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TANGENT CUT LOCI ON SURFACES

A. FIGALLI, L. RIFFORD, AND C. VILLANI

Abstract. Given a smooth compact Riemannian surface, we prove that if a
suitable convexity assumption on the tangent focal cut loci is satisfied, then all
injectivity domains are semiconvex.

Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension n = 2, UM ⊂
TM its unit tangent bundle, and exp the associated Riemannian exponential map.
We define the distance function to the cut locus, tC : UM → (0,∞) as

tC(x, v) = cut time of (x, v)

:= max
{
t ≥ 0; (expx(sv))0≤s≤t is a minimizing geodesic

}
.

Then for any x ∈M , we let

TCL(x) = tangent cut locus of x

:=
{
tC(x, v)v; v ∈ UxM

}
;(0.1)

I(x) = injectivity domain of the exponential map at x

:=
{
tv; 0 ≤ t < tC(x, v), v ∈ UxM

}
.(0.2)

Note that TCL(x) is compact and coincides with the boundary of the open set I(x).
Finally, the cut locus of x may be defined as

cut(x) := expx
(
TCL(x)

)
.

Many works [2, 8, 9, 10, 11, 14] have been devoted to the cut locus, or the distance
function to the cut locus (x, v) 7→ tC(x, v). Itoh and Tanaka [10] (see also [2, 11])
proved that the function tC is Lipschitz continuous on UM . The aim of this paper
is to show that under an additional convexity assumption on the tangent focal loci,
each function tC(x, ·) is semiconcave. Recall that a real-valued function u defined
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on an open set U ⊂ Rn is said to be locally semiconcave on U if for every x̄ ∈ U
there exist δ, σ > 0 such that

(0.3) tu(x) + (1− t)u(y)− u(tx+ (1− t)y) ≤ t(1− t)σ|x− y|2,
for all x, y in the ball Bδ(x̄) and every t ∈ [0, 1]. This is equivalent to saying that
the function u can be written locally as

u(x) = v(x) + σ|x|2 ∀x ∈ Bδ(x̄),

with v concave on Bδ(x̄). If σ is uniform, we just say that u is semiconcave on U .
Properties of locally semiconcave functions are reviewed in [1] and [15, Chapter 10].

As an immediate geometric consequence of the semiconcavity property of tC(x, ·),
all sets I(x) are semiconvex, which means that there exists r > 0 such that around
each w ∈ TCL(x) the set I(x) ∩ Br(w) is diffeomorphic to a convex set (see [12,
Appendix B]); even if r a priori depends on x, it may be chosen uniform by com-
pactness.

This also implies that TCL(x) is an Alexandrov space with curvature bounded
below; in particular our main result is the first partial answer to a question raised
by Itoh and Tanaka [10] who asked whether TCL(x) is in general an Alexandrov
space.

To state our main assumption we need some more notation. First, let us define
the distance function to the focal locus, tF : UM → (0,∞], by

tF (x, v) = focalization time of (x, v)

:= inf
{
t ≥ 0; det(dtv expx) = 0

}
.

For a general n-dimensional manifold, tF (x, ·) is semiconcave on its domain [2].
However, since here M is two-dimensional, it is easy to show by the Implicit Function
Theorem that tF (x, ·) is smooth on its domain. (See for instance [6, Paragraph 3.1].)

We further define

TFL(x) = tangent focal locus of x

:=
{
tF (x, v)v; v ∈ UxM

}
;(0.4)

NF(x) = nonfocal domain at x

:=
{
tv; 0 ≤ t < tF (x, v), v ∈ UxM

}
.(0.5)

Recall that tF ≥ tC [7, Corollary 3.77]. Next, for every x ∈M , we define the tangent
focal cut locus at x by

TFCL(x) := TCL(x) ∩ TFL(x),
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and the fibered tangent focal cut locus by

TFCL(M) :=
⋃
x∈M

(
{x} × TFCL(x)

)
⊂ TM.

(Although closed, TFCL(M) is not necessarily connected, since TFCL(x) might be
disconnected or empty.) Finally, we define

(0.6) κ(M) := inf
{

IITFL(x)(v); (x, v) ∈ TFCL(M)
}
.

Here IITFL(x)(v) is the second fundamental form of TFL(x) at v, which in this two-
dimensional context is just a fancy notation for the signed curvature of TFL(x) at
v. The above infimum is taken among all focal cut velocities in M .

We are now ready to state our main result:

Main Result. Let (M, g) be a two-dimensional Riemannian manifold such that
κ(M) > 0. Then all injectivity domains of M are semiconvex.

