
Fast American Basket Option Pricing on a multi-GPU

Cluster

Michael Benguigui, Françoise Baude

To cite this version:

Michael Benguigui, Françoise Baude. Fast American Basket Option Pricing on a multi-GPU
Cluster. 22nd High Performance Computing Symposium, Apr 2014, Tampa, FL, United States.
pp.1-8, 2014. <hal-00927482v2>

HAL Id: hal-00927482

https://hal.archives-ouvertes.fr/hal-00927482v2

Submitted on 11 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-UNICE

https://core.ac.uk/display/52779339?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00927482v2

Fast American Basket Option Pricing on a multi-GPU Cluster

Michaël Benguiguiǂ, Françoise Baude*
INRIA Sophia-Antipolis Méditerranée ǂ, CNRS I3S*, University of Nice Sophia-Antipolis*

michael.benguigui@inria.fr, francoise.baude@unice.fr

Keywords: Distributed and parallel computing; Cluster; GPU;
OpenCL; Machine learning; Mathematical finance; Option
pricing

Abstract
 This article presents a multi-GPU adaptation of a specific
Monte Carlo and classification based method for pricing
American basket options, due to Picazo. The first part relates
how to combine fine and coarse-grained parallelization to
price American basket options. A dynamic strategy of kernel
calibration is proposed. Doing so, our implementation on a
reasonable size (18) GPU cluster achieves the pricing of a
high dimensional (40) option in less than one hour against
almost 8 as observed for runs we conducted in the past, using
a 64-core cluster (composed of quad-core AMD Opteron
2356). In order to benefit from different GPU device types, we
detail the dynamic strategy we have used to load balance GPU
calculus which greatly improves the overall pricing time we
obtained. An analysis of possible bottleneck effects
demonstrates that there is a sequential bottleneck due to the
training phase that relies upon the AdaBoost classification
method, which prevents the implementation to be fully
scalable, and so prevents to envision further decreasing pricing
time down to handful of minutes. For this we propose to
consider using Random Forests classification method: it is
naturally dividable over a cluster, and available like AdaBoost
as a black box from the popular Weka machine learning
library. However our experimental tests will show that its use
is costly.

1. INTRODUCTION: GPUS IN FINANCE
 Many financial measures require huge resources to be
computed in acceptable time. “Acceptable” is related to
specific context: Value at Risk may be performed to forecast
the maximum loss of a given portfolio at a two weeks horizon
whereas computing hedging portfolios is often dedicated to
intraday operations. The difficulty not necessarily depends on
computation methods but on engaged financial instruments.
For instance, a portfolio can be composed of several financial
instruments and which can vary from a simple asset to option
on several assets. In this paper, we focus on pricing one
complex financial instrument: an American option, which for
being realistic, is based upon a basket of up to 40 assets. The
difficulty to price an American option is to predict an exercise
frontier to consider all possible exercises times until the
maturity date. Furthermore, model parameters such as
discretization, number of simulations, complicate computation
time. Our previous work [1] highlights the necessity to target a
GPU rather than distributed CPUs to provide the same

