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Abstract

This paper addresses the problem of blind source separation for underdetermined mixtures
(i.e., more sources than sensors) of event-related sources that include quasi-periodic sources
(e.g., electrocardiogram (ECG)), sources with synchronized trials (e.g., event-related poten-
tials (ERP)), and amplitude-variant sources. The proposed method is based on two steps:
(i) tensor decomposition for underdetermined source separation and (ii) signal extraction by
Kalman filtering to recover the source dynamics. A tensor is constructed for each source by
synchronizing on the “event” period of the corresponding signal and stacking different periods
along the second dimension of the tensor. To cope with the interference from other sources
that impede on the extraction of weak signals, two robust tensor decomposition methods are
proposed and compared. Then, the state parameters used within a nonlinear dynamic model
for the extraction of event-related sources from noisy mixtures are estimated from the loading
matrices provided by the first step.

The influence of different parameters on the robustness to outliers of the proposed method
is examined by numerical simulations. Applied to clinical electroencephalogram (EEG), ECG
and magnetocardiogram (MCG), the proposed method exhibits a significantly higher perfor-
mance in terms of expected signal shape than classical source separation methods such as
πCA and FastICA.

Keywords: quasi-periodic source, event-related source, underdetermined mixtures, robust
tensor decomposition, extended Kalman filtering, fetal ECG extraction.

1. Introduction

In this study, blind separation of underdetermined mixtures of event-related sources is
addressed. An event-related source is characterized by typical patterns which are elicited
after some events: such patterns may vary in amplitudes and/or in inter-event intervals
(IEI). In this context, an event-related source is referred to as: (i) quasi-periodic source
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(e.g., electrocardiogram (ECG)) in which IEI and amplitudes can only slightly change from a
period to another; (ii) source with synchronized stimuli (e.g., event-related potentials (ERP))
in which a pattern is repeated with no assumption on IEI but with quasi-constant amplitudes;
(iii) amplitude-variant source whose amplitude (even sign) can largely change from a period
to another but with quasi-constant IEI (e.g., telecommunication); (iv) general source without
any assumptions on amplitudes and IEI, which can thus largely vary from an event to another
one (e.g., digital communications).

In the recent years, a lot of attention has been paid to blind source separation (BSS) due
to its wide-ranging applications in many areas [1] such as audio and speech processing [2],
telecommunications [3], biomedical engineering [4], hyperspectral imaging [5], etc. Assuming
an M -dimensional observation vector, y(k), this problem is mathematically expressed as:

y(k) = Ax(k) + b(k), (1)

where x(k) denotes theN -dimensional source vector, b(k) denotes theM -dimensional additive
noise vector, and A is the M ×N mixing matrix. The BSS framework aims at identifying the
mixing matrix A, or estimating the sources x(k), or both, from the observation y(k). Unlike
the determined or overdetermined cases, when the number of sources is equal to or exceeds
the number of mixtures (N > M), i.e., in the underdetermined case, the estimation of the
mixing matrix A does not permit to directly recover the original sources. In fact, the mixing
matrix does not admit a left inverse in that case, which makes it more difficult to recover the
sources even if it is known and full rank [1, 6]. It is then necessary to rely on a prior on the
sources.

Sparsity of the sources in a transformed domain is a possible prior to address underdeter-
mined BSS [7]. Indeed, most of the proposed methods in the literature of underdetermined
BSS are based on the sparsity of sources in a domain, (e.g., the frequency domain [8] or the
time-frequency domain [9]). In this case, even if several sources are active at the same time
so that the mixture is locally overdetermined, the mixing matrix can usually be estimated
by clustering methods. However, this kind of search usually requires massive computations
that limit the applicability of these methods to a smaller number of observation channels and
sources [10].

Separation of underdetermined sources consists of two steps: estimation of the mixing
matrix and extraction of the sources. Many algebraic and geometric (clustering) methods
have been developed for the first step. They employ various decompositions of different data
structures such as cumulant, correlation and cross-correlation matrices or tensors [1, 10].
Then, a second step is required for recovering the original sources.

Higher-order tensors have gained increasing importance as they can be used to repre-
sent higher order cumulants that are exploited in independent component analysis [11] and
have been used successfully in BSS [12]. In addition, they are natural representations of
multidimensional (higher than 2) data than matrices in many practical applications (e.g., in
chemistry, biomedical engineering, and wireless communications). A fundamental challenge in
these applications is to find informative and sparse representations of tensors, i.e., tensor de-
compositions. Tensor decompositions take into account information about different variables
of the data, such as, for example, spatial, temporal and spectral information, and may provide
links among the various extracted factors or latent variables with physical or physiological
meaning and interpretation [13].
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There are many applications, in which the sources are known to be event-related. These
properties are observed in digital communication, speech and some physiological signals such
as electrocardiograms. The behavior of second- and fourth-order BSS algorithms in a cy-
clostationary context has been studied in [14]. In a recent study [10], an underdetermined
separation method has been developed, which is suitable for separation of signals that are
piecewise stationary, having time-varying variances. These algorithms, which exploit the cy-
clostationarity property resort to statistical tools. In [15], a parallel deflation procedure based
on a deterministic tensor decomposition has been proposed to address the problem of under-
determined BSS in the cyclostationary context. The basic approach consists in constructing
a tensor by synchronizing on the symbol rate of a certain source, and decomposing the tensor
using the Canonical Polyadic (CP) decomposition [16] to extract the characteristics of the
source.