Notice that the above assumption survives perturbation: indeed, if (M, g) sat-
isfies κ(M, g) > 0 and g′ is a metric on M which is sufficiently close to g in C4

topology, then κ(M, g′) > 0 as well. (This comes from the upper semicontinuity of
TFCL with respect to variations of metric, and the fact that the curvature of TFL
depends smoothly on the metric.) In particular the injectivity domains for g′ are
still semiconvex, although the dependence of the cut locus on the metric is highly
irregular.

The proof of the main result is not long, because the main work has already
been done in previously published papers [5, 6]. For a start, in Section 1 we shall
recall a general semiconvexity result, based on the Implicit Function Theorem, which
works near a “genuine” cut velocity, that is when the cut locus property is due to
the existence of several distinct minimizing geodesics. This reduces the problem to
a local study near “purely focal” cut velocities, which in particular belong to the
tangent focal cut locus.

Then in Section 2 we shall see how to exploit the positivity of κ(M) to prove
convexity of I(x) in the neighborhood of TFCL(x). Instead of the Implicit Function
Theorem, the reasoning is based on a fourth-order curvature-type condition named
after Ma, Trudinger and Wang: see [3] or [15, Chapter 12] for a presentation and
survey.
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1. Semiconvexity around genuine cut velocities

We write exp−1 for the inverse of the exponential map: by convention, for every
x ∈ M , exp−1

x (y) is the set of minimizing velocities v such that expx v = y. In
particular TCL(x) = exp−1

x (cut(x)) and I(x) = exp−1
x (M \ cut(x)). For every x ∈M

we define the multivalued mapping Wx : UxM → UxM by

∀ v ∈ UxM, Wx(v) :=
exp−1

x

(
expx

(
tC(x, v) v

))
tC(x, v)

⊂ UxM.(1.1)

In words, Wx is the set of initial velocities of minimizing geodesics which will
“cut” the geodesic t 7→ expx(tv): if w ∈ Wx(v) then tC(x,w) = tC(x, v) and
expx

(
tC(x,w)w

)
= expx

(
tC(x, v) v

)
.

If A is a given set in TxM , we denote by diam(A) its diameter with respect to the
metric g. The quantity ∆(x, v) := diam(Wx(v)) vanishes if and only if the geodesic
γ starting from x with velocity v is purely focal, in the sense that γ is the only
minimizing geodesic joining x to its cut point along γ. Conversely, the positivity
of ∆ quantifies the fact that v is a true cut velocity, in the sense that two distinct
minimizing geodesics join x to expx(tC(x, v)v).

The meaning of Proposition 1.1 below is that the semiconcavity of the injectivity
domain is essentially controlled by a lower bound on ∆.

Proposition 1.1. Let x ∈ M be fixed and v ∈ UxM such that ∆(x, v) > 0. Then
there are δ > 0 and a smooth function τ : UxM ∩B(v, δ)→ R+ such that tC(x, v) =
τ(v) and tC(x, v) ≤ τ(v) for every v ∈ UxM ∩ B(v, δ). Moreover the C2 norm of τ
is bounded by C/∆(x, v)6, where C depends only on an upper bound on ‖g‖C3 and
diam(M).

In the above statement the C3 norm of g is computed in a choice of local coor-
dinates, fixed in advance; regularity bounds on the charts defining M are implicitly
involved.

Proposition 1.1 is a slightly more explicit variant of [12, Proposition C.6(b)], and
the argument also appeared in [2]. Anyway the proof is short, so we shall provide it
in its entirety.

Proof of Proposition 1.1. First, for every (x, v) ∈ TxM we set φx(v) := −dv expx(v) ∈
Texpx(v)M (so that if γ : [0, 1] → M is a constant-speed minimizing geodesic going
from x to y, with initial velocity v0 and final velocity v1, the map φx is defined by
v0 7→ −v1). As in [12, Lemma 4.2], there is a constant L > 0, depending only on
the C2 norm of the exponential map on I(M) = ∪x∈M({x} × I(x)), such that if



TANGENT CUT LOCI ON SURFACES 5

v, w ∈ TCL(x) satisfy expx v = expxw then

L−1|v − w|x ≤
∣∣φx(v)− φx(w)

∣∣
expx v

≤ L|v − w|x.

Set t := tC(x, v), y := expx
(
tv
)

and ∆ := diam
(
Wx(v)

)
. Let further dx(y) :=

d(x, y) be the distance function to x. By assumption, there is w ∈ Wx(v) such that
|w − v|x = ∆ > 0. Since dx is locally semiconcave on M \ {x} and −φx

(
tw
)
/t is

a supergradient for dx at y [15, Definition 10.5 and Proposition 10.15], there is a
smooth function h : M → R such that

d
(
x, y
)

= h
(
y
)

= t,

∇h(y) = −φx
(
tw
)
/t

d
(
x, y
)
< h(y), ∀ y ∈M \ {y}.

