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Abstract: This paper presents an approach to build a communication behavioural semantic
model for heterogeneous distributed systems that include synchronous and asynchronous commu-
nications. Since each node of such system has its own physical clock, it brings the challenges of
correctly specifying the system’s time constraints. Based on the logical clocks proposed by Lam-
port and CCSL proposed by Aoste team in INRIA as well as pNets from Oasis team in INRIA,
we develop timed-pNets to model communication behaviour for distributed systems. Timed-pNets
are tree style hierarchical structures. Each node is associated with a timed specification which
consists of a set of logical clocks and some relations on clocks. The leaves are represented by
timed-pLTSs and non-leaf nodes are represented by timed-pNets including some holes which are
filled by leaves or non-leaf nodes. Both timed-pLTSs and timed-pNets node can be translated to
timed specifications. All these notions and methods are illustrated on a simple use-case of car
insertion from the area of Intelligent Transportation Systems (ITS) and then TimeSquare tool is
used to simulate and check the validity of our model.
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Timed-pNets: un modéle sémantique comportemental pour les
systémes distribués hétérogeénes

Résumé : Cet article présente une nouvelle approche pour définir un modeéle sémantique comportemen-
tal pour des systémes distribués comportant des communications aussi bien synchrones qu’asynchrones.
Chaque site dans ce genre de systéme ayant sa propre horloge, définir correctement les contraintes tem-
porelles globales du systéme est un défi. A partir des concepts d’horloges virtuelles de Lamport, du
langage CCSL introduit par I’équipe AOSTE d’INRIA, et du modéle pNets de 1’équipe OASIS, nous
développons notre modéle Timed-pNets pour exprimer les comportements et la communication de ces
systémes distribués. Les Timed-pNets sont des structures hiérarchiques arborescentes. A chaque noeud
est associée une spécification temporelle composée d’un ensemble d’horloges et de relations entre ces
horloges. Les noeuds feuilles sont representés par des Timed-pLTSs (systémes de transitions paramétrés
temporisés), et les autres noeuds sont soit recursivement des Timed-pNets, soit des trous (Holes) des-
tinés & étre remplis ultérieurement par des Timed-pNets. Nous définissons des algorithmes permettant
de synthétiser la spécification temporelle des Timed-pLTSs et des Timed-pNets. Toutes ces notions sont
illustrées sur un exemple de conduite automatisée de véhicules, issue du monde des systémes de trans-
port intelligents (ITS); finalement nous utilisons le logiciel TimeSquare pour simuler notre modéle et en
vérifier la validité.

Mots-clés :  Méthodes formelles, Systémes distribués hétérogénes, Communications synchrones et
asynchrones, Modles temporisés, Systémes de transport intelligents
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1 Introduction

Heterogeneous distributed systems, as targeted in this paper, can be characterized by the fact that the
processors are spatially separated and that a common time base does not exist. Distinct processes in
such systems communicate with each other by exchanging messages with unpredictable (but non-zero)
transmission delay. Intelligent Transportation System (ITS) is one typical application in this area. It
consists of distributed vehicles which are equipped with their own independent clock. Despite each
vehicle has a common time base (e.g. local physical clock), there is no global physical clock shared by
vehicles. In such a context, it is impossible to build time constrains (e.g. action « from process A and
action [ from process B happens at the same time) since the processors have no consistent view of the
time.

In this paper, we propose a timed model that is able to specify time constrains based on logical
time. Logical time has proved its benefits in several domains. It was first introduced by Lamport to
represent the execution of distributed systems [LamT78|. It has then been extended and used in distributed
systems to check the communication and causality path correctness [Fid91]. Logical time has also been
intensively used in synchronous languages [Ber00] [BLGJO9I] for its multiform nature. The multiform
nature of logical time consists in the ability to use any repetitive event as a reference for the other ones. It
is then possible to express temporal properties between various references. In the synchronous domain it
has proved to be adaptable to any level of description, from very flexible causal time descriptions to very
precise scheduling descriptions [BDS91]. Logical time can be multiform, a global partial order built from
local total orders of clocks. Inspired by the CCSL model [And09], we design clock relations to express the
systems logical time constraints. So our model is a logical constraint model that is expressed by a set of
logical clocks and clock constraints. In an heterogeneous distributed system design cycle, from an initial
set of abstract time relations, and through architecture and platform-dependent design decisions, time
refinement steps take place which solve in part the constraints between clocks, committing to schedule
and placement decisions. The final version should be totally ordered, and then subject to physical timing
verification and to physical constraints.

Our model is based on pNets (parameterized networks of synchronized automata)|BBCT09|, an ex-
pressive and flexible semantic model for the modeling and verification of (untimed) distributed systems.
The pNet model describes the behavior of concurrent systems in terms of value-passing labelled tran-
sition systems (LTSs), and expresses communication and synchronisation with synchronisation vectors
(originating in [Arn94]). It allows to model a large variety of synchronisation mechanisms and has been
traditionally used for systems of either synchronously or asynchronously communicating objects, and of
distributed components [BBCT09]. The flexibility of the synchronisation vectors mechanism naturally
provides descriptions of heterogeneous systems, from point-to-point or multipoint synchronisation, to
sophisticated asynchronous queuing policies. Parametrization and hierarchy also makes pNet models
compact, and close to the program structure, and as a consequence easy to generate in a compositional
way [ABHMS12]. All these advantages attracted us to choose it for modelling the system. However, pNets
have no mechanism to describe time constraints neither to explicitly define asynchronous communication
behaviors. We propose a novel timed model called timed-pNets by introducing timed specifications into
pNets. The timed specifications represent system’s logical clocks and their relations so that the system’s
time-related behavior can be specified.

In recent work about ITS, or more generally on cyber-physical systems (CPS), people use models with
continuous time, that is required for expressing the system’s physical behavior evolution and control. In
this paper, we concentrate on abstract models, that are appropriate to reason about the communication,
synchronisation, and overall timing constraints of heterogeneous systems. We assume that in our model
physical signals can be well sampled and transformed to digital signals. Therefore, even if we don’t build
continuous time model for physical world, we do not isolate our model from physical world. Our model

RR n° 8526



2 Chen & Chen & Madelaine

timed-pNets
node

timed-pNets
node

Figure 1: Timed-pNets tree structure

is capable to monitor and control physical behavior by taking sampling values from physical world.

In our previous work [CCM12] we proposed the first version of timed-pNets, including a notion of

logical clocks directly imported from CCSL. A set of clock constraints related to the logical clocks were
built to describe the system’s casual relations. We also presented a simple use-case inspired from ITS
systems, and showed how we simulate the set of timed-action traces by using the TimeSquare tool
[DM12]. However this model was not sufficient to build a hierarchical timed specification starting from
timed-pLTSs.
In this new paper, we enhance the compositional aspects of our specification methodology: a system is
modelled as a hierarchy of timed-pNets as Fig[T] where leaves are timed-pLTS, i.e. finite state machines
with logical clocks on the transitions, and nodes are synchronisation devices. Products between subnets
can be synchronous (modelling local components sharing synchronous clocks), or involve asynchronous
communication between unrelated events, that we model as channels.

From such a hierarchical model, we propose procedures for:

- at the bottom level, analyzing timed-pLTSs, and build the timed specifications (sets of clocks and

clock constraints) encoding its temporal behaviour,

- for each timed-pNets node, building an abstract timed specification (= at level N), from its lower-

level timed specifications (level N-1).

One important point is that Timed Specifications (TSs) are logical characterizations, that can be
either provided by the application designer, or computed from the model. The consequence is that the
two procedures above can be used arbitrarily in a bottom-up fashion, starting with detailed timed-pL.TS
and assembling them in a compatible way; or in a top-down fashion, constructing TSs for abstract
timed-pNets, using their holes TSs as hypotheses in an assume-guarantee style, and providing later some
specific (compatible) implementations for these holes in various contexts.

At each level, we are able to use the TimeSquare tool[DM12] to simulate the possible executions of
a timed specification.

This rest of the paper is organized as follows. Section [2] describes the meaning of timed specification
including the formal definitions of timed-actions, logical clocks and their relations. Then we give a
definition of timed-pLTS in section 3] In section [4 we discuss how to build timed-pNets. The issue of
checking the compatibility of timed-pNets is discussed in section The procedure generating timed
specification from timed-pLTS and timed-pNets are presented respectively in sections[6] [7] In section
we discuss how to build multi-layers timed-pNets systems. Then in section [0 we represent the simulations
by using TimeSquare tool. Finally, the paper ends with conclusions and future research as well as some
related works.

Inria



Timed-pNets 3

Lane 1

Figure 2: Car Insertion

2 Timed Specification

In this section, we present the preliminary denotations and definitions of timed-actions, logical clocks,
clock relations and timed specification.

We shall use one example (Fig to illustrate all definitions and results. We choose a small scenario
taken from the field of ITS. It is about an autonomous lane change involving 3 smart cars. These cars
are equipped with sensors to detect the physical environment and parameters (e.g. such as cars speed,
cars distance, etc.). And they communicate among each other to coordinate their movements and avoid
collisions. Assume the three vehicles (car0, carl and car2) are running on a road as Fig. [2l The scenario
of inserting car0Q between carl and car2 may follow the following steps: 0) car0 gets a change-lane
request (e.g. from a human user); 1) car0 sends “notify” requests to carl and car2 to get an agreement;
2) carl (resp. car2) acknowledges car0 “yes” or “no”; 3) car0 collects results from carl and car2; 4) If
both carl and car2 answer “yes", car0 signals the consensus to carl and car2 and then go to step 5,
otherwise car0 aborts the procedure; 5) carl slows down and/or car2 speeds up to leave more space
between them for car0; 6) car0O changes its direction and moves to lane2; 7) car0 notifies the end of the
procedure with a “finish” signal.

As we do not want to limit ourselves to a specific language and a specific communication model, we
follow the pNets assumption on Action Algebra £ 4 which includes all required operators for building
action expressions in the language (P a set of parameters used to build open expressions, typically
expressing data variables)|[BBCT09]. We denote an action for sending a message as !a(m) (m € P)
and receiving a message as 7a(m) (m € P), which is similar to CCS or Lotos. For example, a (value-
passing) CCS action could be “a?x:int”, and an open action expression in the context of Lotos could
be “G?x:int?y:int!x+y”. Then for building timed-actions we introduce 7 as a set of (discrete) timed
variables. And we build timed expressions using classical constants and operators over natural numbers.

Definition 1 (Timed-Actions). Let T be a set of discrete time variables with domains in the non-
negative natural numbers N. The Timed-action Algebra L4 1 p is an action set built over T and P. We
call a(p)t € La1p a timed-action in which o € A is an action, p € P is a parameter, t € T is a time
variable describing a time delay before the action can be executed,

We set o’ = «, which means the action « is always ready.