performance level. By this way we price complex American
basket options, in the same order of time than a CPU cluster
implementation [2] on a 64-core cluster (quad-core AMD
Opteron 2356 with Gigabit Ethernet connections), which is
around 8 hours. However a single GPU is limited for such
complex problems. Targeting cluster of GPUs is the natural
following step to benefit of both aggregated memory of their
host CPUs, and high parallelism of SIMT architectures.
Consequently, our newest goal has been to reach the symbolic
1 hour or less of computation time for solving such a complex
problem, characterized by its non-embarrassingly parallel
nature. To this aim, we have been obliged to thoroughly
optimize each step of the parallel method as will be detailed.
 The paper makes the following contributions. First we
propose a two-level CPU/GPU parallelization of the Picazo
pricing algorithm [3]. Then we perform a dynamic load
balancing strategy to exploit heterogeneous multi-GPU
clusters. Finally we show how to integrate Random Forests [4]
in our pricing engine to make it better scale: we propose a
distribution of the classifier training and a GPU-based
implementation of the classification.
 We will describe in section 2 a multi-GPU
implementation to price such financial instruments through
Picazo method. At a coarse-grained level, we will focus on the
parallelism orchestration across the cluster nodes. Then we
will explain our fast dynamic strategy to calibrate kernel
parameters in parallel, and expose our load balancing solution
for heterogeneous multi-GPU clusters. Finally at a fine-
grained level, we will detail the SIMT oriented
implementation. In section 3, we will expose our strategy to
tackle the bottleneck effect of the sequential learning phase
supported by a boosting (AdaBoost) or a Support Vector
Machines (SVM using SMO, i.e. Sequential Minimal
Optimization) method, replacing it by the naturally
parallelizable Random Forests method. We are able to divide
it over CPU nodes, each node training a small forest through
the Weka library [5]. Doing so, we obtain a fully parallel
pricing algorithm. In both sections, tests will highlight
advantages/disadvantages of each classification method.

2. A GPU CLUSTER BASED OPTION PRICING

ENGINE
 Here we describe a Java implementation of the selected
pricing method due to Picazo. We use the JOCL [6] and
OpenCL [7] libraries to exploit distributed GPUs. Through a
dynamic strategy we recognize GPUs over nodes and adapt
kernel parameters before load balancing main computation
phases. Tests reveal bottleneck effect due to building phases

mailto:michael.benguigui@inria.fr

of classifiers and necessity to parallelize them as exposed in
section 3.
2.1. Picazo pricing algorithm
 High dimensional American basket call/put option is a
contract allowing the owner to buy/sell at a specified strike
price , a possibly high size (e.g. 40, as in the CAC 40 index)
set of underlying assets (numbered) at any time until a
maturity date . So a call option owner expects the basket of
assets price on the market to raise over strike, as in this case
and according to the option contract, the owner will have to
spend less money to buy these assets, i.e. to exercise the
option. There is no analytic solution to price this financial
instrument but Monte Carlo (MC) methods, based on the law
of large number and central limit theorem, allow a simplified
approach for high complex problems, reaching good accuracy

in reasonable time. Consider as independent price
trajectories of the basket of assets following geometric

Brownian motion processes, as the option pay-
off, as the arithmetic or geometric mean function, as the
risk free rate. European option price at time zero can be
estimated, through a number of MC simulations, as
follows ∑ (() [])

As opposed to European contracts, American ones offer more
flexibility for the exercise: it can be performed at any time
until the maturity date, and this over all discrete times. This is
reflected in the mathematical definition below
 () (()) [()]

The formula [()] defines the
continuation value at time , noted in Figure 1, i.e. the
forecasted option price at . The option owner will keep it,
if its forecasted price is over the benefit of immediately
exercising it, i.e. the payoff.
 Picazo method exposes an efficient way to define
continuation or exercise regions, separated by a frontier named
exercise boundary, by combining a machine learning
technique with MC methods. The algorithm is shown in
Figure 1. We note the basket size, and respectively the
dividends and volatilities of the underlying assets,
the discrete time number.
 The key pricing method strategy is to call a specific
classifier per discrete time during the simulations of the
final pricing phase [phase 2], to decide if current simulation
must be stopped or not, i.e. if simulated prices reach or not an
exercise region. To achieve this, we need during a previous
phase [phase 1], to train each classifier [step 2] over
training instances. Each training instance is composed of
simulated underlying asset prices and a boolean, depending on

if the option payoff is over or not an estimation of the
continuation value. Each continuation value requires
MC simulations [step 1]. Consequently there are MC
simulations needed per training instance.

