 

The second methodological result of this reproducibility study is the attenuation of acute post-

exercise MVC reduction by ~6% in the fourth bout compared to bouts 2 and 3. As proposed in 

the introduction, this may be caused by a repeated bout effect conferred through the earlier 

exercise bouts. Similar attenuation has been reported by Thompson et al. 
28

 in week 4 of their 

study on eccentric damage in the elbow flexors. Additionally, it has already been reported that 

eccentric-induced changes in indirect markers of muscle damage are smaller for resistance-

trained individuals
11,12

 and that the bulk of the protective effect is conferred within the first 

repetitions of a bout
10

. Therefore it was expected that a protective effect against muscle 

damage had already been invoked in our trained trail running population and would not be 

observed in the experiment. Nonetheless, MVC attenuation was observed, which leads us to 

believe that the amount of bouts should be limited to a maximum of three in an experimental 

design, even in well-trained subjects. 

There are a number of limitations to the model presented, as for instance, it depends on the 

environmental conditions and is therefore primarily suited to climatically stable environments. 

Additionally the terrain and elevation will not be constant between testing sites, making inter-

protocol comparisons less trustworthy.  

 

Conclusion 

The reported results indicate that if only one group is used in a cross-over design to investigate 

an intervention effect on trail running, it seems necessary to instigate a familiarisation bout 

before conducting two testing bouts. In order to evaluate fatigue and muscle damage indexes 

reliably, the design should optimally take into account the repeated bout effect, even if the 

muscle damage invoked is minimal. From the outcome measures observed in this study, MVC 

and CMJ decline show the highest reproducibility and are therefore best suited as main 

outcome measures. In contrast, the magnitude of variability for RPE, lactate, CK and muscle 

soreness makes these markers insensitive to small changes and more appropriate as auxiliary 

variables. It appears that the reproducibility of the changes in variables in the present study is 

not largely different from that shown in laboratory-based studies
22,24,25

, indicating that an 

outdoor trail model is equally suited to a lab when evaluating trail running interventions. 

Therefore, the trail running model used in the present study can be used to investigate the 
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effect of an intervention or a strategy on performance or fatigue; however, methodological 

precautions should be taken to ensure optimal reproducibility.  

 

Practical Implications 

For athletes: The first time a trail course is run, performance is likely to be reduced and fatigue 

accentuated. 

For researchers: Outdoor trail runs are a viable investigation model that may be used to assess 

trail-specific interventions when conducting prior familiarisation and limiting the accumulated 

eccentric stimulus. 

Due to the reduction in reliability after the third bout, this model is mainly applicable for simple 

within-group designs regarding a single intervention versus a control condition. 
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6.1. INTRODUCTION  

 

Subsequent to the development and validation of an outdoor testing model, it was possible to 

begin the methodologically sound evaluation of interventions. Due to the recently skyrocketing 

popularity of lower limb compression garments (CG), these were analysed for performance 

benefits. Subjects were recruited from the same sources as earlier studies and were 

familiarised by running the course twice before completing two randomised experimental 

sessions with and without CG. Muscular performance, blood flow and tissue oxygenation were 

measured before and after each session and performance, HR, RPE and lactate concentrations 

were collected throughout the run. The results, in a nutshell, are that CGs had no effect on the 

assessed parameters in the used model. In light of the large body of contradictory results on 

the matter, it would not be surprising if the used model was not sensitive enough to discern the 

effects. Nonetheless, a 15 km field-based trail run is a completely representative functional 

evaluation and can provide insight for athletes competing in these kinds of competitions. The 

study was published in the European Journal for Sport Science in January 2013. 
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6.2. THE INFLUENCE OF WEARING COMPRESSION STOCKINGS ON PERFORMANCE INDICATORS AND 

PHYSIOLOGICAL RESPONSES FOLLOWING A PROLONGED TRAIL RUNNING EXERCISE 

 

Abstract 

The objective of this study was to investigate the effects of wearing compression stockings (CS) 

on performance indicators and physiological responses during prolonged trail running. Eleven 

trained runners completed a 15.6-km trail run at a competition intensity whilst wearing or not 

wearing CS. Run time, counter movement jump (CMJ), maximal voluntary contraction (MVC) 

and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) 

method were measured before and following exercise. Run time, heart rate (HR), blood lactate 

concentration and ratings of perceived exertion were evaluated during the CS and non-CS 

sessions. No significant difference in any dependent variables was observed during the run 

sessions. Run times were 5681.1 ± 503.5 and 5696.7 ± 530.7 s for the non-CS and CS run times, 

respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5-

91.5% HRmax and performance times were comprised between 94 and 95 min. Although NIRS 

measurements such as muscle oxygen uptake and muscle blood flow significantly increased 

following exercise (+ 57.7% and + 42.6%, + 59.2% and + 32.4 %, respectively for the CS and the 

non-CS, P < 0.05), there was no difference between CS and non-CS conditions. The findings 

suggest that competitive runners do not gain any practical or physiological benefits from 

wearing CS during prolonged off-road running. 
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Key words: compression socks, trail running, performance indicators, muscle oxygenation, 

physiological responses 

 

Introduction 

During the two last decades, road runners have been wearing compression garments (CGs) 

during race particularly with the use of compression socks (CS) in an attempt to enhance their 

performance (e.g. Paula Radcliffe, Lornah Kiplagat). Since the intensive development of 

technological clothing in the area of endurance sports, the wearing of CS has been widely used 

by on and off-road runners for training and racing. Based on anecdotal reports, runners often 

comment on their leg’s feeling with a lower perception of strain in the calf when exercising with 

CS. These statements are in line with a previous study indicating that knee-length CGs are more 

comfortable with less possibilities of wrinkling when compared to thigh-length CGs (Benkö, 

Cooke, McNally, & Mollan, 2001). Paradoxically, a lack of clear evidence of CS benefits was 

reported for performance, indicators of muscle power (e.g. countermovement jump) or 

metabolic adaptations in trained runners (Ali, Creasy, & Edge, 2011; Goh, Laursen, Dascombe, & 

Nosaka, 2011; Ménétrier, Mourot, Bouhaddi, Regnard, & Tordi, 2011; Sperlich et al., 2010, 

2011; Varela-Sanz, Espana, Carr,  Boullosa, & Esteve-Lanao, 2011). However, little is known 

about the analysis of selected physiological variables (e.g. muscle oxygenation) and 

performance responses (e.g. maximal voluntary contraction) following a prolonged running 

exercise (> 1-h) close to the race intensity. Interestingly, using Near-Infrared Spectroscopy 

(NIRS) method, Dascombe, Hoare, Sear, Reaburn, & Scanlan, (2011) have demonstrated that 

wearing CGs positively influenced a number of peripheral circulatory measures within the 

vastus lateralis during a time to exhaustion conducted at a competition pace in runners. 

However, these peripheral physiological benefits were not correlated to a significant 

improvement in running performance. Similarly, Varela-Sanz et al. (2011) have recently 

reported a non-significant increase of approximately 13% in time limit running test under CS 

condition, at a competitive velocity. Although the small number of subjects (n=6) might partly 

explain the lack of significant differences between CS and non-CS conditions, these 

investigators showed a cardiac benefit in runners wearing CS, resulting in a significant decrease 

in relative intensity (i.e. maximal heart rate) sustained during the time limit.  

Even if physiological benefits from the wearing of CGs were identified during endurance 

running performance, it is likely that the exercise duration reported in these recent running 

studies was not sufficient to highlight any possible benefits of wearing CS on performance 

responses. Other methodological limitations may be considered in the previous investigations, 
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including the use of a treadmill that can potentially change the normal running kinematics and 

the subsequent energetic requirements of high-intensity endurance running (Wank, Frick, & 

Schmidtbleicher, 1998) but also, the use of a running time to exhaustion as performance 

indicator, which may modify pacing strategies related to race performance. Finally, no running 

analysis has been conducted on the relationship between any form of CGs and performance 

responses throughout off-road exercises, so-called trail-running, including uphill and downhill 

sections. In contrast with flat road, the muscular contractions induced during trail-running are 

specific and dictated by the occurrence of a strong concentric modality during uphill section 

and a dominant eccentric regimen to downhill section. This running exercise might result in 

higher muscle oscillations and variations in physiological responses, particularly during the 

repeated downhill sections (Millet et al., 2011).  

In contrast with most of laboratory settings, the evaluation of selected metabolic and/or 

muscular variables remains specific in the outdoor context and requires a serie of 

measurements conducted before and following exercises (e.g. Easthope et al., 2010; Millet et 

al., 2011; Sultana et al., 2012). Therefore, the objective of the current study was to examine the 

effect of a new non-graduated CS (18 mmHg) on physiological responses and performance 

indicators following prolonged trail running in experienced off-road runners. Considering the 

findings reported in the CGs running investigations but also, the specificity of our running task, 

it may be hypothesized that the physiological benefits of wearing CS (e.g. improved muscle 

oxygenation, decreased HR response) appear more accentuated during trail running (~1.5 hr) at 

a competition pace, improving thus performance indicators and physiological responses 

following prolonged exercise.   

