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Abstract 
 This article presents a multi-GPU adaptation of a specific 
Monte Carlo and classification based method for pricing 
American basket options, due to Picazo. The first part relates 
how to combine fine and coarse-grained parallelization to 
price American basket options. A dynamic strategy of kernel 
calibration is proposed. Doing so, our implementation on a 
reasonable size (18) GPU cluster achieves the pricing of a 
high dimensional (40) option in less than one hour against 
almost 8 as observed for runs we conducted in the past, using 
a 64-core cluster (composed of quad-core AMD Opteron 
2356). In order to benefit from different GPU device types, we 
detail the dynamic strategy we have used to load balance GPU 
calculus which greatly improves the overall pricing time we 
obtained. An analysis of possible bottleneck effects 
demonstrates that there is a sequential bottleneck due to the 
training phase that relies upon the AdaBoost classification 
method, which prevents the implementation to be fully 
scalable, and so prevents to envision further decreasing pricing 
time down to handful of minutes. For this we propose to 
consider using Random Forests classification method: it is 
naturally dividable over a cluster, and available like AdaBoost 
as a black box from the popular Weka machine learning 
library. However our experimental tests will show that its use 
is costly. 
 
1. INTRODUCTION: GPUS IN FINANCE 
 Many financial measures require huge resources to be 
computed in acceptable time. “Acceptable” is related to 
specific context: Value at Risk may be performed to forecast 
the maximum loss of a given portfolio at a two weeks horizon 
whereas computing hedging portfolios is often dedicated to 
intraday operations. The difficulty not necessarily depends on 
computation methods but on engaged financial instruments. 
For instance, a portfolio can be composed of several financial 
instruments and which can vary from a simple asset to option 
on several assets. In this paper, we focus on pricing one 
complex financial instrument: an American option, which for 
being realistic, is based upon a basket of up to 40 assets. The 
difficulty to price an American option is to predict an exercise 
frontier to consider all possible exercises times until the 
maturity date. Furthermore, model parameters such as 
discretization, number of simulations, complicate computation 
time. Our previous work [1] highlights the necessity to target a 
GPU rather than distributed CPUs to provide the same 

performance level. By this way we price complex American 
basket options, in the same order of time than a CPU cluster 
implementation [2] on a 64-core cluster (quad-core AMD 
Opteron 2356 with Gigabit Ethernet connections), which is 
around 8 hours. However a single GPU is limited for such 
complex problems. Targeting cluster of GPUs is the natural 
following step to benefit of both aggregated memory of their 
host CPUs, and high parallelism of SIMT architectures. 
Consequently, our newest goal has been to reach the symbolic 
1 hour or less of computation time for solving such a complex 
problem, characterized by its non-embarrassingly parallel 
nature. To this aim, we have been obliged to thoroughly 
optimize each step of the parallel method as will be detailed. 
 The paper makes the following contributions. First we 
propose a two-level CPU/GPU parallelization of the Picazo 
pricing algorithm [3]. Then we perform a dynamic load 
balancing strategy to exploit heterogeneous multi-GPU 
clusters. Finally we show how to integrate Random Forests [4] 
in our pricing engine to make it better scale: we propose a 
distribution of the classifier training and a GPU-based 
implementation of the classification. 
 We will describe in section 2 a multi-GPU 
implementation to price such financial instruments through 
Picazo method. At a coarse-grained level, we will focus on the 
parallelism orchestration across the cluster nodes. Then we 
will explain our fast dynamic strategy to calibrate kernel 
parameters in parallel, and expose our load balancing solution 
for heterogeneous multi-GPU clusters. Finally at a fine-
grained level, we will detail the SIMT oriented 
implementation. In section 3, we will expose our strategy to 
tackle the bottleneck effect of the sequential learning phase 
supported by a boosting (AdaBoost) or a Support Vector 
Machines (SVM using SMO, i.e. Sequential Minimal 
Optimization) method, replacing it by the naturally 
parallelizable Random Forests method. We are able to divide 
it over CPU nodes, each node training a small forest through 
the Weka library [5]. Doing so, we obtain a fully parallel 
pricing algorithm. In both sections, tests will highlight 
advantages/disadvantages of each classification method. 
 