We define a Clock as a sequence of occurrences of a timed-action. The clock, in the sense of CCSL,
is a logical clock, which is firstly proposed by Lamport|[Lam78]. The logical clock means the distance
between occurrences is not related with the passage of real time.

To preserve this independence with respect to any notion of global time, in the following definitions
and proofs, we use only the notions of co-occurrence («_i = _j), and of precedence (a_i < 3_j) of
action occurrences. This will stay valid in any interpretation of the logical time scales.

Definition 2 (Clock). A Clock C,, is a sequence of occurrences of a timed-action a(p)t. We write:
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4 Chen & Chen & Madelaine

Figure 3: count the delay ¢,, when C,, is an independent clock

B _i-n Bi

<t

Figure 4: count the delay t,, when Cg < C,,

Co = {a(p1)ter _1,a(pa)ter 2,...,a(p;)te i,...} (i €N), in which a(p;)t> i denotes the i'" occur-
rence of clock C.

For simplification, in our paper, an occurrence «(p;)'* i can be denoted as o_i for short when not
ambiguous.

The assignment of the delay variable ¢, in each occurrence a(p;)'>: i can be different. The delay
variable captures the minimum time (delay) that an action must wait before it can occur after the
previous action. More precisely when a clock is independent (has no precedence relation with another
clock), the delay is counted from the previous occurrence of the same action as shown in the Fig. If
a clock Cjg directly precedes a clock C,, then the delay of the i*" occurrence of the timed-action « is
counted from the i'" occurrence of the timed-action (3 as shown in the Fig. 4l The relation of coincidence
(discussed in the next subsection) does not effect on the way of counting the delay. For example, if there
is another clock C, that coincides with the clock C,, then the delay t,, is still be counted as shown in

the Fig]

For convenience, we define here two operators on Clocks, expressing respectively time shift, and
filtering:

Definition 3 (Clock Offset). Let C,, be a clock built over a timed-action o, C,[i] be the it" occurrence
of the clock Cy. The n'" offset of the clock C,, is the clock defined as: ca™ = {Cun+1]_1,Cu[n+
2] 2,...,Cq[n+14]_i,...}.

From the definition we can see that the (n + 1) occurrence of C,, becomes the first occurrence of
A(n)
the new clock Cy ", and so on.

Definition 4 (Clock Filtering). Assume N’ is a subset of N. Let C,, be a clock built over a timed-action
a. The new clock that is filtered from the clock C, by N’ is denoted as
C(‘;V, = {Ca[il]_LCa[iQ]_Q, . .Ca[ik]_j, .. .}(il,iQ, ek, ... € N/,il <o < ... < gy ,j,k S N)

For convenience, we will write the filter N’ either as a boolean function over N, or as a subset of
N, e.g.: CéQn*l}”'EN accepts only the odd occurrences of the clock C,. C(;E”Zg} filters out the first &

occurrences.

Inria



Timed-pNets 5

Soif Cp = {a(p1)t>r _1,a(pa)tez _2,... a(p)t> _i,...},
then C’im_l}"EN = {a(p)tar _1,a(ps)tes 2, ... a(p@n_l))t“(zn—l) n,...}
and C§"=* = {a(ps)'=s _1,a(pg)'s_2,...}

Finally we define Timed Specifications: a timed specification is composed of a set of logical clocks,
together with a set of clock relations, expressing the temporal ordering constraints between the clocks.
This is an abstract specification in the sense that it captures just enough information to check the
time safety (validity of time requirements) of a system, but also the compatibility relation required for
assembling sub-systems together. In the next sections we shall describe procedures to compute the Timed
Specifications of systems (timed-pLTS and timed-pNets), and to check compatibility.

Definition 5 (Timed Specification). Let Z. be the set of occurrences of the clock c. A Timed Specification
is a pair < C,R > where C is a set of clocks, R is a set of clock relations on |J .o Ze.

2.1 Syntax and Semantic of Clock Relations

A Clock Relation defines the relation between two clocks. With respect to the original definition of clock
relations in CCSL [And09], we have slightly different goals, and different needs. In particular we do not
need exclusion (that is most important with some families of reactive formalisms). We do not define
“subclock” relation in this paper because we need a more concrete way to define how to build a new
subclock from original one. Instead, we defined “clock filtering” which can specify the way of selecting
action occurrences. Therefore, here we only define two relation operations ("<’, ’=") to describe the
different dependence relations between clocks.

B B2 8.3

W) [Cy = Cyl = Vi €N, (a_i = B_i)

oo AN DN
N g1 N 8z N a3
N I

@[Ca < Cg] = Vi € N,(a_i < B_i)

Figure 5: Constraints

e The relation 'C, = Cg’ (C, coincides with C) describes the strict synchronization of clocks. It
means that the occurrence of C,, appears if and only if the occurrence of Cz appears. In another
word, the clock C and Cjg tick at the same time. Formally, [Cy = Cg] = Vi € N, (a_i = §_1)
(shown in Fig. 1)) This operator can naturally be used to describe synchronous communication.

e The relation 'C, < Cg’ (Cy precedes Cg) describes the precedence relation of clocks. It says that
the action § from the clock C3 cannot occur until the corresponding action « in the clock C,
occurs. In another word, clock C,, ticks always earlier than clock Cz. Formally [C, < Cs] =Vi €
N, (a_i < [ _1i). As shown in Fig. (2), the i*" occurrence of the clock C, always appears earlier
than the i*" occurrence of the clock Cs. The relation usually relates to the causality induced by
asynchronous communication.

RR n° 8526



6 Chen & Chen & Madelaine

2.2 Properties of the logical clock relations

Not surprisingly, these relations have their expected properties: coincidence is an equivalence relation,
and precedence is a strict pre-order.

Proposition 1 (Properties of the Coincidence Relation '="). Given a set of clocks C . The relation =’
on the set C is reflexive, symmetric and transitive.

Proof: This follows from the fact that = is an equivalence relation on timed-action occurrences.

(1) Choose any clock C,, € C. Let its i*" (i € N) occurrence be a_i. The occurrence « coincides with
itself. So we know C, = Cy; the coincidence relation is reflexive. (2) Now choose another clock Cg € C.
If we have the relation of C, = Cj3, then we know that Vi € N, a_i = $_4, which means the action «
occurs if and only if the action 8 occurs. According to the symmetric relation of the operator “=", we
know that the action [ occurs if and only if the action « occurs. So we have Vi € N, §_i = a_i. We
know Cg = C4; the coincidence relation is symmetric. (3) choose another clock C,, € C. If we have
relation C, = Cg and C3 = C,, then Vi e N, a_i=(_i A [_i =~_i. From the transitivity relation of

w—m»
]

we infer Vi € N,a_i = y_1; so we know C, = C,;; the coincidence relation is transitive. O

Proposition 2 (The properties of Precedence Relation ' <’). Given a clock set C. The relation’ <’ on
the set C is transitive, but not reflexive, not symmetric.

This follows from the same properties on the relation < on occurrences. The proofs are similar to
those of Proposition [T}

Proposition 3 (Substitutivity of "="). Given four clocks C, Cs, Cy, C,, which are built on the timed-
action «, 3, v and 1 separately. Let Co = Cg and C, = Cy,. If Cy < C,,, then we have Cg < Cj,.

Proof. According to the coincidence definition, Co, = Cg = Vi,a_i = _i,and C, = C, = Vi,y_i =
n_i. If Cy < C,, then according to the precedence definition, we know Vi, o7 < v _4, which means the
action o always occurs earlier than the action 7. Since Vi,a_i = i tells us the action « occurs if and
only if the action 8 occurs, so we know [ always occurs earlier than v (Vi, 3 i < ~_4). Similar, since
Vi,v_i=mn_i tells us the action v occurs if and only if the action 1 occurs, so we furthermore have the
relation Vi, 3_4 < n_4. According to precedence relation definition, we get Cz < C,,. O

Example 1. In this part, we illustrate how to represent timed-actions, clocks, and clock relations for
our “car inserting” scenario.

As shown in the Fig. [6] on-board car systems are modeled by several components including “Initial”,
“CommlIni” “CommRes”, “Control”, etc. In the figure we only show the components that participate in
the protocol.

User’s requests are received by the “Initial” component. For our example, the “user” has sent an
insertion order, encoded here as a “!Request(Ins)te” timed-action occurrence. The procedure then runs
in two phases:

(1) The agreement phase: car0 sends a notify(Ins) message to the other two, and wait for their answers.
This phase is managed by the “CommlIni” process, that communicates to the other cars “ComRes”
processes through asynchronous channels. In the model, there is one such channel for each type of
message, and for each pair of communicating processes; we use the parameterized structure of pNets
to represent such families of processes in the figure, e.g. “channelNtf[m]”. The “CommIni” process is in
charge of collecting the answers from the other cars asynchronously, and sending the final decision to
“Initial”. If it is negative, then “Initial” aborts and signals Cancel to the user, otherwise we go to the
next phase.

(2) The execution phase: this phase is triggered and controlled directly by the “Initial” process. It sends

Inria
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Car0 Car[m] (Carl / Car 2)
Control e
CConsensus Initial Channel Control [m]
(Exprgs = curbatg S*geauest(ins) a _>|j > [ExpRes = CurData

t,
C?Cnsensus(EpreS) °l C Finish
—

IFinish '

t
Q C t IFinishf C?Cnsensus(Epres) °
1cmd(ins)'c Im| L

Ceribta 4| <
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Crrerminal §

[ExpRes != CurData]

t [ExpRes != CurData]
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b=True] Channel Crockxe bx )
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C Ini Cema [k :=0; k'++; k' €2] [k':=0; K'++; k's 2] .
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Cr CommRes[m]

Ciro)'R
b=V m
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Notify 92[m]

Crtr Cinotify(ins k) o olm ChannelNtf[m] @ .
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Figure 6: Timed-pNets: Communication Behaviour Model of Cars Insertion Scenario

A4

A

[m]

[KT=1; k++; k< 2]
C t
2Ack(k,rm)ta

Cack
K94 m] ChannelAck[m]

A

CiConsensus(ExpRes)to 10 all cars including itself to initiate the execution and to tell each car the final
expected result (“ExpRes”). The “Control” process of each car is in charge of the local Execution of the
movement (that we leave unspecified here), till the expected result is observed ([ExzpRes = CurDatal).
Then the | Finish signals are collected by “Initial”; and termination is notified to the user.

