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Université de Nice–Sophia Antipolis, UFR Sciences
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Abstract: Relativistic pentametric coordinates supplied by relativistic auto-locating

positioning systems made up of four satellites supplemented by a fifth one are defined in

addition to the well-known emission and reception coordinates. Such a constellation of five

satellites defines a so-called relativistic localizing system. The determination of such systems

is motivated by the need to not only locate (within a grid) users utilizing receivers but, more

generally, to localize any spacetime event. The angles measured on the celestial spheres of the

five satellites enter into the definition. Therefore, there are, up to scalings, intrinsic physical

coordinates related to the underlying conformal structure of spacetime. Moreover, they indicate

that spacetime must be endowed everywhere with a local projective geometry characteristic of

a so-called generalized Cartan space locally modeled on four-dimensional, real projective space.

The particular process of localization providing the relativistic pentametric coordinates is based,

in a way, on an enhanced notion of parallax in space and time generalizing the usual parallax

restricted to space only.
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1. A Protocol Implemented by Users to Localize Events

Almost simultaneously, Bahder [1], Blagojević et al. [2], Coll [3] and Rovelli [4] laid, from

different approaches, the foundations of the relativistic positioning systems (RPS) and,
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in particular, following Coll’s terminology,2 “primary” RPSs, i.e., RPSs which satisfy the

three following criteria: they are 1) “generic,” i.e., the system of coordinates they provide

must exist independently of the spacetime geometry for each given class of spacetime, 2)

they are “free,” i.e., their structures do not need the knowledge of the gravitational field,

and 3) they are “immediate,” i.e., the users know their positions without delay at the

instant they receive the four “time stamps τα” sent by the four emitting satellites of the

RPS satellite constellation.

Among this set of primary RPSs, there exists the sub-class of the so-called “auto-

locating RPSs,” i.e., those RPSs in which each satellite broadcasts its own time stamp

but also the time stamps it receives from its neighboring satellites. The SYPOR system

(“SYstème de POsitionnement Relativiste”), developed by Coll and Tarantola [5], belongs

to this category, but we ask, more generally, for an enhanced RPS and a supplementary

protocol to allow any located user to localize any event in the spacetime region covered

by this particular enhanced RPS.

We make the following strict distinction between location and localization. To locate

an event, a protocol (of location) is needed to build a coordinate grid, and then, to position

this event in this grid once the coordinates of this event are known. To localize an event, a

protocol (of localization) is needed that effectively obtains the coordinates of the event to

be then, only, located in a given coordinate grid. Auto-locating positioning systems only

allow building the coordinate grids from the users’ knowledge of the satellites’ worldlines,

and then, to position the users in these grids, but they do not supply the coordinates of

events. Upstream, non auto-locating systems only allow knowing the users’ coordinates

but without location and, more generally, without localization of events in the users’

surroundings.

Furthermore, downstream, the sub-class of the so-called “autonomous systems,” con-

tained in the sub-class of auto-locating systems, includes those auto-locating systems

allowing, from “autonomous data,” the users to draw (from Coll’s definition [3]) the

satellites’ worldlines in the spacetime where these users are living. Beside, we consider

rather another sub-class contained in the sub-class of auto-locating systems, namely, the

sub-class of “relativistic localizing systems” of which the satellites broadcast also, in ad-

dition to their time stamps, data to localize events. In the present paper, we define such a

relativistic localizing system made up of four satellites constituting an auto-locating sys-

tem supplemented by an ancillary fifth satellite providing data (actually, supplementary

time stamps) to localize events. These five satellites can define five different auto-locating

systems connected by ten changes of coordinate grids but only one of the five is required

to operate.

Besides, the goal for seeking such an enhanced RPS, viz., a relativistic localizing

system, provided with a tracking, localizing protocol is also to find a process to break

the underlying arbitrariness in scaling that is due, in a way, to the arbitrary choice

2 Throughout the present paper, we use terms such as primary, local, intrinsic, location system, reference

system, positioning system, auto-locating system, autonomous system or data, laws of physics, emission

and reception coordinates, etc., as defined in [3]
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of time parameterizations of the satellites’ worldlines. Indeed, the satellites of a given

RPS satellite constellation can broadcast time stamps defined not only by their own

proper times given by on-board clocks, but, more generally, by any “numbered events

generator” (such as proper time clocks) not necessarily synchronized with their proper

times. Thus, any time parameterization can be defined, in particular, affinely from any

other given time parameterization. In other words, the links between, on the one hand,

the conformal structure of spacetime with, behind it, the time parameterization scalings

and, on the other hand, the time parameterizations of the satellites’ worldlines must be

questioned, technologically unveiled, and then fixed by a particular enhanced RPS. By

“fixed,” we mean that the enhanced RPS should be “sensitive” to the conformal structure

of spacetime and then, in particular, sensitive to any scaling change of the Lorentzian

metric defined on spacetime. But, it should also provide a univocal linkage with the

conformal structure and, in addition, this linkage must be unaffected by the changes in

the time parameterization along the satellites’ worldlines.

Furthermore, the conformal structure of spacetime can be deduced from the causal

axiomatics as shown, historically, for instance, by Ehlers et al. [6], Hawking et al. [7],

Kronheimer et al. [8], Malament [9], or Woodhouse [10]. As a consequence, the chrono-

logical order, i.e., the history in spacetime, is not affected by scalings of the Lorentzian

metric. Hence, the changes of coordinates in spacetime which are compatible with the

chronological order transform the Lorentzian metric up to scalings, i.e., up to functional

conformal factors. Then, the Lorentzian metric is said to be “conformally equivariant.”

As a consequence of this conformal structure, only the generators of the null cones and

not their constitutive sets of points (events) are then the intrinsic, hybrid, and causal ob-

jets intertwining physics and geometry that should be used in the geometrical statements

of the laws of physics. And then the events should be only considered as the intersection

points of congruences of such generators.

Hence, intrinsic (physical) observables and “genuine, causal processes” such as the

location protocols must be unaffected by metric scalings, i.e., metric scalings are not in-

trinsic. Also, coordinate systems such as emission or reception coordinates which can be

subjected to scalings due to changes of time parameterization of, for instance, the satel-

lites’ worldlines, are then also not intrinsic. Therefore, we must, somehow, discriminate

in any given coordinate system its intrinsic part from its “scaling sensitive,” non-intrinsic

part. Actually, an auto-locating system cannot provide such a discrimination, as will be

shown in what follows. A fifth satellite must be attached to this positioning system. Us-

ing a metaphor, this fifth satellite is a sort of cursor indicating the scale of the positioning

system from which an intrinsic part alone can be excerpted. Moreover, this intrinsic part

cannot provide by itself a complete, functional coordinate system.

Angles on a celestial sphere are such intrinsic observables compatible with the con-

formal structure of spacetime. But, their evaluations from a causal (intrinsic) process

of measurement need a particular protocol if an auto-locating system only is involved.

Such a protocol is presented in the next sections using emission coordinates with a fifth

satellite. In return, we obtain, from the emission coordinates provided by this particular
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five-satellite constellation, a local relativistic localizing system defined with new coordi-

nates, namely, the “relativistic pentametric coordinates.” As a result, we gain much more

than a “mere” auto-locating system with a fifth satellite since not only location is then

available but localization, in addition, becomes available. Also, a “pentametric grid” is

obtained and linked to the emission grid provided by the auto-locating sub-system. Fur-

thermore, it appears that spacetime must be embedded in a five-dimensional, intermedi-

ate manifold in which spacetime must be considered locally as a four-dimensional, real

projective space, i.e., spacetime is then a generalized Cartan space “modeled” on a pro-

jective space. Thus, we obtain a local, projective description of the spacetime geometry.

Nevertheless, we have, in return, access to the “genuine” Riemannian four-dimensional

spacetime structure without the need for any autonomous sub-system unless considering

that the five-satellite constellation constitutes a sort of “enhanced autonomous system.”

This kind of protocol can be called a relativistic pentametric protocol [3].

