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INF-SUP STABILITY OF THE DISCRETE DUALITY FINITE

VOLUME METHOD FOR THE 2D STOKES PROBLEM

FRANCK BOYER, STELLA KRELL, AND FLORE NABET

Abstract. “Discrete Duality Finite Volume” schemes (DDFV for short) on

general 2D meshes, in particular non conforming ones, are studied for the
Stokes problem with Dirichlet boundary conditions. The DDFV method be-

longs to the class of staggered schemes since the components of the velocity
and the pressure are approximated on different meshes. In this paper, we in-

vestigate from a numerical and theoretical point of view, whether or not the

stability condition holds in this framework for various kind of mesh families.
We obtain that different behaviors may occur depending on the geometry of

the meshes.

For instance, for conforming acute triangle meshes, we prove the uncondi-
tional Inf-Sup stability of the scheme, whereas for some conforming or non-

conforming Cartesian meshes we prove that Inf-Sup stability holds up to a

single unstable pressure mode. In any cases, the DDFV method appears to be
very robust.

1. Introduction

1.1. The Stokes problem. In this paper, we are concerned with a finite volume
approximation of the following 2D incompressible Stokes problem: Find a velocity
field u : Ω→ R2 and a pressure field p : Ω→ R,

(1.1)


−∆u +∇p = f , in Ω,

div u = 0, in Ω,

u = 0, on ∂Ω, m(p)
def
=

1

mΩ

∫
Ω

p = 0.

We assume that Ω is a bounded connected polygonal domain in R2, mΩ being its
Lebesgue measure, and f is a function in (L2(Ω))2.

We recall that the well-posedness of this problem is related to the validity of the
so-called Inf-Sup (or LBB) inequality

(1.2) inf
p∈L2

0(Ω)

(
sup

v∈(H1
0 (Ω))2

b(v, p)

‖v‖H1‖p‖L2

)
> 0,

where b(v, p) =

∫
Ω

p (div v) and L2
0(Ω) = {p ∈ L2(Ω) : m(p) = 0}. This inequality

is itself known to be equivalent to the existence of a continuous right-inverse of the
divergence operator stated in the following result (see [10, 35]).
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Proposition 1.1. There exists a linear continuous operator Π : L2
0(Ω)→ (H1

0 (Ω))2

such that

div(Π(p)) = p, ∀p ∈ L2
0(Ω).

1.2. Finite volume methods for the Stokes problem. Finite volume methods
have been extensively studied for a long time in several engineering fields. Indeed,
they are well suited for the numerical approximation of conservation laws appear-
ing for instance in fluid mechanics, petroleum engineering and many other fields.
The theoretical analysis of finite volume schemes (convergence analysis, error es-
timates,...) began at the end of the 1980’s and had a rapid expansion during the
1990’s: see for instance the book by Eymard, Gallouët, Herbin [30] and all the
references therein.

Finite volume approximation of Stokes problems is a current research topic and
can be split into two families of methods: collocated and staggered. Let us cite for
instance the Mimetic Finite Difference method [6, 7, 8], the Discrete Duality Finite
Volume schemes (DDFV for short) [21, 43], the Mixed Finite Volume schemes [27],
the Scheme Using Stabilization and Hybrid Interfaces [32]. The most celebrated
staggered scheme is the MAC scheme [37, 47] on Cartesian grids.

In this paper, we focus on a DDFV approximation of Stokes equations. It is a
staggered method since the approximate velocity field and pressure field are asso-
ciated with different control volumes. Actually, for a Cartesian grid, the scheme
we propose here is equivalent (except on the boundary) to two uncoupled MAC
schemes written on two different staggered meshes. Therefore, the DDFV method
for the Stokes problem can be considered as a possible extension of MAC to general
meshes.

The 2D DDFV scheme requires velocity unknowns on both vertices and “cen-
ters” of control volumes. These two sets of unknowns allow to reconstitute a two-
dimensional discrete gradient (defined on new geometric elements called diamond
cells) and discrete divergence operators that are in duality in a discrete sense giv-
ing its name to the method. This approach was first introduced in [21] but some
important points of the analysis were left open, such as the question of uniform
Inf-Sup stability of the method which is the main topic of our work.

Note that, to overcome these difficulties in the analysis, the author of [21] pro-
posed to formulate the Stokes problem in the vorticity-velocity-pressure form and
then to approximate the velocity on the diamond cells and the pressure on both
vertices and centers of primal control volumes. This dual approach does not seem
to be adapted to Dirichlet boundary conditions or more general problems such as
multifluid Stokes problem for which the viscosity is no more constant on Ω. That’s
the reason why we believe that the study of the DDFV method in the natural
velocity/pressure formulation is still an important topic.

In order to cope with the lack, at that time, of a suitable discrete Inf-Sup in-
equality for the natural DDFV formulation, it was also proposed in [43] to add a
stabilization term in the mass conservation equation. With this usual stabilization
technique, a complete analysis of the scheme was given. However, it was numeri-
cally observed in this reference that very accurate approximations can be computed
without stabilization (or at least with very small stabilization parameters).

This is our main motivation in the present paper to go further in the analysis of
the Inf-Sup stability of the original (non-stabilized) DDFV scheme. This scheme
is easy to implement on general grids (with a single loop over diamond cells), has
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a reasonnably small stencil, is parameter-free and possesses the standard algebraic
saddle-point structure well-suited to many iterative solvers and preconditioners.
Moreover, using the Inf-Sup stability results proved in this paper, the error analysis
presented in [43] directly applies to the non-stabilized scheme. We only consider
here the 2D case but it is worth noticing that DDFV schemes have been successfully
extended to the 3D case in [17, 18, 41, 3] for linear anisotropic scalar diffusion
equations and in [45] for the Stokes problem.

The Inf-Sup stability issue has been extensively studied in the framework of
conforming Galerkin/finite element approximations and the main results in this
field can be found in [15, 29, 35] for instance; see also the review paper [9]. In many
cases, the Inf-Sup stability can be analysed by proving the existence of the so-
called Fortin operator as introduced initially in [34]. This strategy was for instance
successfully used for the Crouzeix-Raviart element [20] or the P1+bubble/P1 (mini)
element [5]. For the generalised P2/P1 Hood-Taylor element or its linear counterpart
P1isoP2/P1, an adaptation of Fortin’s method is necessary [50]. The proofs given
in the present paper can actually be seen as adaptations to the DDFV framework
of Verfürth’s ideas, even though our approximate pressure field is not continuous.

As far as discontinuous Galerkin methods are concerned (see [23] for a more de-
tailed review of this class of methods), we can cite for instance [16] where the LDG
method in variables velocity-velocity gradient-pressure is analysed in details, in
particular its Inf-Sup stability properties. Since this method is locally conservative,
it can be understood in some sense as a higher order finite volume approximation.
However, this method requires a pressure stabilization term in the mass conserva-
tion equation. Another DG method in the velocity/pressure formulation without
pressure stabilization (at least on matching simplicial grids) is analyzed in [36].
None of these methods is able to cope with general grids without pressure stabiliza-
tion contrary to the DDFV method presented here. This is an important feature
of staggered methods.

1.3. Outline. This article is organized as follows. In Section 2, we first recall the
DDFV framework, introduce the DDFV scheme and define the associated discrete
Inf-Sup condition. In section 3, we first study three examples of different mesh
families for which we are able to prove the unconditional Inf-Sup stability of the
scheme. We also provide numerical illustrations for these properties.

Conversely, in Section 4, we prove that for some other mesh families (of Carte-
sian type), the Inf-Sup stability does not hold. However, we can provide a precise
description of the instability by establishing that there exists only one single unsta-
ble mode in such a way that the Inf-Sup stability holds if we impose to the pressure
fields to be orthogonal to the unstable mode. This seems to explain why, in that
cases, the Inf-Sup instability of the scheme is sufficiently weak so that the conver-
gence properties of the method are preserved even without a strong stabilization
term as observed in [43].

The general idea underlying our analysis is to build a kind of approximate Fortin
operator, since building a real Fortin operator seems to be complicated, in particular
for non-conforming meshes (see Propositions 3.1 and 4.5).

Finally, in Section 5, we propose some numerical experiments to check whether or
not the Inf-Sup stability holds for different mesh families for which we are not able
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yet to provide theoretical results. The conclusion of the study is that the DDFV
seems to be very robust as far as the Inf-Sup stability property is concerned.

2. DDFV framework

2.1. The DDFV meshes and notations. For any two vectors a,b in R2, we
denote by a ·b = tab ∈ R their euclidean scalar product, by a⊗b = atb ∈M2(R)
their tensor product and by a ∧ b = det(a,b) ∈ R their wedge product. Moreover,

ex =
t
(1 0) and ey =

t
(0 1) denote the canonical basis of R2.

For any two matrices ξ, ξ̃ ∈ M2(R), we denote by (ξ : ξ̃) = Tr(tξ ξ̃) ∈ R their
contracted product and by |ξ| = (ξ : ξ)1/2 the associated norm.
The meshes. We recall here the main notations and definitions taken from [4]. A
DDFV mesh T is constituted by a primal mesh M∪∂M and a dual mesh M∗∪∂M∗.
An example for square locally refined primal mesh is on Figure 1.

Interior primal cells K ∈M

Centers xK

Dual cells K∗ ∈M∗ ∪ ∂M∗

Vertices xK∗

Figure 1. (Left) The primal mesh M ∪ ∂M; (Right) The dual
mesh M∗ ∪ ∂M∗.

The (interior) primal mesh M is a set of disjoint open polygonal control volumes
K ⊂ Ω such that ∪K = Ω. We denote by ∂M the set of edges of the control volumes
in M included in ∂Ω, which we consider as degenerate control volumes.

• To each control volume K ∈ M, we associate a point xK. Even though
many choices are possible, in this paper, we always assume xK to be the
mass center of K.

• To each degenerate control volume K ∈ ∂M, we associate the point xK equal
to the midpoint of the control volume K.

This family of points is denoted by X = {xK, K ∈M ∪ ∂M}.
Let X∗ denote the set of the vertices of the primal control volumes in M that

we split into X∗ = X∗int ∪ X∗ext where X∗int ∩ ∂Ω = ∅ and X∗ext ⊂ ∂Ω. With
any point xK∗ ∈ X∗int (resp. xK∗ ∈ X∗ext), we associate the polygon K∗ ∈ M∗

(resp. K∗ ∈ ∂M∗) whose vertices are {xK ∈ X, such that xK∗ ∈ K, K ∈ M} (resp.
{xK∗} ∪ {xK ∈ X, such that xK∗ ∈ K, K ∈ (M ∪ ∂M)}) sorted with respect to the
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clockwise order of the corresponding control volumes. This defines the set M∗∪∂M∗
of dual control volumes.