We use label transition systems (LTSs) to model each component. Each transition will be triggered
by a clock. Precedence relations are used to specify the causality relations of LTSs. For example, in
the “CommRes” component, the clock “Crotipy(rns)tn” 0ccurs earlier than the clock “Cigerr,,)ta”- We
denote the clock relation as “Crpotify(rns)in < Clack(rm)te - For simplification, in the following sections,
we will omit the parameters and time variables when expressing a clock relation if it is not ambiguous.
For example, we use the short version “Crpotify < Clack” instead of “Copotipy(rns)tn < Clack(ry)ta

In this use-case, we assume for simplicity that the communication inside a car is synchronous (in
realistic modern car systems, this hypothesis would have to be refined, since the onboard systems in-
clude several process communicating through data buses). Here, the timed-action “!C'md(par)<” in the

ten

“Initial” process and the timed-action “?C'md(par)te” in “CommlIni” are always synchronous when the

two components communicate and transmit the message “par”. So these two clocks coincide:
(Crnitial.\cmd(paryte = CCommIni.2Cmd(par)te)-

By contrast, communication between two different cars is asynchronous (typically over some wireless
ad-hoc network), and we want to be able to take into account the communication time in our analysis.
For this we insert a specific asynchronous channel (built as a special timed-pLTS) for each type of message
exchanged between cars.

These two mechanisms illustrate our approach to model heterogeneous synchronous/asynchronous
systems. In the next section, we show how we formalise this by using our timed-pNets formalism.

3 The Timed-LTS Semantic Model

This section introduces timed transition systems (timed-pLTS), including their special case Channels.
We illustrate each definition with a piece of our running example.

Definition 6 (Timed-pLTS). A Timed-pLTS is a tuple < P, S, sg, A, C, —>, where

RR n°® 8526



8 Chen & Chen & Madelaine

P is a finite set of parameters

S is a set of states

so € S is the initial state

A is a set of timed-actions

C is a set of clocks over the timed-action set A

— is the set of transition: —C S x C x S. We write s o, o for (s,Cq,s") €—, in which o € A.

Commini

Cirp)R Emd(Ins) ¢

b=V m

t=1; k++; k< 2]
Cete

Cinotify(ins, k)™

=1; k++; k< 2]
C, t
?Ack(k,rp)a

Figure 7: The timed-pLTS of the CommIni component

Example 2. Consider the “CommlIni” component in Fig. [1 The clock relations will correspond to
the precedence (causality) relations between the transitions of the LTS, with a special case for the loops
on states s1 (a state for sending notifications) and so (a state for receiving “ack” signals), where the
communication events are indexed by k € [1..N] where N is the (fixed) number of neighbors of the
initiating car (here N = 2). The first loop on s; means carQ sends two notifications to carl and car2
separately. The second loop on so means car(Q receives two “ack” signals from carl and car2 separately.
Moreover, we use a silent action T to build a clock Cl~ that labels the transition to state sy when the
component finishes sending two notifications. We build the timed-pLTS elements as:

e Parameters P = {k,Ins,rm,b, N},
e Action algebra A = {?Cmd(par)t<, Inotify(par)t~, 2ack(k,rm)te, |R(b)tx, 77}
e Clocks C = {C?Cmd; C!notify» C’.’acka C!Ra C’r}

e (we do not detail the transition relation here, it is easily deduced from the figure)

Note that what the system developer has to specify is only the LTS part, the clock constraints will be
automatically deduced from the LTS (see section @

Channels. We introduce channels to model asynchronous communication behavior. A channel is de-
fined as a special transition system with two timed-events: one for receiving messages, another for sending
messages. The two events have a precedence constraint which models the delay of message transmission.
For simplification, the channel definition here just describes a simple one place asynchronous buffer, suf-
ficient to illustrate the heterogeneity of synchronous and asynchronous communications. More realistic
asynchronous mechanisms are possible (e.g. n-places buffers, lousy channels, or ProActive/GCM request
queues with futures [CHSO8| but they are not the topic of this paper.

Definition 7 (Channel). A channel is a transition system with tuple < P,S, A, C, <, —> in which
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e P is a finite set of parameters,
o S is state set in which S = {Sempty, Sdata}
e A = {in(par), out(par)te} (par € P) is the timed-action set,
e C is a set of clocks over timed-actions A,
. .- C?in C!out
e — is a set of two transitions: Sempty —— Sdata N4 Sdata ——— Sempty-

In the channel definition, the timed-action ?in(par)’ is an action for receiving messages from one
component, while the timed-action lout(par)te is an action for sending the messages to another component
as shown in Fig. [8]

channel C

Tin(par) tj

Sem; R Sdata

C,

Figure 8: The timed-pLTS of channel Component

4 Timed-pNets Semantic Model

Finally we define Timed-pNets, that is our main structure used to combine sub-systems to build bigger
systems. Asin the original (untimed) pNets, a Timed-pNet is a generalized composition operator, defining
the synchronization between a number of subsystems (holes). In timed-pNets, holes are characterized by
an action algebra (a sort); here this is complemented by a Timed-Specification. Building the timed-pNet
tree representing a full system will require filling holes with (compatible) sub-nets.

Definition 8 (Timed-pNets). A Timed-pNet is a tuple < P, Ag,Cg, J, AVJ, é], R], Vv >, where:
e P is a finite set of parameters,
e Aq is the set of global timed-actions, and Cg is the set of global clocks that are built over Ag,

e J is a countable set of argument indexes: each index j € J is called a hole and is associated with
a set of local timed-actions A;, and an associated Timed Specification < C;, R; >.

N
e V ={%') is a set of synchronization vectors of the form:

- (binary communication between holes j1 and jo)
7E|=< ...,C!a,...,c?a,... >— Cg,
in which {Cga = C?a = Cg},Cg S CG,C!Q S le,C?a S ng,jl,jz S J,

- or (visibility from hole j)
v =< oy, Cqyo oo >— Cg, in which {C,X:Cg}7cg€CG,C7a GCj,jGJ.

Furthermore, each global clock can be generated by only one synchronization vector:
— — _ 17 -  —
v v, vy €V, Ogi = Cgi/ —— V; = Uy

(Cyi(resp. Cyir) be a global clock generated by the vector v; (resp. vys), i,i' € N)

Lwhere “...” represents an arbitrary number of holes that do not participate in this synchronization
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Timed-pNets
L
C e C Noti
Goem o Nt 41 my NOtY 2 frn)
JA ChannelNtf[m]
Commini CommRes[m]
C ack £ C ack
4 3
9 9%ml L ChannelAck[m] 9211
Cirv) |,
‘ Hole implemekations
ChannelNtf[m]
Commini C ¢ CommRes[m]
<. 2Notify(Ins,k)
Cc !Notify(Ins,R tmi
C!R(b)tR C?md(lns)tc B ' ©
by r tify(lns)t”[m]
m
b L k++;k €2] C!Ack(rn-)
C-rtr C!Notify(lns,k)tn O

[k=1;k++; k <2]
C, t
?Ack(k,rm)"a

Figure 9: A Timed-pNets with one of its implementations

Remark: We define Nets in a form inspired by the synchronisation vectors of Arnold and Nivat [AP94],
that we use to synchronise clocks from different processors. One of the main advantages of using its high
abstraction level is that almost all interaction mechanisms encountered so far in the process algebra
literature become particular cases of a very general concept: synchronisation vectors. We structure the
synchronisation vectors as parts of network. Contrary to synchronisation constraints, the network allows
dynamic reconfigurations between different sets of synchronisation vectors. In our timed-pNets, we define
two kinds of synchronous vectors. One is communication vector (< ...,Clqa,...,C2%,... >—= Cy). The
vector represents the communication of two holes through clock C, and C+,. The two local clocks that
come from different holes are put between the two symbols “<” and “>". The last element of the vector
appears behind the symbol “—”, and specifies the global clock generated by this synchronous vector.
Another vector (< ...,Cy,... >— C,) makes the local clock C,, visible by generating a global clock C,.

Notations for parameterized systems. In practice, we use parametric notations, both for holes and for
synchronization vectors, making the notations more compact and more user-friendly (see next example).
These are only abbreviations, their meaning must be understood as a (finite) expansion of the structure.

Using such abbreviations, for a pNet in which ji, jo, j are parametric holes holes with indexes ki,
ks, k, with respective domains Domy, Doms, Dom, the synchronization vectors will look like:

- binary communication
Depending on the combination of actions from j; and jo, this vector will generate a family of global
actions indexed by a parameter m, that is a function of k1 and ks. The domain of m is a subset of
the product DomizDoma. < ...,Cigk,]; s Coafko]s - > Cym)
in which {Cla[kl] = C?a[kQ] = Cg[m]}, Cg[m] € Cg, Cla[kl} S le,C?a[kz] S Cj2

- visibility
Each visible action from hole j generates a corresponding global action. < ...,Cyp, ... >— Cypy,
in which {Ca[k] = Cg[k]}7 C!a[k] S Cj, Cg[k] € Cq.
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Timed-pNets 11

Example 3. We use our use case to illustrate how to build a timed-pNets model. To make the example
smaller, we have extracted here the respective “communication” subNets of 2 cars, and the channels on
which they communicate, and we show how to build a pNet encoding this small subsystem.

As shown in the Fig@, the subsystem consists of components "CommIni", "CommRes[m]|", "Channel-
Ntflm]" and "ChannelAck [m]". The components "ChannelNtf[m|" and "ChannelAck|m]" are channels
in which the parameter "[m]" denotes to which car the corresponding channel transmits data. By using
the parameter "m", we give a more compact representation of the model. According to our scenario,
car0 sends a notification to carl (resp. car2) via "ChannelNtf[1]" (resp."ChannelNtf[2]"), and then carl
(resp.car2) answers an “ack” to car0 via "ChannelAck[1]" (resp. ChannelAck[2]"). So in the upper layer
timed-pNets node, we can link these components by building synchronous vectors. For example:

- the vector| < —, C’;ackm, -, Cmackm >— Cackgg ) represents the communication between the compo-
nents “CommRes[1]” and “ChannelAck[1]” and generates the global clock “CackQS[l]”. Notice that even
though we actually have 7 subnets (CommIni, CommRes[1], CommRes|[2]|, ChannelNt{[1], ChannelNt{[2],
ChannelAck[1], ChannelAck[2]), using parameters we represent our pNet and its synchronous vectors with
only 4 holes.