Figure 1. Picazo pricing method and the two parallelization
levels (in rectangles)

2.2. Distribution orchestration for coarse-grained

parallelism
 Our CPU/GPU parallel version of the Picazo pricing
algorithm introduces two levels of parallelism as Figure 2
depicts. The first level follows a coarse-grained parallel
master-slave approach. We use the Java ProActive library [8]
which offers an abstraction of distribution management by
introducing the concept of Active Object. By this way, during
the detection phase described in part I of Figure 2, whose role
is to dynamically detect what are the available computing
resources, we deploy as many active objects as cluster nodes
and discover the number of residing CPU cores and GPUs per
node. In our pricing strategy, more than workers, we require a
merger to gather intermediate results. Finally during this
initialization phase illustrated in part II , we allocate the
merger active object on the node with the fewer GPUs, and
there will be as many workers active objects as GPUs, each
responsible to handle the corresponding GPU kernel
execution, which the second level fine-grained SIMT
parallelism is. Running multiple workers to exploit GPUs on a
single node will not significantly impact performance because
workers jobs are GPU intensive.
 Part III (as summarized on the corresponding part of the
schema on the left of Figure 2) details the orchestration of the
training instances computation for each classifier. To estimate
a continuation value per training instance, a worker launches MC simulations on its GPU. The merger recovers all
the training instances from workers to train (sequentially) a

Figure 2. View of the algorithm implementation (Left) at a global level. (Right) at a detailed level

new classifier. Notice that this classifier will be used during
the MC simulations of the final pricing phase, but also during
the MC simulations of the continuation values. Therefore the
merger broadcasts the new trained classifier to all workers, at
each discrete time loop iteration. Once all classifiers are
trained (and have already been copied on each GPU by the
loop of part III), each worker is distributed a subset of MC
simulations to estimate the final price as part IV depicts.

2.3. Kernel parameters calibration and load balancing

2.3.1. Dynamic kernel parameters calibration
 Targeting GPU programming implies to be ready to cope
with a wide variety of GPUs. To ensure high multiprocessor
occupancies for each worker, we must calibrate kernel
parameters, i.e. work-group size and global size. For this, we
provide a Java class which imitates the CUDA occupancy
spreadsheet. Before starting the first step of the pricing
algorithm, each worker, in charge of one GPU device,
computes theoretical multiprocessor occupancies for all
possible work-group sizes: from the warp size up to the

maximal work-group size allowed, increased by warp size. As
required in the spreadsheet, some device specifications are
required: each worker detects shared memory amount per
multiprocessor, maximal work-group size, generates the
program compilation log to parse used registers. Different
kernel configurations can describe same multiprocessor
occupancies, for instance 4 work-groups of 32 threads against
2 of 64. In such case, our program will keep the one offering
more work-groups, to reduce waiting time between them (as
each work-group would be given a smaller simulations
number to perform). As intermediate calculus to deduce the
multiprocessor occupancy, the theoretical active work-group
number by multiprocessor is estimated, and will be reused to
fix the global kernel size to: work-group size multiplied by
number of active work-group per multiprocessor multiplied by
number of multiprocessors on the device. This strategy allows
a fast estimation of kernel parameters for each of the detected
GPUs to ensure a high multiprocessor occupancy without
launching any preliminary fake pricing calculations.

2.3.2. Load balancing strategy
 We have to assign a performance indicator to each GPU,
regarding the user pricing parameters. The idea is to measure
the average execution time of a small kernel, i.e. a kernel
processing short trajectories starting close to the
maturity date. By this way, we only need to train one classifier
before launching the kernel. Obviously the kernel is executed
with the user parameters. There are as many performance
indicators estimated in parallel, as workers attached
to GPUs. Finally, the subset of the
training instances (as for the simulations)
processed by a given worker, are inversely proportional to the
performance indicator as follows

 ∑

Figure 3 highlights the impact of our dynamic split strategy
over a heterogeneous GPU-based cluster holding three
different GPUs. On Grid’5000 [9], each cluster node can
directly interact with other cluster nodes, i.e. without having to
traverse a cluster front-end node. Thus, virtually all Grid’5000
nodes form a single heterogeneous cluster. Each node of the
Grenoble Adonis cluster has 2 Intel Xeon E5520 and 2
NVIDIA Tesla S1070. The Lille Chirloute cluster includes 4
NVIDIA Tesla M2050 and each node has 2 Intel Xeon E5620.
The Lyon Orion cluster holds a single NVIDIA Tesla M2075
and each node has 2 Intel Xeon E5-2630. These sites are
connected with 10Gbit/s optical fibers. We launch a single
worker on each site to exploit 3 different Tesla cards. The
merger is executed on a single node from the Orion cluster.