 

Methods 

Subjects 

Eleven male trained runners ([mean ± SD] age: 34.7 ± 9.8 years; height: 178.4 ± 7.0 cm; body 

mass: 72.3 ± 6.8 kg) participated to this study after medical examination. All subjects had a 

minimum of 3 consistent years of trail running experience over different race distances (from 

20 to 80 km). Run training time ranged from 8 to 12 h
.
wk

-1
, interspersed with competitive 

events. All subjects gave their informed written consent to participate in the current study, 

which has been conducted according to the Declaration of Helsinki. A local ethics committee for 

the protection of individuals gave approval concerning the project before its initiation.  
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Experimental design 

An overview of the experiment is given in Figure 1. All subjects completed both laboratory and 

field sessions. At the initial laboratory session, participants performed an incremental exercise 

test to exhaustion on a motorized treadmill. Pulmonary gas exchanges were collected breath-

by-breath and averaged for every 10-s period using a metabolic measurement system (Oxycon 

Alpha®, Jaeger). The system was calibrated prior to each exercise test according to the 

manufacturer’s instructions. After 6-min of warm-up exercise at 10 km
.
h

-1
, the treadmill speed 

was increased by 1 km
.
h

-1
 every 2 minutes (with a 4% grade). This maximal session did allow to 

determine mean values in maximal oxygen uptake (V�O2max), maximal ventilation (V� Emax) but 

also, maximal heart rate (HRmax). During laboratory and field testing sessions, HR values were 

monitored using a polar unit (RS800CX, Polar®, Kempele, Finland). During the first visit, 

particular attention was paid to familiarize participants with the experimental procedures, 

especially the completion of maximal voluntary contraction (MVC) and counter movement 

jump (CMJ) to quantify indicators of muscle power.  

Subsequently, to familiarize the participants with the experimental off-road sessions, two 

practice runs were completed on the course. The second run was entirely conducted at a pace 

closer to the race context. The subjects were habitual users of CS during training and racing, 

avoiding potential discomfort in the calf area. Likewise, red markers were placed on the ground 

every 200-m to facilitate the displacement of our runners during the course. These runs were 

performed between 2 and 4 weeks before the experimental runs. After a standard and 

controlled warm-up of 10-min, the off-road sessions consisted of completing two maximal (race 

effort) 15.6-km trail runs, in a random order, on two separate days one week apart, wearing CS 

or not wearing CS (non-CS). Runners were asked to wear the same shoes and the similar 

clothing (without thigh compression) for CS and non-CS conditions. For the CS session, subjects 

wore socks extending from below the knee to the lateral malleolus (constant pressure of 18 

mmHg applied to the calf / 94% Polyamide and 6% Lycra). During the first run, subjects 

consumed carbohydrate (CHO) in the form of gel (25 g, two per runner) and energy drinks (6% 

CHO / 600 ml of water per runner). Fluid intake was measured by weighing the bottle after the 

first run on an electronic scale (accurate to 1 g). Subsequently, the quantity of ingested CHO 

gels and fluid intake was individually replicated during the second run. Finally, the runners were 

separated to avoid pacing strategies or psychological impact affecting run time. Likewise, the 

day before each trial, the runners were asked to refrain from strenuous exercise and they were 

also asked to keep the same nutritional routine before each trial, with the same breakfast at 

the same time, similar to what they would do before a race. 

More precisely, the 15.6-km trail-running consisted of the completion of three 5.2-km loops 

with a brief rest period of 40-s fixed between the loops for data collection (Figure 1). Each loop 
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was divided into two sections completed systematically in the following order: uphill (2200 m) 

and downhill section (3000m) with average gradients of 13% and 9%, respectively. The positive 

elevation was 275-m for each loop. The profile of trail-running was characterized by the 

completion of 100% single tracks in the mountain and repeated technical portions with 

rocky/root filled paths. Weather conditions were stable with ambient temperatures ranging 

from 20 to 24°C (South of France) during the sessions.  

 

 

Figure 1: General view of the experimental sessions and run profile.   

 

Measurements during CS and non-CS sessions 

During the 40-s rest periods fixed between the loops of CS and non-CS sessions (Figure 1), the 

ratings of perceived exertion (RPE) scale using the Borg 6-20 was presented to the subjects who 

was asked to say the number that reflected the perceived exertion for 1) an "overall" or total 

body rating (RPEglobal), 2) a central or "heart/lungs" rating (RPEcentral), and 3) a peripheral or 

"legs" rating (RPEperipheral) (Borg, 1998). Moreover, the blood lactate concentration ([BLa
-
]) was 

obtained using a Lactate Pro® analyser (Akray, Kyoto, Japan) from 5-µL samples of blood taken 

from the earlobe during the rest periods of CS and non-CS runs. Athletes were also equipped 

with a RS800CX G3 (Polar®, Kempele, Finland) including a GPS receiver fixed on the arm for 

monitoring HR and displacement values.   
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Measurements before and following CS and non-CS sessions 

Near-infrared spectroscopy measurements. Oxygenation profile of the right vastus lateralis (VL) 

muscle was recorded using a continuous-wave near-infrared spectroscopy (NIRS) system 

(PortaMon®, Artinis Medical Systems BV, Zetten, Netherlands). This analysis was conducted 

prior to the warm-up of run sessions and following CS and non-CS bouts (~ 5 min) to monitor 

concentration changes in oxyhemoglobin (HbO2), deoxyhemoglobin (HHb) and total 

hemoglobin (tHb). A probe was attached to the middle part of the VL muscle (15-20 cm above 

the centre of patella) longitudinally. Pulsed light was emitted from the emission of a three-

segment photodiode at two different wavelengths (760 and 850 nm) and was detected, as a 

function of distance, using a photodiode detection probe that received NIRS signals at 2 Hz. To 

prevent variations in placement of the NIRS emitter-detector, the angle and location of the 

probe were held constant using velcro straps. Similarly, the position of the NIRS probe was 

noted with a marker to ensure identical placement on each subject for all testing sessions. 

Finally, a light-impermeable cloth covered the probe to reduce room light interaction with the 

near-infrared signal. Before placement on the VL, the site was shaved and cleaned using alcohol 

swab. Subjects lay supine in a horizontal position with slightly inclined upper body (15°) keeping 

their arms at their sides for the duration of the test.  In order to determine muscular oxygen 

uptake (mV�O2) and blood flow (mBF), two venous occlusions were applied above the belly of 

the VL (compression of femoral artery), using air inflated to 70 mmHg, each lasting 20 s with a 

2 min recovery interval (Ahmadi, Sinclair, & Davis, 2008a; Ahmadi, Sinclair, Foroughi, & Davis, 

2008b). The medium time-derivative of HHb, HbO2 and tHb was determined over a time period 

of 20 seconds beginning once the pressure of 70 mmHg was reached. Given that the venous 

outflow was blocked, the initial linear increase in HHb was used to calculate mVO2 (in 

mlO2
.
min

-1.
100g) (Van Beekvelt, Colier, Wevers, & Van Engelen, 2001). Moreover, mBF was 

measured during venous occlusion by evaluating the linear increase in tHb during the time 

period of 20 seconds. Given that the venous outflow was blocked, the increase in tHb (HbO2 + 

HHb) was directly related to the arterial inflow (in mlO2.min-1.100g) (Van Beekvelt et al., 2001). 

During the pre/post bouts, mV�O2 and mBF were calculated as the average obtained from the 

two venous occlusions.  

 

Maximal voluntary contraction. Instantaneous isometric torque at the knee joint was recorded 

using a Biodex® isokinetic dynamometer (Shirley, NY). Subjects were placed in a seated position 

and were securely strapped into the test chair. Extraneous movement of the upper body was 

limited by two crossover shoulder harnesses and a belt across the abdomen. All measurements 

were taken before (after a standard warm-up) and 45-min after the CS and non-CS run sessions 

from the subject’s right leg, with the knee and hip flexed at 90 degrees from full extension. 
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Subjects were then asked to perform three trials of MVC (4–5 s) with a rest period of 60-s 

between each MVC. The highest MVC value of trials was used.   

 

Countermovement jump. Participants were instructed to adopt a standing position with hands 

on hips. This position was held for 3-s before the completion of a maximal vertical jump. 

Volunteers were instructed to keep their hands on their hips throughout the jump, and their 

legs straight whilst in the air. Participants stood fully erect, and following a verbal command, 

initiated a countermovement followed by a maximal vertical jump in one continuous motion. 

Before and immediately after the run sessions (~ 1 min), CMJ heights (in cm) were recorded 

from the Bosco test that consists of measuring the flight time with a digital timer (+/- 0.001 s) 

(Bosco, Luhtanen, & Komi, 1983). The highest CMJ value of three jumps was used.  