- the vector < Cg{jost;fl;SEN;_7Cc.?notify[1]a_ >— CnOtifygl[ll represents the communication between
the components ”"CommIni” and ”ChannelNtf[1]” and builds a global clock ”Cnotifygl[ll ” (remem-
ber C!{f;t;;;“““ is the clock built from the clock Cipoipy by choosing the occurrences with odd indexes).
Following the timed-pNets definition, we can formalize this timed-pNets with details as:

o P={k,Ins,m,rm,b},

t

e Ag = {notify(Ins, k)tggll[m] ,notify(Ins, k);g;[m] , ack(rm, k)ggg‘?m] ,
ack(rm, k), 7Cmd(Ins) %, LR(b) e
L4 CG = {Cnotifygl[m] ) Cnotifygz[m] B Cackgg[m] 5 Cackg4[m] B C?Cmdg5 5 C!Rgg}

e J = {CommIni, CommRes[m], ChannelNtf[m],
Channel Ack[m]}(m :=1,2)

Next we formalize the Timed Specifications of these holes as:

e For the hole “CommIni™
Acommini = {7Cmd(Ins)', \notify(Ins, k)™, ack(k, v )", |R(b)'R}
Ccommini = {C?cmd; Cinotify, Crack, Cir }

RC’ommIni — {C?Cmd < 0{25*1}561\1 0{25*1}561\1 < 0{25}361\7

Inotify ’ 'notify Inotify
{2s—1}sen {2s—1}sen {2s}sen {2s}sen
C!notify N = C?ack: N ’ C!notifi/ = C?ack € ’
25— 1}, 25}, 25} A(1
C7{acsk Joer = C’faig GN’ C;{a:g < = C!R = C?C’(I’I'L?i

e For the hole “CommRes[m]” (m := 1, 2):
Acommpesim] = {notify(Ins, k)m], lack(k, rm)ffn]}
CCommRes[m] = {C?notify[m] B C!ack[m] }

RCommRes[m] = {C?notify[m] < C!ack[m] < CyAn(olzify[m]}
e For the hole “ChannelNtflm]” (m := 1, 2):

Achanneintfim] = {c.notify(Ins, k)mt clnotify(Ins, k)2

[m]” [m]

2where “—” represents a single hole that does not participate in this synchronization
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12 Chen & Chen & Madelaine

CChannethf[nL] = {Cc.r!notify[m] 5 Cc.!notify[m] }

Rchunnethf - {Cc Vnotzfy [m] < O 'notzfy < CL 77Lotzfy[ (1)}

e For the hole “ChannelAck[m]” (m := 1, 2):
AChannelAck[nL] = {a?G‘Ck(k?Tm)fal]a 'a’Ck(k 'f'm)f 1]}
Cchannetackim] = {Ce.racky), Ce.tack }

A1
RchunnelAck[m] = {Cc.?ack[m] < Cc.!ack[m] < Cc.'!(a)ck[ }

m)

In the end, we specify the synchronous vectors:

V
{2s— 1}beN
V< C'notzfy(]ns k=1) Cc.?notify(]ns)[l] y T > Cnotifygl[l] )
Va 1< =, Crnotifyyyy» Cetnotifyyys — >— Cn"”fyﬁ[l]’
‘/3 < - C‘ack)[l _7Cc.7ack[ >_) CaCkga (1’
{2s— 1}361\7
Vi< C'7ack k=1,rm)’ 0 7 Oc.!ack(rm)m >— Cackg4[1]
{25}<EN
Vs i< C'notzfy Ins,k=2) Cc.?notify(]ns)mv_ >— CnOtifym[z]?
VE} C?notzjy [2]? C .!notzfy - > Cnotifng[g] ?
Vi< — O‘a(‘k[z 5 C(' ?ack(y > Ca(‘kgg (2]
{ZS}seN
Vs 1< Copen(hmaim,): _’_’CC'!aCk(T"")[QJ > Cackoayy
Ve i< C?Cmd7 — == > Cocmdys
Vig :< Cig, =, = = >— Cir,s}

Discussion: Timed specification of holes. Let us now argue how the timed specifications of this
upper-level timed-pNet holes may have been specified, in a top-down approach, before building their
timed-pLTS implementation. This, intuitively, is done from the informal description of the scenario and
the knowledge of the top level component and communication architecture:

Take the “CommlIni” component as an example, the scenario related to the component is:

(1) the component “CommIni” gets a change-lane request by clock Co¢pq from the “Initial” component;

(2) the component “CommIni” sends requests by clock Cipotipy, in sequence, to carl and car2 to get
agreements;

(3) the component “CommIni” collects results from carl and car2 by clock Coaer;
(4) the component reports result to “Initial” component by clock Cig.

Since step (1) happens earlier than the step (2), the clock C7¢png must precede the clock Cipotify. Then,
in our use case, the component “CommlIni" sends notification signal twice, so we have clock relation
{Crcma < clZs—1lsen C’{QS}.SEN}. In generally, if there are N neighbors, the clock relation should

Inotify Inotify
be {Cocima < Ol Dhsen < gz tn=2bear o0 2 of¥elsery  Similar to the step (2), since the

component receives “ack” signal twice, so we have the clock relation {C’;fjk_ Heer C’;{jfge’“} Further-

more, the clock Ciyotify in step (2) should precede the clock Coger in step (3), so we have the relation
C,{fjt;;y}sw < Cf2s e anq C,{fjt];ﬁ < Cf2}:ev " Finally the scenario goes to step (4), we have the

relation {Ci}{jjgsm < Cir}. Since the scenario is repeatable, we specify the clock relation {C\g < ca®

?emdS
In the end, we conclude:

2s—1}, 2s5—1}, 2s}s
R{C’ommlni} = {C?Cmd = CI{rLostif; GN’ Cinostifj < C!Elost];sz’

0{23_1}56N =< 0{23_1}56N C{QS}SEN = C{Qs}seN

Inotify Tack ’ Inotify Tack ’

Cloer 11 < Chacl ™, CRRR" < Cin < Crop}
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) | - | )

Subst/sf(m
L]m])l C_Impl[1] | C_Impl[2]

Figure 10: Partial instantiation of a Timed-pNets subsystem

In section |5} we will show that these Timed Specifications are indeed fulfilled by the corresponding
timed-pLTS “CommIni”, “ComRes”, “ChannelNtf”, and “Channel Ack”.

5 Compatibility

When assembling timed-pNets, the architect has to ensure that the timed-pLTS that will be plugged
into a hole indeed matches the hole Timed Specification. The ultimate goal is to provide a refinement-
based approach: timed properties proved on an open (abstract) timed-pNet system will be preserved by
refinement of Timed Specifications. One of the basic tool for building such refinement is to ensure the
compatibility of a subsystem with the enclosing holes before composing the system. E.g. in Fig. @, the
Timed Specification (TS) of the subsystem “A _Impl” must be compatible with 7'S4, and each of the
“C_Impl” must be compatible (individually) with T'S¢.

Our notion of compatibility will be based on the inclusion relations between the Clock relation sets.
Before giving its formal definition, we introduce the concepts of “Saturated relation set” and “Relation
set inclusion”.

Definition 9 (Saturated Relation Set). Let T'S =< C, R > be a timed specification with a set of clocks C
and a set of relations R. The saturated relation set (denoted as RT ) is the clock relation set R augmented

by all relations possibly deduced from R, by transitivity of precedence and reflexivity, symmetry, and
transitivity of coincidence.

For example, if R = {¢1 < ¢3 < ¢35} (c1,¢2,¢3 € C), then according to the transitivity property of the
relation <, we can get a new relation set RT = {¢; < c3 < c3,¢1 < ¢3,¢1 = ¢1,02 = Ca,...}

Definition 10 (Inclusion of time specifications). Given two timed specifications T'S; =< C1,R; > and
TSy =< Cy, Ry >. Let R} (resp. R ) be a set of hidden relations in the TS, (resp. T'Sz). We say TSy
includes T'S1 (denoted as T'S; < T'Ss) if and only if C1 C CaoN Ry C R;‘.

According to the definition, 7'S; < T'Se means that the relation existing in the timed specification
T'S; must exist in T'Sy or can be deduced from the relations in T'Sy. For example, assume T'S; = {¢1 <
est, TSe = {c1 < ca < c3}. According to the transitivity property of the “<”, we can get the the
saturated relation set of the T'Sy as RT = {¢; < ¢2 < ¢3,¢1 < 3,01 = 1,02 = ¢, ...}. Since the relation
in T'S; can be deduced from the relations in T'Sy, we say T'Ss includes TS, (T'S1 < T'Ss).

Lemma 1. If TS| =< C1,R; > and T'Sy =< Cy, Ry > are two timed specifications, then T'S] <
TS, — Rf‘ - R;‘

Proof. Taken any two relation rq, 7} € Ry. Let 7 € R be the relation deduced from the two relations
r1, i in terms of the property P proposed in section Assume 77 ¢ Ry . Since T'S; < T'Ss, from
the definition of inclusion we know R; C Ry . Furthermore, we know 1,7, € RS . So in the set R we
can get the relation 7" by using the same property P. So we have 7" € R that is contradict with our
assumption. Therefore, we have r;” € Ry . Moreover, because 7 € R, so R C RJ. O
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Definition 11 (Compatibility). Let T'S be the timed specification of a timed-pNets hole H, and T'S’ be
the timed specification of an implementation H _Impl. We say H _Impl is compatible with H, denoted
by H Impl C H if and only if TS < TS'.

Theorem 1. Let T'S be the timed specification of hole H. Let T'S{ (resp. T'S}) be the timed specification
of an implementation H _Imply (resp. H_Impls). If H Imply T H and TS} < TS}, then H_Imply C
H.

Proof. Assume T'S; =< C}, R} >, TSy, =< C}, Ry > and TS =< C,R >. Let R;" (resp. RS,
R™) be the saturated relation from T'S; (resp. TS5, T'S). Since H Imply © H, according to the
refinement relation, we have T'S <« T'S{. Furthermore, according to the Inclusion definition, we have
R C R;. Moreover, because we know that 7'S] < T'S}, according to the Lemmal[l} we have R} C R,'.
According to the set theory, we know that R C R5". Finally, according to the Inclusion and refinement
relation definition, we get H _Impls C H. O

6 Generating the timed specification of a timed-pLTS

As we see in the Fig[d] timed-pLTSs are concrete implementations of those holes. In order to check the
compatibility, we need to generate timed specifications for those concrete timed-pLTSs. Here we propose
rules to automatically generate a timed specification from the LTS part of a timed-pLTS. More precisely,
given the action algebra and the transition relation of a timed-pLTS, we compute its set of clocks, and
the relations between these clocks.

This procedure runs in 4 phases as shown in the Fig. The inputs of the procedure include a
timed-pLTS and a set of rules that tells how to set the occurrence relations and its index functions. In
step 1, we traverse the timed-pLTS and generate a “symbolic” table that gathers all possible causally
related pairs of transitions of the timed-pLTS, and the corresponding relations between clock occurrences.
In step 2 we go through the symbolic table and build a “concrete” table in which each column represent
one specific “round” of execution through the symbolic table (with concrete index assignments). In the
concrete table guards of the timed-pLTS can be resolved, so some of the symbolic transitions may be
eliminated. In step 3 we generate a general formula for each relation. In the end (step 4), we lift those
occurrence relations to clock relations, and generate the Timed Specification

6.1 Auxiliary functions: Pre/Post sets

Before describing Step 1, we need to define functions computing the pre/post sets of the timed-pLTS
states.