In this paper, the method described in [15] has been adapted for the estimation of the
mixing matrix, temporal patterns, and amplitudes of event-related sources. The method
described in [15] fails to extract a source which has very little power compared to the other
sources because the latter act as interferers with high amplitudes that can be considered
as outliers and impede on the accurate tensor decomposition. To overcome this problem,
we propose to apply a robust tensor decomposition. In the literature, one can find several
methods that have been developed to this end [17, 18]. In general, these techniques are
based on a modification of the classical quadratic cost function that is optimized during the
tensor decomposition. For example, the authors of [18] suggested to minimize the mean
absolute error, which reduces the impact of outliers in the data, but does not prevent them
from influencing the results since high outliers still lead to high errors. It is also possible
to introduce weights that account for different uncertainties of the tensor elements (see, e.g.,
[17]). In this paper, we present two robust CP decomposition methods. The first one, which
we subsequently refer to as Gaussian CP (GCP) decomposition, goes a step further compared
to the approach taken in [18] and optimizes a cost function that limits the maximal error to
1. The second method exploits the particular structure of the data to compute weights that
discriminate outliers and employs a weighted CP (WCP) decomposition.

As the second step of the separation of underdetermined sources, a nonlinear state-space
model has been developed for extracting N quasi periodic sources (or components) from M

observations. This model is used within a Kalman filtering framework, whose mixing matrix
and state parameters are obtained from the loading matrices of the tensor decomposition.

The robustness of the proposed tensor decomposition methods to different parameters such
as the initialization, the amount of outliers, the variability of the amplitudes, and synchro-
nization errors is analyzed by means of numerical simulations. Furthermore, the proposed
method is applied to biomedical data including electroencephalogram (EEG), ECG and mag-
netocardiogram (MCG) to extract desired sources. In the past, tensor-based techniques using
classical CP decomposition have already been applied to space-time-realization EEG data (see
[19, 20, 21]). However, the newly proposed method makes the decomposition more robust to
noise, enabling the correct extraction of very weak signals of interest, which is not possible
with classical CP decomposition methods. Furthermore, contrary to the previous tensor-
based approaches, it permits to extract the original time courses of the signals, which are not
identical for all realizations, using Kalman filtering. Among several methods in the literature
for multichannel fetal ECG (fECG) extraction, one can name blind source separation [22],
semi-blind source separation [23], adaptive filtering [24, 25], and periodic component analysis
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(πCA) [26]. All these methods exploit the redundancy of the multichannel ECG recordings
to reduce maternal ECG (mECG) and other interference sources. Nevertheless, even if this
reduction has been successful, the exogenous noise cannot be totally canceled in this way
[27]. Moreover, these methods demand several channels to recover weak traces of fetal signal.
Conversely, the proposed method, which simultaneously extracts and denoises fECG signal,
is applicable to as few as two channels.

The rest of the paper is organized as follows. Equations and theories supporting our
proposed method are described in section 2. Results of the proposed method applied to various
data and discussion about the results are presented in section 3. Finally, our conclusions are
stated in section 4.

2. Methodology

The proposed method is based on two steps: (i) a robust tensor decomposition to estimate
the mixing matrix and the state parameters of the Kalman filter (subsection 2.1) and (ii) a
refined Kalman filtering (subsection 2.2) for the extraction of the signals.

2.1. Rough estimation of the mixing matrix and source parameters

2.1.1. Tensor construction and CP model

In the style of [15], we exploit the event-related nature of the signals of interest to con-
struct a data tensor with dimensions space, event-synchronized window, and time from the
2-dimensional measurements for each of Q event-related sources. To this end, for the q-
th source, we identify Lq event-synchronized windows of length Tq of the corresponding time
signal. This can, for instance, be achieved based on a characteristic pattern within each event-
synchronized window that can be recognized in the measurements. This pattern also serves
as a reference point to synchronize the signals of different patterns of the event-related source,
such as the maximum amplitude in the case of impulsive signals. For each of the Lq event-
synchronized windows, one can thus extract a M × Tq data matrix from the measurements.

These matrices are then stacked along the second dimension of the tensor Y (q) ∈ R
M×Lq×Tq

(see Figure 1).
Assuming that the q-th source can be described by Rq ∈ N components that are identical

for all event-synchronized windows except for changes of amplitude, the elements of the tensor
can be written as

Y
(q)
ijk =

Rq
∑

r=1

a
(q)
ir s

(q)
jr h

(q)
kr + bijk. (2)

The first term in the right-hand side of (2) corresponds to the CP decomposition of a tensor

where a
(q)
ir , s

(q)
jr , and h

(q)
kr are the elements of three loading matrices A(q) ∈ R

M×Rq , S(q) ∈

R
Lq×Rq , and H(q) ∈ R

Tq×Rq , respectively [16]. The loading matrices correspond to the
mixing matrix (A(q)), the matrix of pattern amplitudes (S(q)), and the matrix containing the
temporal patterns of the event’s components (H(q)) that characterize the mixture of the q-th
source. The second term contains noise and interference from the desynchronized signals of
other sources.