For all control volumes K and L, we assume that ∂K ∩ ∂L is either empty or a
common vertex or an edge of the primal mesh denoted by σ = K|L. We note by E
the set of such edges. We also note σ∗ = K∗|L∗ and E∗ for the corresponding dual
definitions.

Given the primal and dual control volumes, we define the diamond cells Dσ,σ∗
being the quadrangles whose diagonals are a primal edge σ = K|L = (xK∗ , xL∗)
and a corresponding dual edge σ∗ = K∗|L∗ = (xK, xL), (see Fig. 2). Note that
the diamond cells are not necessarily convex. If σ ∈ E ∩ ∂Ω, the quadrangle Dσ,σ∗
degenerate into a triangle. The set of the diamond cells is denoted by D and we
have Ω = ∪

D∈D
D.

Notations. For any primal control volume K ∈M ∪ ∂M, we note:

• mK its Lebesgue measure,
• EK the set of its edges (if K ∈M), or the one-element set {K} if K ∈ ∂M.
• DK = {Dσ,σ∗ ∈ D, σ ∈ EK},
• hK its diameter.

We will also use corresponding dual notations: mK∗ , EK∗ , DK∗ and hK∗ .

xK

xL

xK∗

xL∗
σσ∗

~nσ∗K∗

~nσK

Figure 2. Notations in a diamond cell D

For a diamond cell D = Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗) (see Fig. 2), we
note

• mσ the length of the primal edge σ,
• mσ∗ the length of the dual edge σ∗,
• ~nσK the unit vector normal to σ oriented from xK to xL,
• ~nσ∗K∗ the unit vector normal to σ∗ oriented from xK∗ to xL∗ ,
• hD its diameter,
• mD its measure.

We define the set of boundary diamond cells Dext as the set of diamond cells
which possess one side included in ∂Ω; the set of interior diamond cells is thus
Dint = D\Dext.
Mesh regularity measurement. Let size(T ) be the maximum of the diameters
of the diamond cells in D. We introduce a positive number reg(T ) that measures
the regularity of a given mesh and is useful to perform the convergence analysis of
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finite volume schemes

(2.1)

reg(T ) = max

(
N ,N ∗,max

D∈D

mσmσ∗

mD
, max
K∈M
D∈DK

hK
hD

, max
K∗∈M∗∪∂M∗
D∈DK∗

hK∗

hD
,

max
D∈D

hD√
mD

, max
K∗∈M∗∪∂M∗

hK∗√
mK∗

,max
K∈M

hK√
mK

)
,

where N and N ∗ are the maximum of edges of each primal cell and the maximum
of edges incident to any vertex. The number reg(T ) should be uniformly bounded
when size(T )→ 0 for the convergence results to hold.

2.2. Discrete unknowns and discrete mean-value projection. The DDFV
method for the Stokes problem requires staggered unknowns. It associates to any
primal cell K ∈ M ∪ ∂M an unknown value uK ∈ R2 for the velocity, to any dual
cell K∗ ∈ M∗ ∪ ∂M∗ an unknown value uK∗ ∈ R2 for the velocity and to any
diamond cell D ∈ D an unknown value pD ∈ R for the pressure. These unknowns
are collected in the families

uT =


uM = (uK)K∈M

u∂M = (uK)K∈∂M
uM∗ = (uK∗)K∗∈M∗

u∂M
∗

= (uK∗)K∗∈∂M∗

 ∈ (R2
)T

and pD =
(
(pD)D∈D

)
∈ RD.

We specify a subset of
(
R2
)T

needed to take into account the Dirichlet boundary
conditions

E0 =
{

uT ∈
(
R2
)T

such that u∂M = 0 and u∂M
∗

= 0
}
.

We define now the interior mean-value projection for any vector field v ∈ (H1
0 (Ω))2

(2.2)

PM

mv =

((
1

mK

∫
K

v(x) dx

)
K∈M

)
,PM∗

m v =

((
1

mK∗

∫
K∗

v(x) dx

)
K∗∈M∗

)
.

We finally gather these projections in the following notation

(2.3) PTmv =


PM

mv
0

PM∗

m v
0

 ∈ E0, ∀ v ∈ (H1
0 (Ω))2.

2.3. Discrete operators. In this subsection, we define the discrete operators
which are needed in order to write and analyse the DDFV scheme. We begin
with the discrete gradient.

Definition 2.1. We define the discrete gradient operator ∇D mapping vector fields
of
(
R2
)T

into matrix fields of (M2(R))D, as follows

∇DuT =
1

2mD
[mσ(uL − uK)⊗ ~nσK +mσ∗(uL∗ − uK∗)⊗ ~nσ∗K∗ ] , ∀D ∈ D,

for any uT ∈
(
R2
)T

.
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Definition 2.2. We define the discrete divergence operator divD mapping vector
fields of

(
R2
)T

into scalar fields in RD, as follows

divD uT = Tr(∇DuT ) =
1

2mD
[mσ(uL − uK) · ~nσK +mσ∗(uL∗ − uK∗) · ~nσ∗K∗ ] ,

for any D ∈ D and any uT ∈
(
R2
)T

.

Definition 2.3. We define the discrete divergence operator divT mapping matrix
fields in (M2(R))D into vector fields in E0, as follows

divKξD =
1

mK

∑
σ∈∂K

mσξ
D~nσK, ∀K ∈M,

divK
∗
ξD =

1

mK∗

∑
σ∗∈∂K∗

mσ∗ξ
D~nσ∗K∗ , ∀K∗ ∈M∗,

for any ξD ∈ (M2(R))D.
In order to write the DDFV scheme in a compact form, we will denote the

discrete divergence on the primal mesh and the one on the interior dual mesh as
follows

divMξD =
(
divKξD

)
K∈M , divM∗ξD =

(
divK

∗
ξD
)
K∗∈M∗ .

Definition 2.4. We define the discrete gradient operator ∇T mapping scalar fields
RD into vector fields in E0 as follows

∇T pD = divT (pDId), ∀pD ∈ RD.

Remark 2.5. We emphasize that, by definition, divK
∗
ξD and ∇K∗pD are set to 0

for boundary dual cells K∗ ∈ ∂M∗.

In short, we have introduced four operators

∇D :
(
R2
)T → (M2(R))D,

divD :
(
R2
)T → RD,

divT : (M2(R))D → E0,

∇T : RD → E0.

2.4. Discrete inner product and norms. First of all, we define the three fol-
lowing inner products

JuT ,vT KT =
1

2

( ∑
K∈M

mKuK · vK +
∑

K∗∈M∗
mK∗uK∗· vK∗

)
, ∀uT ,vT ∈ E0,

(pD, qD)D =
∑
D∈D

mDp
DqD, ∀pD, qD ∈ RD,

(ξD : φD)D =
∑
D∈D

mD(ξD : φD), ∀ξD, φD ∈ (M2(R))D.

Then, we define the corresponding norms as follows

‖uT ‖T ,2 = JuT ,uT K
1
2
T , ∀uT ∈ E0,

‖pD‖D,2 = (pD, pD)
1
2

D, ∀pD ∈ RD,

|||ξD|||D,2 = (ξD : ξD)
1
2

D, ∀ξD ∈ (M2(R))D.
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The following discrete Stokes formula holds, giving its name to the Discrete
Duality Method (see for instance, [4, 25]).

Theorem 2.6 (Discrete Stokes formula). For all ξD ∈ (M2(R))D, uT ∈ E0, we
have

JdivT ξD,uT KT = −(ξD : ∇DuT )D.

We finally recall (see for instance, [4]) that vT ∈ E0 7→ |||∇DvT |||D,2 is a norm
in E0 (actually, a suitable Poincaré inequality holds) and that for some C1 > 0
depending only on reg(T ), we have the stability estimate

(2.4) |||∇DPTmv|||D,2 ≤ C1‖v‖H1 , ∀v ∈ (H1
0 (Ω))2.

2.5. Stokes-DDFV scheme. The DDFV scheme for Problem (1.1) reads as fol-
lows: Find uT ∈ E0 and pD ∈ RD such that

(2.5)



divM(−∇DuT + pDId) = fM,

divM∗(−∇DuT + pDId) = fM∗ ,

divD uT = 0,

m(pD) =
∑
D∈D

mDp
D = 0,

with fM = PM

mf and fM∗ = PM∗

m f , where the projection is defined by (2.2).
This scheme is formally obtained by integrating the momentum equation in

Problem (1.1) on the primal mesh M and on the interior dual mesh M∗ and the mass
conservation equation on the diamond mesh D. The momentum and mass fluxes
are then approximated by using the DDFV gradients as defined in the previous
section. The homogeneous Dirichlet boundary conditions are specified on ∂M and
on ∂M∗ through the definition of the space E0.

We also want to emphasize that the practical implementation of the scheme is
easy since, for any kind of mesh, each numerical flux that needs to be evaluated in
the momentum equation depends, at most, on four velocity unknowns. Moreover,
the matrix of the system (see Section 2.6.2) can be assembled diamond cell by
diamond cell.

In [21] the author shows that for an acute triangle mesh or a non-conforming
rectangle mesh, then Problem (2.5) has a unique solution. However, no stability
estimate was derived even in that cases, that is the reason why we are interested
in studying the discrete Inf-Sup condition for this scheme.

2.6. Discrete Inf-Sup constant.

2.6.1. Definition. Given a DDFV mesh T , we define the discrete Inf-Sup constant
βT associated with the scheme (2.5) as follows

(2.6) βT = inf
pD∈RD

(
sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2‖pD −m(pD)‖D,2

)
,

where:

(2.7) bT (vT , pD) = (divD vT , pD)D = −JvT ,∇T pDKT , ∀vT ∈ E0,∀pD ∈ RD.

For a given mesh T , we classically know that the scheme (2.5) is well-posed if
and only if we have βT > 0, see for instance [29]. Actually, since the problem is
finite-dimensional, it is easily seen that βT = 0 if and only if there exists a non-zero
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pressure mode pD, such that m(pD) = 0 and ∇T pD = 0. In that case, the couple
(vT = 0, pD) is a non trivial solution to (2.5) with a zero right-hand side, which
proves that the scheme is not well-posed.

For a given family of meshes, such that size(T ) → 0, we know that the scheme
is stable if and only if

(2.8) lim inf
size(T )→0

βT > 0.

Assuming this property, it is very easy to adapt the proof of the error estimates
given in [43] to get a convergence result for our scheme without any stabilization
term.

The aim of this paper is thus to investigate from a theoretical and numerical
point of view, whether or not the stability condition (2.8) holds for various kinds
of mesh families. We will see that the results depend on the particular geometry of
the meshes, in particular for non-conforming meshes, which is a case of particular
interest for applying the DDFV method.

