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Abstract—The Higher-Order Singular Value Decomposition
(HOSVD) is a possible generalization of the Singular Value
Decomposition (SVD) to tensors, which have been successfully
applied in various domains. Unfortunately, this decomposition
is computationally demanding. Indeed, the HOSVD of a N th-
order tensor involves the computation of the SVD of N matrices.
Previous works have shown that it is possible to reduce the
complexity of HOSVD for third-order structured tensors. These
methods exploit the columns redundancy, which is present in
the mode of structured tensors, especially in Hankel tensors. In
this paper, we propose to extend these results to fourth order
Hankel tensor. We propose two ways to extend Hankel structure
to fourth order tensors. For these two types of tensors, a method
to build a reordered mode is proposed, which highlights the
column redundancy and we derive a fast algorithm to compute
their HOSVD. Finally we show the benefit of our algorithms in
terms of complexity.

I. INTRODUCTION

An increasing number of signal processing applications

deal with multidimensional data like polarimetric STAP [1],

multidimensional harmonic retrieval [2] or MIMO coding [3].

The multilinear algebra [4], [5] provides a good framework to

exploit these data [6], [2] by conserving the multidimensional

structure of the information. Nevertheless, generalizing matrix-

based algorithms to the multilinear algebra framework is not

a trivial task. In particular, there is no multilinear extension

of the Singular Value Decomposition (SVD), having exactly

the same properties as the SVD. However, two main decom-

positions exist: Canonical Polyadic Decomposition (CPD) [7],

which conserves the rank properties of SVD and the unique-

ness properties, and the Higher Order Singular Value Decom-

position (HOSVD) [5], which keeps the orthogonality prop-

erties. HOSVD has been successfully applied in many fields

and/or applications such as image processing [8], ESPRIT [2],

ICA [9] and video compression [10].

In [5], it has been shown that the HOSVD of a N th-

order tensor involves the computation of the SVD of N

matrix unfoldings. As a consequence, the computational cost

of this algorithm is very high. In [11], it has been shown

that the complexity of this algorithm can be reduced for third

order structured tensors. These methods exploit the columns
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Figure 1. Representation of a fourth-order tensor with I4 third-order tensors.

redundancy, which is present in the mode of structured ten-

sors, including Hankel tensors. In particular, they require to

determine the column redundancy. This information can be

obtained through the building of a specific reordered tensor

unfolding.

Hankel tensors occur naturally in signal processing appli-

cations, such as the harmonic retrieval problem [12], [13] or

in the context of geoscience [14]. In this paper, we propose

to extend previous results [15] to fourth order Hankel tensors.

We propose two ways to extend Hankel structure to fourth

order tensors. For each, a method to build a reordered ten-

sor unfolding is proposed in order to highlight the column

redundancy. Then, we derive a fast algorithm to compute their

HOSVD. Finally we show the benefit of our algorithms in

terms of complexity.

The following convention is adopted: scalars are denoted as

italic letters, vectors as lower-case bold-face letters, matrices

as bold-face capitals, and tensors are written as bold-face

calligraphic letters. We use the superscripts H , for Hermitian

transposition and ∗, for complex conjugation. A permutation

of four elements is denoted π = (π1, π2, π3, π4), the inverse

permutation is denoted π−1.
II. PRELIMINARIES IN MULTILINEAR ALGEBRA

Let us consider a fourth-order tensor A ∈ C
I1×I2×I3×I4 and

Ai1,i2,i3,i4 its elements. The 4-mode tensor slices of A (ob-

tained by fixing one index) are denoted A:,:,:,i4 ∈ C
I1×I2×I3

(in this case the fourth index is fixed to i4). We recall that a

fourth-order tensor can be written as the concatenation of the

third-order tensors A:,:,:,i4 , for i4 ∈ {1 . . . I4} (see figure 1).