2. A GPU CLUSTER BASED OPTION PRICING 

ENGINE 
 Here we describe a Java implementation of the selected 
pricing method due to Picazo. We use the JOCL [6] and 
OpenCL [7] libraries to exploit distributed GPUs. Through a 
dynamic strategy we recognize GPUs over nodes and adapt 
kernel parameters before load balancing main computation 
phases. Tests reveal bottleneck effect due to building phases 
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of classifiers and necessity to parallelize them as exposed in 
section 3. 
2.1. Picazo pricing algorithm 
 High dimensional American basket call/put option is a 
contract allowing the owner to buy/sell at a specified strike 
price  , a possibly high size (e.g. 40, as in the CAC 40 index) 
set of underlying assets     (numbered  ) at any time   until a 
maturity date  . So a call option owner expects the basket of 
assets price on the market to raise over strike, as in this case 
and according to the option contract, the owner will have to 
spend less money to buy these assets, i.e. to exercise the 
option. There is no analytic solution to price this financial 
instrument but Monte Carlo (MC) methods, based on the law 
of large number and central limit theorem, allow a simplified 
approach for high complex problems, reaching good accuracy 

in reasonable time. Consider       as independent price 
trajectories of the basket of assets following geometric 

Brownian motion processes,               as the option pay-
off,   as the arithmetic or geometric mean function,   as the 
risk free rate. European option price   at time zero can be 
estimated, through a number      of MC simulations, as 
follows              ∑      ( (     )   [   ])    

    

 
As opposed to European contracts, American ones offer more 
flexibility for the exercise: it can be performed at any time 
until the maturity date, and this over all discrete times. This is 
reflected in the mathematical definition below 
                     (      )     ( (   )   )  [             (          )      ]  

 
The formula  [             (          )      ] defines the 
continuation value at time   , noted   in Figure 1, i.e. the 
forecasted option price at     . The option owner will keep it, 
if its forecasted price is over the benefit of immediately 
exercising it, i.e. the payoff. 
 Picazo method exposes an efficient way to define 
continuation or exercise regions, separated by a frontier named 
exercise boundary, by combining a machine learning 
technique with MC methods. The algorithm is shown in 
Figure 1. We note   the basket size,    and    respectively the 
dividends and volatilities of the       underlying assets,   
the discrete time number. 
 The key pricing method strategy is to call a specific 
classifier per discrete time during the     simulations of the 
final pricing phase [phase 2], to decide if current simulation 
must be stopped or not, i.e. if simulated prices reach or not an 
exercise region. To achieve this, we need during a previous 
phase [phase 1], to train each classifier [step 2] over          
training instances. Each training instance is composed of 
simulated underlying asset prices and a boolean, depending on 

if the option payoff is over or not an estimation of the 
continuation value. Each continuation value requires         
MC simulations [step 1]. Consequently there are         MC 
simulations needed per training instance. 
 

 
Figure 1.  Picazo pricing method and the two parallelization 
levels (in rectangles) 
 
2.2. Distribution orchestration for coarse-grained 

parallelism 
 Our CPU/GPU parallel version of the Picazo pricing 
algorithm introduces two levels of parallelism as Figure 2 
depicts. The first level follows a coarse-grained parallel 
master-slave approach. We use the Java ProActive library [8] 
which offers an abstraction of distribution management by 
introducing the concept of Active Object. By this way, during 
the detection phase described in part I  of Figure 2, whose role 
is to dynamically detect what are the available computing 
resources, we deploy as many active objects as cluster nodes 
and discover the number of residing CPU cores and GPUs per 
node. In our pricing strategy, more than workers, we require a 
merger to gather intermediate results. Finally during this 
initialization phase illustrated in part II , we allocate the 
merger active object on the node with the fewer GPUs, and 
there will be as many workers active objects as GPUs, each 
responsible to handle the corresponding GPU kernel 
execution, which the second level fine-grained SIMT 
parallelism is. Running multiple workers to exploit GPUs on a 
single node will not significantly impact performance because 
workers jobs are GPU intensive. 
 Part III  (as summarized on the corresponding part of the 
schema on the left of Figure 2) details the orchestration of the 
training instances computation for each classifier. To estimate 
a continuation value per training instance, a worker launches         MC simulations on its GPU. The merger recovers all 
the training instances from workers to train (sequentially) a  
 