Define Ψ : [0,∞)× UxM → R by

Ψ(t, v) := h
(
expx(tv)

)
− t.

The function Ψ is smooth and satisfies Ψ(t, v) = 0. Moreover, one has

−∂Ψ

∂t

(
t, v
)

=
〈
∇h
(
y
)
,
φx
(
tv
)

t

〉
y
− 1

= − 1

t
2

〈
φx
(
tw
)
, φx
(
tv
)〉

y
− 1

=
1

2t
2

∣∣∣φx(tw)− φx(tv)∣∣∣2
y
≥ ∆2

2L2
> 0.(1.2)

Therefore, by the Implicit Function Theorem, there are an open neighborhood V of
v̄ in UxM and a smooth function τ : V → R such that

Ψ
(
τ(v), v) = 0 ∀ v ∈ V .(1.3)

If v ∈ V and y := expx
(
τ(v)v

)
, then we have d(x, y) < h(y) = τ(v), so necessarily

tC(x, v) < τ(v).
On the other hand, by construction τ(v) = g

(
y
)

= t. Moreover, differentiating
(1.3) twice yields

τ ′ = −
(
∂Ψ

∂t

)−1(
∂Ψ

∂v

)
,

τ ′′ = −
(
∂Ψ

∂t

)−3
[(

∂Ψ

∂t

)2(
∂2Ψ

∂v2

)
− 2

(
∂Ψ

∂t

)(
∂Ψ

∂v

)(
∂2Ψ

∂t ∂v

)
+

(
∂Ψ

∂v

)2(
∂2Ψ

∂t2

)]
.
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By (1.2), this implies that the C2 norm of τ is controlled by C/∆6, where C depends
only on L and the C2 norms of h and exp. Recalling that L depends on the C2 norm
of exp, which in turn depends on the C3 norm of the metric g, we obtain the claimed
result. �

2. Convexity near focal cut velocities

Before starting the proof of our main result, let us first introduce some few more
notation. Let x ∈ M , v ∈ NF(x), and (ξ, η) ∈ TxM × TxM be fixed. Since
y := expx v is not conjugate to x, by the Inverse Function Theorem there are an
open neighborhood V of (x, v) in TM , and an open neighborhood W of (x, y) in
M ×M , such that

Ψ(x,v) : V ⊂ TM −→ W ⊂M ×M
(x′, v′) 7−→

(
x′, expx′(v′)

)
is a smooth diffeomorphism from V to W . Then we may define ĉ(x,v) :W → R by

ĉ(x,v)(x
′, y′) :=

1

2

∣∣Ψ−1
(x,v)(x

′, y′)
∣∣2
x′ ∀ (x′, y′) ∈ W .(2.1)

If v ∈ I(x) then for y′ close to expx v and x′ close to x we have

ĉ(x,v)(x
′, y′) = c(x′, y′) := d(x′, y′)2/2.

Then for any x ∈M , v ∈ NF(x), and (ξ, η) ∈ TxM × TxM , we define

S(x,v)(ξ, η) := −3

2

d2

ds2

∣∣∣∣
s=0

d2

dt2

∣∣∣∣
t=0

ĉ(x,v)

(
expx(tξ), expx(v + sη)

)
= −3

2

d2

ds2

∣∣∣∣
s=0

〈
∇2
x ĉ(x,v)

(
· , expx(v + sη)

)
· ξ, ξ

〉
x
.

This tensor was introduced in [4]; it is a generalization of the original Ma–Trudinger–
Wang (MTW) tensor defined in [13]. (The conventions here are the same as in [15,
Chapter 12].)

We note that ∇2
x ĉ(x,v)(x, expx v) blows up as v approaches TFL(x), in the sense

that one of its eigenvalues approaches −∞. In contrast, all the x-derivatives of
c(x, expx v) remain bounded (but not continuous) if v approaches a nonfocal cut
velocity. So the behaviour of the MTW tensor is nontrivial only near focalization.

It was shown in [6] by a Jacobi fields analysis that the strict convexity of the
nonfocal domain implies the “positivity” of the MTW tensor (in the sense of (2.5)
below). In turn this positivity implies the convexity of the injectivity domain [5]:
this property (independent of the dimension) is established by a maximum principle
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showing that if v0 and v1 belong to the injectivity domain at x, vt = (1− t)v0 + v1

is the segment joining both, and yt = expx(vt), then [0, 1] 3 t 7−→ d(x, yt)
2 − |vt|2

cannot achieve its maximum within (0, 1). Much more information is in [5].

So our strategy consists in putting together two cases:

• Near pure focalization (∆ ' 0), we use the convexity assumption κ(M) > 0 and
the results of [6] to deduce the convexity of the injectivity domain;

• In the regime of true cut velocities (∆ > 0), we apply Proposition 1.1.