In the next sections, we present such a complete protocol. It has two major flaws

which we nevertheless think are unavoidable: its implementation is complicated and may

be immediate only in some very particular situations or regions covered by the RPS

depending on the localized events. In full generality, obviously, it cannot be immediate,

because the satellites of any constellation must “wait” for the signals coming from the

source event which will be later localized. Nevertheless, it really breaks the scaling

arbitrariness and provides access to the spacetime M as expected.

The results presented in the next sections are given when increasing successively

the dimension of spacetime. Thus, in Section 2., the relativistic localizing protocol is

applied in a two-dimensional spacetime. In this particular case only, the relativistic

localizing system essentially reduces to the relativistic positioning system itself with a

relativistic stereometric protocol. In Section 3., all of the basic grounds and principles

of the localizing process with a relativistic quadrometric protocol are presented in a

three-dimensional spacetime. Then, they are naturally generalized in Section 4. to a

four-dimensional spacetime and a relativistic pentametric protocol before ending with

the conclusion in Section 5..

2. The Protocol of Localization in a (1 + 1)-dimensional Space-

time M

In this situation, the protocol is rather simple. We recall, first, the principles for relativis-

tic positioning with a two-dimensional auto-locating system. We consider two emitters,

namely, E1 and E2 and a user U with their respective (time-like) worldlines W1, W2 and

WU . The two emitters broadcast emission coordinates which are two time stamps τ1
and τ2 generated by on-board clocks, and then the two-dimensional emission grid can be

constructed from this RPS.

More precisely, the principles of positioning and construction of the emission grid

are the following [1, 11, 12, 4, 13, 14]. Firstly, the two emitters not only broadcast

their own time stamps, viz., τi for Ei (i = 1, 2), but also the time stamps they receive
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from the other. Hence, each time stamp received by an emitter along his worldline is

immediately broadcast again with the time stamp of reception. For instance, from Fig. 1,

the emitter E1 receives at E1 on W1, the time stamp τ−2 from E2, and also, simultaneously,

it broadcast τ−2 with its own time stamp τ+1 ; both received by the user at U2. Secondly,

the user receives at this event U2 four time stamps: two emitted at E1 by E1, viz., (τ+1 , τ−2 ),
and two others emitted at E2 by E2, viz., (τ−1 , τ+2 ). As a result, the user can deduce his

own spacetime position (τ+1 , τ
+
2 ) at the event U2, but also, the spacetime positions of the

two emitters at E1 and E2, viz., (τ
+
1 , τ

−
2 ) and (τ−1 , τ

+
2 ) respectively. Then, the user can

continuously deduce his spacetime position in the emission grid all along his worldline

and the worldlines of the two emitters as well (Fig. 2). Consequently, if the trajectories

of the emitters are known in a given system of reference, then the trajectory and the

positions of the user are also known in this reference frame.

This process of positioning can be easily generalized in a four-dimensional spacetime.

In this case, there are four emitters. Each emitter broadcast four time stamps of which

three of them are received from the three other emitters. As a result, the user receives

16 times stamps emitted at four events on the worldlines of the emitters. Then, if the

system of reference is the CTRS (Conventional Terrestrial Reference System) or the ITRF

(International Terrestrial Reference Frame) for instance, the user can know his position

on earth, and the positions of the emitters as well with respect to the Earth surface or

geoid.

Now, the process of localization of an event e is the following. From a system of

echoes (Fig. 1), the user at the events U1 ∈ WU and U2 ∈ WU receives respectively four

numbers: (τ •1 , τ
•
2 ) from E• and (τ−1 , τ

+
2 ) from E2. In addition, from this RPS, the user

can also know in this emission grid the two events E• and E2 at which the two emitters

sent these four time stamps viz, E• ≡ (τ •1 , τ
•
2 ) and E2 ≡ (τ−1 , τ

+
2 ).

Then, let e be an event in the domain covered by the RPS (mainly between the two

worldlines W1 and W2). This event can be at the intersection point of the two light rays

received by E1 and E2 at the events E• and E2 (see Fig. 1). Hence, the position of e in

the emission grid is easily deduced by U if 1) U records (τ •1 , τ
•
2 ) and (τ−1 , τ

+
2 ) along WU ,

and 2) a physical identifier for e is added at E• and E2 to each pair of time stamps to

be matched by U . Thus, in the particular case of two dimensions, the emission grid is

identified with the stereometric grid and, as a consequence, the stereometric coordinates

are also identified with the emission coordinates.

3. The Protocol of Localization in a (2 + 1)-dimensional Space-

time M Modeled on RP 3

In this case, the complexity of the protocol of localization increases “dramatically.” Again,

we consider three emitters E , Ẽ and Ê transmiting three sets of time stamps denoted,

respectively, by τ , τ̃ and τ̂ . Then, the emission grid is the Euclidean space R
3 with the

system of Cartesian emission coordinates (τ, τ̃ , τ̂). Then, we consider, first, the system

of echoes from E to the user U . This system can be outlined as indicated in Fig. 3.
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Fig. 1 The system of echoes in a two-dimensional spacetime.

Fig. 2 The two-dimensional emission/stereometric grid.

In this figure, the four past null cones of the four events E, Ẽ ′, Ê ′ and U are repre-

sented and the time axis is oriented vertically from the bottom to the top of the figure.

Also, we denote by UW , W , W̃ and Ŵ the worldlines of, respectively, the user U and the

emitters E , Ẽ and Ê .
Then, the user receives at the reception event U ∈ UW seven time stamps sent by E
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Fig. 3 The system of echoes with four past null cones.

and emitted at the event of emission E ∈ W : (τ1, (τ̃
τ
1 , τ̃

τ
2 , τ̃

τ
3 ), (τ̂

τ
1 , τ̂

τ
2 , τ̂

τ
3 )). In addition,

the emitter E receives at E six time stamps from the other two emitters Ẽ and Ê , viz,
p
˜E′ ≡ (τ̃ τ1 , τ̃

τ
2 , τ̃

τ
3 ) emitted at Ẽ ′ ∈ W̃ from Ẽ , and p

̂E′ ≡ (τ̂ τ1 , τ̂
τ
2 , τ̂

τ
3 ) emitted at Ê ′ ∈ Ŵ

from Ê . Actually, p
˜E′ and p

̂E′ are the 3-positions of, respectively, Ẽ
′ and Ê ′ in the three-

dimensional emission grid. Moreover, E sends at E the time stamp τ1 received at U by

the user U .
In addition, two of the three time stamps received at Ẽ ′ are sent by E at E ′: τ̃ τ1 , and

by Ê at Ê ′′: τ̃ τ3 ; and we have a similar situation for Ê ′ (see Fig. 3).

The user can then deduce the 3-position pE of the event E in the emission grid:

pE ≡ (τ1, τ2, τ3) ≡ (τ1, τ̃
τ
2 , τ̂

τ
3 ), and the two 3-positions p

˜E′ and p
̂E′ of the two events Ẽ ′

and Ê ′ respectively. In addition, τ̃ τ2 is emitted by Ẽ at Ẽ ′, and τ̂ τ3 is emitted by Ê at Ê ′.
Also, these two 3-positions are obtained from four time stamps emitted from four events,

namely, E ′ and Ê ′′ for Ẽ ′, and E ′′ and Ẽ ′′ for Ê ′ (see Fig. 3).

Actually, the user receives 3× 7 time stamps, i.e., three sets of data, namely, dE, d ˜E

and d
̂E such that

• dE is received at U ∈ UW : dE ≡ (τ1, (τ̃
τ
1 , τ̃

τ
2 , τ̃

τ
3 ), (τ̂

τ
1 , τ̂

τ
2 , τ̂

τ
3 ), idE) ,
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• d
˜E is received at Ũ ∈ UW : d

˜E ≡ (τ̃2, (τ̂
τ̃
1 , τ̂

τ̃
2 , τ̂

τ̃
3 ), (τ

τ̃
1 , τ

τ̃
2 , τ

τ̃
3 ), id˜E) ,

• d
̂E is received at Û ∈ UW : d

̂E ≡ (τ̂3, (τ
τ̂
1 , τ

τ̂
2 , τ

τ̂
3 ), (τ̃

τ̂
1 , τ̃

τ̂
2 , τ̃

τ̂
3 ), id̂E) ,

where idE , id˜E and id
̂E are identifiers of the emitters (see Fig. 4).