Figure 3. Total durations of training instances creations, and
total pricing times, on a heterogeneous cluster of 3 GPUs,
using different distribution strategies. AdaBoost classification,
with 150 boosting iterations/decision stumps. Geometric
average American call option,

 In order to highlight the benefits of our strategy, we
decided to compare three methods to spread the

training instances creations among GPUs. First we evenly
distribute among the GPUs. Then we distribute proportionally
to the calibrated threads number (cf. 2.3.1). Finally we use our
strategy with the performance indicator. The Tesla S1070
slowdowns the pricing time as illustrate the dark grey bars in
the two first strategies (1.5x – 2.5x slower than with the Tesla
M series). The last strategy tackles the bottleneck effect due to
the Tesla S1070 as depicts the decreasing solid line: using our
load balancing method, we reduce by 36% and 22% the
overall pricing time of the first and second strategy.

2.4. Fine-grained parallelism with OpenCL
 Each worker computes a subset of training
instances and requires for each to estimate a continuation
value through MC simulations, c.f. Figure 1 line 6.
MC simulations are launched through an OpenCL kernel
function. There are as many parallel simulations on the GPU
as threads iterating to provide the simulations.
Difficulty of pricing American option is the random length of
simulations: the classifiers can predict the exercise region is
reached at any time before the maturity date. Consequently we
cannot forecast the required random variables number and we
use the GPU-based Random Number Generator MWC64X
[10] to generate at runtime only required variables. At each
discrete time of a single simulation, a thread generates as
many uniform random variables as underlying assets,
performs the Box Muller transformation to retrieve the
Gaussian values, simulates the underlying assets prices, call
the specific classifier, and finally computes the actualized
payoff, adds it to a variable allocated in a register, and start a
new simulation.
 This random stopping time leads to some threads
finishing earlier their simulations than others. A “warp”, for
NVIDIA architecture or “wavefront” for AMD, is the smallest
quantity of threads that are issued with a SIMT instruction.
Because threads of the same warp cannot perform at the same
time different instructions, some of them will block at the
main loop condition if they perform short simulations (as
dictated by the classifier call). These unwanted
synchronizations lead to low occupancy of the multiprocessor.
That’s why we cannot simply iterate over the same fixed
number of simulations for all threads when computing the simulations. Thus, each thread computes after time steps and through
intermediate reductions (parallel sums), how many MC
simulations have been achieved (see further details in [1]).
This is repeated by each thread, until the total number of
simulations of all threads reaches at least .
 We kept in mind all recommendations of the GPU device
programming guide to avoid possible performance losses. In
particular, (1) coalesced access allow threads to get asset
prices from global memory in few instructions, (2) we employ
constant cached memory to store read-only values such as
volatilities or dividends, and (3) perform the intermediate

Figure 4. (Left) Speedups of the pricing algorithm using AdaBoost classification, with 150 boosting iterations/decision stumps.
(Right) Speedups of the pricing algorithm using SVM SMO, with a linear kernel. Geometric average American call option,

parallel reductions in shared memory. Specific tests revealed
that even a high number of reductions for summing do not
impact global execution time.
 Classifiers used during Monte Carlo simulations are
previously created and trained on the CPU by the merger with
the Weka library. Since OpenCL does not allow advanced
library call, each worker needs to work with a serialized
version of the Weka Classifier object obtained at kernel
launches. The two possible classifiers from Weka we
experimented with, AdaBoost and SVM, were slightly
modified to retrieve all the private members of the Weka
object and only cope with basic structures in OpenCL. Then
all of them are transferred to the global memory to imitate the
Weka classify() call on the GPU. At the end, we can afford to
imitate the original Weka behavior with basic structures, and
store as many classifiers as discrete times in arrays. During a
kernel execution, threads work with position indexes to access
in parallel different classifiers to predict the stopping times.