2.6.2. Reformulation as an eigenvalue problem. In this section, we describe a prac-
tical method for computing, on a given mesh, the discrete Inf-Sup constant (2.6)
for the Stokes DDFV scheme. The key-point is to relate the value of βT to the
eigenvalues of a suitable matrix.

To be more precise, let us define NT = Card(T ), ND = Card(D) and denote
by 〈·, ·〉 the Euclidean inner product on the spaces R2NT and RND and | · | the
associated Euclidean norms. We are going to rewrite (2.5) and (2.6) by means of
the following matrices

• The stiffness matrix RT ∈ M2NT (R) such that for any uT ∈
(
R2
)T

, we
have:

RTuT =


((
−mK2 divK(∇DuT )

)
K∈M

)
u∂M((

−mK∗2 divK
∗
(∇DuT )

)
K∗∈M∗

)
u∂M

∗

 .

We can notice that RT satisfies

〈RTuT ,vT 〉 = (∇DuT : ∇DvT )D, ∀uT ∈
(
R2
)T
,∀vT ∈ E0.

Moreover, RT maps E0 into E0 and is symmetric definite positive on E0.

Therefore, R−1
T and R

±1/2
T are well-defined operators that map E0 into

itself.
• The divergence matrix BT ∈ MND,2NT (R) such that for any uT ∈ E0,
pD ∈ RD, we have

〈BTuT , pD〉 = bT (uT , pD).

We can notice that

BTuT =
(
(mD divD uT )D∈D

)
and tBT p

D =
1

2


((
−mK∇KpD

)
K∈M

)
0((

−mK∗∇K
∗
pD
)
K∗∈M∗

)
0

 .

Observe that, by construction, tBT p
D ∈ E0 for any pD ∈ RD.
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• The pressure mass matrix MT ∈ MND
(R) such that for any pD, qD ∈ RD,

we have

〈MT pD, qD〉 = (pD, qD)D.

The matrix formulation of the scheme (2.5) is then: Find uT ∈
(
R2
)T

and

pD ∈ RD such that

(2.9)


(
RT

tBT
BT 0

)(
uT

pD

)
=

(
PTmf

0

)
〈MT pD,1〉 = 0.

Using the matrices defined above we can now write (2.6) as follows

(2.10) βT = inf
pD∈RD

〈MT pD,1〉=0

(
sup

vT ∈E0

〈BT vT , pD〉
〈RT vT ,vT 〉 1

2 〈MT pD, pD〉
1
2

)
.

We show in the following Lemma that, for a given mesh T , computing βT corre-
sponds to solving a suitable eigenvalue problem (see [46] and [15, Section II.3]). We
then solve this problem by using the subspace iteration method with Rayleigh-Ritz
projections (see for instance [48]). We are then able to compute the actual value of
βT for different meshes and thus to investigate the Inf-Sup stability properties of
the DDFV scheme.

Notation: From now on, for any square real matrix M with real eigenvalues,
we define λi(M) to be the ith smallest eigenvalue of M .

Lemma 2.7 (Relation with the Schur complement). The discrete Inf-Sup constant
βT satisfies β2

T = λ2(ST ), where ST is the symmetric matrix defined by

ST = M
− 1

2
T BTR

−1
T

tBTM
− 1

2
T ∈MND

(R).

Remark 2.8. If we set pD = M
1
2
T 1, we have ST p

D = 0, so that the smallest eigen-
value of the matrix ST is always λ1(ST ) = 0.

Proof. We perform the change of variable uT = R
1
2
T vT ∈ E0 in (2.10) and we get

βT = inf
pD∈RD

〈MT pD,1〉=0

 sup
uT ∈E0

〈
BTR

− 1
2

T uT , pD
〉

〈uT ,uT 〉
1
2 〈MT pD, pD〉

1
2



= inf
pD∈RD

〈MT pD,1〉=0

1

〈MT pD, pD〉
1
2

 sup
uT ∈E0

〈
uT , R

− 1
2

T
tBT p

D
〉

|uT |



= inf
pD∈RD

〈MT pD,1〉=0

∣∣∣R− 1
2

T
tBT p

D
∣∣∣

〈MT pD, pD〉
1
2

.

Considering now β2
T and performing the change of variable qD = M

1
2
T p

D, we get

(2.11) β2
T = inf

pD∈RD

〈MT pD,1〉=0

〈
BTR

−1
T

tBT p
D, pD

〉〈
M

1
2
T pD,M

1
2
T pD

〉 = inf
qD∈RD

〈M
1
2
T q

D,1〉=0

〈
ST q

D, qD
〉

|qD|2
.
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Thanks to Remark 2.8, we have actually proved that β2
T is the second smallest

eigenvalue of the matrix ST . �

3. Mesh families with unconditional Inf-Sup stability

In this section, we study three families of meshes of the unit square domain
Ω =]0, 1[2 for which we are able to prove the unconditional Inf-Sup stability of the
Stokes-DDFV scheme.

(a) Conforming triangle mesh (b) Non-conforming triangle mesh (c) Checkerboard mesh

Figure 3. First series of meshes

• The conforming triangle meshes on Fig. 3a: note that all the results con-
cerning this mesh family hold for any other connected polygonal domain
Ω.
• The non-conforming triangle mesh on Fig. 3b: these meshes are obtained

by performing a k × k rectangle mesh of the subdomain ]0, 0.5[×]0, 1[ and
a 2k × 2k rectangle mesh of the subdomain ]0.5, 1[×]0, 1[ then by dividing
each rectangle into two triangles. We obtain a non-conforming triangle
mesh. Note that the non-conforming edges are situated along one single
line, called the interface.
• The checkerboard mesh on Fig. 3c: we start from a uniform square mesh of

Ω then we divide half of the initial squares into 4 smaller squares as shown
in the figure. This gives a non-conforming quadrangle mesh. Note that,
contrary to the previous case, there are many non-conforming edges in this
mesh (almost a constant proportion of the total number of edges).

3.1. Numerical results. For each of the three mesh families described above, we
compute numerically the square root of the second smaller eigenvalue of ST obtained
by the subspace iteration method with Rayleigh-Ritz projection (see [48]).

We observe in each case the behavior of βT =
√
λ2(ST ) as a function of the mesh

size size(T ) (see Fig. 4).
We infer from these numerical experiments, that the DDFV scheme seems to be

Inf-Sup stable for these mesh families, since we observe that βT remains away from
zero when size(T ) goes to 0.
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10−2 10−1 100
10−1

100

Conforming triangle meshes, Fig. 3a
Non-conforming triangle meshes, Fig. 3b

Checkerboard meshes, Fig. 3c

Figure 4. Stability investigation for a first series of meshes; βT
as a function of size(T )

3.2. Theoretical results. In this section, we prove that the stability observed
numerically in Figure 4 actually holds for these kind of meshes.

The analysis is based on the general theorem that we give below. It relies on the
following property which is proved in [43, Prop. 5.5]. It consists in proving that
the projection operator PTm is, in some sense, almost a Fortin operator.

Proposition 3.1. Let T be a DDFV mesh associated with Ω. There exists a
constant C2 > 0, which depends only on reg(T ), such that for any v ∈ (H1

0 (Ω))2

and pD ∈ RD, we have

(3.1)

∣∣∣∣ ∑
D∈D

∫
D

pD (divD vT − div v) dz

∣∣∣∣ ≤ C2|pD|h‖v‖H1 ,

where vT = PTmv is the mean-value projection of v on the mesh T (see (2.3)).

In this result, the following weak seminorm | · |h over RD is defined by

(3.2) |pD|2h =
∑

D,D′∈D
D|D′

(h2
D + h2

D′)(p
D′ − pD)2, ∀pD ∈ RD,

where the notation D|D′ means that D and D′ have a common side; we say that they
are neighbors.

Theorem 3.2 (General Inf-Sup stability result). Let be T a DDFV mesh on a
connected polygonal domain Ω.

Assume that there is αT ≥ 1 such that

(3.3) |pD|h ≤ αT ‖hT∇T pD‖T ,2, ∀pD ∈ RD.

Then, there exists C3 > 0 depending only on reg(T ) such that,

(3.4)
C3

αT
‖pD −m(pD)‖D,2 ≤ sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2
, ∀pD ∈ RD,

that is βT ≥ C3/αT .

As consequence, if we consider a regular mesh family (that is such that reg(T ) is
bounded when size(T )→ 0), then the Inf-Sup stability of the scheme will be proved
if we can obtain the norm equivalence property (3.3) with a number αT which is
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bounded as soon as size(T )→ 0. Proving this last property will be for instance the
aim of Propositions 3.3, 3.5 and 3.6 for different kind of mesh families.

Proof. Let us consider a fixed pD ∈ RD. By adding a constant to pD, it is clear
that we can always assume that m(pD) = 0.

Let C2 > 0 be the constant appearing in (3.1) and Π be the continuous right-
inverse of the divergence, as introduced in Proposition 1.1.

We divide the analysis into two cases in a similar way as in the classical proof of
the Inf-Sup stability of the Taylor-Hood element (see [29, 35]).

• First case, we assume that pD is such that

(3.5) ‖hT∇T pD‖T ,2 ≤
1

2‖Π‖C2αT
‖pD‖D,2.

Since the integral of the piecewise constant function pD =
∑
D∈D

pD1D ∈

L2(Ω) is equal to zero on Ω, we can take v = Π(pD) so that

(3.6) div v = pD and ‖v‖H1 ≤ ‖Π‖‖pD‖D,2.
We set now vT = PTmv so that, by construction, we have vT ∈ E0. By

using (2.4), we obtain

(3.7) |||∇DvT |||D,2 ≤ C1‖v‖H1 ≤ ‖Π‖C1‖pD‖D,2.

We add and subtract
∑
D∈D

∫
D

pD div v to bT (vT , pD) and we use (3.6) to get

bT (vT , pD) = ‖pD‖2D,2 +
∑
D∈D

∫
D

pD (divD vT − div v) .

Proposition 3.1 and Estimate (3.6) imply

bT (vT , pD) ≥ ‖pD‖2D,2 − ‖Π‖C2|pD|h‖pD‖D,2.

We apply now the assumption (3.3)

bT (vT , pD) ≥ ‖pD‖2D,2 − ‖Π‖C2αT ‖hT∇T pD‖T ,2‖pD‖D,2.

By assumption (3.5), it is now clear that we have

bT (vT , pD) ≥ 1

2
‖pD‖2D,2.

Thus, according to (3.7), letting be β1 =
1

2‖Π‖C1
, we finally obtain

β1‖pD‖D,2 ≤ sup
vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2
.

• Second case, we assume that pD is such that

(3.8) ‖hT∇T pD‖T ,2 ≥
1

2‖Π‖C2αT
‖pD‖D,2.