Since we assume that each event-related source may consist of more than one component,
the number of sources N in the model (1) corresponds to the total number of components,
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i.e., N =
∑Q

q=1Rq ≥ Q, while the full mixing matrix A in the model (1) can be obtained as

A = [A(1), . . . ,A(Q)].
In practice, one can obtain estimates for the mixing matrix, the pattern amplitudes, and

the signal patterns by decomposing the tensor using the following criterion that optimizes the
classical CP cost function:

{

Â(q), Ŝ(q), Ĥ(q)
}

= argmin
{A(q),S(q),H(q)}

∑

i,j,k

∥

∥

∥

∥

∥

∥

y
(q)
ijk −

Rq
∑

r=1

a
(q)
ir s

(q)
jr h

(q)
kr

∥

∥

∥

∥

∥

∥

2

F

. (3)

An important advantage of the CP decomposition in comparison to matrix decomposi-
tions, such as principal component analysis (PCA), is that it is essentially unique [28, 29]
up to scale and permutation indeterminacies under mild conditions on the tensor rank, with-
out imposing additional constraints such as orthogonality or independence. In [28, 29], the
following sufficient condition for essential uniqueness has been derived:

kA(q) + kH(q) + kS(q) ≥ Rq + 2. (4)

Here, kA(q) , kH(q) , and kS(q) denote the Kruskal ranks of the matrices A(q), H(q), and S(q),
respectively. In particular, as has been shown in [15], if A(q), S(q), and H(q) have full rank
and Tq ≥ Rq, Lq ≥ Rq (i.e., if the number of events and the number of time samples per
event are larger than the number of components Rq to be extracted), then M = 2 sensors are
enough to blindly separate Rq components.

However, errors in the decomposition are to be expected due to noise and interfering
sources bijk, in particular if the source to be extracted is weak compared to the interfering
sources. In this case, the other source signals can be considered as outliers and strongly
influence the optimization of criterion (3) because they prevent the decomposition algorithm
to concentrate on the signal of interest. To overcome this practical problem, we propose to
apply a tensor decomposition that is robust to outliers. In the following, we present two
different robust decomposition schemes, which are based on modifications of the CP cost
function. The different cost functions are displayed in Figure 2.

2.1.2. Robust tensor decomposition

Gaussian CP (GCP) decomposition. The idea of the first method consists in resorting to a cost
function that does not attribute tremendous errors to outliers as does the classical quadratic
cost function used in (3). In [18], the use of an L1-norm cost function was proposed. We
go a step further and employ a cost function JG which is based on Gaussian-like functions
and limits the maximal error to 1 (see Figure 2) . This leads to the following optimization
criterion:

min
{A(q),S(q),H(q)}

∑

i,j,k

ψ



y
(q)
ijk −

Rq
∑

r=1

a
(q)
ir s

(q)
jr h

(q)
kr



 , (5)

with ψ(u) = 1−exp{− u2

2σ2 }. In this case, an error value of about 3σ between a tensor element
and the reconstructed tensor element is treated as an outlier since its effective error value ψ(u)
is very close to the maximum value. The parameter σ that adjusts the width of the Gaussian
function thus allows defining a threshold between “normal” errors and large outliers and has
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a high influence on the results of the decomposition. For small σ, most of the errors will be
treated as outliers, which makes the identification of the model difficult, while for large σ,
outliers might not be recognized and can lead to biased estimates of the loading matrices. The
optimal value for σ lies in between and should be chosen according to the data. If available,
estimates of the variances of the q-th source to extract, of the noise, and of the other sources
can be used to determine an appropriate value for the width of the Gaussian function.

The optimization of the cost function JG can be accomplished using a gradient descent
algorithm. Starting with initial estimates of the loading matrices A(0), S(0), and H(0) (here
the superscript denotes the iteration; for a better readability the superscripts referring to the
sources are left out in the following), the loading matrices at iteration l are updated according
to

A(l+1) = A(l) − µA gA, (6)

S(l+1) = S(l) − µS gS, (7)

H(l+1) = H(l) − µH gH, (8)

until convergence. Here, µA = µS = µH = µ is a stepsize parameter and gA = ∂JG

∂A
,

gH = ∂JG

∂H
, and gS = ∂JG

∂S
denote the gradients of the cost function JG with respect to

the three loading matrices, respectively. The r-th column of the matrix gA = ∂JG

∂A
can be

computed as

gar
= −[(hr ⊗ sr)⊗ IM ]T

[

e1

σ
⊡ exp

{

e1 ⊡ e1

2σ2

}]

, (9)

with e1 = vec
{

[Y ](1)
}

− [(H⊙ S)⊗ IM ]vec{A}. Here,

A⊗B =







a11B · · · a1RB
...

. . .
...

aM1B · · · aMRB







denotes the Kronecker product of matrices A ∈ R
M×R and B, ⊙ denotes the Khatri-Rao

column-wise Kronecker product, ⊡ is the Hadamard element-wise product, vec{A} is the
vector obtained by concatenating the columns of the matrix A, and IM is the identity matrix
of size M ×M . Furthermore, [Y ](1) ∈ R

M×(LqTq) denotes the first unfolding matrix of the
tensor Y , which is composed of all mode-1 vectors of the tensor (a mode-1 vector is obtained
by fixing the second and third index of the tensor elements and varying the first index from
1 to M) with an ordering such that the second index is varied faster than the third one (for
more details and illustrations of operations on tensors see e.g., [30]). The other two gradient
matrices are determined in an analogous way.