A. HOSVD

One of the extensions of the SVD to the tensor case is

given by the HOSVD [5]. A tensor A can be decomposed as



follows:

A = K×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4), (1)

where ∀n, U(n) ∈ C
In×In is a unitary matrix and where

K ∈ C
I1×I2×I3×I4 is the core tensor, which satisfies the

all-orthogonality conditions [5]. The matrix U
(n) is given by

the left singular matrix of the nth-dimension matrix unfolding

(also called n-mode), [A]n.

Thus, the calculation of the HOSVD of a fourth-order tensor

requires the computation of the left factor in the full SVD

of each [A]n. However, in many applications, a truncated

HOSVD is sufficient, which means that we compute only the

rn first columns of the matrix U
(n) (where rn = rank([A]n)

is the n rank of A). The computational cost of the full and

rank-truncated HOSVD is summarized in table I.

Table I
HOSVD FOR UNSTRUCTURED TENSORS, I = 1

4
(I1 + I2 + I3 + I4),

R = 1
4
(r1 + r2 + r3 + r4)

Operation Cost per iteration

Full HOSVD Truncated HOSVD

SVD of [A]1 4I21 I2I3I4 4r1I1I2I3I4
SVD of [A]2 4I22 I1I3I4 4r2I1I2I3I4
SVD of [A]3 4I23 I1I2I4 4r3I1I2I3I4
SVD of [A]4 4I24 I1I2I3 4r4I1I2I3I4
Global cost 16II1I2I3I4 16RI1I2I3I4

B. Structured tensors

Definition 2.1 (Hankel tensors): A Hankel tensor is a struc-

tured tensor whose coefficients Ai1,i2,i3,i4 depend only on

i1+ i2+ i3+ i4. In other words the coefficients can be written

as Ai1,i2,i3,i4 = ai1+i2+i3+i4 .

Example 2.1 (Harmonic retrieval : single-channel case):

Let us consider N samples of a times series xn,

n ∈ {1, . . . , N} modeled as a finite sum of K exponentially

damped complex sinusoids [16]

xn =

P
∑

p=1

ape
jφpe(−αp+jωp)tn (2)

where the ap are the amplitudes, φp the phases, αp the

damping factors and ωp the pulsations. tn = n∆t is the time

lapse between the time origin and the sample xn and ∆t is

the sampling time interval. For example, this type of data can

model a sum of signals in one channel [16]. These data may

be arranged in a fourth-order tensor X ∈ C
I1×I2×I3×I4

Xi1+1,i2+1,i3+1,i4+1 = xi1+i2+i3+i4−4, (3)

under the constraint that I1+ I2+ I3+ I4 = N +3 According

to this definition, X is Hankel. The HOSVD of X is useful

in order to estimate the pulsations with methods such as

ESPRIT [2].

Definition 2.2 (Block-Hankel tensors): A block-Hankel

tensor is a structured tensor whose 4-mode tensor slices (for

a given dimension) A:,:,:,i4 are Hankel, which means the

coefficient can be written as Ai1,i2,i3,i4 = a
(i4)
i1+i2+i3

.

Example 2.2 (Harmonic retrieval : multi-channel case):

We consider the same case as example 2.1 with several

channels x
(q)
n , q ∈ {1 . . . Q}

x(q)
n =

P
∑

p=1

a(q)p ejφ
(q)
p e(−αp+jωp)tn (4)

Each channel can be folded as third-order tensor [13]

X
(q)
i1+1,i2+1,i3+1 = x

(q)
i1+i2+i3−3, (5)

under the constraint that I1 + I2 + I3+ = N + 2. Note

that X
(q)

is a Hankel tensor for all q. Finally the tensor

Y ∈ C
I1×I2×I3×Q, which contains the contribution of all

channels is built concatenating the Q tensors X
(q)

:

Y:,:,:,q = X
(q). (6)

This tensor has a block-Hankel structure. Its HOSVD is needed

in order to estimate the pulsations ωp.

III. REORDERED TENSOR UNFOLDING

A. Oblique submatrices of a tensor

In order to derive fast algorithms, it is necessary to define a

reordered mode which exploits the structure of the tensors.