   

Statistical analysis 

Data are presented as mean ± SD. The Kolmogorov-Smirnov test was applied to ensure a 

Gaussian distribution of the data. The performance and physiological responses throughout CS 

and non-CS runs but also, between the pre/post periods of each condition were compared by 

using paired t-tests. For this analysis, the NIRS data expressed as the delta between the 

pre/post periods (%) were evaluated by an arcsine transformation. Furthermore, a 2 (condition) 

x 3 (time) repeated-measures analysis of variance was used to examine the effects of trail-

running sessions on dependent variables within the three loops of exercise. A Tukey post hoc 

test was used to determine significant differences among CS and non-CS conditions. Statistical 

significance was accepted at P < 0.05.  

 

Results 

For the incremental run exercise, mean values in V�O2max, HRmax, V� Emax were 4.32 ± 0.43 

L.min-1 (60.1 ± 6.5 mL
.
kg

-1.
min

-1
), 183 ± 10 beats

.
min

-1
 and 142.4 ± 20.5 L

.
min

-1
, respectively. 

The analysis of the three loops indicated no significant change in run times (~2.5%, Figure 2) 

between the non-CS and CS conditions. The average finishing time of our subjects was 5681.1 ± 

503.5 and 5696.7 ± 530.7 s for the non-CS and CS runs, respectively. The evaluation of isolated 

run indicated that the mean values in run time for the loop #1 were significantly lower as 

compared to those reported for the loops #2 (-6.10% only for the CS run, P < 0.05, Figure 2) and 

#3 (-9.95% and -8.60%, respectively for the non-CS and CS runs, P < 0.05, Figure 2). No 

significant variation in [Bla
-
] and HR values was observed throughout the loops and between 
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the run sessions (Table 1). Moreover, mean values in RPEgloblal, RPEcentral and RPEperipheral were 

significantly higher during the loop#3 compared to those reported during the loop#1 (P < 0.05), 

without any significant differences between the CS and the non-CS runs. The analysis of the 

pre/post measurements indicated significant higher values in mV�O2 and mBF during the post-

run, characterized by significant values in ΔmV�O2 and ΔmBF (Figure 3, P < 0.05) for the two 

trail-running sessions. No significant variations in MVC and CMJ were observed following run 

sessions (212 ± 45 vs. 214 ± 55 Nm, 35 ± 6 vs. 32 ± 5 cm, respectively for the non-CS and CS 

conditions).

 

 

Figure 2- Variations in performance time 

within the three loops of compression 

socks (CS) and non-CS runs. *indicates a 

significant difference to loop 1 (p<0.05) 

for the CS and non-CS runs (P < 0.05)    

 

 

 

 

 

Figure 3- Variations in muscle 

oxygenation profile following the CS and 

non-CS runs.  *indicates a significant 

difference in mBF and mV�O2 between 

the pre and post-period for the CS and 

non-CS runs (P < 0.05)
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Discussion  

The originality of our experimental setting was based on a holistic analysis focusing on the use 

of CS within actual off-road running conditions in trained trail runners 

(V�O2max > 60 ml
.
O2

.
min

-1.
kg

-1
). In contrast with our experimental hypothesis, the main finding 

of this work was that wearing CS did not effect on physiological variables and performance 

indicators measured during and following prolonged exercise.  

The use of CS is increasingly widespread in the domain of trail running (> 50% of engaged racers 

on average, unpublished data), independent of performance level or race distances. However, 

the practical interest of wearing CS in the running activity under actual racing conditions has 

received little supporting scientific evidence. Most of identified investigations focusing on the 

use of CGs during running performance have selected either outdoor flat exercises (not 

exceeding 10 km or 45 min) or time to exhaustion exercises as performance indicator (Ali et al. 

2011; Dascombe et al. 2011; Goh et al. 2011; Ménétrier et al. 2011; Sperlich et al. 2010; Varela-

Sanz et al. 2011). The present investigation is the first to report performance data in relation 

with the wearing of CGs following prolonged running (> 1-h). However, our findings indicate a 

lack of significant differences in run times between the CS and non-CS session. Interestingly, our 

athletes adopted a positive pacing strategy (e.g. Stearns et al. 2009) during which the average 

speed gradually decreases over the duration of CS and non-CS runs (Figure 2), suggesting that 

the use of CS has no effect on external factors potentially involved in the pacing strategy. All 

participants reported a similar effort for each loop of CS and non-CS runs, characterized by a 

lack of RPE variations between conditions (Table 1). The perceptual scales provide a reflection 

of subjective intensity and, coupled with the physiological measures such as HR, the relevant 

information is that our runners have performed trail running exercises (across the loops) at the 

same and high intensity (i.e. > 90% HRmax). Our results are consistent with recent studies that 

showed a lack of change in running performance with the use of CS (Ali et al. 2011; Dascombe 

et al. 2011; Goh et al. 2011; Ménétrier et al. 2011; Sperlich et al. 2010; Varela-Sanz et al. 2011), 

suggesting that wearing CS (graduated or non-graduated) has no ergogenic effect during 

various running tasks. Thus, future research is required to analyze the effects of wearing CGs 

during off-road running exceeding two hours of exercise, especially when fatigue process, 

muscular damage or muscle oscillations are particularly accentuated (Millet, Martin, Lattier, & 

Ballay,  2003; Millet et al. 2011).   



 

 During endurance cycling and running exercises, the oxygenation profile has often been 

investigated from in situ measurements based on the variations in tissue oxygenation index 

(TOI), HHb or HbO2 (Dascombe et al. 2010; Scanlan, Dascombe, Reaburn, & Osborne, 2008). 

These investigations have demonstrated that wearing CGs improved muscle oxygenation 

without any significant variation in performance response. Alternatively, other NIRS parameters 

such as mV�O2 and mBF may be used to quantify the muscle oxygenation responses following 

exercises (Ahmadi et al. 2008a, 2008b). Based on the principle of venous occlusion, thes

authors have monitored muscle oxygenation using m

following eccentric exercise-induced muscle damage. Considering this recent method, the 

present study is the first to report on the variations in m

prolonged endurance exercise. The choice of measurement periods (pre/post) was essentially 

linked to the complexity of analyzing physiological parameters during trail running. 

In contrast with earlier studies (Dascombe et al. 2010; Ménétrier et a

2008), no significant variation in NIRS parameters was identified between CS and non

(Figure 3). The absence of change in oxygenation profile between run sessions might have been 
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values across the three loops of CS and non-CS runs suggests that wearing CS does not 

influence venous return (and oxygenation profile) during exercise and strengthens our finding 

concerning the NIRS responses obtained immediately after running.  

Moreover, the non-significant modification in [Bla
-
] values among the three loops of CS and 

non-CS runs (Table 1) does not support the claim purported by many CS manufacturers about 

the improved removal of blood lactate during exercise. The present study also demonstrates 

that wearing CS during off-road running exercise does not alter selected indicators of muscle 

power such as CMJ and MVC. For instance, mean CMJ values were well maintained in the CS 

and non-CS post-runs and may have been due to the “warm-up” effect. This is in agreement 

with previous running studies indicating no changes in CMJ values between CS and non-CS 

conditions (Ali et al. 2007, 2011, Jakeman, Byrne, & Eston, 2010). Similarly, muscle power 

characterized by MVC results indicated no significant strength loss when analyzing the pre and 

post periods of CS and non-CS runs. Muscle fatigue is often defined as a reduction in the 

maximum force (i.e. MVC) that a muscle can exert (Millet et al. 2003). Considering this 

statement, we suggest that despite the specificity of trail running, the exercise duration may be 

not long enough to induce muscle fatigue in our trained runners. Recently, Ross, Goodall, 

Stevens, & Harris, (2010) have shown the occurrence of knee extensor MVC decrement only 

during the final 5-km of a high-intensity 20-km self-paced run, corresponding approximately to 

the finishing times (~90-min) observed in our study. However, these authors have reported that 

the MVC was not significantly different from preexercise values after 20 or 40 min of rest 

following running exercise. Based on this issue, the lack of strength loss in our study may also 

be attributed to the time at which the MVC was evaluated (45-min after the end of exercise).  