Fig. 4 The sets of time stamps defining, with the three identifiers idE , id˜E and id
̂E , the three

data dE , d ˜E and d
̂E received and recorded by the user U at, respectively, U , Ũ and Û on the

worldline UW of U .

From now on, we consider only the sets of events represented in Fig. 3.

3.1 A first procedure of localization without quadrometric grid

The user can, then, also deduce three future light-like vectors generating the future null

cone at E, namely, k̂E, k̃E and kU
E , such that

k̂E ≡ pE − p
̂E′ ≡

−−→
EP̂E ,

k̃E ≡ pE − p
˜E′ ≡

−−→
EP̃E ,

kU
E ≡ pU − pE ≡

−−−→
EPU

E ,

where PU
E ≡ U and pU is the 3-position of U in the emission grid. The three endpoints P̂E,

P̃E and PU
E define an affine plane AE in the emission grid. Then, a unique circumcircle

in AE contains these three endpoints from which the unique circumcenter C ∈ AE can
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be deduced by standard formulas.3

Now, let e be an event to be localized in the emission grid (in this first procedure,

the quadrometric grid is not defined). It is featured and identified by a set se of physical,

non-geometrical characteristics such as, for instance, its spectrum, its shape, its temper-

ature, etc. We assume also that this event e can be detected and almost instantaneously

physically analyzed by the emitters at the events E, Ẽ and Ê from signals carried by

light rays (for instance) coming from e. Also, we assume that these light rays (which

carry this various physical information) manifest themselves in “bright points” on their

respective “celestial circles” of the emitters at the events E, Ẽ and Ê. For the sake of

illustration, we consider only the celestial circle C � S1 of the emitter E at the event E.

Also, we provide E with an apparatus made of an optical device and a compass to locate

the event e on the celestial circle C.4 For this, we need also to define a projective frame

for C. For this purpose, the two other satellites Ẽ and Ê manifest themselves in “bright

points” on C ascribed to the two events Ẽ ′ and Ê ′ in the past null cone of E. Then, the

projective point [0]E ∈ C is ascribed to Ẽ ′ and k̃E, and the projective point [∞]E ∈ C is

ascribed to Ê ′ and k̂E:

Ẽ ′ ←→ [0]E ←→ k̃E ,

Ê ′ ←→ [∞]E ←→ k̂E .

Then, we assume that RP 1 � C = S1. Note that we cannot ascribe to kU
E and U a

projective point [1]E ∈ C since U is in the future null cone of E, and thus, no corresponding

“bright points” exists on C. Therefore, we need a fourth satellite, namely, S, in addition

to E , Ẽ and Ê . A priori, S does not need to broadcast a supplementary time stamp, but

it must be clearly identified with an identifier idS .

3 That is, we define the two relative vectors with origin U : r̃ = k̃E − kUE and r̂ = k̂E − kUE . Then, in R
3,

the circumcenter C is the point C ∈ AE such that

−−→
UC =

(‖r̃‖2 r̂ − ‖r̂‖2 r̃) ∧ (r̃ ∧ r̂)

2 ‖r̃ ∧ r̂‖2 .

4 The only remaining step utilizing material objects is the angle measurement by compasses. Their use

implies that the angles remain invariant regardless of the size of the compass. And then, this also implies

that there is an absolute notion of angle in contrast to the notions of time and length which depend

on frames. This has historically been considered by Weyl and Gödel with their concepts of “inertial

compass” or “star compass” in objection to Mach’s principle. This absolute feature cannot come from

any geometry of space-time. It is therefore possible that it comes from a different physics, such as

quantum mechanics. Thus, a true compass would be based on the use of a quantum phenomenon of

angle measurement, i.e., a quantum compass. This can be done with a Michelson interferometer (see for

example [15, 16]) or interferences in cold atomic gases. Nevertheless, we think that the compass should

be rather graduated by fractional numbers, for instance, such as those appearing in the fractional Hall

effect.
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Then, another fourth “bright point” ascribed to the third projective point [1]E ∈ C is

observable on C due to S sending its identifier idS from the event S (see Fig. 3):

S ←→ [1]E .

Now, e can be localized in the emission grid by applying the following procedure.

From the “bright points” [∞]E, [0]E and [1]E, and the optical device and compass

embarked on E , the optical observation of e on C provides a projective point [tanα]E ∈ C
with α clearly, numerically evaluated from the projective frame FE ≡ {[∞]E, [0]E, [1]E}.5
Moreover, to [tanα]E there correspond two vectors �v+

E and �v−E such that

�v±E ≡
−−−→
EV ±E ≡ −−→EC ±

(−−→
CP̃E + tanα

−−→
CP̂E

)
,

where C is the circumcenter in AE and, in addition,
−−→
CP̃E and

−−→
CP̂E are ascribed to the

following projective points:

−−→
CP̃E ←→ [0]E ,
−−→
CP̂E ←→ [∞]E .

Now, the two vectors �v±E define a two dimensional affine plane Pe containing e such that

−→
Ee = a+ �v+

E + a− �v−E ∈ Pe

for two reals a± to be determined by applying the same procedure with the two emitters

Ẽ and Ê at, respectively, Ẽ and Ê. Indeed, we deduce the two other analogous affine

planes P̃e and P̂e and two relations as

−→
Ẽe = ã+ �̃v+

E + ã− �̃v−E ∈ P̃e ,
−→
Êe = â+ �̂v+

E + â− �̂v−E ∈ P̂e .

Then, e is the intersection point of P , P̃e and P̂e. Therefore, we obtain six algebraic

linear equations determining completely the a’s and then e in the emission grid. Neither

quadrometric coordinates nor, a fortiori, a quadrometric grid need to be defined. But,

this procedure cannot be generalized to higher dimensional spacetime manifolds: it is

specific to the three dimensional case. Indeed, the intersection point of three, two by two

non-parallel planes always exists in R
3 whereas four, two by two parallel, two-dimensional

hyperplanes do not always have intersection points in R
4.

5 In this definition of [tanα]E , the angles α vary over the interval [−π/2, π/2] of range π on the celestial

circle rather than over the usual interval [0, 2π] of range 2π. Another viewpoint is to consider the “angles”

to vary within the extended set of real numbers R ≡ [+∞,−∞], and then, to write [α]E with α ∈ R

instead of [tanα]E with α ∈ [−π/2, π/2] .
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3.2 The intrinsic procedure of localization

A second, simpler, intrinsic and more effective procedure can be applied using again

optical devices and compasses. It is based on a change of projective frame in C. More

precisely, in the previous procedure with the projective frame FE at E, the three projective

points [∞]E, [0]E and [1]E defining FE were ascribed to, respectively, Ê ′, Ẽ ′ and S. Now,

we consider another projective frame F′E ≡ {[∞]′E, [0]
′
E, [1]

′
E} such that

Ẽ ′ ←→ [τ̃ τ1 ]
′
E ,

Ê ′ ←→ [τ̂ τ1 ]
′
E ,

S ←→ [̊τS]
′
E ,

assuming now that S broadcasts also a fourth emission coordinate τ̊ in addition to the

three emission coordinates τ , τ̃ and τ̂ . Then, in particular, S sends at the event S the

fourth time stamp τ̊S received by E at the event E (see Fig. 3). Moreover, in a similar

way, each other emitter Ẽ and Ê receives, respectively, at Ẽ, the time stamp τ̊
˜S and, at

Ê, the time stamp τ̊
̂S, from S at two events, respectively, S̃ and Ŝ in SW differing in

full generality from the event S ∈ SW . Hence, there are three corresponding emission

events on the worldline of S for these three supplementary time stamps τ̊S, τ̊˜S and τ̊
̂S.

Then, there corresponds also to e another projective point [τe]
′
E with respect to this new

projective frame F′E. As a consequence, the following correspondences

[0]E ←→ [τ̃ τ1 ]
′
E ,

[∞]E ←→ [τ̂ τ1 ]
′
E ,

[1]E ←→ [̊τS]
′
E ,

[tanαe]E ←→ [τe]
′
E

define the change of projective frame and, consequently, the projective point [τe]
′
E (see

Fig. 5).

Fig. 5 The change of projective frame at E.