In this way, we propose to extend the notion of oblique

submatrices introduced in [11] to fourth-order tensors.
Definition 3.1 (Oblique submatrices of a tensor): For any

permutation π the oblique submatrices of a tensor A are
defined as follows. For all k ∈ {0, . . . , Iπ2 + Iπ3 − 2} let

J
(π)(k) = min(Iπ2 , Iπ3 , 1 + k, Iπ2 + Iπ3 − 1− k). (7)

For all iπ4
∈ {1 . . . Iπ4

}, the coefficients of the Iπ1
× J (π)(k)

oblique submatrix of A are

R
(π)
k,i4

(i, j) = Aπ−1(i,max(k−Iπ3
,1)+j−1,min(k,Iπ3

)−j+1,iπ4
) (8)

An example of these matrices is shown on figure 2.

This definition is linked to the type-2 submatrices of a 3rd-

order tensor introduced in [11] : for each iπ4 the matrices

R
(π)
k,iπ4

are the oblique submatrices of the 3rd-order tensor

Aπ−1(:,:,:,iπ4 )
∈ C

Iπ1
×Iπ2

×Iπ3 .

Proposition 3.1: If A is a Hankel or a block Hankel tensor,

then all columns of each oblique submatrix R
(π)
k,i4

are the same.

Proof: Hence A is Hankel (or block Hankel), Ai1,i2,i3,i4

is of the form Ai1,i2,i3,i4 = ai1+i2+i3+i4 (or Ai1,i2,i3,i4 =

a
(i4)
i1+i2+i3

). Then R
(π)
k,i4

(i, j) = a(i+max(k−Iπ3
,1)+min(k,Iπ3

)+i4

(or R
(π)
k,i4

(i, j) = a
(i4)
(i+max(k−Iπ3 ,1)+min(k,Iπ3 )

) which does not

depend on j.

B. Reordered tensor unfolding

Using the previous definition of oblique submatrices, it is

then possible to define a reordered tensor unfolding, which

highlights the columns redundancy of Hankel (and block

Hankel) tensors.

Definition 3.2 (Reordered tensor unfolding): For a tensor

A, the reordered tensor unfolding along the π1 dimension,



Figure 2. Representation of oblique submatrices of the 4-mode tensor slice
Aπ−1(:,:,:,iπ4

)

denoted [A]′π1
is defined by concatenating all the oblique sub-

matrices for a given permutation π. In other words, the matrix

[A]′π1
contains all matrices R

(π)
k,i4

for all k ∈ {0, . . . , Iπ2
+

Iπ3 − 2}, iπ4 ∈ {1 . . . Iπ4}.

For each value of iπ4
, the set of R

(π)
k,i4

(for all k ∈
{0, . . . , Iπ2

+ Iπ3
− 2}) contains all the columns of

[Aπ−1(:,:,:,iπ4
)]π1

(see [11] for details). Then it is clear that

[A]′π1
contains the same columns as [A]π1

. Therefore the left

singular factor in the SVD of [A]′π1
is the same as in the SVD

of [A]π1 .

Example 3.1: Consider the 2×3×3×2 Hankel tensor given

by Ai1,i2,i3,i4 = i1+ i2+ i3+ i4. The classic 1-mode is given

by:

[A]1 =
[

[A:,:,:,1]1 [A:,:,:,2]1
]

(9)

with

[A:,:,:,1]1 =

[

4 5 6 5 6 7 6 7 8
5 6 7 6 7 8 7 8 9

]

(10)

and

[A:,:,:,2]1 =

[

5 6 7 6 7 8 7 8 9
6 7 8 7 8 9 8 9 10

]

. (11)

The reordered 1-mode unfolding is equal to :

[A]′1 =

[[
4
5

]

︸ ︷︷ ︸

R0,1

[
5 5
6 6

]

︸ ︷︷ ︸

R1,1

[
6 6 6
7 7 7

]

︸ ︷︷ ︸

R2,1

[
7 7
8 8

]