In conclusion, this is the first investigation that examines the effects of wearing non-graduated 

CS on performance indicators and selected physiological variables following a prolonged trail 

running exercise. However, it was demonstrated that competitive runners did not gain any 

physiological benefits and ergogenic aid from wearing CS during off-road running conducted at 

a race intensity. Although our results confirm a number of scientific data related to the absence 

of ergogenic aid under any form of wearing CGs during short running distances (< 90-min), a 

further topic would be relevant to analyze the impact that different level of exercise duration 

(> 2-h), possibly inducing specific muscle fatigue and associated damage, may have on running 

performance and physiological responses.   
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7.1. INTRODUCTION  

 

After investigating an applied model with high applicability, it was concluded that a more 

mechanistic and sensitive laboratory-based approach might be more fruitful in investigating 

smaller effects. Therefore, in order to elaborate on the high fatigue values encountered in the 

initial study, a study was conceived that aimed at reducing eccentric muscle damage. During 

the descent phase of the exercise, trail runners are subject to a large amount of eccentric 

contractions that have the tendency to cause structural disruption. While numerous pre-

exercise treating modalities exist, the connection between heat exposure and potential 

reduction of eccentric damage is of particular interest to be further investigated. This coupling 

is related to small chaperone proteins of the heat shock protein (HSP) family. It is known that 

HSP are ubiquitous proteins and are relatively stress-independent in their function. HSP 

expression has been shown to increase with heat exposure, but also in the wake of mechanical 

stress, such as eccentric contractions. Increased HSP leads to a protector effect that increases 

cell viability. The experiment entailed a controlled trail in which the experimental group was 

subject to passive heating before eccentric muscle damage was induced by running downhill for 

30 minutes. The control group on the other hand had no prior intervention. To extend the 

potential findings, a second eccentric session was completed by both groups 3 to 5 weeks 

following initiation.  Before testing and in the 2 days following neuromuscular properties, 

neuromuscular activation patterns and voluntary activation were assessed. Results indicate that 

passive heating 48 hours pre-exercise can reduce functional consequences of eccentric-induced 

muscle damage (EIMD). Force depression is similar, but recuperation is enhanced while 

activation parameters stay comparable. In the second downhill session, these effects become 

more flagrant and initial depression is dampened. While this is an agreeable circumstance 

following a 30-minute run, it has the potential to extensively ameliorate the performance and 

decrease injury liability of ultra-trail runners, who are affected in-run by the development of 

muscle damage. This is all the more applicable to multi-day running races. As this study was 

only recently terminated, the article is still in draft form, soon to be submitted. 
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7.2. THE EFFECTS OF PRIOR PASSIVE HEATING ON FUNCTIONAL CONSEQUENCES OF EXERCISE-INDUCED 

MUSCLE DAMAGE 

 

 

The effects of prior passive heating on functional consequences of exercise-induced muscle damage 

Easthope CS, Burdon C, Fiatarone-Singh MA, Brisswalter J, Caillaud C 

 

Abstract 

It has recently been proposed that heat shock protein (HSP) dynamics may be one of the underpinning 

mechanisms of the repeated bout effect. While HSP can be induced through exercise, a similar response 

can be procured through passive heating. Therefore the effect of passive heating on force reduction 

through eccentric exercise was compared to the effects of prior exercise and rest. In the intervention 

group, HSP27 and HSP72 were induced (3-fold increase) through immersion of the lower limbs for 75 

minutes in warm water (Twater = 41.5 °C, Trec = 39.5 °C). Eccentric damage was then induced 48 hours later 

through downhill running for 30 minutes at -15% on a treadmill and force, muscle activation and 

voluntary activation were recorded at pre, post, post 24 and post 48 hours. Three to five weeks later 

both groups repeated the exercise and force measurements. Prior heating showed beneficial effects on 

the force profile in both bouts, recuperation being accelerated and initial reduction decreased in bout 2 

(+10%). The positive effects were magnified in the second repetition for the heated group. From the 

results it is viable to propose prior passive heating as a strategy to mitigate functional impairment to 

eccentric damage. This also indicates that HSP is in some capacity involved in the repeated bout effect. 

Introduction 

Exercise-induced muscle damage (EIMD) is a well-described phenomenon observed primarily following 

unusual physical exercise, and particularly in response to eccentric (lengthening) muscle contractions. 

EIMD also involves fully-reversible muscle soreness and functional impairment that can last several 

weeks. Since the first description of EIMD in the early 20
th

 century
1
, a large body of literature has been 

developed leading to a well founded, if not complete, understanding of the processes involved (for 

reviews please consult references
2–9

). The aetiology of EIMD is generally considered bimodal
10–12

 and can 

be divided into a number of intertwined responses following the mechanical induction: disturbance of 

the Ca
2+

 balance, inflammatory response and stress protein signalling. The sum of these responses leads 

to protein degradation and subsequent restructuring of the damaged tissue. Eccentric contractions 

evoke a smaller amount of motor units to create a higher force, therefore concentrating the force 

generation on a small amount of fibers
13

. The sarcomere popping theory proposes that mechanical 

disruption is created by the “popping” of sarcomeres that are overstretched due to non-linear 

elongation throughout the fiber
14–17

. Mechanical induction has been identified mainly by histochemical 

analysis of muscle tissue
18–22

. Analysis of muscle biopsies only give insight into a very small region of the 

muscle (5-20 mg)
23,24

 and inherently induced a certain amount of damage in the tissue 
25

. However, 
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biopsies have showed that disruption is mainly seen around the z-disk region (Z-disk streaming)
18,22

 and 

through the loss of desmin
26–28

, a protein composing the ultra-structural integrity of the fiber. After an 

intense bout of eccentric exercise, a disruption of up to 50% of the muscle volume has been 

reported
19,22

. The nature of EIMD allows differentiation into two distinct phases, a mechanical disruption 

phase
27,29–31

 and an ensuing inflammation phase
28,32,33

. Subsequently, muscle remodelling is stimulated 

leading to repair of the damaged fibers
2,34–37

 and to the restoration of pre-exercise muscle force-

generating capacity
9
. Functionally, EIMD is characterized by a prolonged loss of maximal force 

generation capacity, a delayed and prolonged increase of perceived muscle soreness, a decrease in 

neuromuscular efficiency, a reduction in the range of motion and increase of muscle circumference and 

a subsequent increase in optimal contraction length. This is accompanied by increases in bulk proxy 

damage markers such as creatine kinase (CK), lactate dehydrogenase (LDH) and plasma interleukin-6 

(Il-6)
9,38

. 

Both phases of the EIMD engender heat shock protein (HSP) activity, a group of highly conserved 

ubiquitous stress response proteins which are classified into families by their molecular weight. 

Especially HSP 27 and HSP72, proteins associated with chaperoning and the prevention of protein 

agglomeration, have been reported to increase activity following muscle damage induction
21,39–41

. HSP 

responds to a number of environmental stimuli including heat stress
42

, mechanical stretch
43

, metabolic 

stress, oxidative stress, ischemia, hypoxia, intra-cellular calcium and energy depletion
44

, hypoxia and 

acidosis
45

. Not only does an induction of a stressor confer subsequent protection against the same 

stressor
52

, but also against others (cross-tolerance)
53

. For instance, Goto et al.
54

 reported that 

mechanical stress increased cell viability against heat shock and Horowitz et al.
55

 observed that heat 

acclimatization can decrease necrosis in ischemic-reperfusion injury. 

The cyto-protection conferred through a single bout of HSP induction has been proposed to play a 

central role in the attenuation of EIMD through repeated bouts, termed the repeated bout effect 

(RBe)
3,46,47

. In a second bout of eccentric exercise an attenuation of indirect functional markers and 

direct indicators such as tissue histograms, tagged neutrophil invasion
48

 and HSP activity
21

 has 

frequently been reported. The origin of this attenuation is unclear, but certain cornerstones have been 

identified: the RBe lasts from 2 weeks to 6 months but is most effective at around 6 to 8 weeks
49

, reflex 

amplitude is increased, and mild initial damage already confers a protective effect for a more strenuous 

following session
50,51

. HSP activity was analysed after multiple bouts by Thompson et al.
52

, who observed 

a marked response that was blunted in the second bout along with the typical attenuation of functional 

parameters and serum CK response. This was accompanied by a decrease in baseline HSP expression, 

suggesting that lower basal HSP levels may be beneficial to HSP action by creating a larger relative 

response
52

. Paulsen et al.
21

 observed a marked increase in HSP27 and HSP72 activity following a second 

bout of eccentric exercise and also demonstrated a shift in localisation of the small HSPs to the areas of 

myofibrillar disruption. Following a second bout of moderate EIMD (-15% maximal torque), Vissing et 

al.
53

 confirmed the global increase of HSP response but did not observe the shift in localisation, 

suggesting that this may be dose dependent. 

Two studies have investigated the effect of prior HSP induction through heat shock on a subsequent 

bout of eccentric exercise. Touchberry et al.
54

 recently demonstrated that heat shock induction 48 hours 
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before a bout of downhill running resulted in a greater HSP72 response and reduced CK activity and 

immune cell infiltration in Wistar rats. Nosaka et al.
55

 used short (20 minutes) heat shock 24 hours 

before severe eccentric exercise in human biceps muscles and observed accelerated recovery of 

maximal biceps torque compared to a control group. In a second bout the heated group demonstrated 

even further accelerated recovery. These observations suggest that prior HSP induction does indeed 

have a beneficial effect on eccentric damage reduction. 

Expanding on these previous studies, the presented experiment was conducted on humans and targeted 

the main locomotor muscles using a commonly available form of heating while quantifying the heat 

induced HSP increase. It was hypothesized that passive heat exposure 48 hours prior to a bout of 

downhill running would reduce functional impairment and decrease recovery time both in this initial 

bout and in a follow-up bout. 

Methods 

Participants 

Twenty-seven young and healthy sedentary subjects of both genders volunteered to participate in the 

experiment. Subjects were recruited from the staff and students of the health science faculty via printed 

advertisements. Inclusion criteria dictated that subjects had not been exposed to any form of prior heat 

conditioning or eccentric or resistance training experience. Additionally, any medium-term history of 

musculoskeletal injury in the lower limb or any intake of regular medication led to exclusion. All 

subjects, after explanation of the protocol, signed an informed consent form that was approved by the 

University of Sydney Ethics committee (Project number: 13971).  