In that case, we do not use the operator Π but we directly build a
vT ∈ E0 as follows

(3.9)

{
vK = −h2

K∇
KpD, ∀K ∈M, vK = 0, ∀K ∈ ∂M,

vK∗ = −h2
K∗∇

K∗pD, ∀K∗ ∈M∗, vK∗ = 0, ∀K∗ ∈ ∂M∗.
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For any D ∈ D, by using Definition 2.1 we have, for some C > 0 depending
only on reg(T ),

mD|∇DvT |2 ≤ C
(
|vK − vL|2 + |vK∗ − vL∗ |2

)
≤ 2C

(
|vK|2 + |vL|2 + |vK∗ |2 + |vL∗ |2

)
= 2C

(
|h2
K∇

KpD|2 + |h2
L∇
LpD|2 + |h2

K∗∇
K∗pD|2 + |h2

L∗∇
L∗pD|2

)
≤ 2Creg(T )2

(
mK|hK∇KpD|2 +mL|hL∇LpD|2

+mK∗ |hK∗∇K
∗
pD|2 +mL∗ |hL∗∇L

∗
pD|2

)
.

It follows that, for some C4 > 0 depending only on reg(T ), we have

|||∇DvT |||D,2 ≤ C4‖hT∇T pD‖T ,2.

Moreover, by (3.9) we get

bT (vT , pD) = −JvT ,∇T pDKT = ‖hT∇T pD‖2T ,2.

Thus, we conclude with β2 =
1

2C4‖Π‖C2
, that

bT (vT , pD)

|||∇DvT |||D,2
≥ 1

C4
‖hT∇T pD‖T ,2 ≥

β2

αT
‖pD‖D,2.

Noting that αT ≥ 1 by definition, the claim is proved with C3 = min(β1, β2) which
actually only depends on reg(T ). �

Our strategy now is to investigate whether or not the inequality (3.3) holds for
some αT which is uniform with respect to size(T ) for each of the mesh families
described above. It corresponds to an estimate of differences of two pressure values
on neighboring diamond cells in terms of the DDFV pressure gradient which is
defined on primal and dual meshes. The difficulty comes from the fact that the
value of the pressure gradient on a given cell depends on the pressure values on all
the diamond cells associated with that cell. Therefore, it is not necessarily easy to
deduce an estimate on the difference of two pressure values.

In order to perform this analysis, we introduce the following notations.
Notations. Let be K a primal cell, D, D′, D′′ three diamond cells of K.

• We say that pD
K−→ pD

′
if there is a C depending only on reg(T ) such that

|pD − pD
′
| ≤ CmK

hK

∣∣∇KpD∣∣ .
We say that

{
pD
′

pD
′′
K−→ pD if we have both pD

K−→ pD
′

and pD
K−→ pD

′′
.

• We say that pD
K−→

{
pD
′

pD
′′ if there exists a C depending only on reg(T ) and

a θ ∈ [0, 1] such that

|θ(pD − pD
′
) + (1− θ)(pD − pD

′′
)| ≤ CmK

hK

∣∣∇KpD∣∣ .
• Similar notations are used for dual cells K∗ ∈ M∗ in place of primal cells
K ∈M.
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Proposition 3.3 (The case of conforming triangle mesh). For a conforming trian-
gle mesh (see Figure 3a), the inequality (3.3) holds with a αT which depends only
on reg(T ).

As a consequence, for a regular family of conforming triangle meshes, the DDFV
scheme is Inf-Sup stable.

Proof. For any primal control volume K, we have three diamond cells in DK (one
associated with each edge), that we note D1,D2,D3. By definition of the discrete
pressure gradient we have

mK∇KpD =

3∑
i=1

mσip
Di~nσiK and

3∑
i=1

mσi~nσiK = 0.

This implies for instance

mK∇KpD = mσ1
(pD1 − pD3)~nσ1K +mσ2

(pD2 − pD3)~nσ2K.

We use now the formula

2mK =
∣∣(mσi~nσiK) ∧ (mσj~nσjK)

∣∣ , ∀i 6= j,

to get

|pD1 − pD3 | = mσ2

2

∣∣∇KpD ∧ ~nσ2K

∣∣ ≤ CmK
hK

∣∣∇KpD∣∣ .
We just proved that pD1

K−→ pD3 and the same argument gives a similar estimate
for the other two possible couples of diamond cells associated with K.

Summing these estimates over the whole domain gives the result

|pD|2h =
∑

D,D′∈D
D|D′

(h2
D + h2

D′)(p
D′ − pD)2

≤ C(reg(T ))
∑
K∈M

h2
KmK|∇

KpD|2 ≤ C(reg(T ))‖hT∇T pD‖2T ,2.

�

Remark 3.4. Observe that, in this proof, we do not use the pressure gradient on
the dual cells. Actually, the same proof is valid if we assume that the dual cells are
conforming triangle cells.

Proposition 3.5 (The case of a non-conforming triangle mesh). For the non-
conforming triangle mesh described in Figure 3b, the inequality (3.3) holds with a
αT which depends only on reg(T ).

As a consequence, for this particular family of non-conforming triangle meshes,
the DDFV scheme is Inf-Sup stable.

Proof. We can notice that if the control volume K has no edge on the interface or
if K is of the right-hand side of the interface, we can apply the same proof as in the
previous proposition.

Thus, the only case that we need to study carefully is the one of a primal cell K
just on the left of the interface. Even though it is triangle-shaped, such a control
volume is rather a degenerated quadrangle cell since it has 4 neighboring cells and
thus 4 edges and 4 associated diamond cells. That is the reason why the situation
is different, and more complicated, than in the previous proposition.

The situation under study is described in Figure 5. We need to bound all the
possible neighboring pressure differences in K (that is pD1−pD2 , pD1−pD4 , pD2−pD3
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M

D

K

K̃1

K̃2

K̃3

D̃2

D̃1

D2

D1

D3

D4

Figure 5. Notations near the interface for the mesh 3b

and pD3 − pD4) by some quantity depending only on values of the pressure gradient
on a few (fixed) number of cells. Here, we will absolutely need to use neighboring
primal cells in order to get the result. Indeed, the pressure difference pD1 − pD2 for
instance cannot been estimated by simply using the pressure gradient on the given
primal cell K. Indeed, if pD3 = pD4 = 0 and pD1 = −mσ2

mσ1
pD2 6= 0, then ∇KpD is

zero whereas pD1 − pD2 6= 0.

• We start by proving a bound on pD1 − pD2 by using the pressure gradients
on the other primal control volumes around K. We can see on Figure 5,
and using the same argument as in the proof of Proposition 3.3, that the
following chain holds

pD1
K̃1−−→ pD̃1

K̃2−−→ pD̃2
K̃3−−→ pD2 ,

so that, by the triangle inequality, we get that

|pD1 − pD2 | ≤ C
(
mK̃1

hK̃1

|∇K̃1pD|+
mK̃2

hK̃2

|∇K̃2pD|+
mK̃3

hK̃3

|∇K̃3pD|
)
.

• We can now study the pressure gradient in the actual control volume under
study K and use that ~nσ1K = ~nσ2K, so that

|pD3 − pD4 | = mσ1
+mσ2

2

∣∣∇KpD ∧ ~nσ1K

∣∣ ≤ CmK
hK
|∇KpD|,

|pD1 − pD4 | ≤ mσ3

2

∣∣∇KpD ∧ ~nσ3K

∣∣+ |pD1 − pD2 | ≤ CmK
hK
|∇KpD|+ |pD1 − pD2 |,

and

|pD2 − pD3 | ≤ mσ4

2

∣∣∇KpD ∧ ~nσ4K

∣∣+ |pD1 − pD2 | ≤ CmK
hK
|∇KpD|+ |pD1 − pD2 |.
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Combining all the estimates above, we see that any difference between two neigh-
boring pressure values can be bounded by using at most 4 neighboring values of
the primal pressure gradient, and we can conclude the proof as in the previous
proposition. �

Finally, we are able to prove the same Inf-Sup stability property for highly non-
conforming meshes, that is to say for some meshes containing a constant proportion
of non-conforming edges. This result seems to show that the Inf-Sup stability of
the DDFV method is very robust with respect to the non-conformity of the mesh.

Proposition 3.6 (The checkerboard mesh). For a checkerboard mesh as described
in Figure 3c, the inequality (3.3) holds with a αT which does not depend on size(T ).

As a consequence, the DDFV scheme is Inf-Sup stable for this particular family
of non-conforming meshes.

M

M∗

D

∂Ω

K1

K2
K̃

K3

D1

D2

D3
D4

D5

D6

D7

D8

D9 D10

D11

D12

K∗T1

K∗T2

K∗L

Figure 6. Possible configurations of neighboring diamond cells
for the checkerboard mesh, see Fig. 3c

Proof. Let us begin with some remarks. First, the smallest primal cells are square
for which it is impossible to bound all the possible associated pressure differences
by simply using the primal pressure gradient (since the pressure mode where two
opposite pressures equal 1 and the other two equal −1 clearly has a zero pressure
gradient). Second, the biggest primal cells are degenerate octagons since they
are associated with 8 different edges/diamond cells. These two reasons make the
analysis quite difficult.

All the generic configurations of neighboring diamond cells are presented in Fig-
ure 6.

• Let us first look at the situation away from the boundary. Using that K1 is
a square primal control volume, we deduce

pD1
K1−−→ pD2 and pD3

K1−−→ pD4 .
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Using that K∗T1
is a triangle dual control volume we deduce

pD1
K∗T1−−→ pD3 , pD1

K∗T1−−→ pD5 and pD3
K∗T1−−→ pD5 .

Finally, we use that K∗L is a parallelogram. Just like in a square, the differ-
ence between opposite pressures can be controled by the pressure gradient,
so that

pD2
K∗L−−→ pD6 and pD3

K∗L−−→ pD7 .

We can combine the previous arrows to obtain that

pD1
K∗T1−−→ pD3

K1−−→ pD4 , pD1
K∗T1−−→ pD5

K2−−→ pD8 ,

pD3
K∗T1−−→ pD1

K1−−→ pD2 , pD3
K∗T1−−→ pD1

K1−−→ pD2
K∗L−−→ pD6 .

Using the triangle inequality, and the symmetry properties of the mesh, we
can see that all possible pressure differences between neighboring interior
diamond cells can be estimated by the previous computations. Notice that
some estimates require both primal and dual pressure gradient.
• It remains to cope with the case of boundary diamond cells, since we recall

that the dual pressure gradient is conventionally set to 0 on boundary dual
cells (see Remark 2.5) and therefore it cannot be used to obtain useful
estimates.

We observe in Figure 6 two kinds of boundary diamond cells that need
to be investigated.