For a timed-pLTS transition system < P, S, sg, A,C,—>, we denote PreAct(s,s’), the set of direct
preceding timed-action occurrences of s from s’; and PostAct(s,s’) the set of direct succeeding timed-
action occurrences of state s towards state s’. Then we denote PreAct(s) (resp. PostAct(s)) the set
of all direct preceding (resp. succeeding) timed-action occurrences of state s. Furthermore, we define
PreActIndex(s) (resp. PostActIndex(s)) as the sum of the indexes of the set of preceding (resp.
succeeding) timed-action occurrences of state s. The sum corresponds to cases where branching in
the LTS allows some executions to go several times through alternative transitions out of some states.
Formally:

Definition 12 (Preceding Timed-Action Occurrences). Let < P, S, sg, A,C,—> be a timed-pLTS tran-
sition system. For s € S and a(p)'~l® € A, (p € P), the direct preceding timed-action occurrence of s
is defined as PreAct(s,s’) = {a_il|s’ Lo, s,a_i € Cy,} (8,8 € 8). The set of direct preceding timed-

action occurrences of s is defined as PreAct(s) = | PreAct(s,s’). Furthermore, we denote the index

s'es
of a preceding timed-action occurrence as PreActIndex(s,s’) = {i|s' Lo, s,a_i € Cy(s, s’ € 9)}, and
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Figure 11: Steps for generating the TS of a timed-pLTS

State Transition Occurrence Relations Index Assignment
C Crcm
So tr0 : 59 =5 59 =<9, 54 IR_m <?Cmd_n ftro:n=m+1
Cocm c,
S1 trl: sg =24 51 =5 59 Cmd n< 7_r ftr1:T7=n
Cy m C! oti . . . .
tr2 ;g —Cmd, g JNetv, o 7Cmd_n < Inotify i ftroiii=i4+1
C, oti fa C! oti . . . .
tr3 sy —otY, g 2 o Inotify i <!notify (i +1)
CiNoti C, . .
trd : sp oty S1 —> So Inotify i<7_r fira:Tr=n
ol e}
S tr5: 51 = 9 —5 5 T r=<IR_ m firs :m=r
C, Crac . . .
16 : 51 — 59 — 25 g9 T _r=<Tack_j ftre:j=5+1
Crack Crack . .
tr7 : sy Ak, g, 1Ak, o ?Ack _j < Tack _(j+1)
Crac C) .
tr8 : sp — 2, g5 = 5 ?Ack _j <R _m fors:m=r

Figure 12: Time assignment for the Timed-pLTS “Car.CommIni”

the sum of the indezes of a set of preceding timed-action occurrences of state s as

PreActIndex(s) = ), cg PreActIndex(s,s’).

Definition 13 (Succeeding Timed-Action Occurrences). Let < P, S, sg, A, C, —> be a timed-pLTS tran-
sition system. For s € S and oz(p)t“”’ € A, (p € P), the direct succeeding timed-action occurrence of
state s is defined as PostAct(s,s') = {a_ils Lo, s'a_ i€ Cy}, (5,8 €8). The set of direct succeeding
timed-action occurrences of state s is defined as PostAct(s) = |, og PostAct(s,s"). Furthermore, we de-
note the index of a succeeding timed-action occurrence as PostActIndex(s,s") = {i|s Lo, o, a_i € Cy},
(s,s' € 5), and the sum of the indexes of a set of succeeding timed-action occurrences of s as
PostActIndex(s) = ) cg PostActIndex(s, s').

6.2 Relations and assignment rules

The computation in Step 1 is based on a set of rules identifying specific configurations of the states in
the timed-pLTS traversal. For each such configuration, we define a rule that expresses the relation(s)
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between the set of preceding and succeeding clock occurrences of the current state, and the changes in
the clock occurrence indexes.

The main configurations are: initial state, in which we have to initialize indexes, and increase an
index each time the system goes through a new global round; standard state in which we register the
increase of one of the involved index; and looping states, in which we have to take care of guards for
entering/leaving loops, in terms of a specific “loop counter”.

We define a restrictive notion of looping state which are reasonable configurations for timed analysis.
A looping state may have one or more loops of arbitrary length, but coming back to the same state.
And each loop must start with a transition with a guard taking the precise form of a “loop counter”
control, namely [k=1; k++; k < kMax] for some counter variable k, in which kMax may be a positive
natural number, or a variable. Loop guards can share a loop counter (see e.g. Fig. , so several loops
will be executed the same number of times; but otherwise different loop counters must be independent.
Of course one could imagine more complex structures for our timed-pLTSs, but this restriction already
covers a lot of interesting cases, and make the generation of the Times Specification easier.

In these rules, for simplification, we represent relations on two sets (S; (resp. S2) is a set of occur-
rences of clocks): S; < Se means Va,,, € S1, 8, € Sa, A < Bn (m,n € N).

(1) Initial state. If PreAct(sg) ¢ @, then PreAct(sg) < PostAct(sg),
[ Assign: PostActIndex(sg) < PreActIndex(so)+ 1 ];

(2) Standard state. Vs\sg, PreAct(s) < PostAct(s),
[ Assign: PostActIndex(s) < PreActIndex(s) |;

(3) Looping state. Vs, if Ja.s Lo, 5 and the loop executes N times, then

(3.1) go inside the loop
PreAct(s) < a_t,
[ Assign: i := i+ 1]
(3.2) stay in loop,
a_i<a_ (i+1)

(3.3) leave loop:

(3.3.1) leave loop to another loop, e.g. 33.s L, (B_j € PostAct(s, s)\a_1):
oa_1<[_7,
[ Assign: j:=j+1]
(3.3.2) to one post-action out of PostAct(s, so) :
a_i < PostAct(s)\PostAct(s, so),
[ Assign:
PostActIndex(s) < PreActIndex(s)].
(3.3.3) to one post-action in PostAct(s, so):
a_1i < PostAct(s, so),
[ Assign:
PostActIndex(s) < PreActindex(s) + 1].

6.3 The Method for Generating Timed Specification

This subsection introduces a method of generating timed specification from timed-pLTS. We state two
algorithms and 4 steps.
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6.3.1 Step 1: generate occurrence relations table

AlgorithmI] uses the rules above to build an occurrence relation table. More precisely each row in the
table lists a specific pair of Pre/Post transitions of a state, with the corresponding occurrence relation
and index increase function deduced from the corresponding rule.

Algorithm 1 Generate occurrence relations table
Input: a timed-pLTS graph and rules.
Output: A table of occurrence relation with its index assignment function.

for each state s; in LTS graph do
for each pair (si,s2) such that s; G, S; Lz, sy do

insert a row with State = s;, Transition = s, &, S; 2N S9.
if s; = so AND s; has no self-loop then
apply case (1) rules, adding the relations and assignments in the corresponding rows.
end if
if s; # so AND s; has no self-loop then
apply case (2) rules
end if
if s; includes one self-loop then
if s; = s¢ then
apply case (1), (3.1), (3.2) and (3.3.3) rules
else
apply case (2), (3.1), (3.2) and (3.3.2) rules
end if
else
if s; = s¢ then
apply case (1), (3.1), (3.2), (3.3.1) and (3.3.3) rules
else
apply case (2), (3.1), (3.2), (3.3.1) and (3.3.2) rules
end if
end if
end for
end for

Commini

b= 1 k++; k€2]

Tr INotify i

[ki=1; k++; k< 2]
TAck_j

Figure 13: Simplification of CommIni component

Example 4. Let us take the “CommlIni” component from Fig. [ as an example. We first transform
Fig. [7 into Fig. by removing all parameters but adding index variables. Then we generate occurrence

relations for each state. For example, we take the state “so”, from the timed-pLTS graph we get transitions

S LN S0 Lromd, s1. According to the rule (1) we have \R_m <?Cmd_n and the assignment n = m+1

(n,m € N). Take the state s1 as another example. Since it includes a self-loop, we discuss apply the

RR n° 8526



18 Chen & Chen & Madelaine

rules (2), (3.1), (3.2) and (3.3.2). When a transition directly brings to next state without passing the
loop, according to the rule (2), we have the relation 7Cmd_n < 7_r and assignment r = n. When a
transition enters the loop, according to the rule (3.1), we have the relation 7Cmd_n < notify i and
assignment i :== i+ 1 (i € N). When a transition stays in the loop, according to the rule (3.2), we can
get the relation “Inotify i < notify i+ 1” (i € N). Then when a transition leaves the loop, according
to the rule (3.5.2), we have the relation !notify i <7 _r and the assignment r =n (r € N).

6.3.2 Step 2: Enumerate occurrence relations

Now we go through the symbolic occurrence table built in step 1 and build a “concrete” table in which
each column represents one specific “round” of execution through the symbolic table (with concrete
index assignments). In the concrete table the guards of the timed-pLTS can be resolved, so some of the
symbolic transitions (rows of the table) may be eliminated.

In the guards (including the loop control guards), there may be some parameters occurring in a
symbolic form. Before we run the algorithm in step 2, we need to instantiate these parameters, to be
able to compute the guards. In particular the maximum value of the loop counters (in our use-case,
corresponding to the number of neighbor cars) must be fixed.

Moreover, we must set a bound (N) to the number of rounds that we shall unfold in the algorithm.
This bound should be large enough for the generalization procedure in step 3 to work properly.

For each round of traveling, we compute a set of occurrence relations. The indexes of these occurrences
tell the (logical) times of the actions that have occurred till this round. For loops, the loop control guard
says that if a transition satisfies the initial condition “k = 17, then the transition goes into the loop. Each
time after executing the loop, the variable k increases by 1. Then the transition continues to execute the
loop till the condition k£ < kM az is not satisfied.

We present algorithm [2] to enumerate these relations. The results of the algorithm are illustrated in
the table in Fig. in which the r** column presents a set of occurrence relations in the round r, and
the j** rows presents a sequence of relations on two clock occurrences.

Example 5. Taoke the component “commlini” as an example, we enumerate its occurrence relations. Let

Starting from sg, we get the transition tr0 : so O, So Gremd, s1. From the first line of the Fig.

all occurrence index variables initially be O (m,n,r,4,j := 0) and the loop control variable k be 1 (k :=1).
we get n = 1 (because m = 0 and fi0 : m = m + 1) and so we get the relation 'R_0 < ?Cmd_ 1.