 
Figure 2.  View of the algorithm implementation (Left) at a global level. (Right) at a detailed level 
 
new classifier. Notice that this classifier will be used during 
the MC simulations of the final pricing phase, but also during 
the MC simulations of the continuation values. Therefore the 
merger broadcasts the new trained classifier to all workers, at 
each discrete time loop iteration. Once all classifiers are 
trained (and have already been copied on each GPU by the 
loop of part III), each worker is distributed a subset of MC 
simulations to estimate the final price as part IV  depicts. 
 
2.3. Kernel parameters calibration and load balancing 

2.3.1. Dynamic kernel parameters calibration 
 Targeting GPU programming implies to be ready to cope 
with a wide variety of GPUs. To ensure high multiprocessor 
occupancies for each worker, we must calibrate kernel 
parameters, i.e. work-group size and global size. For this, we 
provide a Java class which imitates the CUDA occupancy 
spreadsheet. Before starting the first step of the pricing 
algorithm, each worker, in charge of one GPU device, 
computes theoretical multiprocessor occupancies for all 
possible work-group sizes: from the warp size up to the 

maximal work-group size allowed, increased by warp size. As 
required in the spreadsheet, some device specifications are 
required: each worker detects shared memory amount per 
multiprocessor, maximal work-group size, generates the 
program compilation log to parse used registers. Different 
kernel configurations can describe same multiprocessor 
occupancies, for instance 4 work-groups of 32 threads against 
2 of 64. In such case, our program will keep the one offering 
more work-groups, to reduce waiting time between them (as 
each work-group would be given a smaller simulations 
number to perform). As intermediate calculus to deduce the 
multiprocessor occupancy, the theoretical active work-group 
number by multiprocessor is estimated, and will be reused to 
fix the global kernel size to: work-group size multiplied by 
number of active work-group per multiprocessor multiplied by 
number of multiprocessors on the device. This strategy allows 
a fast estimation of kernel parameters for each of the detected 
GPUs to ensure a high multiprocessor occupancy without 
launching any preliminary fake pricing calculations. 



2.3.2. Load balancing strategy 
 We have to assign a performance indicator to each GPU, 
regarding the user pricing parameters. The idea is to measure 
the average execution time of a small kernel, i.e. a kernel 
processing         short trajectories starting close to the 
maturity date. By this way, we only need to train one classifier 
before launching the kernel. Obviously the kernel is executed 
with the user parameters. There are as many performance 
indicators       estimated in parallel, as workers   attached 
to GPUs. Finally, the subset           of the          
training instances (as       for the      simulations) 
processed by a given worker, are inversely proportional to the 
performance indicator as follows 
 

                ∑                               
 
Figure 3 highlights the impact of our dynamic split strategy 
over a heterogeneous GPU-based cluster holding three 
different GPUs. On Grid’5000 [9], each cluster node can 
directly interact with other cluster nodes, i.e. without having to 
traverse a cluster front-end node. Thus, virtually all Grid’5000 
nodes form a single heterogeneous cluster. Each node of the 
Grenoble Adonis cluster has 2 Intel Xeon E5520 and 2 
NVIDIA Tesla S1070. The Lille Chirloute cluster includes 4 
NVIDIA Tesla M2050 and each node has 2 Intel Xeon E5620. 
The Lyon Orion cluster holds a single NVIDIA Tesla M2075 
and each node has 2 Intel Xeon E5-2630. These sites are 
connected with 10Gbit/s optical fibers. We launch a single 
worker on each site to exploit 3 different Tesla cards. The 
merger is executed on a single node from the Orion cluster. 
 