– The terms involving the diamond cell D9 can be treated as in the
interior case by using the primal pressure gradient on K2 and the dual
pressure gradient on K∗T1

.
– Using symmetries of the mesh, we see that the only term involving the

diamond cell D10 that has to be carefully studied is the term pD10−pD5

since the corresponding dual cell is a boundary dual cell for which the
corresponding pressure gradient cannot be used.
We observe that, by definition of the dual pressure gradient on K̃, we
have

mσ10

(
pD10 − 1

2
(pD6 + pD11)

)
= mK̃

(
∇K̃pD · ~nσ10K̃

)
.

It follows that the following chain holds

pD10
K̃−→

{
pD6

pD11

K∗T2−−→ pD12
K3−−→ pD7

K∗L−−→ pD3
K∗T1−−→ pD5 ,

and the proof is complete.

�

4. Codimension 1 Inf-Sup stability

In this section, we shall study the stability properties of the Stokes DDFV scheme
for two families of Cartesian meshes of the unit square domain: the usual uniform
conforming meshes, and two-subdomain non-conforming Cartesian meshes (see Fig-
ure 7). Note that, the same analysis can be applied to other kinds of Cartesian
meshes as we will show in Section 5.
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(a) Uniform conforming mesh (b) Non-conforming mesh

Figure 7. The Cartesian meshes under study

In both cases, we prove (Theorems 4.2 and 4.3) that Inf-Sup stability does not
hold. More precisely, we prove that βT = 0 in the uniform conforming case, and
that βT > 0 with

βT −−−−−−−→
size(T )→0

0,

in the non-conforming case.
This behavior of βT proves the existence of at least one unstable pressure mode.

More precisely, we prove (Theorem 4.4) that there is in fact only one such unstable
mode. It means that, the Inf-Sup stability property holds if we impose the pressure
fields to be orthogonal to the unstable mode, or if we add a suitable rank one
stabilisation term in the divergence equation. We call this property the codimension
1 Inf-Sup stability.

Actually, this is consistent with the fact that, in practice, the DDFV scheme
behaves very well on such kind of meshes. To illustrate this fact, we show in Fig.
8, the L2-error for the velocity and the pressure using the non-conforming grid of
Fig. 7b for the smooth exact solution given by

u(x, y) =

(
−2π sin2(πx) cos(πy) sin(πy)
2π sin2(πy) cos(πx) sin(πx)

)
and p(x, y) = x+ y − 1.

We observe the second order convergence for both velocity and pressure.

4.1. Inf-Sup instability. The meshes we consider in this section are Cartesian.
This means that all primal edges are either horizontal, either vertical (note that this
does not necessarily hold for dual edges). Therefore, we can adopt the following
notations

• Dh is the set of diamond cells whose associated primal edge is horizontal,
• Dv is the set of diamond cells whose associated primal edge is vertical.

Similarly, we denote by ∂Ωh (resp. ∂Ωv) the horizontal (resp. vertical) part of the
boundary of the domain.

We will prove in the sequel that the unstable part of the scheme is completely
contained in a pressure mode which looks like a checkerboard defined as follows.

Definition 4.1 (Checkerboard mode). The checkerboard mode ψD is defined by:

ψD =

{
+1, for D ∈ Dv,

−1, for D ∈ Dh.
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(a) L2-Error for the velocity
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(b) L2-Error for the pressure

Figure 8. L2-error as a function of the mesh size for non-
conforming mesh (see Fig. 7b)

Observe that m(ψD) = 0 and ‖ψD‖D,2 = 1 for the two kinds of Cartesian meshes
studied in this section (see Figure 7).

We easily obtain the following result.

Theorem 4.2 (Inf-Sup instability for uniform Cartesian mesh). For a uniform
Cartesian mesh T , the checkerboard mode ψD satisfies

bT (vT , ψD) = 0, ∀vT ∈ E0.

As a consequence, we have βT = 0.

Proof. By definition of ψD, and since every primal and interior dual cells are
squares, we have

∇KψD = 0, ∀K ∈M, and ∇K∗ψD = 0, ∀K∗ ∈M∗.

This obviously implies that

bT (vT , ψD) = −JvT ,∇T ψDKT = 0.

�

In the case of the non-conforming Cartesian meshes, the analysis is not so easy
and we will prove that ∇T ψD does not vanish but is “small” in a suitable sense.
This implies that βT is not zero in that case, but tends to 0 as size(T ) → 0. The
precise result is the following.

Theorem 4.3 (Inf-Sup instability for non-conforming Cartesian mesh). For the
meshes shown in Figure 7b, there exist C5, C6 > 0 which do not depend on size(T ),
such that the checkerboard mode ψD satisfies

C5size(T )
1
2 ≤ sup

vT ∈E0

bT (vT , ψD)

|||∇DvT |||D,2
≤ C6size(T )

1
2 .

This implies in particular that βT ≤ C6size(T )
1
2 .
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Proof. The proof is divided into different steps. For any vT ∈ E0, we first evaluate
the contribution of the primal cells in bT (vT , ψD), then of the one of dual cells in
order to get (4.1). The definition 4.1 of the checkerboard mode ψD then leads to
the upper bound. To conclude, with a particular choice of the discrete velocity vT ,
we are able to prove the lower bound.

To simplify the notations in this proof, we denote by h the length of the primal
edges of the coarse part of the mesh.

• We first show that, for any vT ∈ E0, the primal control volumes do not
contribute to bT (vT , ψD).

We can notice that if K ∈ M has exactly four primal edges, then the
same computation as the one for uniform Cartesian meshes shows that
∇KψD = 0. It remains to study the case of primal control volumes with
five edges, that is the ones situated just on the left-side of the interface (see
Figure 9). For such a primal cell Kli, we have

mKli∇
KliψD = h(ψD

l
i+1/2 − ψD

l
i−1/2)ey +

h

2
(ψD

+
i + ψD

−
i − 2ψD

l
i)ex.

Since D+
i ,D

−
i ,D

l
i are vertical diamond cells and Dli+1/2

,Dli−1/2
are horizontal

diamond cells, we have

ψD
+
i = ψD

−
i = ψD

l
i = 1, and ψD

l
i+1/2 = ψD

l
i−1/2 = −1,

so that we also have in that case ∇K
l
iψD = 0.

M

D

M∗
KliDli

Dli−1/2

D−i

D+
i

Dli+1/2

Dri

Dri+1/2

D−i+1

K∗i

K∗i+1/2

K+i

K−i+1

Figure 9. Some notations near the interface for the non-
conforming Cartesian mesh, Fig. 7b

• Let us now consider dual control volumes. For a K∗ ∈M∗ whose associated
vertex xK∗ is not on the interface I, we have ∇K∗ψD = 0. This is the same
proof as for uniform Cartesian meshes.
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It remains to study the contributions of dual cells associated with vertices
located on the interface. The geometry of the mesh is such that, there
are two kinds of such dual cells. Some of them are triangle cells K∗i , for
i = 1, . . . , N , the others are trapeze cells K∗i+1/2

, for i = 1, . . . , N − 1 (see
Figure 9). Here, we have set N = ne/2, ne being the total number of primal
edges which constitute the interface.

– A straightforward computation shows that in triangle dual cells K∗i we
have,

mK∗i∇
K∗i ψD =

h

2

(
ψD

r
i − 1

2
(ψD

−
i + ψD

+
i )

)
ex +

3h

4
(ψD

+
i − ψD

−
i )ey

= −hex, ∀i = 1, . . . , N.

– For trapeze dual cells K∗i+1/2
, we immediately get

mK∗
i+1/2

∇K
∗
i+1/2ψD =h

(
1

2
ψD

r
i+1/2 − ψD

l
i+1/2 +

1

4
(ψD

+
i + ψD

−
i+1)

)
ex

+
3h

4
(ψD

−
i+1 − ψD

+
i )ey

=hex, ∀i = 1, . . . , N − 1.

We observe that the orientation of the two gradients are exactly opposed;
this is precisely the reason why we are able to prove that the contribution
of these terms in bT (vT , ψD) is small. More precisely, for any vT ∈ E0, we
have

(4.1) bT (vT , ψD) = −h
2

N∑
i=1

(
vK∗

i+1/2
− vK∗i

)
· ex,

where, we recall that, the boundary value vK∗
N+1/2

is equal to 0 since vT ∈
E0.
• For any 1 ≤ i ≤ N , we consider the diamond cell D+

i . By definition of the
velocity discrete gradient on D+

i , we have

(vK∗
i+1/2

− vK∗i ) · ex =
h

2
tex.∇D

+
i vT .ey.

Therefore, for some C > 0 independent of the mesh size, we get

h

2

∣∣∣(vK∗
i+1/2

− vK∗i

)
· ex

∣∣∣ ≤ CmD+
i
|∇D

+
i vT |.

It follows, by the Cauchy-Schwarz inequality that

b(vT , ψD) ≤ C
N∑
i=1

mD+
i
|∇D

+
i vT | ≤ C|||∇DvT |||D,2

(
N∑
i=1

mD+
i

) 1
2

≤ C|||∇DvT |||D,2 size(T )
1
2 ,

and the upper bound is proved.
• It remains to prove the lower bound. To this end, we build a particular dis-

crete velocity field vT ∈ E0 parallel to ex, which is zero everywhere except
for its horizontal component on each triangle dual cell on the interface K∗i ,
i = 1, . . . , N , for which we choose vK∗i = ex.
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From (4.1) and straightforward computations we get

b(vT , ψD) =
hN

2
=

1

2
, and |||∇DvT |||D,2 ≤

C

size(T )
1
2

,

which imply the required lower bound.

�

4.2. Inf-Sup stability up to the checkerboard mode. Despite the Inf-Sup
instability of the DDFV scheme on Cartesian meshes that we established in the
previous section, it is observed that the scheme is very accurate (see Figure 8).
Note that, in the case of uniform Cartesian meshes, it is needed to add some
stabilization term (if not the scheme is not well-posed since βT = 0), but the
magnitude of this stabilization term does not seem to have any influence on the
accuracy of the method.

We propose an interpretation of this surprisingly good behavior by proving that
there is essentially one single unstable mode and that, in the orthogonal of this
mode, the uniform Inf-Sup inequality holds. Moreover, this unstable mode is close
to (but not always equal to) the checkerboard mode ψD that we identified just
before (see Theorem 4.7). We refer for instance to the discussion in [15, Section
II.3].

We first illustrate numerically this phenomenon in Figure 10, by plotting as a
function of size(T )

• the value of βT ,
• the value of

√
λ3(ST ) which is the next eigenvalue of the Schur complement

of the system,
• the value of the following co-dimension 1 Inf-Sup constant

(4.2) β̃T = inf
pD∈{ψD}⊥

m(pD)=0

(
sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2‖pD‖D,2

)

where {ψD}⊥ = {pD ∈ RD : 〈MT pD, ψD〉 = 0}. Note that β̃T can also
be computed by solving a suitable modified eigenvalue problem for which
we do not give the details here.