Since it does not require any information about the data except for an estimate for the
threshold between noise and outliers, this robust decomposition method is rather general. It
is therefore applicable to a large range of applications. However, to obtain accurate results, a
good initialization is required (see Section 3.1.1). This is especially mandatory if the difference
between the values of outliers and the values of the signal of interest is in the same range as
the amplitude of the signal of interest.
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Weighted CP (WCP) decomposition. The second proposed robust tensor decomposition method
is based on the weighted cost function (see the red curve in Figure 2):

min
{A(q),S(q),H(q)}

∑

i,j,k

∥

∥

∥

∥

∥

∥

w
(q)
ijk



y
(q)
ijk −

Rq
∑

r=1

a
(q)
ir s

(q)
jr h

(q)
kr





∥

∥

∥

∥

∥

∥

2

F

, (10)

and exploits the particular structure of the data at hand to determine suitable weights w
(q)
ijk.

In fact, for applications with a small variability of the amplitudes, one can exploit the desyn-
chronization of noise and interference which manifests itself by a high variance σ2

ij over dif-
ferent event-synchronized windows compared to the signal of interest to identify the outliers.
The influence of the outliers can then be attenuated by the attribution of low weights while
weights close to 1 are assigned to the tensor elements that exhibit a small variance over
event-synchronized windows. The weights are thus computed depending on the variance σ2

ij

as

w
(q)
ijk = exp

{

−
(y

(q)
ijk − µij)

2

σ2
ij

}

, q = 1, . . . , Q, (11)

where µij is the mean of the tensor elements over all event-synchronized windows, and can be
stored into a nonnegative weight tensor, which is of the same dimensions as Y (q). In order to
obtain robust estimates for the variances σ2

ij , we use the median absolute deviation (MAD)
estimator [31] for their determination.

The optimization of (10) can, for example, be performed using a weighted Alternating
Least Squares algorithm (see [17]).

As for ECG, MCG and EEG signals, the amplitudes for different event-synchronized win-
dows are approximately the same, the WCP decomposition is especially adapted to these
applications. Contrary to the GCP decomposition, which requires the manual selection of
the parameter σ, all the parameters are determined automatically from the data and the
technique is robust to intialization. Please note, though, that in the general case, the pattern
amplitudes may change considerably from one event-synchronized window to another, which
prevents the accurate estimation of the weights using the method described above.

The robust tensor decomposition methods subsequently described can be used to estimate
the mixing matrix and to extract the temporal patterns and the amplitudes of the event-
related sources. This is already an advantage over a matrix decomposition using the singular
value decomposition (SVD), where one only obtains an estimate of the subspace spanned
by the mixing matrix and no information about individual pattern amplitudes, because the
temporal structure of the event-related sources is not exploited. However, as the tensor
decomposition model assumes identical temporal patterns for each event, the dynamics of
the sources, i.e., slight variations from one period to another, are lost. To recover these
dynamics, we propose to use the estimated mixing matrix, temporal patterns and amplitudes
in a Kalman filtering framework to obtain refined estimates of the sources.

2.2. EKF Framework for Extraction of Event-Related Sources

The goal of Kalman Filter (KF) is to estimate the state of a discrete-time controlled
process. Consider a state vector xk+1 governed by a nonlinear stochastic difference equation
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with measurement vector yk+1 at time instant k + 1:
{

xk+1 = f(xk,wk, k + 1)

yk+1 = h(xk+1,vk+1, k + 1),
(12)

where the random variables wk and vk represent the process and measurement noises, re-
spectively, with associated covariance matrices Qk = E

{

wkw
T
k

}

and Rk = E
{

vkv
T
k

}

. The
Extended Kalman Filter (EKF) is an extension of the standard KF to nonlinear systems f(·)
and h(·), which linearizes about the current mean and covariance [32]. In order to improve
the estimations, EKF can be followed by a backward recursive smoothing stage leading to the
Extended Kalman Smoother (EKS). However, since EKS is a non causal method, it cannot
be applied online, but can be used if a small lag in the processing is allowed.

In this framework, the state vector associated with each event-related source is defined by
its phase θk and amplitude zk. The phase θk is, in fact, a means of modeling the event-related
behavior of the source. Then, each period of the source is modeled using θk to obtain zk.
Thereby, the state model of the event-related source, in its discrete form with a small sampling
period δ, is:

{

θk+1 = (θk + ωδ)mod(2π)

zk+1 = g(θk, k) + zk + ηk,
(13)

where θ and z are the state variables in polar coordinates and k denotes the discrete time
index. ω is the phase increment, ηk is a random additive noise, and g(.) models the temporal
pattern and amplitude of the source. In addition to the noisy recording of the source, sk, an
observed phase φk is obtained by a linear time warping of each event interval into [0, 2π) (see
Figure 3), leading to the following system:

[

φk
sk

]

=

(

1 0
0 1

)[

θk
zk

]

+

[

uk
vk

]

, (14)

where uk and vk are the corresponding observation noises with zero-mean random variable
entries.

With several event-related sources in multichannel recordings, redundancy of each event-
related source can be exploited to estimate the information of the desired source mixed with
the other sources and background noise. In order to do so, a linear transform is assumed to
decompose M mixed event-related signals into N components. In other words, we assume
that all event-related sources have N components in total, which are observed in M signals.
For N mixed components, the dynamic equations may be written as:



































θ
(1)
k+1 = (θ

(1)
k + ω(1)δ)mod(2π)

z
(1)
k+1 = g(1)(θ

(1)
k , k) + z

(1)
k + η

(1)
k

...

θ
(N)
k+1 = (θ

(N)
k + ω(N)δ)mod(2π)

z
(N)
k+1 = g(N)(θ

(N)
k , k) + z

(N)
k + η

(N)
k .