Study design 

A controlled randomized study design was conducted. The protocol consisted of a preliminary session in 

which subjects were introduced to the testing apparatus and baseline values, twitch intensity and 

V� O2max were determined. After 1 week rest, they returned for either passive heating or passive sitting 

(randomized), followed by the first eccentric session (B1) 48 hours later. A subset of subjects returned 3 

to 5 weeks later for a second eccentric session (B2). Muscle function evaluation tests were performed 

before, immediately post, 24 hours and 48 hours after each eccentric session. During the course of the 

study subjects completed daily activity logs and also specifically refrained from any strenuous activity for 

48 hrs preceding any of the sessions. Caffeine intake was prohibited in the 6 hours before each session 

and testing hours were respected to avoid diurnal effects. The protocol is graphically presented in 

Figure 1. 
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Figure 1: Testing protocol 

Maximal oxygen uptake test 

In order to standardize the metabolic load of the eccentric sessions, a ramp running protocol to 

exhaustion was completed while oxygen uptake (V� O2), ventilation volume (V� e), heart rate (HR) and rate 

of perceived exertion (RPE) were monitored. Respiratory measures were recorded using a breath-by-

breath metabolic cart (Medgraphics Ultima, Norfolk, UK) which was calibrated using a 3 L syringe and 

calibration gas before each subject. Heart rate was captured using a telemetric heart rate monitor (Polar 

S410, Kemple, Finnland) throughout the complete exercise. A Borg scale was used to determine RPE at 

the end of every minute during exercise. The ramp protocol was completed on a treadmill at 1% 

inclination and consisted of a 5-minute warm up at 9 km
.
h

-1
 followed by an increase of 1 km

.
h

-1
 per 

minute until exhaustion. V� O2max was subsequently determined as the maximal V� O2 over 15 seconds 

after classical plateau criteria had been fulfilled. The highest speed at 70% of V� O2max (v70) during the 

ramp was defined as running speed for the eccentric sessions. 

Initial twitch calibration 

Subjects were securely strapped to a dynamometer with real time force output and two oval rubber 

carbon electrodes (8x13cm) were placed proximally and distally over the quadriceps femoris. These 

were connected to a pulse generator (Digitimer DS7A, Welwyn Garden City, England; 200 µs, 400 V, 

custom amperage). After briefing the subject, double pulses (100Hz) at increasing amperage were given 

until 70% of MVIC was reached or the subject reached their pain threshold. Stimulation started at an 

intensity of 50 mA and 10 seconds relaxation time was guarded between pulses. The maximal achieved 

twitch intensity was recorded and used for all other sessions. 

Muscle function evaluation 

Subjects were equipped with a 4-channel electromyogram (EMG) recording unit (Noraxon TeleMyo 

2400T, Scottsdale, USA) on the three superficial quadriceps femoris (QF) muscles and the short head of 

the biceps femoris (BF). EMG was recorded in bipolar configuration  from sites determined using 

SENIAM guidelines
56,57

 and skin was prepared using a combination of dry shaving, alcohol and abrasive 
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cream to ensure a resistance of <5 kΩ. Signals were pre-amplified and bandwidth filtered (6 - 500 Hz) 

and synchronized with the force and angle signals. Electrode placement was meticulously delimitated 

used indelible marker to ensure congruent placement throughout all sessions. Additionally, two rubber 

carbon electrodes were placed proximally and distally over the QF and connected to the pulse generator 

in order to facilitate percutaneous twitch elicitation. 

Subjects were subsequently strapped securely to a Biodex dynamometer (Biodex System 3, Shirley, USA) 

in order to determine maximal voluntary isometric quadriceps force (MVIC) and voluntary activation 

(%VA). A standardized warm-up consisting of 20 isometric contractions (70° flexion) at 0.5 Hz and 50% 

MVIC was completed followed by two ramping contractions to 70% MVIC over 3 seconds interspersed 

with 30 s rest. MVIC testing was completed at 70° flexion using a standard position and strong verbal 

encouragement. Three MVICs were performed with 1 minute rest between. Each MVIC was 

accompanied by 5 doublets (100 Hz) at different timepoints: 5 seconds before contraction initiation, 

1 second after contraction initiation, and 5, 10 and 15 seconds after contraction cession. EMG, torque 

and stimulation triggers were recorded for each contraction. 

Post-exercise, EMG data was delineated to exclude the twitch artefacts. A 50 Hz notch filter was applied 

followed by a 3
rd

 order Butterworth filter (6 - 100 Hz). The signal was then rectified and RMS was 

calculated for each contraction. Voluntary activation was calculated using the interpolated twitch 

technique (ITT) by expressing superimposed twitch amplitude as a percentile ration of rest twitch 

amplitude
58

:  

�� �%� = 	1 − ������������ �����ℎ ������� �����ℎ� � ! 100 

Passive heating 

Passive heating of the lower extremities was conducted through full lower-body immersion in warm 

water for 75 minutes. Water temperature was constantly regulated at 41.5 °C and the subject adopted a 

sitting position with immersion up to the superior iliac crest, ensuring that the main propulsive muscles 

were under water. To reduce heat elimination ambient conditions were controlled to 27 °C and 60% RH. 

Subjects self inserted a rectal thermometer to monitor core temperature throughout the immersion and 

HR were recorded. Blood pressure and RPE were verified at 5 minute intervals as a precaution against 

excessive vasodilation. 

Eccentric exercise 

In order to elicit eccentric muscle damage subjects completed a 30 minute downhill running protocol at 

a speed corresponding to their 70% V� O2max (v70). Inclination was set to -15% and subjects were 

equipped with a HR monitor and the same respiratory apparatus as during the initial ramp protocol. 

Ambient climate was regulated to 25 °C and 40% RH. 
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Tissue acquisition 

Muscle biopsy samples were obtained from 5 volunteers 10 days before and 48 hrs after passive 

heating. Collection of samples from the vastus lateralis muscle was completed under local anesthesia 

using pre-incision and 2-3 passes of a 6 mm Bergstrom needle with suction enhancement. Samples were 

immediately frozen in liquid nitrogen. For western blot analysis, tissues were homogenized in a 10:1 

(volume-to-weight) ratio of ice-cold extraction buffer containing 10 mM Tris-HCl (pH 7.4); 100 mM NaCl; 

1 mM each of EDTA, EGTA, NaF, and phenylmethylsulfonyl fluoride; 2 mM Na3VO4; 20 mM Na4P2O7; 

1% Triton X-100; 10% glycerol; 0.1% SDS; 0.5% deoxycholate; and 10 ul/ml protease inhibitor cocktail. 

Extracted samples were prepared in Laemli buffer (MilliQ water 3.8 ml, 0.5 M Tris pH6.8 1.0 ml, glycerol 

0.8 ml, 10% SDS 1.6 ml, 2-mercaptoethanol 0.4 ml, 1% bromophenol blue 0.4 ml) and heated 5 min at 

95 
o
C. Proteins (20 μg) were separated on a SDS-PAGE (8–10% gel, 200 V, 1 h) followed by a wet transfer 

to a nitrocellulose membrane for 90 min (200 mA). The nitrocellulose was blocked using 5% non-fat milk 

in TBS and washed with TBS plus 0.1% Tween-20 then incubated overnight at 4 °C with primary antibody 

in 1% milk (HSP72, 1/2000). Membranes were then washed and incubated HRP-conjuged secondary anti 

bodies (mouse for HSP72 and goat anti-rabbit for HSP27). Results were visualised with ECL reagent 

(Millipore) and visualized using the ChemiDoc XRS+ and image Lab software (Bio-Rad). 

Statistics 

Data are expressed as means ± SD. Normality and sphericity were verified for all variables. HSP results 

were treated using a simple paired t-test after verifying normal distribution. Results for the both 

eccentric sessions were computed using a two-way repeated measures ANOVA (group{2} x time period 

{4}) followed by a Newman-Keuls posthoc test to identify and between-means differences. The same 

method was applied on the percentile difference between sessions following a greenhouse-geisser 

correction in both groups. Statistical significance was globally set at p = 0.05.  

Results 

Population 

From 30 recruited participants, 27 completed the first eccentric exercise and follow-up and 12 

completed the full protocol. Therefore, the reported results concerning tissue samples are for 5 

subjects, concerning bout 1 are for 27 subjects and concerning both bouts are for 12 subjects (Table 1). 

 

 

 

 

 



 

 

 

Population

Age [years]

Weight [kg]

Height [cm]

V� O2max [mL
.
min

Table 1: Physiological characteristics of subjects in Heat and Control groups

Passive heating 

All 27 subjects described a similar kinetic of core temperature increase. At around 60 minutes core 

temperature reached 39 °C and remained at this level until the end 

90 minutes. Heart rate increased to 121

75 minutes immersion time. 

Figure 2: Core temperature during passive heating. Core temperatures continue to drift after immersion 

is terminated. Solid green line – mean immersion medium temperature, broken lines 

Tissue samples 

On average 146.2 ± 78mg of muscle

the passive heating intervention, HSP72 and HSP

and 3.4 ± 0.4 fold compared to baseline respectively (Figure 3). 