We observe on Figure 10a that, in accordance with Theorem 4.3, we have βT → 0
when size(T ) → 0. We also observe that

√
λ3(ST ) is bounded from below, which

confirms the presence of a single unstable mode. Moreover, β̃T also appears to be
bounded from below and seems to almost coincide with

√
λ3(ST ). This suggests

that the unstable mode (that is the pressure mode for which the Inf-Sup inequality
is an equality, which is related to the eigenvector of ST associated with λ2(ST ))
should be not too far from the checkerboard mode ψD that we introduced below.
This is confirmed in Figure 10b where we plot the computed unstable mode, refered
to as qD.

Even if we do not have an explicit formula for this mode, we will prove in
Theorem 4.7 that ‖qD − ψD‖D,2 ≤ Csize(T )

1
2 .

We are now in position to provide a theoretical justification of these observations
in the following result.

Theorem 4.4 (Codimension 1 Inf-Sup stability). Let be T a uniform or non-
conforming Cartesian DDFV mesh as described in Figure 7. There exists a C7 > 0
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10−3 10−2 10−1 100
10−2

10−1

100

slope 0.5

βT√
λ3(ST )

β̃T

(a) Comparison between βT ,
√
λ3(ST )

and β̃T

(b) The unstable mode

Figure 10. Inf-Sup instability for the non-conforming Cartesian
mesh, see Fig. 7b

which does not depend on size(T ) such that for any pD ∈ RD we have[
(pD, ψD)D = 0 and m(pD) = 0

]
=⇒

[
C7‖pD‖D,2 ≤ sup

vT ∈E0

bT (vT , pD)

|||∇DvT |||D,2

]
,

which means that β̃T ≥ C7.

This theorem relies on the following proposition which is a suitable generalisation
of Proposition 3.1 adapted to the framework under study.

Proposition 4.5. Let be T a uniform or non-conforming Cartesian DDFV mesh
as described in Figure 7. There exists a αT > 0, independent of size(T ), such that
for any vh,vv ∈ (H1

0 (Ω))2 satisfying

(4.3) div vh = 0 on
⋃
D∈Dv

D, and div vv = 0 on
⋃
D∈Dh

D,

there exists a vT ∈ E0 such that

(4.4) |||∇DvT |||D,2 ≤ αT (‖vh‖H1 + ‖vv‖H1),

and, for any pD ∈ RD

(4.5)∣∣∣∣∑
D∈D

∫
D

pD
(

divD(vT)−div

(
vh + vv

2

))∣∣∣∣ ≤αT (‖vh‖H1 + ‖vv‖H1

)
‖hT∇T pD‖T ,2.

Let us first give the proof of Theorem 4.4 using this proposition.

Proof. Let be pD ∈ RD such that m(pD) = 0 and (pD, ψD)D = 0. We define the
“vertical” and “horizontal” parts of this pressure field defined by

pD
v

=
∑
D∈Dv

pD1D, and pD
h

=
∑
D∈Dh

pD1D,

where 1D is the indicator function of D. By definition of the checkerboard mode
ψD (see Definition 4.1) we observe that∫

Ω

pD
v

+

∫
Ω

pD
h

= m(pD) = 0, and

∫
Ω

pD
v −

∫
Ω

pD
h

= (pD, ψD)D = 0.
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It follows that both pD
h

and pD
v

have a zero mean-value so that we can apply

Proposition 1.1 and set vh = Π(pD
h
), vv = Π(pD

v
).

We can notice that, by construction, div vh = 0 on all the vertical diamond cells,
div vv = 0 on all the horizontal diamond cells, and that div vh + div vv = pD. We
take now vT ∈ E0 given by Proposition 4.5 which satisfies

|||∇DvT |||D,2 ≤ αT (‖vh‖H1 + ‖vv‖H1) ≤ 2αT ‖Π‖‖pD‖D,2.
We can now compute

bT (vT , pD) =
1

2
‖pD‖2D,2 +

∑
D∈D

∫
D
pD
(

divD(vT )− div

(
vh + vv

2

))
.

According to Proposition 4.5 we deduce

(4.6) bT (vT , pD) ≥ 1

2
‖pD‖2D,2 − 2αT ‖Π‖‖pD‖D,2‖hT∇T pD‖T ,2.

• In the case where ‖hT∇T pD‖T ,2 ≤ 1
8αT ‖Π‖‖p

D‖D,2, the estimate (4.6) di-

rectly gives

bT (vT , pD)

|||∇DvT |||D,2
≥ 1

4

‖pD‖2D,2
|||∇DvT |||D,2

≥ 1

8αT ‖Π‖
‖pD‖D,2,

and the claim is proved.
• Assume now that ‖hT∇T pD‖T ,2 ≥ 1

8αT ‖Π‖‖p
D‖D,2. In that case, defining

vT by (3.9) as in Theorem 3.2, gives the claim in the same way.

�

It remains to give a proof of the preliminary proposition. To this end, we use
the following approximation lemma which is a straightforward consequence of usual
results in the finite volume framework (see for instance [4, Lemma 3.3]).

Lemma 4.6. There exists a C > 0, such that if σ1 and σ2 are two segments in R2

contained in a bounded convex set P with non empty interior, we have

(4.7)

∣∣∣∣ 1

mσ1

∫
σ1

v − 1

mσ2

∫
σ2

v

∣∣∣∣ ≤ C ( 1

mσ1

+
1

mσ2

)
diam(P)2

mP

∫
P
|∇v| ,

for any v ∈W 1,1(R2).

Proof of Proposition 4.5. In order to simplify the presentation of the proof, we set

vv,h
def
= vv+vh

2 .
The proof is divided into different steps. We first deal with the conforming case

(which is simpler) and then with the non-conforming one for which a specific care
is needed for the control volumes near the interface.

We will first start by giving an explicit formula (4.8) for the discrete velocity
vT ∈ E0 that will fulfill all the requirements. Note that we will need to apply
Proposition 1.1 twice. The stability estimate (4.4) will then be a simple consequence
of Lemma 4.6.

The difficult part will be to prove (4.5). In the case of uniform meshes, we will
obtain that only the boundary diamond cells actually contribute to the estimate and
that the sum of all the contributions can be bounded by some quantity depending
on the velocity gradient and the discrete pressure gradients. For non-conforming
meshes, additional contributions coming from diamond cells near the interface have
to be taken carefully into account.
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• For any K ∈M (resp. K∗ ∈M∗), we consider two segments γvK and γhK (resp.
γvK∗ and γhK∗) in Ω passing through the point xK (resp. xK∗) as described
in Figure 11. Notice that γvK∗ is horizontal and γhK∗ is vertical; this is due
to the fact that the superscript indicates the kind of diamond (horizontal
or vertical) for which each γ•• will contribute and not its orientation.

γv
•

∂Ω

γh
K

γv
K

γv
K∗

γh
K∗

γv
L∗

γv
L

xK

xK∗

xL

xL∗

(a) Conforming mesh

γh
•

γh
Kli

γv
Kli

γv
K∗
i−1/2

γh
K∗
i−1/2

γh
K+
i

γv
K+
i

γh
K∗
i+1γv

K∗
i+1

xKli

xK+
i

xK∗
i−1/2

xK∗i+1

(b) Non-conforming mesh

Figure 11. Definition of the segments γ••

We can now build vT ∈ E0 by setting

(4.8)


vK · ex =

1

mγvK

∫
γvK

vv · ex, vK · ey =
1

mγhK

∫
γhK

vh · ey, ∀K ∈M,

vK∗ · ex =
1

mγhK∗

∫
γhK∗

vh · ex, vK∗ · ey =
1

mγvK∗

∫
γvK∗

vv · ey, ∀K∗ ∈M∗.

• Let us prove the stability estimate (4.4). We observe that

mD|∇DvT |2 ≤ C(reg(T ))
(
|vK − vL|2 + |vK∗ − vL∗ |2

)
,

and, with Lemma 4.6,

|vK − vL|2 ≤ C(reg(T ))

∫
K̂∪L

(
|∇vv|2 + |∇vh|2

)
,

|vK∗ − vL∗ |2 ≤ C(reg(T ))

∫
K̂∗∪L∗

(
|∇vv|2 + |∇vh|2

)
,
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Using that the set of all the convex hulls of the kind K̂ ∪ L, for instance,
covers the domain Ω at most 5 times, we can sum all these inequalities in
order to finally get

|||∇DvT |||2D,2 =
∑
D∈D

mD|∇DvT |2 ≤ C(reg(T ))(‖vv‖2H1 + ‖vh‖2H1).

• Let us prove (4.5) in the case of a uniform Cartesian mesh. Let pD ∈ RD

and D be any diamond cell. We need to consider different cases.
– The case where D is not a boundary diamond cell. We assume for

instance that D ∈ Dv \ Dext, the case of an horizontal diamond cell
being similar. We refer to Figure 11a for the notations.
Using the definition of the discrete divergence operator divD (see Def-
inition 2.2) and the one of vT given in (4.8), we get

mD divD vT =
1

2
[mσ(vL · ex − vK · ex) +mσ∗(vL∗ · ey − vK∗ · ey)]

=
1

2

[ ∫
γvL

vv · ex −
∫
γvK

vv · ex +

∫
γvL∗

vv · ey −
∫
γvK∗

vv · ey

]
.

We use the Stokes formula on the rectangle RD whose sides are γvK,
γvK∗ , γ

v
L and γvL∗ and we get

mD divD(vT ) =
1

2

∫
RD

div vv.

Since D is a vertical diamond cell, we observe that RD \ D is included
in the union of all the horizontal diamond cells. By assumption (4.3),
we deduce that div vv is zero on RD \ D. Moreover, using again (4.3)
we get div vh = 0 on D. It follows that

mD divD(vT ) =

∫
D

div

(
vv + vh

2

)
=

∫
D

div vv,h.

Therefore, the corresponding term in the left-hand side of (4.5) is
simply zero.

– The case where D is a boundary diamond cell. We assume for instance
that D ∈ Dv ∩Dext, since the case of a boundary horizontal diamond
cell is similar. We refer to Figure 12 for the notations.
Since vT ∈ E0, we have vK∗ = vL∗ = 0 and moreover, since vv is
supposed to be zero on ∂Ω and γvL ⊂ ∂Ω, we have

vK1 · ex =
1

mγvK1

∫
γvK1

vv · ex, and vL · ex = 0 =
1

mγvL

∫
γvL

vv · ex.

It follows that

mD divD vT =
1

2

[
−
∫
γvL

vv · ex +

∫
γvK1

vv · ex

]

=
1

2

∫
RD

div vv +
1

2

(∫
γvK∗

vv · ey −
∫
γvL∗

vv · ey

)
,



28 FRANCK BOYER, STELLA KRELL, AND FLORE NABET

M
D
M∗

K2

K1

K∗

L∗

K∗2

D′

D

D2

D1

Figure 12. Notations for the study of the contribution of bound-
ary diamond cells

where RD is the rectangle whose sides are γvK1
, γvK∗ , γ

v
L and γvL∗ . By

the same argument as in the previous case, using (4.3), we get∫
D

pD(divD vT − div vv,h) =
1

2
pD

(∫
γvK∗

vv · ey −
∫
γvL∗

vv · ey

)
.