The following lemma will allow us to separate between these two situations:

Lemma 2.1. Let M be a compact Riemannian manifold and V a neighborhood
of TFCL(M) in TM ; then there is ν > 0 with the following property. If (x, v) ∈
TM\{0} satisfies ∆(x, v/|v|) < ν then for all v0, v1 ∈ I(x), t ∈ [0, 1] with |v0−v| < ν,
|v1 − v| < ν, vt = (1 − t)v0 + tv1, yt = expx((1 − t)v0 + tv1), qt = −dvt expx vt, for
all qt ∈ (expyt

)−1(x) and any s ∈ [0, 1], one has

(2.2)
(
yt, (1− s)qt + sqt

)
∈ V .

Proof of Lemma 2.1. First recall that φ(x, v) = (expx v,−dv expx(v)) defines a bi-
Lipschitz involution sending TCL(M) to itself [12, Lemma 5.1] and TFL(M) to itself.
These properties are immediate from the interpretation given at the beginning at the
proof of Proposition 1.1. In particular it follows easily that ∆(x, v) ≤ C ∆(φ(x, v))
for some constant C > 0.

Now, if the claim is false, then for each k ∈ N there are (xk, vk) ∈ TM\{0}, vk0 , vk1 in

I(xk) and tk ∈ [0, 1], such that ∆(xk, vk/|vk|) < 1/k, |vk0 −vk| < 1/k, |vk1 −vk| < 1/k
and, with wk = (1 − tk)v

k
0 + tkv

k
1 , yk = expxk wk, qk = −dwk

expxk(wk), there is
qk ∈ (expyk)−1(xk) and sk ∈ [0, 1] such that

(2.3)
(
yk, (1− sk)qk + skq

k
)
/∈ V .

Take k → ∞, and up to subsequence assume that xk → x, vk → v, vk0 → v,
vk1 → v, tk → t, sk → s, yk → y = expx v, qk → q = −dv expx(v). Also ∆(yk, qk) =
∆(φ(xk, wk)) ≤ C ∆(xk, wk)→ 0, so∣∣∣∣ tC (yk, qk|qk|

)
− tC

(
yk,

qk
|qk|

)∣∣∣∣ −−−→k→∞
0,

which implies |qk − qk| → 0, hence qk → q. Then, by taking the limit in (2.3) we
find

(2.4) (y, q) /∈ V .
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The fact that ∆(xk, vk) converges to 0 does not allow us to deduce ∆(x, v) = 0;
but for sure it implies that (x, v) ∈ TFCL(M). Hence (y, q) ∈ TFCL(M), which
contradicts (2.4). Then the proof is complete. �

Proof of Main Result. Let M be a two-dimensional smooth compact manifold sat-
isfying κ(M) > 0. By [6, Proposition 3.1 and Remark 3.2], there is a neighborhood
V of TFCL(M) in TM and there are constants K,C > 0 such that for all (x, v) ∈ V
with v ∈ NF(x),

(2.5) ∀ (ξ, η) ∈ TxM × TxM, S(x,v)(ξ, η) ≥ K |ξ|2x |η|2x ,−C 〈ξ, η〉2x.
Reducing V if necessary, we also deduce from κ(M) > 0 that

(2.6)

v ∈ V ∩ NF(x), w ∈ V ∩ NF(x) =⇒ ∀ t ∈ (0, 1), (1 − t)v + tw ∈ NF(x).

The neighborhood V determines a positive number ν with the properties stated in
Lemma 2.1.

Now let (x, v) ∈ TCL(M); the goal is to prove the semiconvexity of I(x) near v.

• If ∆(x, v) ≥ ν then by Proposition 1.1 tC(x, · ) is semiconcave around v/|v|.
• If ∆(x, v) < ν then let us show that I(x) is convex around v. Let v0, v1 ∈

I(x)∩B(v, ν), and let vt = (1−t)v0+tv1. Since NF(x) is uniformly convex in B(v, ν),

vt belongs to NF(x) for all t; so qt ∈ NF(yt). On the other hand qt ∈ I(yt) ⊂ NF(yt),
so by (2.6) we have

(2.7) (1− s) qt + s qt ∈ NF(yt) for all s ∈ (0, 1).

Furthermore by (2.2) (yt, (1− s)qt + sqt) ∈ V , so (2.5) gives

(2.8) ∀ (ξ, η) ∈ TytM × TytM, S(yt,(1−s)qt+sqt)(ξ, η) ≥ K |ξ|2yt
|η|2yt

− C 〈ξ, η〉2yt
.

The combination of (2.7) and (2.8) implies, by the reasoning of [5, Theorem 2.7,
Proof in Section 6] that vt ∈ I(x) for all t ∈ (0, 1). This proves the convexity of I(x)
near v, and the proof is complete. �
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