I n t e r v e n t i o n  s t u d y  t w o

Heat     Control 

Population 13 14 

Age [years] 27.1 ± 3.9 27 ± 3.9 

Weight [kg] 69.4 ± 9.5 68.9 ± 12.6 

Height [cm] 174.9 ± 8.1 173.3 ± 8.1 

min
-1.

kg
-1

] 51.3 ± 8.6 46.3 ± 8.7 

 

Physiological characteristics of subjects in Heat and Control groups

All 27 subjects described a similar kinetic of core temperature increase. At around 60 minutes core 

°C and remained at this level until the end of the measurement period at 

minutes. Heart rate increased to 121 ± 14 and RPE increased up to 18 ± 2 at the end of the 

 

Core temperature during passive heating. Core temperatures continue to drift after immersion 

mean immersion medium temperature, broken lines 

temperatures. 

78mg of muscle tissue was recuperated from the 5 subjects per collection. Following 

ing intervention, HSP72 and HSP27 expression increased significantly to 3.7

0.4 fold compared to baseline respectively (Figure 3).  
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Physiological characteristics of subjects in Heat and Control groups 

All 27 subjects described a similar kinetic of core temperature increase. At around 60 minutes core 

of the measurement period at 

2 at the end of the 

Core temperature during passive heating. Core temperatures continue to drift after immersion 

mean immersion medium temperature, broken lines – individual core 

tissue was recuperated from the 5 subjects per collection. Following 

27 expression increased significantly to 3.7 ± 1.9 fold 
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Figure 3: HSP72 and HSP27 before and 48 hours after passive heating (n = 5). * indicates a significant 

difference from pre to post 48 hours. 

Muscle function testing 

Downhill running was completed at 11 ± 2 km
.
h

-1
 which corresponded to 58 ± 6% of V� O2max. Following 

downhill running, a strong main effect of within-session repetition on MVIC was found (p < 0.01) with no 

effect of group (p = 0.48). Posthoc analysis indicates that no group returned to baseline force (p < 0.01) 

in the first eccentric session, although a non-significant trend to decreased force depression and 

accelerated recovery in the heat group was observed (Fig 4). In the second eccentric session the non-

significant trend was reinforced, heat subjects returning to baseline force by p48 (p = 0.09) while control 

subjects did not (p < 0.01, Fig 4).  

 

 

Figure 4: Changes in maximal voluntary isometric torque in the first (B1, n = 27) and second (B2, n = 12) 

eccentric sessions. * denotes a significant change over time. 



 

The percentile differences between eccentric sessions indicate a main eff

ƞ = 0.55) and repetition (p = 0.02, ƞ = 0.37). The heat group suffered 10% less initial force depression 

than in the first bout and were 25% 

showed no beneficial effects until post 48, where they were 10% stronger than in the first bout (Fig 5).

Figure 5: Percentile differences between changes in MVIC in bouts 1 and 2

No significant differences were evident in the electromyographic data in any of the recorded muscles 

independent of group, session or time point, values ranging from 83% to 130% of pre

Equally resting twitch amplitude remained unchanged in both 

Voluntary activation (Fig 6) remained stable in bout 1 for the heat group (p = 0.09 

significantly in the control group (p = 0.00 

remained stable (p = 0.1 - 0.2), but the control group suffered decline at p48 (p = 0.04) which led to a 

significant difference between groups (p = 0.02).

    

Figure 6: Changes in voluntary activation in the first (B1

session. * denotes significant changes between timepoints. # shows differences between groups.

I n t e r v e n t i o n  s t u d y  t w o

The percentile differences between eccentric sessions indicate a main effect for both group (p = 0.01, 

ƞ = 0.37). The heat group suffered 10% less initial force depression 

in the first bout and were 25% stronger at post 48 hours. The control group on the other hand 

showed no beneficial effects until post 48, where they were 10% stronger than in the first bout (Fig 5).

 

Percentile differences between changes in MVIC in bouts 1 and 2 (n = 12)

significant differences were evident in the electromyographic data in any of the recorded muscles 

independent of group, session or time point, values ranging from 83% to 130% of pre-testing RMS. 

Equally resting twitch amplitude remained unchanged in both groups and sessions (p = 0.3 

Voluntary activation (Fig 6) remained stable in bout 1 for the heat group (p = 0.09 - 0.79), while declining 

significantly in the control group (p = 0.00 - 0.03). In bout 2, both groups’ voluntary activation initially 

0.2), but the control group suffered decline at p48 (p = 0.04) which led to a 

significant difference between groups (p = 0.02).         

Changes in voluntary activation in the first (B1, n = 27) and second (B2, n = 

session. * denotes significant changes between timepoints. # shows differences between groups.
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ect for both group (p = 0.01, 

ƞ = 0.37). The heat group suffered 10% less initial force depression 

stronger at post 48 hours. The control group on the other hand 

showed no beneficial effects until post 48, where they were 10% stronger than in the first bout (Fig 5). 

(n = 12). 

significant differences were evident in the electromyographic data in any of the recorded muscles 

testing RMS. 

groups and sessions (p = 0.3 - 0.6). 

0.79), while declining 

0.03). In bout 2, both groups’ voluntary activation initially 

0.2), but the control group suffered decline at p48 (p = 0.04) which led to a 

 

, n = 12) eccentric 

session. * denotes significant changes between timepoints. # shows differences between groups. 
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Discussion 

The results indicate that passive heating increases HSP expression in the heated muscles and provides 

cytoprotection against functional muscle decrements when applied 48 hours before eccentric exercise. 

The changes in force in combination with unchanged activation and co-activation parameters indicate 

that the intervention effectively induced muscle damage. A trend to reduced torque depression in the 

heat group was observed in bout 1, yet the main impact manifested itself in the second bout. There was 

a significant effect of heating on the percentile changes of force depression from bout 1 to bout 2, 

indicating that heated subjects gained an advantage over the control group in terms of functional 

impairment. This was the case for both initial force depression and especially for recovery of baseline 

force. Voluntary activation data on the other hand expressed a beneficial effect of heating in both bouts. 

Prior heating therefore is an effective strategy for decreasing functional impairment following EIMD. 

As is well-known, HSPs are readily induced by increased tissue temperature. Testing in animal and cell 

models has indicated that a tissue temperature of > 41.5 °C is necessary for induction. Initially we 

endeavoured to control muscle temperature during the passive heating protocol, yet this proved 

complicated due to the submerged position of the tissue and may have been non-indicative of 

induction
59

. Therefore a subgroup of 5 subjects was recruited to enable quantification of HSP induction 

by the heating protocol. The results are in line with other heat induction results reported in the 

literature. Oishi et al.
60

 for example found an increase in HSP72 of 2.5 to 6.8 fold in rat soleus 48 hours 

after heating to 42 °C. Eccentric exercise has been found to increase HSP27 and HSP72 to 2 fold and 

10 fold respectively at post 48 hours after severe eccentric exercise in human muscle
39

. Therefore, while 

the HSP27 results are similar to what would be induced by a bout of eccentric exercise, HSP72 induction 

is far below. 

Voluntary activation and muscle activation parameters were originally only assessed as control 

parameters to ensure that there are no significant changes in activation patterns or motivation. It has 

been proposed that the repeated bout effect stems mainly from changes in activation patterns and 

strategies
13

, but in this study no such changes were evident using surface EMG. Interestingly, voluntary 

activation evolved differently after EIMD in the two groups – the heat group maintaining normal 

activation ratios while the non-heated group manifested exercise-induced decline. This holds true from 

both the first and second bout of exercise. A decline in voluntary activation following EIMD has been 

frequently reported
9
 and is presumed to be related to increased group III and IV afference firing due to 

peripheral nociceptor and pressure sensor activation which reduce voluntary drive
61,62

. Attenuated in 

the heated group may occur either through reductions in swelling or through reduced perceived pain. 

Maximal voluntary isometric force reduction was considered the main outcome variable, and has 

recently also been proposed as the best indicator of EIMD
2
. As presented in the results, participants 

suffered an acute force loss of around -20% in the first bout and the exercise can therefore be classified 

as mild eccentric exercise and is comparable to other protocols investigating downhill running
63

. In bout 

1 there is a prevailing trend to faster restoration of baseline force in the heat group while initial 

induction is similar to control. Although HSP expression was elevated in the heat group at the beginning 

of the exercise, there was no impact on acute damage development. This was quite surprising, as HSP 
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are highly implicated in cytoprotection processes and were expected to limit damage development 

through actively managing debris removal and thus reducing the subsequent inflammation phase
54

. 

Similar to the observations of Nosaka et al.
55

, our results indicate that elevated HSP expression during 

exercise has no mitigating effect on acute damage development. This may be due to the rapidity of 

damage development
27

 which might surpass the translocation delay of HSP into the critical regions
21,64

.  