In homogeneous (projective) coordinates, this change of projective frame is defined

by a matrix K ∈ GL(2,R) such that

K ≡

⎛⎜⎝a b

c d

⎞⎟⎠ ,
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and satisfying the four following additional correspondences:

[0]E ≡

⎛⎜⎝0

1

⎞⎟⎠ K−−−−−−−−→

⎛⎜⎝a

c

⎞⎟⎠ ≡ [τ̃ τ1 ]
′
E where τ̃ τ1 = a/c ,

[∞]E ≡

⎛⎜⎝1

0

⎞⎟⎠ K−−−−−−−−→

⎛⎜⎝b

d

⎞⎟⎠ ≡ [τ̂ τ1 ]
′
E where τ̂ τ1 = b/d ,

[1]E ≡

⎛⎜⎝1

1

⎞⎟⎠ K−−−−−−−−→

⎛⎜⎝a+ b

c+ d

⎞⎟⎠ ≡ [̊τS]
′
E where τ̊S =

(
a+ b

c+ d

)
,

[tanαe]E ≡

⎛⎜⎝tanαe

1

⎞⎟⎠ K−−−−−−−−→

⎛⎜⎝a tanαe + b

c tanαe + d

⎞⎟⎠ ≡ [τe]
′
E where τe =

(
a tanαe + b

c tanαe + d

)
.

Therefore, we obtain⎧⎪⎪⎨⎪⎪⎩
a = − τ̂ τ1 [ τ̃ τ1 : τ̂ τ1 : τ̊S ] d ,

b = τ̃ τ1 d ,

c = [ τ̃ τ1 : τ̂ τ1 : τ̊S ] d ,

where [ τ̃ τ1 : τ̂ τ1 : τ̊S ] is such that

[ τ̃ τ1 : τ̂ τ1 : τ̊S ] ≡
(
τ̃ τ1 − τ̊S
τ̂ τ1 − τ̊S

)
.

Then, we deduce τe such that

τe ≡
(

τ̃ τ1 − τ̂ τ1 [ τ̃ τ1 : τ̂ τ1 : τ̊S ] tanαe

1− [ τ̃ τ1 : τ̂ τ1 : τ̊S ] tanαe

)
. (1)

This is a birational continuous function, and thus bijective. In particular, we obtain the

following important property:

If tanαe = 0, 1 or ∞, then we find that τe = τ̃ τ1 , τ̊S or τ̂ τ1 .

Also, from the other emitters at Ẽ and Ê, the user can compute the three time stamps

pe ≡ (τe, τ̃e, τ̂e) ascribed to the 3-position pe of the event e; therefore localized as expected.

However, it is important to note that the event e is not strictly located in the emission

grid but in a new grid, namely, the quadrometric grid. More precisely, the quadrometric

grid shares with the emission grid 1) the three Cartesian time axes associated with the

three emission coordinates τ , τ̃ and τ̂ , and also, from the property above, 2) the three

emitter worldlines only which are therefore common, point-to-point, to the two grids.

Therefore, rigorously, if e is not a point on an emitter worldline, then, pe must not be

positioned (located) in the emission grid. Moreover, we begin the procedure with time

stamps associated with events located in the emission grid, and we produce sets of time
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stamps to localize events. Then, because the process of location strictly differs from the

process of localization, we must consider that any triplet (τe, τ̃e, τ̂e) constitutes the three

quadrometric coordinates ascribed to the event e positioned in the quadrometric grid

only. This procedure can be outlined with the following diagram:

Emission

coordinates
−−−→ Intrinsic angles

+ non-intrinsic time stamps
−−−→ quadro/pentametric

coordinates

Also, it is important to note that given E, Ẽ and Ê, the event e is unique since it is the

intersection point of three two-dimensional past null cones. Moreover, we can say that

there exists a unique set of three events E, Ẽ and Ê “attached” to e, i.e., we have a

fibered product of past null cones (over the set of localized events e inM) homeomorphic

to M.

Hence, we need four satellites E , Ẽ , Ê and S with their four emission coordinates to

localize an event in the quadrometric grid, and thus, the three dimensional spacetimeM
must be embedded in R

4. For instance, we have the following coordinates in R
4:

E ←→ (τ1, τ̃
τ
2 , τ̂

τ
3 , τ̊S) , (2a)

Ẽ ←→ (τ τ̃1 , τ̃2, τ̂
τ̃
3 , τ̊˜S) , (2b)

Ê ←→ (τ τ̂1 , τ̃
τ̂
2 , τ̂3, τ̊̂S) . (2c)

Also, the data sent by the satellites E , Ẽ and Ê to the user U are reduced. We just need

the following reduced data:

d̄E ≡ ((τ1, τ̃
τ
2 , τ̂

τ
3 , τ̊S), idE , αe, se) ,

d̄
˜E ≡ ((τ τ̃1 , τ̃2, τ̂

τ̃
3 , τ̊˜S), id˜E , α̃e, se) ,

d̄
̂E ≡ ((τ τ̂1 , τ̃

τ̂
2 , τ̂3, τ̊̂S), id̂E , α̂e, se) ,

where se allows matching the three first data sets dE, d ˜E and d
̂E ascribed to e.

Besides, the question arises to know if a fourth coordinate τ̊e can be ascribed also

to the event e as for the three events E, Ẽ and Ê. A coordinate τ̊e could be easily

obtained from the 3-position of e in the quadrometric grid if 1) e is in the future horismos

[8, 17] of a point p on the worldline of S, and then, τ̊p ≡ τ̊e, and 2) S broadcasts also,

in particular to the user, the coordinates of p in the quadrometric grid obtained from

the three other emitters E , Ẽ and Ê . The first condition cannot always be physically

or technologically satisfied since there necessarily exists an origin event o at which the

fourth satellite S begins to run. Hence, we can expect to know the positions of S in the

quadrometric grid only beyond this starting point o on the future worldline SW+
o ≡ {o�

p,where p is an emission event of S} of S contained in the chronological future of o (the

symbol � denotes the chronological order. See [8, 17] for instance).

Nevertheless, it is easy to circumvent this difficulty, assuming that we define the

prolongation SW−
o of the worldline of S in the causal past of o by a given, arbitrary,

nevertheless well-defined by geometric conventions, curve in the quadrometric grid. Now,
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from a given time parameterization of SW−
o , we can also ascribe to any event e a fourth

time stamp τ̊e from the message function f−SW−
o
: e −→ τ̊e [6]. Then, the worldline

SW of

S is such that SW = SW−
o ∪ {o} ∪ SW+

o and we obtain the complete message function

f−SW : e ∈ M −→ τ̊e ∈ R � SW . As a consequence, from f−SW , we obtain an embedding

of M in R
4. This embedding is explicit since we cannot localize events without giving a

fourth time stamp such as, for instance, τ̊
˜S.

Furthermore, we recall that we have a local chart μ : ([tanαe], [tan α̃e], [tan α̂e]) ∈
(RP 1)3 −→ pe = (τe, τ̃e, τ̂e) ∈ R

3, and we consider now the action of PGL(4,R) on the

triplets (tanαe, tan α̃e, tan α̂e). Before, we denote by αi (i = 1, 2, 3) the three angles such

that αe ≡ α1, α̃e ≡ α2 and α̂e ≡ α3, and by τj (j = 1, 2, 3) the three time stamps such

that τe ≡ τ1, τ̃e ≡ τ2 and τ̂e ≡ τ3. We put below the list of formulas we start with.