︸ ︷︷ ︸

R3,1

[
8
9

]

︸ ︷︷ ︸

R4,1

[
5
6

]

︸ ︷︷ ︸

R0,2

[
6 6
7 7

]

︸ ︷︷ ︸

R1,2

[
7 7 7
8 8 8

]

︸ ︷︷ ︸

R2,2

[
8 8
9 9

]

︸ ︷︷ ︸

R3,2

[
9
10

]

︸ ︷︷ ︸

R4,2

]

(12)

IV. FAST MULTILINEAR SVD FOR 4th ORDER HANKEL

TENSORS

A. Algorithms exploiting column-redundancy

The fast multilinear SVD relies on algorithms exploiting

column-redundancy as it was shown in [11]. Let us consider

the unfolding of a tensor A ∈ C
I1×I2×I3×I4 in the nth

dimension, [A]n ∈ C
In×

∏
k 6=n

Ik . We assume [A]n contains

column-redundancy.

Figure 3. Number of occurrences g
(π)
k,iπ4

of the columns G
(π)
iπ4

(:, k) for

k ∈ {1, . . . , J(π)} in the matrix
[

A:,:,:,iπ4

]

π1.

We define the In × Jn matrix Hn as the matrix obtained

by removing the repeated columns in the n-mode (Jn ≤
∏

k 6=n Ik), and we denote d
(n)
k the number of occurrences of

the kth column of Hn in the n-mode. It is clear that :

[A]n[A]Hn = HnD
2
nH

H
n (13)

where Dn = diag(

√

d
(n)
1 . . .

√

d
(n)
Jn

). This equality allows to

prove that HnDn and [A]n have the same left factors. Thanks

to the smaller dimensions of HnDn it is then possible to

derive fast multilinear SVD algorithms for structured tensors.

However, a method need to be provided to compute Hn and

Dn.

B. Hankel tensor

For all i4 ∈ {1 . . . I4}, k ∈ {0, . . . , Iπ2 + Iπ3 − 2} and for

all permutation π, the proposition 3.1 shows that all columns

of R
(π)
k,i4

are equal. Using this property, it is possible to derive

the nonredundant matrix Hπ1 and the weighting factors d
(π)
k

for the unfolding tensor [A]π1
.

First, it is possible to calculate the column redundancy for

each matrix
[

A:,:,:,iπ4

]

π1
(which is the 1-mode of the 4-mode

tensor slice Aπ−1(:,:,:,iπ4
)).

• The nonredundant matrix, denoted G
(π)
iπ4

∈ C
Iπ1

×J(π)

with J (π) = Iπ2 + Iπ3 − 1 is obtained by concate-

nating the first column of each matrix R
(π)
k,i4

for all

k ∈ {0, . . . , Iπ2
+ Iπ3

− 2} and for iπ4
set.

• The weighting factors g
(π)
k,iπ4

are the number of columns

of the matrices R
(π)
k,i4

, which is equal to J (π)(k) for each

k ∈ {0, . . . , Iπ2 + Iπ3 −2}. It can be rewritten as follows
(see also figure 3):

g
(π)
k,iπ4

=







1 + k if 1 ≤ 1 + k < min(Iπ2 , Iπ3)
min(Iπ2 , Iπ3)
if min(Iπ2 , Iπ3) ≤ 1 + k ≤ max(Iπ2 , Iπ3)

J(π)
− k if max(Iπ2 , Iπ3) ≤ 1 + k ≤ J(π)

(14)

Hence, since J (π) does not depend on iπ4
, the coefficient

g
(π)
k,iπ4

= g
(π)
k are equal for all values of iπ4

. These remarks

are true for both Hankel and block Hankel tensors. However,

the rest of the derivation will differ.