(15)

The phase observations of the N components, Φ = [φ(1),...,φ(N)]T , and the M noisy mixtures
of the N components, s = [s(1),...,s(M)]T , are related to the state vectors Θ = [θ(1),...,θ(N)]T

and z = [z(1),...,z(N)]T at time k as follows:
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[

Φk

sk

]

=

(

I 0
0 A

)[

Θk

zk

]

+

[

uk

vk

]

, (16)

where uk and vk are the corresponding observation noises.
The key step prior to the implementation of the filter is the estimation of g(n)(.) for the

n-th component as well as the mixing matrix A:

A =







a11 . . . a1N
...

. . .
...

aM1 . . . aMN






. (17)

In order to do so, the loading matrices provided by the previous step (Section 2.1) are used:

• the mixing matrix is directly defined as the concatenation of the loading matrices A(n)

related to all the event-related components;

• the temporal pattern of g(n)(.) for the n-th component is provided by the loading matrix
H(n);

• the amplitude of g(n)(.) for the n-th component at each period is obtained by the

loading matrix S(n) and by assuming that η
(1)
k ,..,η

(N)
k are uncorrelated, a ratio (e.g. 0.1)

of standard deviation of S(n) can be used as the estimate of η
(n)
k for initializing the state

covariance matrix Qk.

3. Results

Both synthetic and clinical data have been used to study the performance of the proposed
method. In the first subsection, quantitative results coming from simulations have been stud-
ied. In this subsection, the robustness of the proposed tensor decomposition methods to
amplitude variations, quantity of outliers, initialization, and synchronization errors is exam-
ined based on simulations for both arbitrary tensors and tensors constructed from data of
event-related sources.

In the second subsection the results of the proposed method on three sets of clinical
data including EEG, ECG, and MCG have been presented. The results on ECG and MCG
data have been compared with the results of πCA [26] and FastICA [33] methods. The
GCP and WCP labels denote results of the first and second proposed approaches for tensor
decomposition without Kalman filtering stage. GCP+EKS and WCP+EKS show the results
based on the first and second proposed approaches of tensor decomposition with a Kalman
filtering stage.

3.1. Synthetic data

3.1.1. Robust decomposition of arbitrary trilinear tensors in the presence of outliers

First of all, we analyzed the performance of the proposed robust tensor decomposition
methods for arbitrary tensors containing outliers. To this end, we generated a set of arbitrary
loading matrices A ∈ R

5×2, S ∈ R
10×2, and H ∈ R

10×2. The elements of A and H were
random variables chosen from a uniform distribution between −1 and 1. The elements of S
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were chosen from a Gaussian distribution with mean 1 and variance σ2
S = 0.04. The use of

other continuous distributions leads to comparable results. The tensor was then constructed
from the matrices A, S and H according to (2). To simulate outliers, we falsified a certain
percentage p of randomly selected tensor values by adding or subtracting 2. The value 2 has
been chosen arbitrarily such that it is large enough to be considered as an outlier, but close
enough to the values of other tensor elements to remain realistic. Furthermore, we added
white Gaussian noise according to a signal-to-noise ratio (SNR) of 20dB. The resulting tensor
was then decomposed using the CP, WCP and GCP decompositions. For initialization, we
took the original loading matrices and added zero-mean Gaussian noise with variance σ2

i .
We computed each decomposition three times for different initializations and retained the
estimated loading matrices that were obtained for the minimal value of the cost function. The
accuracy of the estimated loading matrices Â, Ŝ, and Ĥ was evaluated using the following
measure:

ELM =
1

3R
min
P

{||A′ − Â′DAP||F + ||S′ − Ŝ′DSP||F + ||H′ − Ĥ′DHP||F}, (18)

where R denotes the number of components, P is a permutation matrix and the matrices A′,
S′, H′, Â′, Ŝ′, and Ĥ′ correspond to the original and estimated loading matrices normalized
to unit column norm. Furthermore, DA, DS, and DH are diagonal matrices whose elements
correspond the signs of the elements on the diagonal of the correlation matrices (A′)TÂ′,
(S′)TŜ′, and (H′)TĤ′ and which are introduced to compensate for the sign ambiguity. Sub-
sequently, we analyzed the influence of different parameters on this error for 100 Monte Carlo
trials.

Influence of the percentage of outliers. Figure 4 shows the error of the loading matrices as
a function of the percentage of outliers p for σi = 0.5. It can be seen that the error of the
GCP decomposition is very small (< 0.1) over a large range of values of p ranging from 1 to
50% before the high percentage of outliers leads to an increasing error. This means that this
method is very robust to even a large amount of randomly distributed outliers in the tensor.
With an error that is slightly smaller than that of the GCP decomposition and which has
a smaller variance, the WCP decomposition achieves a slightly better performance for small
percentages of outliers (p < 10%). Yet for p > 10%, the error increases significantly with p,
showing that the WCP is only robust to a limited number of outliers. This sensitivity of the
WCP decomposition method is due to the estimation of the weights, which is not robust to a
large number of outliers. However, for all examined percentages of outliers, both WCP and
GCP methods show a much better performance than the classical CP decomposition, which
is not robust to outliers and already exhibits a large error of 0.2 for only 1% of outliers.