2.5. Speedup experiments on a 7-asset American option
 Figure 4 depicts the speedups of a 7-asset American
option pricing, on the Chirloute cluster. Our implementation
of the non-embarrassingly algorithm achieves a speedup of
140 using 4 GPUs (against the sequential execution) with
AdaBoost classification method (comparing the total times,
i.e. overall times). Scalability with more GPUs will be
discussed in 3.3. Training a linear SVM classifier takes less
than 1 second and does not slowdown the total pricing time, as
our almost linear curve illustrates (right). The counterpart of
using a linear kernel with SVM is the underestimation of the
option price (-15%), which can be corrected by considering a
polynomial kernel, increasing the training duration. The total
time of the AdaBoost classifiers trainings, varies from 8% (1
GPU) to 25% (4 GPUs) of the total pricing time: this
bottleneck is highlighted on the left figure. Therefore, we need
to consider a fully scalable classification method to approach a

linear speedup, without impacting price accuracy. AdaBoost
and SVM are based upon iterative algorithms during the
learning phase, unlike Random Forests whose training phase
can be entirely split over the cluster. Our follow-up aim is thus
to experiment using this alternative classification method.

3. RANDOM FORESTS INTEGRATION FOR

PARALLEL CLASSIFIER TRAINING
 We focus here on the integration of Random Forests in
our pricing engine. Experimental tests will illustrate the
scalability of our implementation, thanks to the parallelization
of the training phase. However, this will come at the expense
of a high increase of the creation of training instances time as
executed by GPU devices.

3.1. Training Random Forests over CPU cluster

Figure 5. Parallelization of a random forest training. Each
subClassifier/small forest is trained over the detected CPU
cores through the Weka library (replacing classifier training in
Figure 2 part III step 2)

 When distributing a random forest training, we decided to
preserve the Weka behavior: the idea was to train in parallel
small random forests with the same buildClassifier() call as it
was for a single larger one. The Weka library was slightly
modified so that the original random forest and the one
obtained after merging all smaller forests built by workers,

Figure 6. (Left) Comparison of algorithm phases execution times with AdaBoost classifiers, 150 boosting iterations/decision
stumps, over workers numbers. (Right) Comparison of algorithm phases execution times with random forests of 150 unlimited
depth trees, over workers numbers. Total times correspond to the situation where training of classifiers is distributed. Geometric
average American call option,

provide strictly identical classification measures. By this way,
we can train in parallel subsets of a forest over cluster nodes
(Figure 5). As complementary optimization, we decided to
exploit the last Weka library version affording parallelization
over CPU cores. For this, it is sufficient that only one active
object worker per node be in charge of a sub classifier to take
advantage of all CPU cores for the training.
 We set the Weka parallelization degree of each node with
the number of detected CPU cores. A simple load balancing
mechanism affords each worker to build a specific subset of the total number of a random
forest, such as
 ∑

For the following tests (Figure 6), we will disable this
optimization, in order to highlight the benefit of the training
distribution over cluster nodes. Once workers have finished,
the merger retrieves all sub classifiers, merges them and
broadcasts the trained global random forest to all workers that
will use it, as explained in the following subsection.