In particular, we have a first set of formulas from the formulas such as (1) at E ≡ E1,

Ẽ ≡ E2 and Ê ≡ E3:

τi =

(
uQ
i tanαi + vQi
w�

i tanαi + k�
i

)
at Ei , (3)

where we assume w�
i �= 0 and where the superscripts Q and � indicate, respectively,

that uQ
i , v

Q
i , w

�
i and k�

i are homogeneous polynomials of degree 2 (Q ≡ quadratic) and

homogeneous polynomials of degree 1 (� ≡ linear) with respect to the set of time stamps

collected at the three events Ei for the localization of e. Also, we consider that any

element [P ] ∈ PGL(4,R) acts on the three tangents tanαi of the angles αi to give three

other tangents of angles tanα′j such that

tanαi =

(∑3
j=1 P

j
i tanα′j + P 4

i∑3
k=1 P

k
4 tanα′k + P 4

4

)
, (4)

where P ≡ (P a
b ) ∈ GL(4,R) and a, b = 1, . . . , 4 . Then, replacing the three tangents

tanαi in the formulas (3) by the three tangents tanαi given in the formulas (4), we

obtain the following second set of formulas:

τi =

(∑3
j=1 K

j
i tanα′j +K4

i∑3
k=1 H

k
i tanα′k +H4

i

)
, (5)

where the coefficientsKa
b andHa

b (a, b = 1, . . . , 4) are linear with respect to the coefficients

of P ≡ (P a
b ). But, we can easily verify that these formulas can be rewritten in the

following general form:

τi =

(
pQi tanα′i + qQi
r�i tanα

′
i + s�i

)
, (6)

which are of the same form as (3) where pQi , q
Q
i , r

�
i and s�i depend on the remaining angles

differing from α′i . In other words, any projective transformation [P ] provides admissible

changes of projective frames from the given projective frames FEi
to other projective
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frames F•Ei
on the celestial circles at the events Ei. These changes of projective frames

are defined from the whole of the time stamps collected at the three events Ei and not

only at a given particular one. Thus, these changes differ from those from which we

obtained, for instance, the formulas (3). As a consequence, the coefficients pQi , q
Q
i , r

�
i and

s�i depend on all of the time stamps and not only of those collected at the event Ei. In

addition, because we obtain admissible changes of projective frames, then any [P ] is an

admissible projective transformation which can be, therefore, applied to the complete set

of tangents, viz, the set of tangents ([tanα′1], [tanα
′
2], [tanα

′
3]) in the present case or the

set of tangents ([tanα1], [tanα2], [tanα3]) as well.

Besides, remarkably, the (non-unique) element P ∈ GL(4,R) such that, for instance,

P a
a = P i

4 = P 4
3 = 1 , (7a)

P 4
1 = P 3

1 , P 4
2 = P 3

2 , (7b)

P j
i =

1

w�
i

(w�
j + k�

j − k�
i ) , (7c)

where a = 1, . . . , 4, i �= j and i, j = 1, 2, 3, gives the formulas (5) with the same denomi-

nator for all the τi, i.e., we have

3∑
k=1

Hk
1 tanα

′
k +H4

1 =
3∑

k=1

Hk
2 tanα

′
k +H4

2

=
3∑

k=1

Hk
3 tanα

′
k +H4

3 .

(8)

More precisely, we obtain

Hk
i = w�

k + k�
k , H4

i = w�
3 + k�

3 , (9)

for all i, j = 1, 2, 3, and

Ka
i =

1

w�
i

La
i (10)

for all i = 1, 2, 3 and a = 1, . . . 4, where the L’s are homogeneous polynomials of degree 2

with respect to the coefficients wQ
i , u

Q
i , v

�
i and k�

i . The element P is not unique and we

can obtain from other elements in GL(4,R) such a common denominator for the τ ’s.

Beside, from this admissible definition of P , we define the virtual time stamps τ vpi to

be the limits obtained when the tangents tanα′i go to infinity. Then, we get quadromet-

ric points denoted by τ vp which are “aligned” in (element of) a two-dimensional affine

subspace in the three-dimensional quadrometric grid. We call such points τ vp vanishing

points or, equivalently, points at infinity. In addition, this subspace of vanishing points

is (locally) homeomorphic to the two-dimensional projective real space RP 2. It is impor-

tant to note that any set of parallel infinite lines in the three-dimensional space (locally

only homeomorphic to RP 3) of the “3-tangents” ([tanα′1], [tanα
′
2], [tanα

′
3]) ∈ (RP 1)3 are
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transformed by any [P ] into a congruence of infinite lines all crossing at a unique com-

mon vanishing point τ vp in the quadrometric grid. Hence, we can say, somehow, that

each vanishing point is virtually “spangled” by a congruence of crossing lines defining

the extended notions of spatio-temporal perspective or spatio-temporal parallax. In addi-

tion, it is the so-called vanishing point of the projective geometry well-known by painters

drawing perspectives on their canvas; hence the terminology. We suggest the existence of

a sort of “Big-Bang (visual) effect” due to the “spatio-temporal perspective” relative to

these vanishing points. We can note also, for example, that the particular event Ê ′ can
be possibly identified by localization with a vanishing point because one of its projective

coordinates is [∞]E.

3.3 Remarks and consequences

From all these preliminary results, we can now deduce the following.

(1) We have shown that any projective transformation [P ] ∈ PGL(4,R) applied on the

3-tangents ([tanαi])i=1,2,3 is compatible with changes of projective frames on the

celestial circles of the three events, viz., E, Ẽ and Ê (see Fig. 4), attached to any

localized event e.

(2) There always exists a particular projective transformation [P ] equalizing the denom-

inators of the relations (5) and such that these relations express another projective

transformation (PT) in PGL(4,R) from the space of 3-tangents to the space of

localized events. This has two consequences:

(a) The relations (5) with the denominators equalized are the defining relations of a

soldering map from the projective space RP 3 of 3-tangents to the quadrometric

grid of localized events in the spacetime manifold M. This soldering is a bira-

tional local map from RP 3 to the quadrometric grid of M. From (5), it is only

a local map because

(i) if the 3-tangent θe ≡ ([tanα′1], [tanα
′
2], [tanα

′
3]) is considered as an ele-

ment of (RP 1)3, i.e., θe ∈ (RP 1)3 and θe goes to the unique limit θ∞ ≡
([∞], [∞], [∞]) in (RP 1)3, then, there corresponds to θ∞ only one event

e∞ ∈M, and, on the contrary,

(ii) if θe is considered as an element of RP 3, then θe has an infinite set of

possible limits θ∞ ≡ ([λ], [ρ]) ∈ RP 2.

Hence, assuming the soldering map to be non-local would involve 1) the wrong

equivalence (RP 1)3 � RP 3, and 2), that any direction θ∞ ∈ RP 2 is completely

identified with a unique corresponding spacetime event e∞ ∈ M. Thus, we

would go wrong in identifying a spacetime direction (i.e., a topological set of

“parallel” lines in M) with a particular (unique) event in spacetime.

(b) If e� is another localized event attached to three other events E�, Ẽ� and Ê�,

then, there exists a PT from the quadrometric coordinates τ �i of e� to the

quadrometric coordinates τi of e. Thus, M is a so-called generalized Cartan

space “modeled” (locally) on the projective space RP 3 (and not modeled on



Electronic Journal of Theoretical Physics 12, No. 32 (2015) 83–112 99

the vector space Rn usually associated with any tangent vector space defined at

every point of a differentiable manifold) [18, 19].

(3) The PTs (5) with (8) can be recast within the framework of the Lie groupoid

structures. For, we define, first, the data-point Te to be the set of all of the time

stamps collected at the events E, Ẽ and Ê to localize e, and, moreover, we denote

by T the set of all such data-points Te as the localized event e varies. We assume T
to be locally a smooth manifold. We shown that given two data-points Te and Te� ,

then, the 3-position pe� is obtained from the 3-position pe by a PT defined explicitly

and univocally from Te and Te� . Hence, we can define the Lie groupoid G ⇒ Ts×Tt
of PTs such that πs : G −→ Ts ≡ T is the source map and πt : G −→ Tt ≡ T is the

target map of the groupoid. Then, the PTs deduced from any pair (Te, Te�) ∈ Ts×Tt
define sections of G. We can say that the translations from the source Te ∈ Ts to

the target Te� ∈ Tt are in one-to-one correspondence with a PT defining pe� from

pe. In other words, the projective structure given by this set of PTs is not, a priori,

strictly defined onM but rather on the data manifold T . Nevertheless, to any data-

point Te there corresponds a unique localized event e relative to the given RPS. The

reciprocal is less obvious but it is also true. Indeed, e is the unique intersection point

of three past null cones and only one triplet of such null cones have their apexes E,

Ẽ and Ê on the worldlines of the three emitters E , Ẽ and Ê . Therefore, once the

worldlines of E , Ẽ and Ê , S are known from this given RPS, then all the data needed

to localize e can be reached, and thus, Te. Hence, we can say also that we have a

Lie groupoid structure onM meaning that given pe and pe� only we can deduce the

unique PT compatible with the localization process to pass from pe to pe� . This PT

is not applied to the whole of the events in the quadrometric grid. It is not a PT of

the quadrometric grid.