In order to statistically compare the obtained results, statistical analysis was carried out
for each tested value of p on Figure 4 to determine whether the distributions of the results
of different methods are two-by-two significantly different. The one-way analysis of variance
(ANOVA) was performed on the results provided by trials. As it is seen in Figure 4, for
p = 15%, WCP and GCP provide very close results. The p value for this point has been
obtained more than 0.05, which implies no significant difference between the performance of
WCP and GCP methods. Nevertheless, for all the other points, p value has been obtained
less than 0.05, which means that the results of different methods are two-by-two significantly
different.
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Influence of initialization. To analyze the influence of the initialization on the decomposition
results, we varied the variance σ2

i of the Gaussian noise that is added to the original loading
matrices to obtain a set of initial loading matrices. The percentage of outliers was fixed
to 10%. Figure 5 shows that the results of the WCP decomposition and the classical CP
decomposition hardly change for different initializations, with an average error increasing
only slightly from 0.04 to 0.1 for the WCP decomposition and from 0.37 to 0.4 for the CP
decomposition. With 80% of the errors lying between 0.23 and 0.6, the variance of the error
is high for the CP decomposition and is independent of the initialization. On the other
hand, the variance of the error of the WCP decomposition increases with σi, attaining very
small values for σi < 0.5 and moderate values for bad initializations. On the whole, the
WCP and CP decompositions can be said to be robust to initialization. On the contrary,
the GCP decomposition features a strong increase of the error for rising σi, in particular
between σi = 1 and σi = 3. In this interval, the mean error increases from 0.1 to 0.7. For
small σi < 1, i.e., if the initial loading matrices are close to the exact loading matrices, the
GCP decomposition yields good results with a very small variance, outperforming the WCP
decompositon when σi becomes very small, while for σi > 2, its results are even worse than
those of the classical CP decomposition. As the Gaussian cost function assumes values close
to 1 for all errors exceeding a certain threshold (see Section 2.1.2), the optimization criterion
of the GCP decomposition can be expected to exhibit an increased number of local minima.
If the initialization is not close to the true solution, the GCP decomposition algorithm is
prone to find a local minimum. This explains the strong dependence of the results of the
GCP decomposition on the initialization.

In Figure 5, all the results of different methods are statistically two-by-two different. The
closest results are for WCP and GCP methods at σi = 0.5. Nevertheless, even for this point
p value has been obtained equal to 0.0048 that is less than 0.05.

3.1.2. Robust decomposition of tensors of event-related data

In the present paper, we focus on event-related sources. Therefore, we consider in the
following tensors constructed from data containing a mixture of two event-related sources
with one component per source. The elements of the mixing matrices A(q) ∈ R

5×1, q = 1, 2,
were chosen from a uniform distribution between −1 and 1. To introduce some amplitude
variability, the amplitudes S(q) were chosen from a continuous distribution. Here, we used
a Gaussian distribution with mean 1 and variance σ2

S . Different choices of distributions
lead to similar results. The temporal patterns of the first and second source were given by

exp{− (x1−0.5T1)
2

2α2
1

} with α1 = 0.1 and exp{− (x2−0.5T2)
2

2α2
2

} with α2 = 0.15 where x1 and x2

are the indices of the time samples and T1 = 101 and T2 = 59 correspond to the lengths of
the patterns of the first and second source, respectively. On the whole, we considered 2020
time samples of data, containing 20 periods of the first source and 34 periods of the second
source, in the presence of white Gaussian noise for a SNR of 20dB. The tensors were then
constructed as described in Section 2.1.1 for 100 different trials. For the decomposition, the
loading matrices were initialized as described in the previous section with σi = 0.2.

Influence of the amplitude variability. The objective of the first simulation consisted in evalu-
ating the influence of the variance of the amplitudes S(q). To this end, σS was varied between
0.1 and 4 for both sources such that the variances of their amplitudes were equal. Figure
6 shows the error of the loading matrices of the two tensors as a function of the standard

11



deviation σS of the amplitudes. For the classical CP and GCP decompositions, the errors
of the loading matrices decrease with increasing σS . This can be explained by the fact that
for small σS , the tensors are close to the degenerate case, while a higher amplitude variabil-
ity facilitates the tensor decomposition and the separation of different components. For the
WCP decomposition, the best performance is achieved for small σS . In this case, the am-
plitude variation is small enough so that the peaks of the second source in the tensor of the
first source and vice versa are outlying values and do not influence the computation of the
weights. However, for increasing σS , the amplitudes become high enough for the peaks of the
interfering sources to lie within the range of amplitudes that are attained by the source to be
extracted. In this case, the interfering sources do not enter as outliers in the computation of
the weights, which will corrupt the estimation of the weights. This leads to an increase of the
errors of the loading matrices with rising σS .

In Figure 6, all the results are statistically two-by-two different, because all the p values
have been obtained less than 0.05 for both tensors.

Influence of synchronization errors. To analyze the influence of synchronization errors (after
the tensor construction, which was accomplished with perfect synchronization), we introduced
artificial delays for each event period to model synchronization errors. The delays were uni-
formly distributed between −τmax and τmax, with τmax chosen between 0 and Tqαq samples,
where αq determines the width of the Gaussian function that characterizes the temporal pat-
tern of the q-th source, q = 1, 2. The standard deviation of the amplitudes was fixed to
σS = 0.2. Figure 7 shows that the error of the loading matrices increases rapidly with rising
maximal delay. This means that the good synchronization of the signals in each tensor is
crucial for the accuracy of the proposed method.

There are many points in Figure 7, in which the results obtained by different methods
are not statistically two-by-two different, because the variance is high over the plotted mean
values (see the 10% and 90% quantiles). Therefore, many of p values have been obtained
more than 0.05 for both tensors.