3.2. Parallel Random Forests classifications on GPU
Units

 As for AdaBoost or SVM, a random forest per discrete
time must be serialized by each worker, and transferred to the
GPU global memory, in order to predict the exercise boundary
at this time, during the simulations, c.f. Figure 1 line 6 and 15.
The difficulty comes from the storage of the trees that are
indeed incomplete. Only an experimental solution is provided
by the JOCL team, to transfer tree structures to the device, so
we had to imagine one solution that fits our needs. To cope
with sparse tree storage, we work with compressed arrays
representation. Once workers are broadcasted the merged
global random forest, they parse all trees, retrieve and queue
node information in specific arrays for the compression.
Indeed considering all trees, there is an array for split values,
another one for attribute indexes. We store indexes of tree
roots in a dedicated array. Finally, we work with a left
children indexes array and a right children indexes array, to
imitate tree parsing when classifying instances in OpenCL. As
for AdaBoost and SVM, we queue all the classifiers
representations in the same specific arrays to be accessed for
each discrete time, complicating indexes management.

3.3. Scalability experiments on a 40-asset American
option

 Figure 6 depicts execution times of parts III and IV
(Figure 2) in case of high dimensional American option, on
the homogeneous Adonis cluster. Parts I and II are not
specified here due to their small execution times, and
possibility to reuse the resulting active objects deployment for
multiple program runs. With the AdaBoost classification
(left), the option price is around 0.64108 ± 0.0015 (95%CI),
which is in line with the reference price according to [2], and
so validates the correctness of the program. We performed
more tests to ensure results and execution times presented are
representative of our pricing executions. Times of training
instances creations and final pricing phases include calculus
and broadcast/merge operations from/to the merger. We fall
below 1 hour when performing tests over 18 GPUs (low-end
cards). All performed tests have revealed linear dependence of
workers numbers with the computation part time of each
phase, but have also shown managing more workers
complicates broadcast/merge operations and slowdowns these
operations respective overall time. More annoying, because
the merger sequentially trains each classifier through the
Weka library and does not solicit workers, the implementation
is not scalable: when increasing workers number, the training
instances computation time decreases, and consequently tends
to vanish in comparison to the constant (because sequential)
time of the classifiers training (~650s).
 Using Random Forests (right) with such parameters, the
option price of a single run is around 0.63651 ± 0.0016
(95%CI). The training instances creations (~3h10min with 18
GPUs) require more time than with AdaBoost (~42min with
18 GPUs) due to the cost of forests classifications. Indeed, to
classify an instance, a GPU thread will take more time to parse
the 150 unlimited depth trees, rather than the 150 one-level
decision trees of the AdaBoost classifier. Conversely, as
describe the dotted and solid lines with circles, we take
advantage of the distributed CPUs during the classifiers
trainings, allowing the algorithm better scales.

4. RELATED WORK
 Other existing algorithms to price American options were
parallelized in recent articles: [11] and [12] detail a least
squares method and authors in [13] follow a PDE approach.
The Picazo method affords to consider any classification
method for the exercise boundary computation and benefits of
arising advantages. Furthermore, the option price during its
entire life can be recalculated using only the final phase,
reducing calculus for many real-time financial strategies.
 Regarding the fine tuning for GPU configuration, Grauer
and Cavazos present an auto-tuning implementation in [14] to
produce the configuration that minimizes local memory
accesses against registers and shared memory. Since they play
with data partition sizes via changing the maximum
occupancy, the strategy allows finest kernel parameters
calibration for bandwidth-bound applications but is less
generic than ours. Raphael Y. de Camargo [15] describes a
load distribution algorithm for heterogeneous GPU cluster to