 
Figure 3.  Total durations of training instances creations, and 
total pricing times, on a heterogeneous cluster of 3 GPUs, 
using different distribution strategies. AdaBoost classification, 
with 150 boosting iterations/decision stumps. Geometric 
average American call option,                                                                                   
 
 In order to highlight the benefits of our strategy, we 
decided to compare three methods to spread the          

training instances creations among GPUs. First we evenly 
distribute among the GPUs. Then we distribute proportionally 
to the calibrated threads number (cf. 2.3.1). Finally we use our 
strategy with the performance indicator. The Tesla S1070 
slowdowns the pricing time as illustrate the dark grey bars in 
the two first strategies (1.5x – 2.5x slower than with the Tesla 
M series). The last strategy tackles the bottleneck effect due to 
the Tesla S1070 as depicts the decreasing solid line: using our 
load balancing method, we reduce by 36% and 22% the 
overall pricing time of the first and second strategy. 
 
2.4. Fine-grained parallelism with OpenCL 
 Each worker computes a subset of          training 
instances and requires for each to estimate a continuation 
value through         MC simulations, c.f. Figure 1 line 6. 
MC simulations are launched through an OpenCL kernel 
function. There are as many parallel simulations on the GPU 
as threads iterating to provide the         simulations. 
Difficulty of pricing American option is the random length of 
simulations: the classifiers can predict the exercise region is 
reached at any time before the maturity date. Consequently we 
cannot forecast the required random variables number and we 
use the GPU-based Random Number Generator MWC64X 
[10] to generate at runtime only required variables. At each 
discrete time of a single simulation, a thread generates as 
many uniform random variables as underlying assets, 
performs the Box Muller transformation to retrieve the 
Gaussian values, simulates the underlying assets prices, call 
the specific classifier, and finally computes the actualized 
payoff, adds it to a variable allocated in a register, and start a 
new simulation. 
 This random stopping time leads to some threads 
finishing earlier their simulations than others. A “warp”, for 
NVIDIA architecture or “wavefront” for AMD, is the smallest 
quantity of threads that are issued with a SIMT instruction. 
Because threads of the same warp cannot perform at the same 
time different instructions, some of them will block at the 
main loop condition if they perform short simulations (as 
dictated by the classifier call). These unwanted 
synchronizations lead to low occupancy of the multiprocessor. 
That’s why we cannot simply iterate over the same fixed 
number of simulations for all threads when computing the         simulations. Thus, each thread computes after                        time steps and through 
intermediate reductions (parallel sums), how many MC 
simulations have been achieved (see further details in [1]). 
This is repeated by each thread, until the total number of 
simulations of all threads reaches at least        . 
 We kept in mind all recommendations of the GPU device 
programming guide to avoid possible performance losses. In 
particular, (1) coalesced access allow threads to get asset 
prices from global memory in few instructions, (2) we employ 
constant cached memory to store read-only values such as 
volatilities or dividends, and (3) perform the intermediate  
 



 

 
Figure 4.  (Left) Speedups of the pricing algorithm using AdaBoost classification, with 150 boosting iterations/decision stumps. 
(Right) Speedups of the pricing algorithm using SVM SMO, with a linear kernel. Geometric average American call option,                                                                                 
 
 
parallel reductions in shared memory. Specific tests revealed 
that even a high number of reductions for summing do not 
impact global execution time. 
 Classifiers used during Monte Carlo simulations are 
previously created and trained on the CPU by the merger with 
the Weka library. Since OpenCL does not allow advanced 
library call, each worker needs to work with a serialized 
version of the Weka Classifier object obtained at kernel 
launches. The two possible classifiers from Weka we 
experimented with, AdaBoost and SVM, were slightly 
modified to retrieve all the private members of the Weka 
object and only cope with basic structures in OpenCL. Then 
all of them are transferred to the global memory to imitate the 
Weka classify() call on the GPU. At the end, we can afford to 
imitate the original Weka behavior with basic structures, and 
store as many classifiers as discrete times in arrays. During a 
kernel execution, threads work with position indexes to access 
in parallel different classifiers to predict the stopping times. 
 