3.2. Clinical Data

3.2.1. ERP Extraction

Event-related potentials (ERPs) are the responses to brain stimulation measured by the
scalp EEG. The measured responses are induced by multiple brain generators active in as-
sociation with the eliciting event. However, they are mixed with background activity of the
brain that is not related to the stimulus and also other interferences from non-neural sources,
such as eye blinks [34] and muscle artefacts. Due to the much lower power of ERPs compared
with background EEG, it is difficult to estimate them even though they are dominant in lower
frequencies. The most common way to extract ERPs involves averaging time-locked sections
of the EEG signal over many trials. This method assumes a simple model for ERPs that
consists of the sum of an invariant signal and a random process that will be attenuated by
averaging over trials [35]. However, there is evidence that ERP waves may vary considerably
over time [36]. Furthermore, in [37], it has been shown in the context of neonatal seizure
activity that tensor-based methods that exploit the repetitive nature of EEG signals exhibit
an improved performance to time-locked averaging.
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The ERP database consists of EEG signals recorded during a P300 speller brain-computer
interface (BCI) experiment [38]. In such a BCI, the paradigm, which consists of visual stim-
uli divided between target and non-target stimuli, suggests that a positive deviation about
300ms is elicited after a target stimulus, while non-target stimuli do not elicit specific brain
response. The EEG signals have been sampled at 1200Hz using 16 scalps electrodes. First,
a three-way tensor is built by stacking the data of sixteen channels windowed from 1 second
before the stimuli and 2 seconds after the stimuli. In this experiment, The ERP data was
considered to be composed of 2 components. Decomposition of this tensor yields estimates
of the temporal patterns of ERPs along with their amplitudes and the mixing matrix (i.e.,
the spatial projection on scalp). Then, the ERP estimates are improved by the proposed
KF to preserve dynamics of ERPs over time. The extracted temporal patterns of ERPs via
WCP, and single-trial estimates of WCP and WCP+EKS from the namely S6 dataset are
shown in Figure 8. As it is seen, WCP+EKS outperforms WCP because it better preserves
the dynamics of ERPs which can change from a trial to another. GCP and GCP+EKS also
provide rather equivalent results to those of WCP and WCP+EKS.

3.2.2. Fetal ECG Extraction

The ECG data used in this subsection is the DaISy fetal ECG database [39], which consists
of a single dataset of cutaneous potential recordings of a pregnant woman. A total of 8 channels
(5 abdominal and 3 thoracic) are available, sampled at 250 Hz and lasting 10 seconds. The
extracted maternal ECG and fetal ECG using the first and second channels of this database is
shown in Figure 9. The mECG data was considered to be composed of 2 components, while we
used only one component for the fECG data. The mixture of the first channel and extracted
mECG and fECG signals using πCA, FastICA and the proposed GCP and GCP+EKS are
plotted, respectively. The results of WCP and WCP+EKS are also similar to those of GCP
and GCP+EKS. As it is seen, πCA and FastICA methods fail to extract fECG when only
two electrodes are available, since the mixtures are underdetermined. There is neither ground
truth nor golden standard on clinical fetal ECG recordings to be used as a reference for
comparing the performance of the different methods. Nevertheless, in order to quantify the
performance of each method on clinical data, the mean values of the contaminating and
desired ECGs have been measured at their R-peak positions in the estimated ECG. This can
provide an estimate for the residual of the contaminating mECG in the estimated fECG. If the
contaminating mECG has been successfully canceled, the values of this measure should be low,
meanwhile, the values of the estimated fECG at its R-peak positions should be close to values
of the corresponding points in the original mixture. Table 1 reports values of this measure on
the fECG estimated by the different methods. The results show that the proposed GCP, WCP,
GCP+EKS, and WCP+EKS significantly outperform πCA and FastICA. Although GCP (or
WCP) and GCP+EKS (or WCP+EKS) provided close quantitative results, it should be noted
that valuable inter-beat dynamics of mECG and fECG are lost in the GCP (or WCP) estimate,
because as it was explained in the previous section all beats of the reconstructed ECGs have
exactly the same temporal pattern up to their amplitudes. Nonetheless, these valuable inter-
beat dynamics of ECG signals are recovered using GCP+EKS (or WCP+EKS).

3.2.3. Twin MCG Extraction

In this subsection, twin fetal cardiac magnetic signals are extracted. The dataset used
in this subsection consists of three sets of twin magnetocardiogram signals and other signals,
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in arrays of 208 channels recorded over 30 minutes, with a sampling rate of 1025 Hz1. Two
electrodes were used in this test. The presented results have been achieved for a typical couple
of channels (indexed 92 and 116) of one of the available datasets, namely the q00002252
dataset.

To extract sources by the proposed tensor decomposition, they must have different pattern
rates. As long as two sources are not exactly synchronous, they can be separated even if their
pattern rates are approximately the same. This enables the method to separate twin cardiac
signals even if heart rates are approximately equal. However, in this case, the interference
of the second source in the tensor of the first source might be concentrated within a certain
interval of the temporal pattern. This happens especially if the tensor is built from a small
number of events. In this case, the correct decomposition of the tensor is particularly difficult
and cannot be achieved by the classical CP decomposition. The introduction of the weights in
the WCP method permits us to overcome this problem and to focus on the signal of interest.
This discrimination is also provided by the Gaussian function in the first approach (GCP).