reduce the total execution time of his neuronal network
simulator. To estimate each quantity of data input assigned to
each GPU, he formalizes the problem to a linear system of
equations. Some variables in the system represent the
execution time functions of each kernel on each GPU over
input sizes. This requires each kernel to be executed a few
times on each GPU, with different input sizes to get the
interpolation function. This can spend a lot of time and
become inconvenient, in case of several types of GPUs and
compute-intensive kernels. On the contrary, our parallel and
dynamic load balancing strategy, with small kernels launches,
allows a fast comparison of the performance degrees of each
GPU for a given kernel. Tse [16] proposes a dynamic
scheduling strategy for Monte Carlo simulations, targeting
multi-accelerator heterogeneous clusters. Each accelerator
requests a MC distributor, a subset of the remaining MC
simulations to perform; the distributor applies a distribution
strategy through which subset size allocated to each requesting
accelerator increases (either linearly or exponentially given the
tested distribution strategy) at each time. The faster accelerator
will logically process more simulations than the slower after a
period of time. The non-embarrassingly parallel Picazo
algorithm, involves multiple small kernel launches, for each
discrete time sequentially processed, and is not suitable for a
runtime scheduler. Thanks to our adequate initial load-
balancing strategy, the amount of work given to each
accelerator is precisely known at the beginning of the "for all
discrete time" loop (Part III figure 2), even if it could be
refined more often. Regarding the final pricing phase of an
American option (Part IV figure 2) which is embarrassingly
parallel, we also apply the method of 2.3.2 to decide the subset
size of MC simulations each accelerator is allocated. In the
experiments we run, this phase was quickly executed because
of the chosen, still realistic, pricing parameters. Be these
parameters much higher, then it could be worth experimenting
the dynamic load distribution of [16], the same way they apply
it for pricing an Asian option.
 In [17] is presented CudaRF, a CUDA-based
implementation of Random Forests. During the training phase,
each thread constructs a tree of the forest. It could be used
within our ProActive-based distributed training phase so that
huge random forests could benefit of a dual-level of
parallelism offered at both worker and GPU sides. However,
having a GPU thread handles one single tree of the forest
during the classification phase, is not suited to our algorithm.
We cannot afford to exploit at a specific time the entire device
for a single instance, as our implementation exploits SIMT
architecture to call simultaneously possibly different
classifiers, depending on the discrete time reached by each
thread.

5. CONCLUSION
 Our works propose a multi-GPU-based implementation of
Picazo method to price high dimensional American options,
allowing pricing time to fall below 1 hour on 18 GPUs, for a
40-asset option (c.f. 3.3). This outperforms the CPU cluster
implementation, which spends almost 8 hours on a 64-core

cluster. We reach a speedup ratio of 140 on 4 GPUs (against
the sequential execution) with a less complex American basket
option (c.f. 2.5). To fully exploit the dual-level of parallelism
of such architecture, we distribute the training instances
computation over the cluster nodes and solicit the SIMT
architecture of each detected device to parallelize all the
Monte Carlo simulations of the algorithm. Our fast parallel
strategy to estimate kernel parameters of devices can be
adapted to a wide range of GPUs to target any cluster. We
presented a dynamic load balancing strategy reducing by 36%
the parallel pricing time of a 7-asset option. The integration of
Random Forests, tackles the sequential bottleneck effect due
to the classifiers trainings by parallelizing them, but slowdown
the training instances creations due the expensive
classification. Obviously, a challenging alternative would be
to come up with a faster parallel classification method with a
scalable learning phase, such as [18]. Also working with more
GPUs (100+) than in our experiments, would further decrease
these computation operations but increase broadcast/merge
operations, impacting the overall pricing time. Thus, to face
this only remaining bottleneck effect, we could implement one
of the broadcasting schemes detailed in [19] to parallelize the
propagation of data between adjacent nodes. Furthermore, we
could parallelize merge operations along a parallel tree
reduction. Next step is to prove in a practical way that pricing
a complex option can now be achieved within minutes;
however this would require getting access to a GPU cluster
hosting several hundreds of probably heterogeneous
accelerators, a rare resource type. Consequently, our work also
militates in favor of research for much more efficient parallel
classification methods.
 Our load balancing strategy, using a performance
indicator estimated at program start, could be improved by
adjusting the amount of work on each device during the option
pricing. It would be exiting to take advantage of high end
CPUs (Xeon Phi) if available on the cluster, to perform part of
the Monte Carlo simulations. By relying on OpenCL in our
pricing engine, it already abstracts the hardware architecture.
The only point to consider in order to take advantage of such
hybrid hardware environment is to extend our dynamic
calibration and load balancing strategy. Finally, a natural
exploitation of our work is to evaluate a portfolio of such
complex assets, which is an ongoing task.