Then the transition goes to s1. Since k := 1, the transition goes into the self-loop. So we get the
Cr0mad s CiNotify
1

transition tr2 : sg
firs 11 =1+ 1) and then we get the relation 7Cmd_1 <!Notify 1. According to the loop control, we
know k increases by 1 (k++), so k = 2. Since the condition k < 2 still is satisfied, the transition goes

s1. From the third line of Fig. (12, we can compute i = 1 (because

CiNoti CiNoti
into the self-loop again. According to the transition tr3 : s; —— v, g ettty s1, then we get the

relation 'notify 1 <!notify 2. Then k increases by 1 (k++), so at this time k = 3 that cannot satisfy

Ci\Notify
_—

the condition k < 2. So the transition goes out of the loop, then we have trd : s, S1 G, Sg.
According to the table we know r = 1 (because fi.4 : 7 = n). Then the state so is similar as the
state s1. In the end of this inner loop we get the first column of the Fig. [I} Remark that the rows
corresponding to transitions trl and trb from Fig. have been eliminated in this process, because the
corresponding loops cannot exit immediately. Then by repeating the second round, third round, etc, we
can get the relations listed in the second column, the third column of Fig. etc., until we rich column

N.
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6.3.3 Step 3: Generalize the occurrence relations

In table in each line we get a sequence of occurrence relations. To induce the corresponding general
relation, we transfer the problem to finding a general formula for a sequence of nature numbers. We could
use here standard arithmetic method that are able to deduce polynomial formulas generating natural
number sequences. However, such a general approach would make difficult to estimate the minimum
number of unfoldings required for finding the general formula. But in fact, due to our hypothesis on the
independence of the loop control counters, the formula we seek here will be linear in the clock indexes,
and the length of unfolding may be estimated from the maximum value of the loop indexes. A proof of
this property, and a detailed estimation of the bound, is out of the scope of this paper. The result of
generalisation is shown in “column s” in Fig.

Example 6. Let us take the second line in the table[14] as an ezample. The sequence occurrence index of
the clock Corcuma s {1,2,3,...}. This sequence is generated by formula: a, = n. The sequence occurrence
index of the clock Cinotify is {1,3,5,...}, that is generated by a,, = 2n — 1. So in the second line, the
relation of the s round (Vs < 0)is 7Cmd_s <INotify_{2s — 1}.

Algorithm 2 Unfold occurrence relation table

Input: A symbolic occurrence table with a clock set C with n clocks. C = {C4,Cs,...Cy}

Output: enumerate occurrence relations of N rounds in the matrix RJj|[r], in which j is the index of rows
and r is the index of columns (rounds).

for each C; do
Indexof(C;) := 0 {initialisation}
end for
set var j, r :=0
var s := §
set var C, := anyone from PreAct(s)
set var Cjz := one from PostAct(s) that satisfies a certain guard
set var s’ — {s'|s Lo, s}

c
set var s «— {s"|s = §"'}

while » < N do
while C # 0 do
if s = s then
r+4;75:=0
end if
for each row in table do
it tr =5 o 5 £% ¢ then
Indexof(Cg) < compute by fi,
R[j]lr] = a_Indexof(Cy) < B_Indexof(Cg)
C—C—-Cy—0Cs

j++
s« s; 8 §"; " < one from PostAct(s) that satisfies a certain guard;
Ca = C@
Cp
Cﬁ = {Cg|s e SH}
end if
end for
end while
reset C with n clocks C' = {C4,Cs,...C,}
end while
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th

15 round 24 round 374 round stP round clock relations

IR_0 < ?Cmd_1 IR _1 < 7Cmd_2 \R_2 < ?7Cmd_3 IR (s —1) < 7Cmd_s Cip < c5SD
?2Cmd_1 < Inotify_1 ‘ ?Cmd_2 < notify_3 ‘ ‘ ?Cmd_3 < 'notify_5 ‘ 2Cmd_s < notify_(2s — 1) Cromd < c,{f{jfl}i
notify 1 <!notify 2 notify 3 <lnotify 4 Inotify 5 <!notify 6 notify (2s — 1) <!motify 2s ... C,{f(ftj}i} < C!Eifz}q,fy

Inotify 2 < T 1 Inotify 4 < T 2 notify 6 <7 3 notify 2s < T _s ,{nzjif < cr

T_1 < %ack_1 T_2 <%ack_3 T_3 <%ack_5 T_s <?ack_(2s — 1) Cr < 03/22?1}

7ack_1 < ?ack_2 ?ack_3 <7ack_4 ?ack_5 <Tack_6 Tack_(2s — 1) <Tack_2s cf2e-1) L cfzel
Pack_2 < IR_1 ?ack_4 <IR_2 ?ack_6 <!R_3 ?ack_2s <!R_s cﬁjjf;}; < Cg

Figure 14: Steps 2-3-4: Unfold rounds, generalize, and deduce clock relations

6.3.4 Step4: lifting to clock relations

In the last step, we lift the concurrence relations to clock relations, using the clock operators “lift” and
“filter” from definitions [3] and @l This step is straightforward, and the result is shown in the last column
of Fig.

7 Generating the timed specification of a timed-pNet

A timed-pNets node actually consists of a set of holes (J) with timed specifications (7'S;), synchronous
vectors (V;), and global clocks (Cg) generated from the synchronous vectors. Therefore, generating
the external timed specification for a timed-pNets node (called global timed specification T'S,) boils
down to compute the global clock relations from the local timed-specifications of its holes (T°S;) and the
coincidence relations deduced from the synchronous vectors (V;), using the properties on clock relations
from section Formally:

Definition 14 (Global Clock Relation Set). Given a timed-pNet T-pNets =< P, Ag,Cq, J, EJ, C~'J, R;, ‘_/ >

The global time specification of T-pNets is the pair < Cg,R¢g >, where R¢ is the Global Clock Relation
Set deduced from:

- all local clocks relations R; from its holes,

- the (coincidence) relations deduced from all its synchronization vectors
- symmetry and transitivity of coincidence, transitivity of precedence.

During this logical saturation process, it may happen that contradictory relations are deduced, when
2 clocks would be proved both coincident and precedent, or precedent both ways. This we call a conflict:

Definition 15 (Clock Conflicts). Given a timed specification < C, R >:

- two clocks C, and Cg in C are in_conflict if either Co = Cg A (Coq < CgUCg < Cy) € R or
Co<CaNCs<CheR

- the Global Clock Conflict Set of a timed-pNet is the set of pairs of clocks in conflict in its Global Clock
Relation Set.

Example 7. Let’s take Fig. @ as an example. From the user specification in emample@ (page m}, we
know the clock relations of these holes are:

{25s—1}sen 0{2871}S€N = C{2S}sEN 0{2571}561\1 < 0{25*1}55N 0{25}56N

Inotify

?ack )

i R{COMWJ’M} = {C?Cmd = C!notify ’ Inoti fy lnotify
2}, 25—1}, 25}, 2}, A(l
C?{azg €N7 Céazk: Jeen = C;{azg EN’ C;azll <= C!R = 07057131}

Inotify

m] C.

i R{Channethf[m]} = {Ccﬁnotify[m] = Cc.!notify[ <C ?notify[A<]l)}’

A1
4 R{ChannelAck[m]} = {Ccf?ack[m] < Cc.!ack:[m] < Cc.?(aik[m]}’
A(1)
L4 R{Com7rLRes[m]} == {C?notify[m] < C!ack[m] < C?notify[m] }
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Besides, we derive the clock relations from the synchronous communications defined by synchronous
vectors as:

— {2571}561\? _ —
g RVI - {C!notify - Cc.?notify[l] - "Otifyg1[1] }’

4 RV2 = {Cc.!notify[l] = C?notify[l] = Cnotifyg2[1] })
L4 RV3 = {C!ackm = Le?ackpy) = Cackgg[l] }:

{2s—1}
4 RV4 = {Cc.!ack[l] = C?ack = Cackg4[1] };

_ {2s},en _ —
i RV5 - {C!notify - Cc,?notify[z] - Cnotifygl[2] }7

4 RVG = {Cc.!notifym = C?notify[z] = Cnotifygz[z] };

L4 RV7 = {C!ack[z] — Lelackppy — ack93[2] };

4 RVg = {Cc.!ack[gl = ;s;g = Cackg4[2] }’
* Ry, = {Cromd = Cromdys }»
4 RVlO = {C!R = C!Rgs}'

Take e.g. the relation between the global clocks Cnotifyglm and Cm”fyﬁ[l]' They are generated by the
synchronous vectors Vi and Va, and we deduce, from the relations of hole ChannelNtfj1) and the rela-
tions of these two vectors, that:

Cnotifygl[l =(Rv,) Ce.tnotify, (R, b Cetnotifyy, =(Rvy) Onotifygzm; and conclude C’notifygl[ll <

] Channel Ntf[1

Cnotifyg2[l] -
The formal definition above is not very practical. We will show now that from a simple case analysis
on the interaction between the synchronization vectors, we can compute a set of global clock relations

that is sufficient to generate the Global Clock Relation Set. The following theorem defines the case

analysis procedure, and states its correctness (all relations computed are correct). The next theorem
will prove its completeness. In one particular case, this case analysis procedure may detect a local
conflict between two global actions, more precisely between two synchronization vectors representing
communication between the same 2 holes. In this case, we shall signal the conflict, but produce no
relations between these actions. Other types of conflicts could be created by configurations involving
more than 2 holes. These cannot be detected at the level of this case-analysis procedure; a full conflict
detection procedure is out of the scope of this paper.

Theorem 2 (Global clock relation analysis). Given a timed-pNet T-pNets =< P, Ag,Caq, J, /~1J7 5J, EJ, V>
Let H,, Hg, H, be three holes of T-pNets and Cy,,,Cu,,Ch, C éj be the sets of clocks of holes Hy,
Hg and H.. Let the clocks Cy,,Co, € Cn,, the clocks Cg,,Cp, € Cu,, the clock C,, € Cp. , with
Cu, N Cus N Cu, = @). For each pair of global clocks Cq,, and C,,,, we enumerate the pairs of syn-
chronization vectors able to generate them, and match them with the following cases (note that both pairs

(Cayi»Cayy) and (Co,,, Ca,, ) will be enumerated, so we do not consider symmetric conditions in the cases
below). Each match may add a clock relation in the Global Clock Relation Set R:

e (Casel:) If the global clocks C,,, and C,,, are generated from synchronous vectors
<...,Cq,...,C8,... > Oy, and
< "';Caza-'-acﬂza”' >— Cagz,
which are related to two holes C'gr, and C’Hﬁ as shown in Fig. (1), then

— if Co, = Coy N Cg, = Cp, then (Cagl = Cagz) eER .
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Case1
ko Case? Hy
C‘,I. C"xl C,b'l " -
o B C‘,I C)‘l
(1!3 C{fxg C,Bz C{fkg H,b' Cﬁxl
-
C
<iiiCaei Gy Co, Cpe A
Lo, Cuz ,,,,, C,b'z e | C"x! T, Cﬁ| ssss C)f, == C(fﬂ
<CoCparennsn.. >— C,,
Case 3 Case 4
H'b, Cﬁ C"xl CYl H y H,b' 'y C,b'
*
*
C,Iﬂ C C,b'|
L Ch.... == Cy
il 1y1 < Cﬁu ,,,,,,, - Ci,
Cgp Cypoen. >0 Cy, &1
C'g R Cﬁf,.