2.5.  Speedup experiments on a 7-asset American option 
 Figure 4 depicts the speedups of a 7-asset American 
option pricing, on the Chirloute cluster. Our implementation 
of the non-embarrassingly algorithm achieves a speedup of 
140 using 4 GPUs (against the sequential execution) with 
AdaBoost classification method (comparing the total times, 
i.e. overall times). Scalability with more GPUs will be 
discussed in 3.3. Training a linear SVM classifier takes less 
than 1 second and does not slowdown the total pricing time, as 
our almost linear curve illustrates (right ). The counterpart of 
using a linear kernel with SVM is the underestimation of the 
option price (-15%), which can be corrected by considering a 
polynomial kernel, increasing the training duration. The total 
time of the AdaBoost classifiers trainings, varies from 8% (1 
GPU) to 25% (4 GPUs) of the total pricing time: this 
bottleneck is highlighted on the left figure. Therefore, we need 
to consider a fully scalable classification method to approach a 

linear speedup, without impacting price accuracy. AdaBoost 
and SVM are based upon iterative algorithms during the 
learning phase, unlike Random Forests whose training phase 
can be entirely split over the cluster. Our follow-up aim is thus 
to experiment using this alternative classification method. 
 
3. RANDOM FORESTS INTEGRATION FOR 

PARALLEL CLASSIFIER TRAINING 
 We focus here on the integration of Random Forests in 
our pricing engine. Experimental tests will illustrate the 
scalability of our implementation, thanks to the parallelization 
of the training phase. However, this will come at the expense 
of a high increase of the creation of training instances time as 
executed by GPU devices. 
 
3.1. Training Random Forests over CPU cluster 
 

 
Figure 5.  Parallelization of a random forest training. Each 
subClassifier/small forest is trained over the detected CPU 
cores through the Weka library (replacing classifier training in 
Figure 2 part III step 2) 
 
 When distributing a random forest training, we decided to 
preserve the Weka behavior: the idea was to train in parallel 
small random forests with the same buildClassifier() call as it 
was for a single larger one. The Weka library was slightly 
modified so that the original random forest and the one 
obtained after merging all smaller forests built by workers, 
 



 

 
Figure 6.  (Left) Comparison of algorithm phases execution times with AdaBoost classifiers, 150 boosting iterations/decision 
stumps, over workers numbers. (Right) Comparison of algorithm phases execution times with random forests of 150 unlimited 
depth trees, over workers numbers. Total times correspond to the situation where training of classifiers is distributed. Geometric 
average American call option,                                                                                     
 
 
provide strictly identical classification measures. By this way, 
we can train in parallel subsets of a forest over cluster nodes 
(Figure 5). As complementary optimization, we decided to 
exploit the last Weka library version affording parallelization 
over CPU cores. For this, it is sufficient that only one active 
object worker per node be in charge of a sub classifier to take 
advantage of all CPU cores for the training. 
 We set the Weka parallelization degree of each node with 
the number of detected CPU cores. A simple load balancing 
mechanism affords each worker   to build a specific subset          of the total number                   of a random 
forest, such as 
                     ∑                                         
 
 
For the following tests (Figure 6), we will disable this 
optimization, in order to highlight the benefit of the training 
distribution over cluster nodes. Once workers have finished, 
the merger retrieves all sub classifiers, merges them and 
broadcasts the trained global random forest to all workers that 
will use it, as explained in the following subsection. 
 
 
 
 

3.2. Parallel Random Forests classifications on GPU 
Units 

 As for AdaBoost or SVM, a random forest per discrete 
time must be serialized by each worker, and transferred to the 
GPU global memory, in order to predict the exercise boundary 
at this time, during the simulations, c.f. Figure 1 line 6 and 15. 
The difficulty comes from the storage of the trees that are 
indeed incomplete. Only an experimental solution is provided 
by the JOCL team, to transfer tree structures to the device, so 
we had to imagine one solution that fits our needs. To cope 
with sparse tree storage, we work with compressed arrays 
representation. Once workers are broadcasted the merged 
global random forest, they parse all trees, retrieve and queue 
node information in specific arrays for the compression. 
Indeed considering all trees, there is an array for split values, 
another one for attribute indexes. We store indexes of tree 
roots in a dedicated array. Finally, we work with a left 
children indexes array and a right children indexes array, to 
imitate tree parsing when classifying instances in OpenCL. As 
for AdaBoost and SVM, we queue all the classifiers 
representations in the same specific arrays to be accessed for 
each discrete time, complicating indexes management. 
 