There are three sources to be extracted, one maternal MCG and two fetal MCGs, while
two channels are to be utilized. The maternal and fetal MCG ranks considered in the proposed
method are 2 and 1, respectively. Fig.10 presents the results of πCA and the proposed WCP
and WCP+EKS methods in extraction of the maternal and two fetal MCG signals from two
channels. GCP and GCP+EKS also provide close results to those of WCP and WCP+EKS.
As it is seen, πCA method fails to track periodic patterns related to the fetal components
due to their low power and insufficient number of the utilized electrodes. Nevertheless, the
proposed WCP and WCP+EKS methods could recover weak traces of fetal MCG features.
However, as expected in comparison with WCP+EKS, WCP method does not completely
cancel the exogenous noise. Moreover, inter-beat dynamics of MCG signals are lost in this
way. The maternal and fetal R-peak values on the first fetal MCG estimate, are presented in
Table 2. In this experiment, a perfect estimate should give very low value at maternal R-peak
and second fetal R-peak positions.

4. Conclusions

In this paper, we presented a novel two-step method based on robust tensor decomposition
and extended Kalman filtering for extraction of event-related sources that can be quasi-
periodic sources, sources with synchronized trials, and amplitude-variant sources. Two robust
criteria, implemented in the GCP and WCP decompositions, were used in this work to capture
the desired event-related sources even if their powers are much lower compared with other
sources (e.g., large impulse concurrent sources). A comparative study of these criteria showed
that while the GCP decomposition can handle a larger amount of outliers (interference of
other sources) compared to the WCP decomposition, it also requires a good initialisation,
which is not necessary for the WCP decomposition. For a limited number of outliers and a
good initialisation, which can, for example, be provided by prior knowledge of the expected
signal form, the WCP and GCP decompositions feature a similar performance. In a second
step, the estimations are improved by an extended state Kalman filtering to avoid losing

1This dataset has been provided by Dr. Dirk Hoyer, from the Biomagnetic Center of the Department of
Neurology, in Friedrich Schiller University, Jena, Germany.
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dynamics of the sources.
This method is also applicable to underdetermined mixtures and this is its main interest. It
allows us to utilize the minimal number of electrodes (down to two electrodes), if needed. The
latter is a crucial feature for a monitoring system because it can affect the system’s price,
convenience and portability. Although good synchronization of events of the desired source in
its tensor format is crucial for the functioning of the proposed method, application on clinical
data shows its significantly superior performance in comparison to the classical multichannel
methods.
Perspectives include the development of more robust tensor decomposition methods that can,
for example, handle synchronization errors, and application to other datasets.
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Figure 1: Illustration of a tensor with event-synchronized windows.
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Figure 2: Cost functions applied to the error ei,j,k of each tensor element for the classical CP decomposition
and the robust WCP and GCP methods.

20



Figure 3: Illustration of linear time warping of each event interval into [0, 2π) for a typical ECG signal.
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Figure 4: Error of the loading matrices as a function of the percentage of outliers. The bold curves show the
results averaged over 200 trials while the 10% and 90% quantiles are represented by the thin curves.
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Figure 5: Error of the loading matrices as a function of the variance of the Gaussian noise added to the true
loading matrices to obtain the initial loading matrices. The bold curves show the results averaged over 100
trials while the 10% and 90% quantiles are represented by the thin curves.
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Figure 6: Error of the loading matrices as a function of the amplitude standard deviation σS for the tensor of
the first source (left) and the tensor of the second source (right). The bold curves show the results averaged
over 100 trials while the 10% and 90% quantiles are represented by the thin curves.
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tensor of the first source (left) and the tensor of the second source (right). The bold curves show the results
averaged over 100 trials while the 10% and 90% quantiles are represented by the thin curves.
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Table 1: Maternal and fetal R-peak values on fECG estimate of DaISY dataset (mean ± standard deviation
(SD)).

Maternal Fetal
R-peak value R-peak value

Original mixture 43.66±2.38 17.68±2.37
FastICA 31.30±2.29 13.09±1.91
πCA 41.39±2.68 19.21±2.17
GCP -0.90±0.91 16.04±2.72
WCP -0.88±0.83 16.65±1.26
GCP+EKS 0.17±1.46 16.19±1.11
WCP+EKS 0.29±1.40 17.54±0.99
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Figure 8: ERP extraction by WCP and WCP+EKS from the namely S6 dataset. (a): all the 500 measurements
on channel 1 and the average in one plot; (b): the first temporal pattern extracted via WCP; (c): the second
temporal pattern extracted via WCP; (d), (e), and (f): three examples of single-trial ERP extraction. Dotted
lines represent the measurements, solid thin lines the estimates via WCP, and thick lines the estimates via
WCP+EKS.
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Figure 9: mECG and fECG extraction by FastICA, πCA, GCP and GCP+EKS on the first and second
channels of DaISy data.
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Figure 10: Maternal and fetal MCG extraction by πCA, WCP and WCP+EKS on the 92th and 116th channels
of twin MCG data.
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Table 2: Maternal and fetal R-peak values on the first fetal MCG estimate of twin MCG dataset (mean +
SD).

Maternal First fetal Second fetal
R-peak value R-peak value R-peak value

Original
mixture 210.08±31.42 66.04±40.74 74.97±29.27
πCA 159.72±25.79 63.15±36.77 21.28±24.39
GCP -3.74±7.00 46.79±29.92 -3.08±9.55
WCP -3.44±10.86 55.85±13.98 -2.57±8.37
GCP+EKS 1.94±8.10 65.48±33.29 1.06±8.85
WCP+EKS 1.39±6.77 71.22±28.12 0.20±6.75

30