Also, we can say that a mere translation from pe to pe� in the quadrometric grid

is, somehow, “converted” to a PT “compatible” with the localization process. By

“compatible,” we mean that the translations, for instance, in the quadrometric grid

cannot be directly and physically observed by the use of an explicit causal proto-

col, unlike the admissible PTs on the celestial circles. And, moreover, assuming

that we are not permanently drunk, “lucidly” looking at two simultaneous realities

hierarchized according to our degree of consciousness into an “appearance” and a

“reality,” then, if we see only one “manifest image” [20, 21] on each celestial circle,

then, this is just “the” reality... Thus, those transformations, such as the transla-

tions or any transformation in the affine group, must be interpreted or, somehow,

“converted” into a manifest PT. But, we can avoid such conversion or interpretation

considering that the grid has the structure of a projective space onto which trans-

formations in the affine group, for instance, are forbidden, useless or not physical

because physically not manifest or obervable via a causal protocol.

From a more mathematical viewpoint, if, on the one hand, the (finite) local PTs

are defined as elements of a Lie groupoid G over M×M, then, on the other hand,

from the present particular groupoid structure, the corresponding Lie algebroid is
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just identified with the module of vector fields on M. In other words, the tensorial

calculus must be a projective tensorial calculus over M. As a consequence, the

connections on M must be projective Cartan connections.

Moreover, the latter can be restricted to reduced projective connections on each

celestial circle in accordance with a mathematical procedure/computation analogous

to the one giving the transformation formulas (6) on each celestial circle from the

general transformation formulas (5) on the whole of M.

Hence, because the data space T is locally homeomorphic toM (we assume that

it is, actually, diffeomorphic), we can make the geometrical computations on M
in an abstract way, i.e., avoid considering the full set of time stamps of Te and

considering only the restricted set of time stamps directly identified with pe as much

as only infinitesimal, tensorial computations are carried out; and thus, the origin of

the “infinitesimal” projective geometry ofM (but the finite projective geometry on

M×M via the groupoid G).
Lastly, we call the worldline SW of the emitter S an anchoring worldline, and we call

the event a ∈ SW such that the time stamp τ̊a emitted by S at a is such that τ̊a = f−SW (e)

and τ̊a ≡ τ̊e the anchor a of e.

4. The Protocol of Localization in a (3 + 1)-dimensional Space-

time M Modeled on RP 4

The generalization of the previous protocol follows a similar process with five emitters

E , E , Ẽ , Ê and E̊ associated with five emission coordinates, respectively, τ , τ̄ , τ̃ , τ̂ and

τ̊ . They constitute five RPSs made up, each, of four emitters among these five with

the fifth one used for the localization of spacetime events denoted by e. Also, as in the

preceding sections, we denote the user by U and the celestial spheres of the five emitters

by, respectively, C, C, C̃, Ĉ and C̊. The five emission grids of these five RPSs are Euclidean

spaces R4. The passage from any emission grid to another one among the four others is

a change of chart which is well-defined once the dated trajectories of the five emitters in

the grids are obtained from each RPS and recorded.

For the sake of argument, we consider only the RPS made with the first four emitters,

namely, E , E , Ẽ and Ê and its associated emission grid with the four time stamps τ , τ̄ , τ̃

and τ̂ defining the so-called 4-positions of the events in this emission grid. Then, the fifth

emitter E̊ ≡ S is used to complement this, for the localization process. Consequently, the

worldline W̊ of E̊ is the anchoring worldline of the relativistic localization system.

Now, we consider only the set of particular events represented in Figs. 6, 7 and 8 with

their corresponding tables of 4-positions.

Fig. 6 shows the different events, namely, E on the worldline W of E , E on the

worldline W of E , Ẽ on the worldline W̃ of Ẽ and Ê on the worldline Ŵ of Ê , at which
the event e is manifest on their respective celestial spheres. We assume that the data of

localization for e collected at the events E, E, Ẽ and Ê are sent to the user and they are

received at the events, respectively, U , U , Ũ and Û on the worldline UW of U .
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Fig. 6 The event e in the four past null cones of the four events E, E, Ẽ and Ê. This event e

is observed on their respective celestial spheres C, C, C̃ and Ĉ.

Fig. 7 indicates, first, the events E
′
, Ẽ ′ and Ê ′ from which the 4-position of the event

E can be known in the emission grid (see Table 1) and, second, two other events, namely,

E̊ ′ and e, which are observed on the celestial sphere C of the emitter E at E. Obviously,

e is the event to be localized and E̊ ′ is a particular event on the worldline of E̊ which

broadcasts the time stamp τ̊ ′5 to E used for the localization process. Similar figures could

be indicated concerning the three other events E, Ẽ and Ê on Fig. 6, but they are not

really necessary for the description of the localization process presented below. These

unnecessary supplementary figures would indicate supplementary events on the worldline

of E̊ , such as, for instance, E̊• from which (see Fig. 8) the time stamp τ̊ •5 is transmitted

to the event E of Fig. 7. These particular time stamps are denoted by τ̊5 (with different

superscripts) and they are sent from different events on the worldline of E̊ to the other

four emitters.

Also, angles are evaluated on each celestial sphere from optical devices and compasses

providing pairs of angles, namely, (α, β) ascribed to each “bright point” observed and

tracked on any given celestial sphere. Actually, each celestial sphere (homeomorphic to

S2) is considered as the union of a circle and two hemispheres. They are topological sets

of which the first one is a closed set and also the common boundary of the others, which

are two open sets in S2. In addition, each hemisphere is embedded in an open, connected

and simply connected set in RP 2 and, moreover, each hemisphere is supplied with a given

projective frame made of four particular points to be specified in the sequel.
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Fig. 7 The event E in the five future null cones of the five events e, E
′
, Ẽ′, Ê′ and E̊′.

Table 1 The 4-positions of the events in Fig. 7.

Event 4-position

E
′

(τ̄1, τ̄2, τ̄3, τ̄4)

Ẽ′ (τ̃1, τ̃2, τ̃3, τ̃4)

Ê′ (τ̂1, τ̂2, τ̂3, τ̂4)

E (τ1, τ̄2, τ̃3, τ̂4)

E̊′ (̊τ ′1, τ̊ ′2, τ̊ ′3, τ̊ ′4)

One hemisphere is made of a little spherical cap, as small as possible, and the other is

its complementary hemisphere in S2 with their common boundary to be, for instance, a

polar circle. This choice is motivated from metrological considerations. Indeed, we want

the probability of passage from one hemisphere to the other to be as small as possible

when tracking trajectories of moving points on the celestial spheres. Nevertheless, we

provide each celestial sphere with a computing device ensuring, on the polar circle, the

change of projective frame from one hemisphere to the other and, for each moving point,

recording the signature of its passage, viz, a plus or minus sign. As a consequence, we can

track more completely moving “bright points,” and then, we can position these points in

only one specified, given system of projective coordinates common to the two hemispheres

minus a point (the north pole for instance) to which is ascribed an identifying symbol

instead of two angles. Then, we can establish the correspondences between the pairs of

angles in the two hemispheres and on the polar circle.
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Fig. 8 An example of successive events E̊′, E̊•, E̊◦ and E̊∗ on the anchoring worldline of E̊
transmiting their coordinates τ̊5 towards the four events E, E, Ê and Ẽ.

We usually represent one hemisphere embedded in RP 2 by a two-dimensional disk

in R
2 to which is added one-half of the polar circle. Then, we have projective frames

made of the four projective points [∞, 0], [0,∞], [0, 0] and [1, 1] with the first two on

the polar circle (see Fig. 9). Also, a projective point [tanαe, tan βe] is ascribed to the

event e observed on each celestial sphere. More precisely, one of the two projective

spaces RP 2 attached to the celestial sphere C of E at the event E is represented in

Fig. 9. Also, a first projective frame FE ≡ {[∞, 0]E, [0,∞]E, [0, 0]E, [1, 1]E} attached to

this projective space is represented providing the projective coordinates [tanα, tan β]E.