Summing all the contributions of the boundary vertical diamond cells,
we get∑

D∈D

∫
D∈Dv∩Dext

pD(divD vT − div vv,h)

=
1

2

∑
D∈Dv∩Dext

pD

(∫
γvK∗

vv · ey −
∫
γvL∗

vv · ey

)

=
1

2

∑
K∗∈∂M∗
xK∗∈∂Ωv

(pD − pD
′
)

(∫
γvK∗

vv · ey

)
,

where D and D′ are the two diamond cells touching xK∗ as shown on
Figure 12.
Using the notations of Figure 12, for any K∗ ∈ ∂M∗ such that xK∗ ∈
∂Ωv we see that the chain pD

K1−−→ pD1
K∗2−−→ pD2

K2−−→ pD
′

holds. It
follows that

|pD − pD
′
| ≤ C(reg(T ))size(T )(|∇K1pD|+ |∇K2pD|+ |∇K

∗
2pD|).

Moreover, for any D ∈ Dv ∩ Dext, and according to (4.7) in Lemma
4.6, we have∣∣∣∣∣∣∣∣∣

1

mγvK∗

∫
γvK∗

vv · ey −
1

mγvL

∫
γvL

vv · ey︸ ︷︷ ︸
=0

∣∣∣∣∣∣∣∣∣ ≤
C(reg(T ))

mγvK∗

∫
K1∪K2

|∇vv|
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so that finally, by using the Cauchy-Schwarz inequality∣∣∣∣∣∣∣
∑

K∗∈∂M∗
xK∗∈∂Ωv

(pD − pD
′
)

∫
γvK∗

vv · ey

∣∣∣∣∣∣∣ ≤ C‖vv‖H1‖hT∇T pD‖T ,2.

– In conclusion, we proved that∣∣∣∣ ∑
D∈D

∫
D

pD
(
divD vT − div vv,h

)∣∣∣∣ ≤ C (‖vh‖H1 + ‖vv‖H1

)
‖hT∇T pD‖T ,2.

• Let us now prove (4.5) in the case of the non-conforming Cartesian mesh
defined in Figure 7b. We begin by writing the term under study as follows

(4.9)
∑
D∈D

∫
D

pD
(
divD vT − div vv,h

)
=

1

2

∑
K∗∈∂M∗
xK∗∈∂Ωv

(pD − pD
′
)

(∫
γvK∗

vv · ey

)

+
1

2

∑
K∗∈∂M∗
xK∗∈∂Ωh

xK∗ 6∈I

(pD − pD
′
)

(∫
γhK∗

vh · ex

)
+ TI .

The first two terms contain the contributions of the boundary diamond cells
away from the interface, this is the same computation as in the conforming
case. Those terms can be estimated as we did before.

It remains to compute and estimate the contributions of the diamond
cells near the interface that we gathered in the term TI .

We denote by DI the set of the diamond cells having at least one vertex
on the interface. This set contains both horizontal and vertical diamond
cells and we need to distinguish the two cases. A particular numbering of
those diamond cells is given in Figure 13. In the same figure, we define
vertical segments denoted by ω±• and σ±• that will be useful in the proof.

Associated with each of these segments we introduce the following fluxes

(4.10)

F+
i+1/2

=

∫
σ+
i+1/2

vh · ex, F+
i =

∫
σ+
i

vh · ex,

F−i−1/2
=

∫
σ−
i−1/2

vh · ex, F−i =

∫
σ−i

vh · ex,

G+
i =

∫
ω+
i

vv · ex, G−i =

∫
ω−i

vv · ex.

We conventionally set, for simplicity

F−N+1/2
= F+

N+1/2
, F+

1/2 = F−1/2, and F−N+1 = F+
N .

– We begin with the contribution of the diamonds in Dv ∩DI . For in-
stance, we consider the case where D = D+

i for some i ∈ {1, . . . , N−1},
according to Figure 14a and to the definition of the discrete divergence,
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M

D

σ+
i−1

σ+
i−1/2

σ−i−1/2

σ−i

σ+
i

σ+
i+1/2

σ−i+1/2

σ−i+1

ω+
i

ω−i

Dli−1/2

D−i

D+
i

Dli+1/2

Dli Dri

Dri+1/2

Dri−1/2

Figure 13. Definition of σ±• and ω±• for the non-conforming
Cartesian mesh

we have

mD+
i

divD
+
i vT =

1

2

(
mγv
K+
i

vK+
i
· ex −mγv

K+
i

vKli · ex

+mγvK∗i
vK∗

i+1/2
· ey −mγvK∗i

vK∗i · ey

− 1

2
mγv
K+
i

vK∗
i+1/2

· ex +
1

2
mγv
K+
i

vK∗i · ex

)
.

γv
Kli

γv
K∗i

γv
K+
i

γv
K∗
i+1/2

γh
K∗i

γh
K∗
i+1/2

D+
i

(a) The case of D+
i

γh
Kli

γh
Kl
i+1

γh
K∗
i+1/2

Dli+1/2

(b) The case of Dl
i+1/2

Figure 14. Computation of the vertical interface diamond cells



INF-SUP STABILITY FOR THE 2D DDFV-STOKES METHOD 31

By definition of vT given in (4.8), we obtain

mD+
i

divD
+
i vT =

1

2

(∫
γv
K+
i

vv · ex −
1

2

∫
γv
Kli

vv · ex

+

∫
γvK∗

i+1/2

vv · ey −
∫
γvK∗i

vv · ey

+
1

2

∫
γhK∗i

vh · ex −
1

2

∫
γhK∗

i+1/2

vh · ex

)
.

If we denote by R+
i the rectangle whose sides are γvK∗i , γv

K+
i

, γvK∗
i+1/2

,

ω+
i , and using (4.3), we get∫

D+
i

div vv =

∫
R+
i

div vv

=

∫
γv
K+
i

vv · ex −
∫
ω+
i

vv · ex +

∫
γvK∗

i+1/2

vv · ey −
∫
γvK∗i

vv · ey.

By subtraction, and using that div vh = 0 in D+
i which is a vertical

diamond cell and the definition of the fluxes (4.10), it follows that∫
D+
i

(divD
+
i vT − div vv,h) =

1

4

(
G+
i −G

−
i + F+

i + F−i − F
+
i+1/2

− F−i+1/2

)
.

In the case where D = D−i for i ∈ {2, . . . , N}, we obtain by similar
computations that∫

D−i

(divD
−
i vT − div vv,h) =

1

4

(
−G+

i +G−i + F+
i + F−i − F

+
i−1/2

− F−i−1/2

)
.

Finally, for the two boundary diamond cells D−1 and D+
N we get∫

D−1

(divD
−
1 vT − div vv,h) =

1

4
(−G+

1 +G−1 + F+
1 + F−1 ),

∫
D+
N

(divD
+
N vT − div vv,h) =

1

4

(
G+
N −G

−
N + F+

N + F−N
)
.

– Let us consider now the horizontal diamond cells touching the inter-
face. We can easily see that, by definition of the segments γhK∗ , such
interior diamond cells located on the right of the interface (namely Dri ,
i = 1, ..., N and Dri+1/2

, i = 1, ..., N − 1, see Figure 13) do not con-
tribute to the sum under study. Actually, the computation is exactly
the same as in the case of a uniform Cartesian mesh.
It remains to study the contributions of the interface horizontal dia-
mond cells located on the left of the interface and refered to as Dli+1/2

for i = 1, ..., N − 1, see Figure 14b.
Similar computations as the ones above give∫

Dl
i+1/2

(
divD

l
i+1/2 vT − div vv,h

)
=

1

2

(
F+
i+1/2

+ F−i+1/2
− F+

i − F
−
i+1

)
.
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Gathering all these terms, we are led to the following expression of the
interface term

TI =
1

4

N∑
i=1

pD
+
i

(
G+
i −G

−
i + F+

i + F−i − F
+
i+1/2

− F−i+1/2

)
+

1

4

N∑
i=1

pD
−
i

(
−G+

i +G−i + F+
i + F−i − F

+
i−1/2

− F−i−1/2

)
+

1

2

N−1∑
i=1

pD
l
i+1/2

(
F+
i+1/2

+ F−i+1/2
− F+

i − F
−
i+1

)
− 1

2
pD

l
1/2(F−1/2 + F−1 ) +

1

2
pD
−
1 F−1/2 +

1

2
pD

r
1/2F−1/2

− 1

2
pD

l
N+1/2(F+

N+1/2
+ F+

N ) +
1

2
pD

+
NF+

N+1/2
+

1

2
pD

r
N+1/2F+

N+1/2
.

In this computation, we have taken care of the fact that a part of the
contribution of the boundary diamonds Dl1/2, D

r
1/2, D

l
N+1/2

and DrN+1/2
have

already been taken into account in the second term of the right hand-side
of (4.9).

We can now reorganize all these terms in the following way

4TI =

N∑
i=1

(pD
+
i − pD

−
i )(G+

i −G
−
i )

+

N−1∑
i=1

(2pD
l
i+1/2 − pD

+
i − pD

−
i+1)(F+

i+1/2
+ F−i+1/2

− F+
i − F

−
i+1)

+

N−1∑
i=1

(F−i+1 − F
+
i )(pD

−
i+1 − pD

−
i )

+

N∑
i=1

(F−i − F
−
i+1)(pD

+
i − pD

−
i )

+ 2F−1 (pD
−
1 − pD

l
1/2) + 2F−1/2(p

Dr1/2 − pD
l
1/2)

+ 2F+
N (pD

+
N − pD

l
N+1/2) + 2F+

N+1/2
(pD

r
N+1/2 − pD

l
N+1/2).

(4.11)

In this formula, the difference of fluxes can be estimated, as before, in terms
of velocity gradients thanks to Lemma 4.6. It thus remains to bound all the
pressure differences involved in this formula by means of DDFV pressure
gradients.

For i ∈ {1, . . . , N}, according to the Figure 9 we have

mK∗
i+1/2

∇K
∗
i+1/2pD =

(
−hpD

l
i+1/2 +

h

2
pD

r
i+1/2 +

h

4
(pD

−
i+1 + pD

+
i )

)
ex

+
3h

4
(pD

−
i+1 − pD

+
i )ey

(4.12)
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so that

2pD
l
i+1/2 − pD

+
i − pD

−
i+1 =

1

2
(pD

r
i+1/2 − pD

+
i ) +

1

2
(pD

r
i+1/2 − pD

−
i+1)

− 2

h
mK∗

i+1/2
∇K

∗
i+1/2pD · ex.