In any case, elevated HSP during exercise seems to be beneficial for the recuperation process. This is not 

surprising, as HSP72 in particular is associated with debris clearing and chaperoning of damaged protein 

segments
45

. Effectively it may be that the only benefit of pre-inducing HSP is an elimination of the HSP 

expression phase, which generally takes from 24 to 48 hours to reach its peak. In the pre-induced 

muscles, HSP is already plays an active role in the clearance and restructuring, thus diminishing 

inflammation and subsequent ROS stress. This could explain the enhanced recovery of force. 

In the second bout of eccentric exercise, the heated group show comparatively less initial damage and 

further enhanced recovery. Earlier studies on HSP expression during a repeated bout effect report 

inconclusive results concerning changes of basal HSP expression
21,52,53

. Nonetheless the results indicated 

either a relative increase in HSP response
52,53

, or an increase in the cytoskeletal fraction
21

. Without 

having procured tissue samples from the respective subjects, it is difficult to extrapolate how the HSP 

adaptation will have changed from a single peak (Control) to a double-peaked (Heat) initial invocation. 

From muscle function alone, we can surmise that a double peaked profile is somewhat beneficial in 

limiting both initial insult and in accelerating recovery. These results expand on the observations of 

Nosaka et al.
55

, who observed an increased beneficial effect of prior heat exposure on recovery in a 

second bout of eccentric exercise 2-4 weeks after the initial bout. 

There was significant variance in the results, suggesting that subjects either showed different degrees of 

response to the eccentric stimulus, or adapted running strategies to mitigate EIMD development. 

Downhill running was chosen as an eccentric modality because of its applicability and pertinence in 

everyday life. The findings in this study would have been strengthened by the collection of tissue 

samples before and after both eccentric bouts. Recruitment for this type of protocol proved difficult, as 

no compensation could be offered due to funding limitations. Additionally, force depression could have 

been more precisely quantified by using evoked contractions of the knee extensors instead of voluntary. 

The use of transcranial magnetic stimulation (TMS) to determine the origin of voluntary activation 

differences in groups would also have been interesting
65

. In a future study we would consider using a 

more precisely defined eccentric protocol modelled after the one employed by Nosaka et al.
55

 for the 

lower limb, assessing evoked contractions, and using TMS to elucidate the origin of changes in voluntary 

activation. Furthermore, it could be interesting to quantify changes in conduction velocity of the muscle 

membrane using high density EMG arrays. 

Conclusion 

Passive heating has a beneficial effect on force reduction induced by a mild eccentric damage protocol 

conducted 48 hours later. A trend to attenuation of initial force depression and acceleration of the 

recovery of baseline is apparent in the heated group. In a second bout conducted 3 to 5 weeks later, the 

beneficial effects were amplified in comparison to the control group, who only completed an exercise 
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bout. Initial force depression is limited and baseline force is recovered by 24 hours post-exercise. This 

can be related to an increased HSP expression in the heated muscle, indicating that the expression of 

HSP27 and HSP72 is implicated in the repeated bout effect. 
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8.1 SYNOPSIS OF RESULTS 

 

In the four presented studies, there is a distinct evolution of orientation from a descriptive basis 

over a validation stage to intervention-based investigations. The studies build upon each other, 

as the descriptive studies give the design basis for a validation study which then subsequently 

serves as a model for the intervention studies. In synopsis, the research conducted during this 

thesis has included the development and validation of a trail running model to assess fatigue 

and the evaluation of two intervention strategies. In the first study, classical markers of fatigue 

were assessed in populations of different age groups. This allowed a preliminary quantitative 

assessment of fatigue-based changes that would be procured in a typical trial race using 

classical methodologies. Additionally, differences between age groups were determined and 

this proved valuable in determining the target population for later studies. In the second study, 

the reproducibility of classical fatigue markers was verified throughout four repetitions of a 

short trail run in a young and well-trained population. Results indicate that the first and fourth 

repetitions lead to deviant performance and fatigue when compared to the other repetitions. 

This was attributed to learning effects and adaptations related to the repeated bout effect. The 

third study examined potential benefits of wearing compression garments (CG) during a short 

trail running exercise using a randomised cross-over design with ample familiarization. 

Effectively, no differences were found in performance or fatigue between CG and non-CG trials, 

thus discounting this intervention strategy for this specific type of running course. In the final 

intervention study, a randomised control trial was used to determine the effects of pre-exercise 

heating on the functional consequences of two bouts of downhill treadmill running. Prior 

heating was found to have a beneficial functional effect following both the first and second 

running intervention. These results support the hypothesis of an HSP-driven repeated bout 

effect and represent the first recording of muscle damage in HSP-elevated humans. Rather than 

inherently solving a research paradigm of their own standing, the effectuated investigations 

and procured results represent part of a collaborative effort of the scientific community to 

achieve new perspectives and insights on an old research question. 

 

8.2. INTEGRATION INTO THE EXISTING LITERATURE FRAMEWORK 

 

As described in the individual introductions and discussions, there is a growing amount of 

research being conducted on trail running. While this can be attributed to the growing 

importance of trail running as an industry and a social economy, there is also a growing 

scientific interest in trail running as a model of fatigue. As with many other phenomena, there is 

often knowledge to be gained by investigating “special cases”. Trail running may be seen as just 

that: a “special case” of fatigue induction. In trail running, through the substantially greater 

eccentric strain coupled with prolonged exercise at a low muscular intensity, a number of 
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stimuli are superimposed. Interestingly and contrary to what may be expected through a simple 

summation of stimuli, the resulting fatigue expressed as a decrease in voluntary isometric knee 

extensor torque remains comparable to values reported in “flat” running
1,2

. When comparing 

the results of maximal voluntary isometric force reduction obtained in the present studies as a 

function of distance, values of around -8 % in 15 km
3
 and -30 % in 55 km

4
, these values are 

coherent with the relationship between distance and force decline presented in Chapter 2 in 

the section on the flush model (Section 2.4.5; Fig. 2.12). The reduction in maximal voluntary 

force generating capacity must, in this context, be seen as the sum of a fatigue-induced 

reduction (central and peripheral) and a damage-induced reduction (peripheral). The same 

congruent results have been remarked by Millet et al.
1
 when comparing their results from the 

UTMB with the results obtained by Martin et al.
2
 during a flat treadmill run. This leads to the 

question as to how the force depression can remain unchanged, although there is an additional 

damage stimulus present compared to flat running. The only possible explanation is that fatigue 

must be less potent, compensating for the additional depression. A similar “critical fatigue 

threshold” has been proposed by Amman et al.
5
 who observed an increased peripheral fatigue 

in ergorecepter-blocked subjects. In both cases, central drive was supposedly modulated to 

compensate for the level of afferently indicated peripheral fatigue
5,6

. Before indulging in pure 

conjecture though, it should be verified that the additional muscle damage did actually occur. 

In the light that the trail runners were well-trained, a sufficient cytoprotective effect may have 

already been evoked which shielded the subjects from excessive muscle damage. CK values 

retrieved from the runners indicate differently though. In average, 24 hours post-trail subjects 

had a 2-fold increase in CK during the 15 km trail, and a 10-fold increase during the 55 km trail. 

While the CK values are not irrevocable proof that muscle damage has occurred, they 

nonetheless give a strong indication that some form of myofibrillar leakage did occur
7
. 

Additionally, changes in twitch and M-wave properties recorded after the 55 km trail run 

indicate that some form of peripheral alteration has taken place. To accurately verify the extent 

and form of muscle damage, muscle biopsies would need to be taken post trail, but no such 

study has been published to date. To recapitulate, the results obtained indicate similar fatigue 

compared to flat runs, yet elevated muscle damage which involves a substantial decrease in 

contractile function. 

 

While the data collected from the present experiments do not allow a direct conclusion, the 

results can be elucidated by applying some of the theoretical concepts introduced in Chapter 2. 

Using the logic which underlies integrated models, the peripheral alterations induced through 

fatigue and muscle damage not only result in a diminished contractile function, but also in an 

increased firing rate of the afferences during the exercise. Additionally, there is extensive stress 

signaling originating from the calcium leakage which may be centrally registered. If we apply 

the Flush model in this case, the “filling rate” of the tank increases, accelerating the rise of RPE 
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into the security reserve. In order to prevent the infringement of the security reserve before 

exercise is completed, motor drive is decreased in the same measure as the “filling rate” is 

increased, restoring the rate of RPE increase to its original level. This has been observed by 

Baron et al.
8
, manifesting as a change in pacing during repeated eccentric sprints. An alternative 

explanation could be that the original planification of exercise already takes into account the 

eccentric-induced damage and therefore compensates it by an adapted planned pacing strategy 

before exercise is commenced. If this is the case, the planned exercise strategy is very probably 

dependent on experience and course knowledge
9–11

. This is supported by the evolution of 

performance and fatigue over four repetitions of the same trail run
12

. In the initial run, 

performance was decreased and fatigue increased, indicating that the exercise strategy was not 

optimal. After learning the course, the subjects managed to perform better while experiencing 

less fatigue, hence a more optimal exercise strategy. Various studies have been conducted 

using missing or false distance or duration feedback, which has been observed to have a 

significant impact on the subjects’ regulation strategies
13,14

 further strengthening this concept. 