Acknowledgment
 This work has received the financial support of the
Conseil régional Provence-Alpes-Côte d’Azur. Experiments
presented in this paper were carried out using the Grid'5000
experimental testbed, being developed under the INRIA
ALADDIN development action with support from CNRS,
RENATER and several Universities as well as other funding
bodies.

References
[1] Michael Benguigui, Françoise Baude, Towards parallel and distributed

computing on GPU for American basket option pricing, in the
International Workshop on GPU Computing in Cloud in conjunction
with 4th IEEE international conference on Cloud Computing
Technology and Science, 2012

[2] Viet Dung Doan, Grid computing for Monte Carlo based intensive
calculations in financial derivative pricing applications, Phd thesis,
University of Nice Sophia Antipolis, March 2010

http://www-sop.inria.fr/oasis/personnel/Viet_Dung.Doan/thesis/

[3] J.A. Picazo. American Option Pricing: A Classification-Monte Carlo
(CMC) Approach. Monte Carlo and Quasi-Monte Carlo Methods 2000:
Proceedings of a Conference Held at Hong Kong Baptist University,
Hong Kong SAR, China, November 27-December 1, 2000, 2002

[4] L. Breiman, Random Forests, Statistics Department of California
Berkeley, January 2001

[5] Machine Learning Group at University of Waikato,
www.cs.waikato.ac.nz/ml/weka

[6] JOCL, http://www.jocl.org/

[7] Khronos Group, http://www.khronos.org/opencl/

[8] http://proactive.inria.fr/

[9] https://www.grid5000.fr/

[10] David Thomas,
http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html

[11] L. A. Abbas-Turki, S. Vialle, B. Lapeyre, and P. Mercier, Pricing
derivatives on graphics processing units using Monte Carlo simulation,
Concurrency and Computation : Practice and Experience, May 2012

[12] Massimiliano Fatica and Everett Phillips, Pricing American options with
least squares Monte Carlo on GPU, in Proceedings of the 6th Workshop
on High Performance Computational Finance, Article No. 5, 2013

[13] Duy Minh Dang, Christina Christara and Ken Jackson, An efficient
GPU-based parallel algorithm for pricing multi-asset American options,
Journal of Concurrency and Computation: Practice and Experience 24
(8) 849-866, 2012

[14] Scott Grauer-Gray and John Cavazos, Optimizing and Auto-tuning
Belief Propagation on the GPU, In 23rd International Workshop in
Languages and Compilers for Parallel Computing (LCPC), 2010

[15] Raphael Y. de Camargo, A load distribution algorithm based on
profiling for heterogeneous GPU clusters, Third Workshop on
Applications for Multi-Core Architecture, 2012

[16] Anson H.T. Tse, David B. Thomas, K.H. Tsoi, Wayne Luk, Dynamic
Scheduling Monte-Carlo Framework for Multi-Accelerator
Heterogeneous Clusters, in Proceedings of IEEE Symposium on Field-
Programmable Technology (FPT), 2010

[17] Håkan Grahn, Niklas Lavesson, Mikael Hellborg Lapajne, and Daniel
Slat, “CudaRF”: A CUDA-based Implementation of Random Forests,
Proc. Ninth ACS/IEEE International Conference on Computer Systems
and Applications, IEEE press

[18] Munther Abualkibash, Ahmed ElSayed, Ausif Mahmood, Highly
Scalable, Parallel and Distributed AdaBoost Algorithm using Light
Weight Threads and Web Services on a Network of Multi-Core
Machines, International Journal of Distributed & Parallel Systems, Vol.
4 Issue 3, p29, May2013

[19] John Matienzo, Natalie Enright Jerger, Performance Analysis of
Broadcasting Algorithms on the Intel Single-Chip Cloud Computer,
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2013