 
 



3.3. Scalability experiments on a 40-asset American 
option 

 Figure 6 depicts execution times of parts III and IV 
(Figure 2) in case of high dimensional American option, on 
the homogeneous Adonis cluster. Parts I and II are not 
specified here due to their small execution times, and 
possibility to reuse the resulting active objects deployment for 
multiple program runs. With the AdaBoost classification 
(left), the option price is around 0.64108 ± 0.0015 (95%CI), 
which is in line with the reference price according to [2], and 
so validates the correctness of the program. We performed 
more tests to ensure results and execution times presented are 
representative of our pricing executions. Times of training 
instances creations and final pricing phases include calculus 
and broadcast/merge operations from/to the merger. We fall 
below 1 hour when performing tests over 18 GPUs (low-end 
cards). All performed tests have revealed linear dependence of 
workers numbers with the computation part time of each 
phase, but have also shown managing more workers 
complicates broadcast/merge operations and slowdowns these 
operations respective overall time. More annoying, because 
the merger sequentially trains each classifier through the 
Weka library and does not solicit workers, the implementation 
is not scalable: when increasing workers number, the training 
instances computation time decreases, and consequently tends 
to vanish in comparison to the constant (because sequential) 
time of the classifiers training (~650s). 
 Using Random Forests (right ) with such parameters, the 
option price of a single run is around 0.63651 ± 0.0016 
(95%CI). The training instances creations (~3h10min with 18 
GPUs) require more time than with AdaBoost (~42min with 
18 GPUs) due to the cost of forests classifications. Indeed, to 
classify an instance, a GPU thread will take more time to parse 
the 150 unlimited depth trees, rather than the 150 one-level 
decision trees of the AdaBoost classifier. Conversely, as 
describe the dotted and solid lines with circles, we take 
advantage of the distributed CPUs during the classifiers 
trainings, allowing the algorithm better scales. 
 
4. RELATED WORK 
 Other existing algorithms to price American options were 
parallelized in recent articles: [11] and [12] detail a least 
squares method and authors in [13] follow a PDE approach. 
The Picazo method affords to consider any classification 
method for the exercise boundary computation and benefits of 
arising advantages. Furthermore, the option price during its 
entire life can be recalculated using only the final phase, 
reducing calculus for many real-time financial strategies. 
 Regarding the fine tuning for GPU configuration, Grauer 
and Cavazos present an auto-tuning implementation in [14] to 
produce the configuration that minimizes local memory 
accesses against registers and shared memory. Since they play 
with data partition sizes via changing the maximum 
occupancy, the strategy allows finest kernel parameters 
calibration for bandwidth-bound applications but is less 
generic than ours. Raphael Y. de Camargo [15] describes a 
load distribution algorithm for heterogeneous GPU cluster to 