Also, a second projective frame F′E ≡ {[∞, 0]′E, [0,∞]′E, [0, 0]
′
E, [1, 1]

′
E} is defined from a

change of projective frame from FE to F′E. This change of frame is based on pairs of

numerical values given, for instance, by the first pair of time stamps, namely, (τ1, τ2)

obtained from the first emitters E and E .

More precisely, we define the first four correspondences:

e ←→ [tanαe, tan βe]E ←→ [τEe , τ̄Ee ]′E ,

E
′ ←→ [∞, 0]E ←→ [τ̄1, τ̄2]

′
E ,

Ẽ ′ ←→ [0,∞]E ←→ [τ̃1, τ̃2]
′
E ,

Ê ′ ←→ [0, 0]E ←→ [τ̂1, τ̂2]
′
E ,
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Fig. 9 The projective disk at the event E associated to the celestial sphere C of the emitter E .

but with the additional correspondence

E̊ ′ ←→ [1, 1]E ←→ [̊τ ′5, λ]
′
E
,

where λ is a time value free to vary at this step of the process. Other correspondences

can be chosen. All can be brought back to any fixed, given one once the changes of charts

between the five possible emission grids are known. Thus, one correspondence only can

be used to present the localization protocol.

Also, it is important to note that τ̊ ′5 can be one of the four other time stamps received

at E̊ ′ by E̊ from the four other satellites, i.e., it can be equal to τ̊ ′1, τ̊
′
2, τ̊

′
3 or τ̊

′
4. But, these

four values are clearly independent on the whole of the other time stamps such as, for

instance, τ1, τ̂3, τ̃4, etc., involved in the localization process, all the more so since these

time stamps τ̊ ′i depend on the worldline of E̊ . Hence, τ̊ ′5 is considered as an independent

time variable in the process—so, a fifth supplementary time stamp indexed by the number

5. In addition, the parameter λ is, actually, well-defined, as shown in the sequel, from

the complete description of the process of localization.

Furthermore, we can set the Table 2 of attributions based on the following pairs of

time stamps: τ1 and τ2 for E, τ2 and τ3 for E, τ3 and τ4 for Ẽ, and τ4 and τ1 for Ê (only

the correspondences [angles]←→ [time stamps] are indicated in this table; the others are

not need for the explanations given below and they are indicated by the marks “∗ ∗ ∗”).
Then, we determine the change of projective frame in RP 2 on the celestial sphere C
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Table 2 Attributions of time stamps, angles and events.

E E Ẽ Ê E̊ event
pair of

time stamps

— E
′

Ẽ′ Ê′ E̊′ e

E — [∞, 0]E [0,∞]E [0, 0]E [1, 1]E [tanαe, tanβe]E (τ1, τ2)

— [τ̄1, τ̄2]
′
E [τ̃1, τ̃2]

′
E [τ̂1, τ̂2]

′
E [̊τ ′5, λ]′E [τEe , τ̄Ee ]′E

E• — Ẽ• Ê• E̊• e

E [∞, 0]E — [0, 0]E [0,∞]E [1, 1]E [tan ᾱe, tan β̄e]E (τ2, τ3)

*** — *** *** [̊τ•5 , λ̄]′E [τ̄Ee , τ̃Ee ]′
E

E∗ E
∗

— Ê∗ E̊∗ e

Ẽ [0,∞]
˜E

[0, 0]
˜E

— [∞, 0]
˜E

[1, 1]
˜E

[tan α̃e, tan β̃e] ˜E (τ3, τ4)

*** *** — *** [̊τ∗5 , λ̃]′˜E [τ̃
˜E
e , τ̂

˜E
e ]′

˜E

E◦ E
◦

Ẽ◦ — E̊◦ e

Ê [0, 0]
̂E

[0,∞]
̂E

[∞, 0]
̂E

— [1, 1]
̂E

[tan α̂e, tan β̂e] ̂E (τ4, τ1)

*** *** *** — [̊τ◦5 , λ̂]′̂E [τ̂
̂E
e , τ

̂E
e ]′

̂E

of E at E. For this, we must compute the matrix K as

K =

⎛⎜⎜⎜⎜⎝
a d g

b e h

c f k

⎞⎟⎟⎟⎟⎠ (11)

associated with this change of frame. This matrix K is defined from the following corre-
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spondences in R
3:

E
′
: [∞, 0]E ≡

⎛⎜⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎟⎠ K−−−−−−−−→ [τ̄1, τ̄2]
′
E ≡

⎛⎜⎜⎜⎜⎝
a

b

c

⎞⎟⎟⎟⎟⎠ where

{
τ̄1 = a/c

τ̄2 = b/c

Ẽ ′ : [0,∞]E ≡

⎛⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎠ K−−−−−−−−→ [τ̃1, τ̃2]
′
E ≡

⎛⎜⎜⎜⎜⎝
d

e

f

⎞⎟⎟⎟⎟⎠ where

{
τ̃1 = d/f

τ̃2 = e/f

Ê ′ : [0, 0]E ≡

⎛⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎠ K−−−−−−−−→ [τ̂1, τ̂2]
′
E ≡

⎛⎜⎜⎜⎜⎝
g

h

k

⎞⎟⎟⎟⎟⎠ where

{
τ̂1 = g/k

τ̂2 = h/k

E̊ ′ : [1, 1]E ≡

⎛⎜⎜⎜⎜⎝
1

1

1

⎞⎟⎟⎟⎟⎠ K−−−−−−−−→ [̊τ ′5, λ]
′
E ≡

⎛⎜⎜⎜⎜⎝
a+ d+ g

b+ e+ h

c+ f + k

⎞⎟⎟⎟⎟⎠ where

⎧⎨⎩τ̊ ′5 =
(

a+d+g
c+f+k

)
λ =

(
b+e+h
c+f+k

)

e : [tanαe, tan βe]E ≡

⎛⎜⎜⎜⎜⎝
tanαe

tan βe

1

⎞⎟⎟⎟⎟⎠ K−−−−−−−−→ [τEe , τ̄Ee ]′E ≡

⎛⎜⎜⎜⎜⎝
u

v

w

⎞⎟⎟⎟⎟⎠ where

{
τEe = u/w

τ̄Ee = v/w

and

u = a tanαe + d tan βe + g ,

v = b tanαe + e tan βe + h ,

w = c tanαe + f tan βe + k .

From the above, we deduce the four following linear equations:

(τ̄1 − τ̊ ′5) x+ (τ̃1 − τ ′5) y + (τ̂1 − τ ′5) = 0 , (12a)

(τ̄2 − λ) x+ (τ̃2 − λ) y + (τ̂2 − λ) = 0 , (12b)

(τ̄1 − τEe ) x tanαe + (τ̃1 − τEe ) y tan βe + (τ̂1 − τEe ) = 0 , (13a)

(τ̄2 − τ̄Ee ) x tanαe + (τ̃2 − τ̄Ee ) y tan βe + (τ̂2 − τ̄Ee ) = 0 , (13b)

where x ≡ c/k and y ≡ f/k, and where x, y, λ, τEe and τ̄Ee are the unknowns. From the

system (12), we obtain, first, the values for x and y, and second, from (13), we obtain
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the pentametric coordinates τEe and τ̄Ee such that

τEe =
P (λ, τ̊ ′5, tanαe, tan βe)

P0(λ, τ̊ ′5, tanαe, tan βe)
, (14a)

τ̄Ee =
P (λ, τ̊ ′5, tanαe, tan βe)

P0(λ, τ̊ ′5, tanαe, tan βe)
, (14b)

where P , P and P0 are polynomials of degree one with respect to λ and τ̊ ′5 of which the

coefficients are polynomials of degree one with respect to tanαe and tan βe.