A final explanation can also be found using the teleoanticipatory approach, namely that the 

tasks “continued running” and “MVC” are inherently different in nature and have different 

prolonged consequences for the physiological system
9
. If the teleoanticipatory prediction also 

takes into account the regeneration phase, perhaps linked through a motivational factor, MVC 

may be completed at a different level of drive that is related, but not inherently linked to the 

central fatigue experienced during running. Unfortunately, identification of this type of process 

is - for the moment - outside the range of the existing measurement tools and rests conjecture. 

To summarise the ideas presented above: fatigue may be indifferent between “flat” and “trail” 

courses as it is regulated to a “critical threshold” level through teleoanticipatory prediction and 

inhibitory afferent feedback. Indeed, the results observed in the presented studies conform to 

this idea and present a conclusive case from this perspective. 

Strategies to enhance trail running performance, applying the same theoretical framework, 

must hence alter one of the variables in the flush system. Both EIMD reduction and 

compression attempt to modify the “filling rate” to a more or less successful degree. 

Additionally, there is a certain effect of belief and perception which may affect the 

interpretation of the “filling rate” that is not negotiable, as the modalities engender a sensory 

component. Nonetheless, compression garments fail to enhance performance, although 

extensive familiarization with the course was completed to allow optimization of the exercise 

strategy. This indicates that in a short trail run, compression garments are probably superfluous 

to performance. No extrapolation can be made to longer trails, as the effects might become 

more apparent as muscle damage becomes more pertinent. The induction of Heat Shock 

Proteins on the other hand appears to lead to an attenuation of force depression caused by 

EIMD in untrained subjects. A second bout of exercise demonstrates a potentiation of the 
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beneficial effect over the usual repeated bout effect. Presently, these results are not 

transferable to trail races, due to the differences in population training status and exercise 

duration. 

Concluding this section, the reported results are coherent with existing data and models and 

provide indirect support of teleoanticipation and negative afferent feedback regulation of 

exercise intensity. For individual discussion of the results please refer to the respective article 

discussion sections.  

 

8.3. CRITICAL ASSESSMENT OF METHODS 

 

The methods employed in the presented experiments are not without limits and weaknesses. 

Generally, it would have been preferable to conduct all experiments as blinded trials, but this 

was rendered difficult by the physical nature of the tasks. Hence there may be an element of 

belief that is active and that may have modified outcomes to a modest degree. Pains were 

taken to keep the participants in the belief that all conditions were equally beneficial, but in 

certain cases (compression garments) the preconceptions shaped were undoubtedly stronger. 

Furthermore, creatine kinase is historically considered a marker with high inter-individual 

variability
7,15,16

. It was used nonetheless in the presented experiments, as it is by far the most 

common marker reported and enabled inter-study comparison. In the specific studies, 

limitations are generally elaborated upon in the discussion section, but the main limitations will 

be recapitulated here for convenience. 

 

In the initial descriptive study, it would have been better to use a treadmill rather than an 

ergocycle to determine running efficiency. The ergocycle was nonetheless used, as the 

participants were so fatigued after the effort, that they were incapable of running. It also 

mitigated the effect of age on morphological parameters such as tendon stiffness and stretch 

potentiation response.  

 

Furthermore, in retrospect of the reproducibility study, it would have been advisable to use a 

longer course in the trail running model. The amount of muscle damage induced is rather 

minimal due to the training status of the participants in relationship to the running distance. 

There was an effect shown on the depression of force, so the course was sufficient, yet a longer 

course might have shown stronger effects. Alternatively, less trained runners could have been 

recruited. 

 

Weaknesses in the intervention study using compression garments include the short running 

course and the choice of a single measurement time point 45 minutes following exercise. It 

would have been beneficial to record MVIC at multiple time points directly following the 
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exercise to better understand the evolution and discretely identify the point of maximal force 

depression. Using evoked force through TMS of PNS would have been a more reliable indicator 

and would have additionally allowed conclusions on the origin of fatigue.  

 

The final intervention study on passive heating and eccentric-induced muscle damage would 

have benefitted from testing a greater population. The main limitation of the proposed 

technique though, is that the passive heating phase was regarded as extremely uncomfortable 

by most of the participants. Additionally, it was challenging to keep the participants’ heat loss 

to a minimum and there was quite pronounced inter-individual variation in regard to thermal 

stress-coping strategies. If the heating technique is to be used more frequently, a modification 

to reduce subject discomfort would need to be developed. 

 

8.4. IMPLICATIONS FOR FUTURE RESEARCH AND OUTLOOK 

 

So how can trail running research continue to evolve? There are several potentially interesting 

perspectives uncovered in the presented studies that warrant exploration. While there is little 

published trail-specific knowledge and therefore ample opportunity, there are two main axes of 

research that seem especially interesting. For one, the development of practical intervention 

strategies and training strategies is important not only to increase trail running performance, 

but also to invigorate the trail running industry and advance scientifically backed innovation. 

Functional advances in engineered products serve as pioneering concepts that can 

subsequently be adapted for general use. Practical intervention strategies, such as pre-heating, 

may also find application in boosting the efficiency of training programs during rehabilitation or 

to prevent age-related decline of muscle function. In a different light, examining trail running as 

a specific form of simultaneous induction of muscle damage and fatigue can contribute to 

answering the age-old research question, “What causes fatigue?” 

 

Using prior heating to decrease functional impediment after EIMD has proven effective as a 

proof of concept in the experiments presented here. To determine the suitability and effects of 

this intervention on a trail race, a similar protocol would need to be applied to a trail running 

population using a trail race as an intervention. Collection of tissue samples would allow exact 

determination of HSP levels, contributing to a better understanding of HSP regulation and its 

contribution to EIMD reduction. Additionally, this would allow for a better characterization of 

the EIMD magnitude invoked through a trail. 

Furthermore, it would be especially interesting to determine precisely whether or not a trail run 

induces the same amount of fatigue as a flat run. When assessing this question, it is difficult to 

determine the precise equivalent. As the races are run at different speeds due to their 

characteristics, it is not straightforward to determine what length of flat course corresponds to 
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which length of trail. In a two-pronged study design, this conundrum could be solved while at 

the same time providing additional information on running economy and the biomechanics of 

movement. By instrumenting trail running shoes with an array of interior pressure sensors, a 

relatively precise quantification of the completed work load can be calculated, along with stride 

frequency and push-off force and angle. This data can prove useful in determining equivalent 

flat and trail courses. If subjects were additionally equipped with a portable spirometry unit, 

running economy could be calculated not only during exercise, but also more precisely than 

byusing delta efficiency or gross efficiency. 

One of the more pertinent research questions in fatigue is the contribution of supraspinal 

factors to central fatigue. Using voluntary, PNS-evoked and TMS-evoked contractions following 

trail running, it becomes possible to clarify the impact of prolonged, muscle-damaging exercise 

on supraspinal modulation of motor drive. This could then be the basis for comparing similar 

protocols in non-damaging exercise, which would indicate whether muscle damage is 

implicated in limiting central motor drive. Furthermore, it would be very interesting to monitor 

potential changes in conduction velocity of the membranes before and after fatigue. Using an 

HDEMG it becomes possible to trace the translocation of the potential along the electrode 

array. This form of analysis is not common following prolonged exercise due to the relative 

novelty of the technique and the high computational cost. However, the results from such an 

experimental approach would be enlightening, especially as trail running involves not only 

prolonged exercise but also ultra-structural damage which may negatively affect propagation 

velocity. 

Finally, trail running can be seen as inducing a different type of attention strategy to other 

forms of prolonged exercise. As the terrain is varied, the runners’ attention must stay focused 

on the task and terrain, involving continuous concentration. Disassociation strategies and 

external focus that are common in flat races
17

 may not be applicable in the same form. This 

therefore provides an interesting model to investigate cognitive performance following 

prolonged exercise coupled with sustained attentional focus. It would be especially interesting 

to prime subjects with different paradigms and track both their pacing strategies using global 

positioning systems (GPS) and the resulting fatigue using a combination of voluntary 

contractions, PNS and TMS. This could shed some light on the effect of priming on the 

calibration of the teleoanticipatory system before effort initiation.  

 

8.5. CONCLUSION 

 

A quote often attributed to Socrates states, “To know, is to know that you know nothing”
18

. 

Much so, the work of this thesis, while having contributed to the general knowledge on trail 

running and heat shock protein interaction with eccentric muscle damage, raises more 
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questions than it answers. In the presented experiments, differences between young and 

master athletes have been demonstrated and the alterations induced by a 55 km distance trail 

described. Some of the basic footwork allowing the use of intervention studies has been 

provided and a useful model has been developed that may be replicated in other studies. A 

contribution to the growing body of literature on compression garments has been made which 

will hopefully help to arrive at a final conclusion of the discussion in the near future. Finally, a 

proof of concept has been provided that HSP cross-tolerance is possible in humans between 

heating and mechanical and inflammatory stress. The field of trail running research remains a 

rather sparsely painted canvas, but hopefully this thesis has helped fill in some of the blank 

areas. 
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