Moreover, the following chains hold

pD
−
i+1

K∗i+1/2−−−−→ pD
+
i

K∗i−−→ pD
−
i ,

pD
r
i+1/2

K+
i−−→ pD

r
i

K∗i−−→ pD
+
i ,

pD
r
i+1/2

K−i+1−−−→ pD
r
i+1

K∗i+1−−−→ pD
−
i+1 .

We also have to bound the differences pD
−
1 − pD

l
1/2 , pD

r
1/2 − pD

l
1/2 , pD

+
N −

pD
l
N+1/2 and pD

r
N+1/2−pD

l
N+1/2 , corresponding to boundary terms. Let us for

instance detail the reasoning for pD
−
1 − pD

l
1/2 and pD

r
1/2 − pD

l
1/2 . We simply

write

pD
l
1/2 − pD

−
1 =

(
pD

l
1/2 − pD

l
3/2

)
+

1

2

(
pD

l
3/2 − pD

r
3/2

)
+

1

2

(
pD

l
3/2 − pD

+
1

)
+

1

2

(
pD

+
1 − pD

−
1

)
+

1

2

(
pD

r
3/2 − pD

r
1

)
+

1

2

(
pD

r
1 − pD

−
1

)
and

pD
l
1/2 − pD

r
1/2 =

(
pD

l
1/2 − pD

l
3/2

)
+

1

2

(
pD

l
3/2 − pD

r
3/2

)
+

1

2

(
pD

l
3/2 − pD

+
1

)
+

1

2

(
pD

+
1 − pD

r
1

)
+

1

2

(
pD

r
3/2 − pD

r
1

)
+
(
pD

r
1 − pD

r
1/2

)
.

According to (4.12), specified to the dual cell K∗3/2, we have

1

2

(
pD

l
3/2 − pD

r
3/2

)
+

1

2

(
pD

l
3/2 − pD

+
1

)
=

1

h

(
1

3
mK∗

3/2
∇K

∗
3/2pD · ey −mK∗

3/2
∇K

∗
3/2pD · ex

)
.

Furthermore, the following relations hold

pD
l
1/2

Kl1−−→ pD
l
3/2 ,

pD
+
1

K∗1−−→ pD
r
1 , pD

r
1

K∗1−−→ pD
−
1 ,

pD
r
3/2

K+
1−−→ pD

r
1 , pD

r
1

K−1−−→ pD
r
1/2 .

To conclude, we use all the above estimates of pressure differences and
Lemma 4.6 in formula (4.11) as well as the Cauchy-Schwarz inequality to
obtain

|TI | ≤ C
(
‖vh‖H1 + ‖vv‖H1

)
‖hT∇T pD‖T ,2,

and the theorem is proved by coming back to (4.9).

�

We are now able to prove that, asymptotically, the unstable mode qD is es-
sentially equal to the checkerboard mode. We recall that, according to (2.6), the
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unstable mode qD is completely characterized by the formula

(4.13) βT = sup
vT ∈E0

b(vT , qD)

|||∇DvT |||D,2
,

with m(qD) = 0 and ‖qD‖D,2 = 1 and, for instance, the orientation condition
(qD, ψD) > 0. The following result implies in particular that qD converges weakly
(but not strongly) to 0 in L2(Ω).

Theorem 4.7 (Unstable mode asymptotics). Let be T a non-conforming Cartesian
DDFV mesh as in Figure 7b and qD be the unstable mode numerically observed in
Figure 10b. There exists C8 > 0 which does not depend on size(T ) such that

‖qD − ψD‖D,2 ≤ C8size(T )
1
2 .

Proof. We set

(4.14) pD = qD − (qD, ψD)ψD,

so that we get (pD, ψD) = 0 and m(pD) = 0. We apply Theorem 4.4 to obtain,
with (4.13) and (4.14), that

C7‖pD‖D,2 ≤ sup
vT ∈E0

b(vT , pD)

|||∇DvT |||D,2
≤ βT + (qD, ψD) sup

vT ∈E0

b(vT , ψD)

|||∇DvT |||D,2
.

By observing that ‖ψD‖D,2 = ‖qD‖D,2 = 1 and (qD, ψD) ≤ 1, Theorem 4.3 implies

(4.15) ‖qD − (qD, ψD)ψD‖D,2 ≤ 2
C6

C7
size(T )

1
2 .

Furthermore, we have (qD, ψD)2 = ((qD, ψD)ψD − qD, qD) + ‖qD‖2D,2, and since

(pD, ψD) = 0 and (4.15), we get

(qD, ψD)2 = 1− ‖qD − (qD, ψD)ψD‖2D,2 ≥ 1− 4
C2

6

C2
7

size(T ).

We conclude by observing that

‖qD − ψD‖D,2 ≤ ‖qD − (qD, ψD)ψD‖D,2 +
(
1− (qD, ψD)

)
.

�

5. Further numerical results and conclusion

(1) We first consider other kinds of non-conforming Cartesian meshes of the
unit square Ω =]0, 1[2 as shown in Figure 15. Note that these meshes
present more than one non-conformity interface.

We observe the same results as in the previous case, namely that the
Inf-Sup constant βT tends to 0 and that

√
λ3(ST ) is bounded from below

when size(T ) tends to 0. In both cases, we deduce that the codimension 1
stability property also holds. We also observe that the unstable mode in
each case has again the shape of a checkerboard mode. Actually, one can
check that the theoretical results proved in Section 4 can be adapted to
these geometries.
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(a) Mesh with two interfaces (b) The corresponding unstable mode

(c) Locally refined mesh (d) The corresponding unstable mode

10−2 10−1

10−1

100

slope 1/2

βT for the mesh with two interfaces√
λ3(ST ) for the mesh with two interfaces

βT for the locally refined mesh√
λ3(ST ) for the locally refined mesh

(e) The discrete Inf-Sup constant βT =
√
λ2(ST ) and

√
λ3(ST )

as a function of size(T )

Figure 15. Other non-conforming Cartesian meshes

(2) We investigate now the Inf-Sup stability property for two families of con-
forming meshes corresponding to various subdomains with either a uniform
Cartesian mesh, or a triangle mesh (see Figures 16a and 16b).

Our results (see Figure 17) show that βT remains away from 0 when
size(T ) tends to 0, and therefore that the DDFV scheme is Inf-Sup stable
for such families of meshes. However, it seems that the adaptation of the
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previous proofs to those cases is not straightforward and thus will be the
object of a forthcoming work.

We also observe in Figure 17 that the DDFV method seems to be Inf-
Sup stable for mixed triangle/quadrangle meshes (Figure 16c) but also for
more general polygonal meshes constituted by hexagons for instance (Figure
16d).

(a) Mesh with one interface (b) Mesh with two interfaces

(c) Conforming quadrangle and
triangle mesh

(d) Hexagon mesh

Figure 16. Various kind of meshes

6. Conclusion

In this paper, we have investigated from a numerical and theoretical point of
view whether or not the Inf-Sup stability condition for the DDFV scheme holds
for various kinds of mesh families. We observe that the DDFV scheme seems to
be very robust as far as this stability property is concerned, in particular in the
case of non-conforming meshes. We managed to prove this property for different
mesh families but the proof strongly depends on the geometry of the meshes. Up
to now, we are not able to prove the stability for very general polygonal meshes,
even though we have given numerical evidences that it should be true.
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10−2 10−1 100
10−1

100

Mesh with one interface, Fig. 16a
Mesh with two interfaces, Fig. 16b

Conforming quadrangle and triangle mesh, Fig. 16c
Hexagon mesh, Fig. 16d

Figure 17. The discrete Inf-Sup constant βT =
√
λ2(ST ) as a

function of size(T )
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anisotropic diffusion problems on general grids: convergence analysis, C. R. Math. Acad. Sci.
Paris 344 (2007), no. 6, 403–406. MR 2310678

34. M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal.

Numér. 11 (1977), no. 4, 341–354, iii. MR 0464543 (57 #4473)
35. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer

Series in Computational Mathematics, Springer-Verlag, Berlin, 1986, Theory and algorithms.
MR MR851383 (88b:65129)

36. V. Girault, B. Rivière, and M. Wheeler, A discontinuous Galerkin method with nonoverlapping

domain decomposition for the Stokes and Navier-Stokes problems, Math. Comp. 74 (2005),
no. 249, 53–84 (electronic). MR 2085402 (2005f:65149)



INF-SUP STABILITY FOR THE 2D DDFV-STOKES METHOD 39

37. F. Harlow and J. Welch, Numerical calculation of time-dependent viscous incompressible flow

of fluid with free surface, The physics of fluids 8 (1965), no. 12, 2182–2189.

38. R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffsion prob-
lems on general grids, Proceedings of Finite Volumes for Complex Applications V (Aussois,

France) (R. Eymard and J. M. Herard, eds.), Wiley, 2008.

39. F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted
meshes, J. Comput. Phys. 160 (2000), no. 2, 481–499. MR MR1763823 (2001a:76101)

40. , Approximation of diffusion operators with discontinuous tensor coefficients on dis-

torted meshes, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 16-18, 1939–1959.
41. , Approximation of 2-D and 3-D diffusion operators with variable full tensor coeffi-

cients on arbitrary meshes, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 21-24,

2497–2526. MR MR2319051 (2008d:65123)
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de Provence, 2010.
43. , Stabilized DDFV schemes for Stokes problem with variable viscosity on general

2D meshes, Numer. Methods Partial Differential Equations 27 (2011), no. 6, 1666–1706.

MR 2838314
44. , Finite volume method for general multifluid flows governed by the interface Stokes

problem, Mathematical Models and Methods in Applied Sciences 22 (2012), no. 2, 1150025.

45. S. Krell and G. Manzini, The Discrete Duality Finite Volume method for the Stokes equation
on 3D polyhedral meshes, SIAM Journal on Numerical Analysis 50 (2012), no. 2, 808–837.

46. D. S. Malkus, Eigenproblems associated with the discrete LBB condition for incompressible

finite elements, Internat. J. Engrg. Sci. 19 (1981), no. 10, 1299–1310. MR 660563 (83k:73053)
47. R. A. Nicolaides, Analysis and convergence of the MAC scheme. I. The linear problem, SIAM

J. Numer. Anal. 29 (1992), no. 6, 1579–1591. MR MR1191137 (93j:65143)
48. Y. Saad, Iterative methods for sparse linear systems, second ed., Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2003. MR MR1990645 (2004h:65002)

49. R. Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Pub-
lishing Co., Amsterdam, 1977, Studies in Mathematics and its Applications, Vol. 2.

MR MR0609732 (58 #29439)

50. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations,
RAIRO Anal. Numér. 18 (1984), no. 2, 175–182. MR 743884 (85i:65156)
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