Figure 15: The 4 cases of theorem

— if Coy < Cay A Cp, < Cp, then (Cag1 < C(LQQ) eER.
—if Co, = Coy N Cp, = Cp, orif Coy = Cy, N Cp, < Cg, then conflict found.
e (Case2:) If the global clock C,,, and C,, are generated from the synchronous vectors
<...,Cp,...,Cy > C4,, and
<Ca,Csysenvyen. > Co,, which are related to three holes Cy,,, Cu, and Cy as shown in Fig.
then
—if 051 = Cﬁz then (Cagl = Cag?) €R,
— if Cs, < Cp, then (Cq,, < Cy,,) €R.
e (Case3:) If the global clock C,,, and C,,, are generated from the synchronous vectors
<...,Cp,...>> C4,, and
<...;,08ys.. 0,0 >— Cy,, as shown in Fig. (5’) then
— if Cg, = Cp, then (Co,, = C,,,) €R,
— if Cg, < Cp, then (Co,, < Cy,,) €R.
e (Case4:) If the global clock C,,, and C,,, are generated from the synchronous vectors
<...,Cp,...>=C4,, and < ...,Cg,,...,... > Cq,, as shown in Fig. (4) then
— Zf Oﬂl = 052 then (Cagl = Cag2) €ER,
—if Cﬁl = Cﬁ2 then (Cagl = Cag?) ER.

e (Otherwise) In any other case, this pair of clocks is NOT directly related in R

Proof. For each of the cases, we prove that the deduced relation is indeed correct with respect to definition

e

e Casel: From the two synchronous vectors < ...,Cy,,...,Cg,,... >— Cy,,
<.osCayye o Cpyy o >— Oy,
we know that C, = Cp, = C,,, and Cy, = Cp, = Cq,. (1) If Cy, = Co, A Cp, = Cg,, according

b

to the transitivity property of “=", we get the relation C,,, = C,,.
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(2) If Coy < Co, A Cp, < Cp,, then we have Cy,, = Co, < Cq, = C,,,. So using substitutivity of
= w.r.t. <, we get the relation Cp, < Cq,.

e Case2: From the two synchronous vectors < ...,Cp,,...,Cy, >— C,,,
and < Cy,,Cpys vy >— Oy,
we know that Cs = C,, = Cq,, and Cy, = Cp, = C,,,. (1) If C3, = Cpg,, then accord-
ing to the transitivity property of “=", we know that C,,, = Cq,,. (2) If C5 < Cpg,, since

C’ag1 =Cp <Cp, = C’agz, then we have the relation C’ag1 < C’%Q.

e Case3 and Case4: The proofs are similar to Case2.
O

Example 8. Let’s take again Fig. Ij as an example to compute the clock relation between Cnotifyﬂ[l]

and Coex, We know the two global actions are generated by the vectors

93 *
Vor < ... ; Cc.!notify[l]v SERE) C?notify[1]7 cee > Cnotifyﬁ[l] and
V% <y, C!ackm P CC.?ack[l]a N Cackgg[l] ’

so we are in case 2), and we know from TS{CommRES[I]} that C?mtifym < Clacky,, s0 we conclude

Cnotifyg2[l] < Cackg;;[l]-
Theorem 3 (Completeness). There ezist four and only four combinations of synchronous vectors, as
listed in Theorem [3, for deducing a relation between a pair of global clocks.

Proof. From the timed-pNets definition, we know that there are two ways to build a global clock: binary
communication and visibility. So there are 3 combinations:

(1) both global clocks are generated by binary communication
(2) one global clock is generated by binary communication and another one is generated by visibility
(3) both global clocks are generated by visibility

Now we analyze the three situations one by one.

Given a timed-pNet T-pNets =< P, Ag,Cg, J, g],é],ﬁ], V>,
(1) Let < ...,Cq,...,C3 > Cy1 and < ...,Cy,...,Cp >— Cyo (Ca, Cg, C4,Cp € Cy) be two
synchronous vectors generating the global clocks Cy1 and Cyo. Obviously the four local clocks Cy, Cg,
C,,C,, cannot be in one hole since the synchronous vectors build binary communications between holes.
If the four local clocks come from two holes, then the possible combinations are C, and C, are in one
hole, the other two are in another hole. Or C,, and C,, are in one hole, the other two are in another hole.
Case 1 of the theorem [2] covers the both situations. If the four local clocks come from three holes, then
any two local clocks that come from different synchronous vectors must be in one hole, and the rest two
local clocks are in other two different holes. For example, C, and C, are in one hole, the other two are
in other two holes separately. Case 2 of the theorem [2] covers the situation. Furthermore, the four local
clocks cannot be in 4 holes (or more than 4 holes), otherwise there is no local clock relations in R can
be used to deduce global clock relations, so no direct clock relation can be built between Cy; and Cys.
(2) Let <...,Cq,...,C3 > Cy1 and < ...,Cy,...,>— Cyo (Cy, Cg, C, € 5J) be two synchronous
vectors to generate the global clocks Cy; and Cyo. Similar to the proof in the previous situation, the three
local clocks cannot be in one hole and cannot be in 3 holes or more. So the only possible combination is
that C., is in the same hole that one of the others. Case 3 of the theorem [2| covers the situation.
(3) Let < ...,Cq,...,>= Cgp and < ..., C,,...,>— Cyo (Cq, C, € Cj) be two synchronous vectors
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to generate the global clocks Cy1 and Cy2. The two local clocks cannot be in 2 different holes, otherwise
there is no local relation can be find between them. So the only possible situation is the two local clocks
are in the same hole. Case 3 of the theorem [l covers the situation.

In conclusion, if the relation of two global clock Cy1, Cy2 € Cg can be deduced by the local clock relations
from R J, they must belong to one of the four cases of theorem O

8 Assembling a multi-layers timed-pNets system

After generating a timed specification for a timed-pNets node, we can use the generated timed specifi-
cation to prove that it would be compatible with the specification of a hole of a higher-level pNet. This
way, a layered tree structure can be built as shown in the Fig. In this structure, each layer uses an
abstraction of its lower layer. The clocks in the lower layer (at level N) are transparent to its abstract
layer (at level N+1) in which only holes with its timed specification (7'S;), synchronous vectors (V;) and
global clocks (Cj) can be seen.

TS 552 of timed-pNets node 2
c
94
TS TS,
Va
TSg, of timed-pNets node 1 \
C TS
a1 3 ¥
T34 v of hole 3 TS4
of hole 1 1 - of
timed-pLTS 4
Vo V3 o
Cg2 TSz 93
®of hole 2

TS) TSH TS3
of of of
timed-pLTS1 timed-pLTS2 timed-pLTS 3

Figure 16: Layered Structure

As we have already mentioned, this construction can be done in a very flexible way either bottom-up
or top-down. The result timed-pNet system can be open (if it still contains some unfilled holes at the
leaves), or closed if all holes are filled with timed-pNets and timed-pLTS.

Example 9. We now have all elements required for checking the compatibility of our timed-pLTSs with
the holes of the upper layer pNet. Let us look at “CommlIni” as an example:

{2s—1}sen
Inotify ’

0{25—1}seN = C{Qs}seN

- the relation set of the hole “CommlIni” for open timed-pNets is Rcommini = {Crcma < C

C{QS—l}seN ~ C{Qs}seN C{Qs—l}sel\' =< C{QS—l}seN C{Qs}seN ) C{QS}SEN

notify Inotify ? Inotify ?ack ’ notify Tack ’ ?Tack Tack ’
{2s}sen A1)
C?ack = CIR = C'?cmd ’

- the relation set of the “CommlIni” timed-pLTS component from Fig. as Remmini = 1C720md <

25—1}, s} 25—1}, 25}, Al
Cl{nostify} < C!{nost];sz = C?{ajk boen < C’}{ajg =<0 <Cp < C?cinil}'

Since we can easily get Ricomminiy € Reomminis according to Inclusion definition we have T'S{commini} <
TSt ommini - Therefore, from the compatibility definition, we know that the “CommlIni” timed-pLTS is
compatible with the hole “CommlIni”.
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The validations that have been defined in our paper, namely the compatibility of hole composition,
and the conflict detection between timed-pNets synchronization vectors, ensure some specific validity
properties of the global Time Specification of the system, as defined by Definition [I4] However, this does
not mean that there cannot be more complex conflicts in the interaction between more than 2 holes of
a timed-pNets, or more specific timed properties that can be computed from refined implementations of
some sub-nets. In the next section, we show how to use simulation with the TimeSquare tool, to address
such cases.

9 Simulation

In this section we explain how to use TimeSquare [DM12] to detect complex conflicts of timed-pNets.
Two inputs are required by TimeSquare (see the Fig. . One is an open timed-pNets system. Another
is a set of refined implementations. If a closed timed-pNets composed by those refined implementations
has no conflict, we say the closed timed-pNets is safe. Otherwise, the TimeSquare reports violations,
which means that conflicts exist in the closed timed-pNets system. Before running simulations, the two
inputs are translated into timed specifications that are acceptable format for TimeSquare. The way of
generating timed specification is described in section [6] and [7}

refined
implemetations

TiimeSquare

Figure 17: Property Checking by TimeSquare

opened
timed-pMets
system

9.1 Simulation 1:

o We take the system shown in the Fig. ] as an example. We first build an open timed-pNet node
with the timed specifications of holes ( T'S: T'S{commini}> T'S{ChanneiNtfim]}ys T'S{ChannelAckm]}s
T'S{CommRes[m]}) and synchronous vectors (V;), by which we can generate global clock relations
(we call it an abstract specification). From section [7] we can get the abstract specification TS, =<
CgaRg > with Rg = {C?Cmdgg, = Cnotifygl[m] < Cnotifyg2[m] < Cackgg[m] < Cackg4[m] < C!RQG;

< C’ackg4[2] }. Then we import the timed specifications of the

Cnotifygl < Onotifygllz]; Cackg4[1

[1] 1
refined implementations of those holes (7'S’: TS%Commlm}, TS%C,mnnethf[m]}, TS%ChamelAck[m]},
TSf{CommRes[m]}) to replace T'S. The timed-pNets node that composed by these refined imple-
mentations is called closed timed-pNets node. And its global clock relations is named concrete

specification TS;.

e Result of Simulation 1: The Fig. illustrates the concrete specification TS;. In this figure,
each line demonstrate a clock and the red arrows demonstrates the precedence relations. For
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simplification, here we represent two cycles of simulation. From the figure we can see that the
abstract specification T'S; is satisfied by the refined concrete system since we have T'S;, < T'S.