reduce the total execution time of his neuronal network 
simulator. To estimate each quantity of data input assigned to 
each GPU, he formalizes the problem to a linear system of 
equations. Some variables in the system represent the 
execution time functions of each kernel on each GPU over 
input sizes. This requires each kernel to be executed a few 
times on each GPU, with different input sizes to get the 
interpolation function. This can spend a lot of time and 
become inconvenient, in case of several types of GPUs and 
compute-intensive kernels. On the contrary, our parallel and 
dynamic load balancing strategy, with small kernels launches, 
allows a fast comparison of the performance degrees of each 
GPU for a given kernel. Tse [16] proposes a dynamic 
scheduling strategy for Monte Carlo simulations, targeting 
multi-accelerator heterogeneous clusters. Each accelerator 
requests a MC distributor, a subset of the remaining MC 
simulations to perform; the distributor applies a distribution 
strategy through which subset size allocated to each requesting 
accelerator increases (either linearly or exponentially given the 
tested distribution strategy) at each time. The faster accelerator 
will logically process more simulations than the slower after a 
period of time. The non-embarrassingly parallel Picazo 
algorithm, involves multiple small kernel launches, for each 
discrete time sequentially processed, and is not suitable for a 
runtime scheduler. Thanks to our adequate initial load-
balancing strategy, the amount of work given to each 
accelerator is precisely known at the beginning of the "for all 
discrete time" loop (Part III figure 2), even if it could be 
refined more often. Regarding the final pricing phase of an 
American option (Part IV figure 2) which is embarrassingly 
parallel, we also apply the method of 2.3.2 to decide the subset 
size of MC simulations each accelerator is allocated. In the 
experiments we run, this phase was quickly executed because 
of the chosen, still realistic, pricing parameters. Be these 
parameters much higher, then it could be worth experimenting 
the dynamic load distribution of [16], the same way they apply 
it for pricing an Asian option. 
 In [17] is presented CudaRF, a CUDA-based 
implementation of Random Forests. During the training phase, 
each thread constructs a tree of the forest. It could be used 
within our ProActive-based distributed training phase so that 
huge random forests could benefit of a dual-level of 
parallelism offered at both worker and GPU sides. However, 
having a GPU thread handles one single tree of the forest 
during the classification phase, is not suited to our algorithm. 
We cannot afford to exploit at a specific time the entire device 
for a single instance, as our implementation exploits SIMT 
architecture to call simultaneously possibly different 
classifiers, depending on the discrete time reached by each 
thread. 
 
5. CONCLUSION 
 Our works propose a multi-GPU-based implementation of 
Picazo method to price high dimensional American options, 
allowing pricing time to fall below 1 hour on 18 GPUs, for a 
40-asset option (c.f. 3.3). This outperforms the CPU cluster 
implementation, which spends almost 8 hours on a 64-core 



cluster. We reach a speedup ratio of 140 on 4 GPUs (against 
the sequential execution) with a less complex American basket 
option (c.f. 2.5). To fully exploit the dual-level of parallelism 
of such architecture, we distribute the training instances 
computation over the cluster nodes and solicit the SIMT 
architecture of each detected device to parallelize all the 
Monte Carlo simulations of the algorithm. Our fast parallel 
strategy to estimate kernel parameters of devices can be 
adapted to a wide range of GPUs to target any cluster. We 
presented a dynamic load balancing strategy reducing by 36% 
the parallel pricing time of a 7-asset option. The integration of 
Random Forests, tackles the sequential bottleneck effect due 
to the classifiers trainings by parallelizing them, but slowdown 
the training instances creations due the expensive 
classification. Obviously, a challenging alternative would be 
to come up with a faster parallel classification method with a 
scalable learning phase, such as [18]. Also working with more 
GPUs (100+) than in our experiments, would further decrease 
these computation operations but increase broadcast/merge 
operations, impacting the overall pricing time. Thus, to face 
this only remaining bottleneck effect, we could implement one 
of the broadcasting schemes detailed in [19] to parallelize the 
propagation of data between adjacent nodes. Furthermore, we 
could parallelize merge operations along a parallel tree 
reduction. Next step is to prove in a practical way that pricing 
a complex option can now be achieved within minutes; 
however this would require getting access to a GPU cluster 
hosting several hundreds of probably heterogeneous 
accelerators, a rare resource type. Consequently, our work also 
militates in favor of research for much more efficient parallel 
classification methods. 
 Our load balancing strategy, using a performance 
indicator estimated at program start, could be improved by 
adjusting the amount of work on each device during the option 
pricing. It would be exiting to take advantage of high end 
CPUs (Xeon Phi) if available on the cluster, to perform part of 
the Monte Carlo simulations. By relying on OpenCL in our 
pricing engine, it already abstracts the hardware architecture. 
The only point to consider in order to take advantage of such 
hybrid hardware environment is to extend our dynamic 
calibration and load balancing strategy. Finally, a natural 
exploitation of our work is to evaluate a portfolio of such 
complex assets, which is an ongoing task. 
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