1) Block Hankel tensors: In this case, the matrices G
(π)
iπ4

are different for each values of iπ4 (especially they have no

columns in common) since G
(π)
iπ4

(i, k + 1) = a
(iπ4 )

i+k . Then



the matrix Hπ1
and the weighting factors d

(π)
k are obtained

by concatenating the matrices G
(π)
iπ4

and the weighting factors

g
(π)
k,iπ4

for all iπ4
∈ {1 . . . Iπ4

}. Finally the dimensions of the

matrix Hπ1 are Iπ1 × Iπ4J
(π).

2) Hankel tensors: In this case, the matrices G
(π)
iπ4

have

some columns in common. First, the number of different

columns in [A]′π1
is equal to L(π) = Iπ2

+ Iπ3
+ Iπ4

−2 since

the values of iπ2
+iπ3

+iπ4
are between 3 and Iπ2

+Iπ3
+Iπ4

.

The dimensions of Hπ1 are then equal to Iπ1 × L(π).

Then the redundancy between the matrices G
(π)
iπ4

can be

calculated, using G
(π)
iπ4

+1(i, k) = ai+k+iπ4+1 = G
(π)
iπ4

(i, k +

1). In other words, it means the matrices Giπ4
+1 and Giπ4

can be written as follows:

Giπ4
= [g1, . . . ,gJ(π) ] (15)

Giπ4+1 =
[
g2, . . . ,gJ(π) ,g

′

1

]
(16)

Thanks to this remark, it is possible to build the non
redundant matrix Hπ1

for the mode [A]π1
by concatenating

the matrix G
(π)
1 and the last columns of the matrices G

(π)
iπ4

for

iπ4
∈ {2 . . . Iπ4

}

Hπ1(i, l) =

{

G
(π)
1 (i, l) if l ≤ J(π)

G
(π)

l−J(π)+1
(i, J(π)) if J(π)

≤ l ≤ Iπ4

(17)

We can also determine in how many matrices G
(π)
iπ4

appears

each column of Hπ1 :

rl =







l if 1 ≤ l < min(Iπ4 , J
(π))

min(Iπ4 , J
(π))

if min(Iπ4 , J
(π)) ≤ l ≤ L(π)

−min(Iπ4 , J
(π)))

L(π)
− l else

(18)

Finally the factors d
(π)
l are obtained by combining equations

(18) and (14) :

d
(π)
l =

min(Iπ4 ,J(π))
∑

j=min(Iπ4
,J(π))−rl

g
(π)
j (19)

3) Comparison of the complexities: Thanks to the previous

results, the computation of the HOSVD of a Hankel or block

Hankel relies on the SVD of H1D1, H2D2, H3D3 and

H4D4. The costs of these fast algorithms are summarized in

table II. We notice that this method allows a reduction of the

complexity of one order of magnitude for Hankel block tensors

and two orders of magnitude for Hankel tensors compared to

the classic algorithm presented in table I.

Table II
FAST HOSVD FOR HANKEL AND BLOCK HANKEL TENSORS.

Operation Cost per iteration

Hankel Block Hankel

SVD of [A]1 4r1I1(I2 + I3 + I4) 4r1I1I4(I2 + I3)
SVD of [A]2 4r2I2(I1 + I3 + I4) 4r2I2I4(I1 + I3)
SVD of [A]3 4r3I3(I1 + I2 + I4) 4r3I3I4(I1 + I2)
SVD of [A]4 4r4I4(I1 + I2 + I3) 4r4I4I3(I1 + I2)

Global cost for cube tensor 48RI2 24RI3

V. CONCLUSION

In this paper, we extended the previous results on third-

order Hankel tensors to fourth order Hankel and block Hankel

tensors. The reordered tensor unfolding, which highlights the

column redundancy, has been detailed for these two types

of tensors. Then a fast algorithm to compute their HOSVD

has been proposed. Finally the benefit in terms of complexity

of our algorithms has been evaluated: the reduction of the

complexity is one order of magnitude for Hankel block tensors

and two orders of magnitude for Hankel tensors. These results

shows the interest of our approach. It could also be interesting

to consider other fourth-order structured tensors like Hermitian

or Toeplitz tensors.
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