Cinatify

Figure 18: system’s specification checking

9.2 Simulation 2:

. . . 2s5—1 2s—1 2s
e In this simulation, we choose T'S{y;,jurcacomminiy = {Croma < C!{J\fotifi/ < C’?{Ack b C’!{Noiify =<
2s Al

C?{ACL =< Cig < Cngzd}’ TS%UpdatedemnRes[m]} = {C?Notifylnfo[m] = CE-’ECh(l’"/geh"fo[m] = C!ACk[m]}
and we add a synchronous vector between hole CommRes[1] and CommRes[2] to get a new re-
lation RVngw = {CE:I:ch,angelnfo[l] = CEm(zha7LgeI’rLfo[2] = CE(E(Z}L(LTLgelTLngll}' Obviously, the updated
implementation of hole CommliIni is compatible with the abstract timed specification of this hole
T'S{comminiy since we have T'S{commini} < TSf{Updatedcommfm}- And the same to the other two
holes CommRes[m] since we have T'S{comm Resjm]} < TSf{UpdatedcommRes[m]}.

o Result of simulation 2: By simulation, we found violations as shown in Fig[I9]

main::Ack_g3
main::Ack_g4

main:Ack_g7

main::Ack_g8

main::Ack_r

@@ Error during simulation

@, instep3:
@ There is a deadlock, no solution can be found

Reason:
There is a deadlock, no solution can be Found

| Details>> | oK
Figure 19: Conflict Detected

o Analyzing the result: By analyzing our updated closed timed-pNets, we found the conflict is caused
by a cycle represented in the Fig[20] In this Figure, according to the theorem [2] we can get the set
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of global relations as {CNotifygl[Z] < CNotinyQ[Q] =< CEzchangeInfoys = CAckg3[1] =< CACkg4[1] }. Obvi-
ously, relation {Cnotify,, 0 = C’Ackg4[1]} is hold in terms of the transitivity property of precedence
relations. However, by using the theorem [2 again, from the TS%UPdatedComm[m} we can get the
1] o OAC’“Q“[H}'

To fix the conflict, we need to find another implementation that still compatible with these holes

!
{UpdatedCommIni}

to TSj[FizedCommIni} = {C?Cmd = C'{I\Q/z;;z = C‘{]\izzfy = C;{flscgl} = Cjisc]l; = C!R = C7ACS7172d} And

relation {Cack,, . < Cnoti fygl[2]} which is contradict with the relation {Cnotify,,

but without making conflicts. For our example, we can just simply change the T'S

in the end, by simulation, no conflict exists any more.

C Notify C e
1
_Commlni a12] Nollf}'QZ 121 CommResi2]
ChannelNtf [2] c C exchangelnfo(2]
et c ] notifyiRi—4—
Inoitfy c.?notify[2] C ¢.Inotify[2] I Exchangelnfo g7
(]
osqy | Ceackii] C c.7hek(1] exchangelnfo[1]
{2s-1} ChannelAck[1] CommRes[1]
7ack C
c C lack[1]
Ackg4[1] Ackgs M

Figure 20: system’s specification checking

10 Conclusion

This paper proposed a flexible time-related behavioral semantic model (called Timed-pNets) for mod-
eling communication behavior of distributed systems. We specify a system with several components
and communications between them. We are able to build a hierarchical tree structure for composing
complicated component-based systems. The refinement and compatibility are considered in the paper.
An concrete example throughout the paper is given to represent how to build a hierarchical specification
and how to refine the system. In the end, we use TimeSquare to check the compatibility of the refined
system.

Three advantages are implied in our model: first, by introducing logical clock relations, timed-pNets
model is able to specify the system’s time-related communication behavior constrains without relying on
physical common clock; second, by using timed specifications, our model is easy to be composed and has
the capability of building a hierarchical structure; the last but not the least, our model can flexible model
heterogeneous communication including synchronous and asynchronous communications by introducing
channel LTS. We believe that the timed-pNets model is helpful for analyzing the time-related behaviors
for distributed systems including cyber physical systems.

After checking the system compatibility, another interesting point is to check system’s physical time
constrains such as deadline property that expresses whether system communications can be successfully
finished before a certain deadline. To check this, we shall choose a reference clock and specify the delay
constrains in terms of the reference clock. In this paper, even though we define delay variables for actions,
we do not provide a way to specify delay constrains here, because it is not a main topic for this paper.
In our future work we will extend the model for specifying the delay constrains and check system’s time
properties. Furthermore, we plan to extend the current model timed-pNets to a new duration-pNets so
that we can describe the system’s behaviors whose execution takes time. Meanwhile, we will propose
a way to define delay constrains for checking the system’s time properties. It also looks interesting to
translate our system to boolean automata to verify the system’s properties.
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11 Related work

Some formal models or frameworks with time constraints have been proposed to describe time systems.

Globally Asynchronous Locally Synchronous (GALS) [Cha84] is a model of computation that allows
to design computer systems consisting of several synchronous components interacting with each other
with asynchronous communication, e.g., FIFOs. It can be used both in software and hardware. In
software, these synchronous components usually are specified as Finite State Machines (FSMs) and the
asynchronous communication between them is modeled with a buffer [CGJT94]. The idea of the GALS
approach provides a methodology for combining concurrent embedded systems within loosely coupled
systems. Similar to the idea of GALS, M. Serrano designed the HipHop language [BNS11] that follows
the synchronous reactive model of the Multiclock Esterel [BS01] to specify reactive program by dealing
with abstract events and their reactions.

Our model partly takes this idea to specify both synchronous and asynchronous communication. The
main difference is that we specify the synchronous components as timed specifications (a set of clocks
and clock relations) instead of FSMs. Moreover, the synchronous communications are specified by the
coincidence relations between clocks that come from different timed specifications, while the asynchronous
communications are modeled by channels in which precedence relations are applied on two clocks.

Timed-automata [AD94] is famous for modeling the behavior of real-time systems. They provided a
simple and powerful way to annotate state transition graphs with time constraints using finitely real-value
clocks. Closure properties, decision problems as well as automatic verification of real-time requirements
were considered in timed-automata and supported by several tools like UPPAAL [BLLT95|. Timed-
automata can be a good reference for building and verifying timed models. However, the clocks in
timed-automata are a finite set of real-valued clocks whose values increase all with the same speed. This
feature does not help us to model systems consisting of independent-clock devices, since these clocks
from different devices may have different speed.

BIP [BBS06] is a framework for the incremental composition of heterogeneous components. It allows
building complex systems by thecoordinating the behavior of a set of atomic components. The method-
ology based on the theory that components are obtained as the superposition of three layers. The lowest
layer are the component behaviors that are described as automata extended with data and functions.
The intermediate layer includes a set of connectors describing the interactions between transitions of
the behaviors. The upper layer is a set of priority rules describing scheduling policies for interactions.
BIP encompasses heterogeneity. It provides a powerful mechanism for structuring interactions involv-
ing strong synchronization (rendezvous) or weak synchronization (broadcast). Synchronous execution is
characterized as a combination of properties of the three layers. However, modeling timed components
in BIP involves references to a specific “tick” port expressing the passage of (discrete) time, and such
“tick” events must be synchronized between various components of a system, before computing worst case
execution time (WCET) or task period properties. With contrast to this approach, we do not want to
assume the existence of a single reference clock, but rather let the various clocks as unrelated as possible.

Modeling and Analysis of Real-Time and Embedded System (MARTE)[www] is an special extension
of UML for modeling real-time embedded systems. It defines the standard model-based description for
real-time and embedded systems and provides facilities to annotate models with information required to
perform specific analysis. It supports modeling and analysis of component-based architectures, as well
as a variety of different computational paradigms (asynchronous, synchronous, and timed). Recently,
the idea of logical time and Clock Constraint Specification Language (CCSL) has been introduced into
MARTE for its extension of modeling distributed systems. So it can be used to check the communication
and causality path correctness by introducing event relations into models. However MARTE UML is
large and complex. It comprises many different concepts and semantics that we do not need. Since we
would like to keep the semantic as simple as possible, we choose pNet instead of MARTE to imply our
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idea.

Programming Temporally Integrated Distributed Embedded Systems (PTIDES) [ELM™12] serves as
a coordination language for model-based design of distributed real-time embedded systems. It extends
the discrete-event model of computation with a carefully chosen relationship between real time and
model time. PTIDES provides a framework for exploring a family of execution strategies for distributed
embedded systems so that it can directly confront the multiform nature of time in distributed systems.
Simulations of it can simultaneously have many time lines, with events that are logically or physically
placed on these time lines. As far as we know, they have some semantics for the interactions between
events to model the communications of distributed systems. However, we need more mature communi-
cation mechanism like asynchronous communication, broadcasting, as well as more compatible way of
modeling system, which are not yet supported in PTIDES.

Timed Petri nets (TdPNs) [VRAFECG99] is one of several mathematical modeling languages for the
description of distributed systems. It is widely used for the modeling and analysis of concurrent systems
with time-dependent behavior like communication systems. It includes a set of directed bipartite graphs,
in which the nodes represent transitions (i.e. events that may occur, signified by bars) and places (i.e.
conditions, signified by circles). The directed arcs describe which places are pre- and/or post- conditions
for which transitions (signified by arrows). Each arc associates with an interval (or bag of intervals).
In TdPNs, each token has an age. This age is initially set to a value belonging to the interval of the
arc which has produced it or set to zero if it belongs to the initial marking. Afterwards, ages of tokens
evolve synchronously with time. A transition may be fired if tokens with age belonging to the intervals
of its input arcs may be found in the current configuration. Compare to timed Petri nets we use a total
different way by means of label transition system (LTS) to model the system’s behavior. Our model graph
comprises some number of states, with arcs between them labeled by activities of the system. We choose
to model our system by means of action based LTS because: 1) Our goal is to check the correctness
of system’s communication behavior, not to verify the correctness of programming computations. So
we hide the unnecessary detail information like state variables, and just highlight the information that
related to communication behavior like actions. 2) By this way, we can easily model our system in a
compact and hierarchical way since the action based LTS do not show the details information of states
(each state is an abstract node).

Spatio-temporal consistence language (STeC) [Chel2], provides a location-triggered specification as
well as operational semantics and denotational semantics [WCZ13] for describing distributed system with
time and location constraints. Syntax and semantics of the language have been proposed to address the
issue of spatial-temporal consistence for real-time systems. The language specifies the time and location
constrains for each action, and then computes the execution time of processes. However, since our model
mainly focus on time properties, we set the information as parameters that are sent by physical part
of our system. Typically, in our use-case we sometimes need check car’s locations, but such data is not
treated at the same level as time information. This is quite different from what the STeC does by adding
location constrains. This way, we can separate our model from physical part of system and focus on
modeling the communication behavior of Cyber part.

These previous efforts are important since they provide crucial insights on building the timed-model
for real-time systems, or contribute to mechanisms and strategies that can be used to model our system.

Thanks. This work was partially funded by the INRIA Associated Team DAESD between INRIA and
ECNU; by NSFC (No. 61021004 and No. 61370100); by Shanghai Knowledge Service Platform Project
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