We also compute the four other pairs of time stamps ascribed to the event e, i.e.,

(τ̄Ee , τ̃Ee ), (τ̃
˜E
e , τ̂

˜E
e ) and (τ̂

̂E
e , τ

̂E
e ) (see Table 2), respectively, obtained at the events E, Ẽ

and Ê. We obtain expressions similar to (14) with respect to the other λ’s, τ5’s, tanα’s

and tan β’s . And then, we set the following constraints:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
τEe = τ

̂E
e ,

τ̄Ee = τ̄Ee ,

τ̃Ee = τ̃
˜E
e ,

τ̂
˜E
e = τ̂

̂E
e .

(15)

These constraints are well-justified because any event e has only one 4-position. Then,

we deduce four equations of the form

λ1 =

(
uλ2 + w

w λ2 + r

)
, (16)

for any pair (λ1, λ2) of distinct λ in the set {λ, λ̄, λ̃, λ̂} from which we deduce one quadratic

equation for each λ with coefficients independent of the other λ’s but, nevertheless, de-

pending on the angles and the various time stamps τ . Therefore, we have proved that

each λ has a value which is independent on the other λ’s. But, in addition, the λ’s must

also be independent of the angles because they are ascribed to the projective points [1, 1]

independently of the events such as e. Hence, we can arbitrarily fix the values for the

λ’s. The natural choice is to set the following:

λ ≡ τ̊ ′5 , λ̄ ≡ τ̊ •5 , λ̃ ≡ τ̊ ∗5 , λ̂ ≡ τ̊ ◦5 . (17)

In return, from (16) with (17), we deduce also four fractional relations between, on the

one hand, the α’s, and, on the other hand, the β’s. The general form of these relations

is the following. For instance, for tan βe, we have:

tan βe =

(
u tanαe + ū tan ᾱe + ũ tan α̃e + û tan α̂e + r

w tanαe + w̄ tan ᾱe + w̃ tan α̃e + ŵ tan α̂e + s

)
, (18)

where the coefficients u, ū, etc., depend on the time stamps except those ascribed to the

localized event e.
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We then obtain the 4-position pe ≡ (τe, τ̄e, τ̃e, τ̂e) for e in the grid such that τe ≡ τEe ,

τ̄e ≡ τ̄Ee , τ̃e ≡ τ̃
˜E
e and τ̂e ≡ τ̂

˜E
e depending on the four angles αe, ᾱe, α̃e and α̂e and the

time stamps. For instance, the pentametric coordinate τe satisfies

τe =

(
p tanαe + p̄ tan ᾱe + p̃ tan α̃e + p̂ tan α̂e + q

m tanαe + m̄ tan ᾱe + m̃ tan α̃e + m̂ tan α̂e + n

)
. (19)

As a result, from 1) the form of this expression which is the same for each pentametric

coordinate of the 4-position of e, and 2) following the same reasoning as in the preced-

ing section for a (2 + 1)-dimensional spacetime, the group PGL(5,R) acts on M via a

projective transformation applied to the four tangents tanαe, tan ᾱe, tan α̃e and tan α̂e.

Now, we can almost completely paraphrase what we described from p. 96 in the

preceding section, adding just one time stamp τ̄ and another supplementary angle ᾱ.

And then, following the same reasoning, we deduce thatM is modeled on RP 4 and that

it is embedded in R
5. Finally, we denote by τ̊ the fifth pentametric coordinate of the fibers

of the submersion R
5 to M. This supplementary pentametric coordinate τ̊ is, actually,

defined from the anchoring worldline W̊ following similarly the method indicated at the

end of the last section.

Lastly, the present protocol is based on the particular class of pairs of time stamps

specified in the last right column of Table 2. The pentametric coordinates ascribed to

each event e would differ for a different class of pairs. Hence, we can obtain different,

possible localizations for the same event e: a result which can be baffling only if we assume

that localization is an absolute, intrinsic property of each spacetime event independent

of any process. But, after all, we are already faced with this situation when producing

atlases of charts for manifolds. In the same way, we just need to know the changes of

localization charts (pentametric grids) which are, actually, deduced naturally from the

changes of charts defined by the changes of emission grids. Therefore, localization and

location as well cannot be intrinsic processes.

5. Conclusion

Even though spacetime is represented by a four-dimensional manifold, the localization

processes show that spacetime cannot be physically apprehended if its manifold counter-

part is not embedded geometrically in a five-dimensional manifold modeled locally on a

four-dimensional projective space. Then, the spacetime manifold must be considered as

a generalized Cartan manifold endowed necessarily, as a consequence, with a projective

Cartan connexion [19].

Also, the space and time splitting ascribed usually to the four dimensions of spacetime

should be enhanced to encompass a fifth dimension. Then, to be complete, a supplemen-

tary notion should be added to space and time.

Besides, the present pentametric protocol can be explicitly applied to the determina-

tion of stellar positions of emitting sources, standing inside or outside the Milky Way for

instance, or, more generally, at any distance in the universe. The fundamental advantage
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of this protocol is that patterns of, for instance, starfields can be obtained directly with no

use of any intermediate method or model of light bending by massive stellar bodies such

as the PPN method for instance [22, 23, 24, 25, 26, 27]. With the pentametric protocol,

the evaluations of the patterns of starfields are direct (no mathematical simulations) since

the stellar positions are not obtained from measurements of spatial parallaxes followed

by a simulated model-dependent reconstruction of the light ray trajectories. Moreover,

the pentametric localization protocol provides spacetime positions which encompass and

are sensitive to the whole of physical phenomena producing light ray deflections. Hence,

these spacetime positions are, somehow, “nature-dependent” (e.g., Jupiter in [25]) mean-

ing not absolute in an abstract way and meaning also that they follow what we call the

“Whitehead’s paradigm” on the systems of measurements (see pp.196–197, Chap. IX,

“The Ultimate Physical Concepts” in [28]):

“ Furthermore the admission of stratifications of nature bears on the formulation of

the laws of nature. It has been laid down that these laws are to be expressed in dif-

ferential equations which, as expressed in any general system of measurement, should

bear no reference to any other particular measure-system. This requirement is purely

arbitrary. For a measure-system measures something inherent in nature; otherwise it

has no connexion with nature at all. And that something which is measured by a par-

ticular measure-system may have a special relation to the phenomenon whose law is

being formulated. For example the gravitational field due to a material object at rest in

a certain time-system may be expected to exhibit in its formulation particular reference

to spatial and temporal quantities of that time-system. The field can of course be ex-

pressed in any measure-systems, but the particular reference will remain as the simple

physical explanation.”

And this paradigm is, in some way, the opposite of the “Hilbert’s paradigm” inherent to

the present day general relativity (see p.61 in [29]):

“Was nun das Kausalitätsprinzip betrifft, so mögen für die Gegenwart in irgend einem

gegebenen Koordinatensystem die physikalischen Größen und ihre zeitlichen Ableitun-

gen bekannt sein: dann wird eine Aussage nur physikalischen Sinn haben, wenn sie

gegenüber allen denjenigen Transformationen invariant ist, bei denen eben die für

die Gegenwart benutzten Koordinaten unverändert bleiben; ich behaupte, daß die

Aussagen dieser Art für die Zukunft sämtlich eindeutig bestimmt sind d. h. das

Kausalitätsprinzip gilt in dieser Fassung:

Aus der Kenntnis der 14 physikalischen Potential gμν, qs in der Gegenwart folgen alle

Aussagen über dieselben für die Zukunft notwendig und eindeutig, sofern sie physikalis-

chen Sinn haben.”6

6 “As for the principle of causality, the physical quantities and their time-rates of change may be known

at the present time in any given coordinate system; a prediction will then have a physical meaning only

when it is invariant with respect to all those transformations for which exactly those coordinates used for

the present time remain unchanged. I declare that predictions of this kind for the future are all uniquely

determined; that is, that the causality principle holds in this formulation:

From the knowledge of the 14 physical potentials gμν , qs, in the present, all predictions about the same

quantities in the future follow necessarily and uniquely insofar as they have physical meaning.”(translation
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Pascual-Sánchez, L. Floŕıa, A. S. Miguel, and F. Vicente, Proceedings of the XXIII
Spanish Relativity Meeting (EREs2000), pages 53–65, World Scientific Publishing
Company, Incorporated, (Valladolid, 6–9 September 2000) 2001.

[12] B. Coll, A Principal Positioning System for the Earth, in Proceedings of the
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