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Abstract— A key requirement for effective control of quadro-
tor vehicles is estimation of both attitude and linear velocity.
Recent work has demonstrated that it is possible to measure
horizontal velocities of a quadrotor vehicle from strap-down ac-
celerometers along with a system model. In this paper we extend
this to full body-fixed-frame velocity measurement by exploiting
recent work in aerodynamic modeling of rotor performance and
measurements of mechanical power supplied to the rotor hub.
We use these measurements in a combined attitude and velocity
nonlinear observer design to jointly estimate attitude and body-
fixed-frame linear velocity. Almost global asymptotic stability of
the resulting system is demonstrated using Lyapunov analysis of
the resulting error system. In the current work, we ignore bias
and leave it for future work. The performance of the observer
is verified by simulation results.

I. INTRODUCTION

Inertial measurement systems have a long history of being

used for estimating the orientation of aerospace vehicles

such as spacecrafts, aircrafts and missiles [5]. Most orien-

tation estimators are based on the principle of observing

known vectorial directions. For micro-aerial vehicles such as

quadrotors, the two most commonly used vectorial measure-

ments are the gravity and Earth’s magnetic fields. In earlier

work, Mahony et. al [10] showed that with just one vectorial

measurement along with angular velocity can be used to

estimate roll and pitch angles and gyroscope biases. This

approach has been applied extensively in practice for attitude

estimation in quadrotor vehicles using the accelerometers

as a gravity estimate, even though the assumptions do not

hold exactly in this case [12]. In particular, if the inertial

accelerations of the vehicle are significant, then they need to

be subtracted from the accelerometer measurement to obtain

the true gravity vector measurement. Global Positioning

Systems (GPS) can be employed for this purpose [6] but

high rate absolute position and velocity measurements are a

luxury that most mobile robots operating in urban and indoor

environments lack. Recent investigations into the dynamics

of quadrotor vehicles have revealed that the horizontal drag

force affecting a quadrotor vehicle is proportional to the

horizontal body frame velocity [3], [4], [11] and that this

force can be effectively measured using a triad of body
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mounted accelerometers [12]. As a natural extension of this,

other authors have demonstrated that these accelerometer

measurements can be combined with body mounted gyro-

scope measurements to obtain an estimate of the horizontal

velocity of the quadrotor vehicle, along with its attitude [1],

[9].

In this paper we consider the problem of designing a

nonlinear observer for the full body-fixed-frame velocity

along with the attitude of a quadrotor vehicle. The paper

makes two principal contributions: Firstly, we show how

aerodynamic modeling of the rotors can be used along

with the accelerometer measurements and measurements

of rotor speed and motor shaft torque available in some

electronic speed controllers, to measure the full body-fixed-

frame velocity of a quadrotor vehicle. This measurement de-

pends directly on accelerometer measurements and is always

subject to high level of noise. To address this, we propose

a nonlinear observer in the spirit of Hua [6], but posed in

the body-fixed-frame. The second principal contribution of

the paper is to use a matrix decomposition of the general

R
3×3 matrix that appears in this observer design in order

to identify the orthogonal part of the observer directly. This

provides a direct estimation of the attitude of the vehicle

without requiring a second stage orientation observer as

was necessary in prior literature. The performance of the

proposed observer is verified by simulation.

The paper has four sections in addition to the present

introduction. In Section II we introduce the model and some

mathematical definitions. In Section III we use momentum

theory to show how the full body-fixed-frame velocity can

be estimated from only an inertial measurement unit (IMU)

and a suitable electronic speed controller (ESC). Section IV

presents the proposed observer and provides a stability proof

for its performance while Section V presents some simulation

results to verify the performance of the proposed observer.

II. BACKGROUND

This section introduces the kinematic model underlying

the observer problem considered and defines some Lie theory

terminology that will be used in the sequel.

Consider a quadrotor vehicle as a rigid airframe with four

independent rotors. A body-fixed frame denoted {B}, is

attached to the vehicle, and an inertial frame {A} is fixed to

the ground. Following the usual convention in aerospace, the

z-axis of the inertial frame is pointing downwards and the

body-fixed frame corresponds to the inertial frame when the

vehicle is in hover and oriented to the north. Let m denote the

mass of the vehicle. Let V ∈ {B} ≡ R
3×1 denote the linear
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velocity and Ω ∈ {B} ≡ R
3×1 denote the angular velocity

of the body frame {B} with respect to the inertial frame

{A} expressed in {B}. Let R ∈ SO(3) denote the rotation

matrix representing the orientation of the body-fixed frame

{B} with respect to the inertial frame {A}. The gravitational

acceleration expressed in the inertial frame {A} is given by

g−→e 3 where −→e 3 = [0; 0; 1] is the unit vector in the z-axis.

Since the mass m of the airframe of a quadrotor is a scalar

constant, we can write a scaled version of the linear dynamics

of the vehicle as

V̇ = −Ω× V + gR⊤−→e 3 −
1

m
T−→e 3 −

1

m
H,

where T ∈ R denotes the vertical thrust and H ∈ R
3×1

the horizontal drag force generated by the rotors. For slow

moving quadrotors, H⊤−→e 3 = 0. More details on the thrust

and drag terms are provided in Section III where we discuss

the aerodynamics of a quadrotor in detail. In this paper, we

will not be concerned with the attitude dynamics and there

is no need to model them.

The second order linear kinematics of a quadrotor are

given by

V̇ = −Ω× V + gR⊤−→e 3 + a, (1)

where a ∈ {B} is the specific acceleration of {B} with

respect to {A} expressed in {B}. That is a is the sum of

all the exogenous accelerations applied to the rigid-body.

Coriolis and gravitational accelerations are associated with

the internal dynamics of the rigid-body and are not modeled

by the specific acceleration. Clearly, the second order kine-

matics and the scaled dynamics are closely related. However,

we draw an important distinction associated with the nature

of the exogenous signals. In particular, the second order

kinematics incorporate the specific acceleration a, which in

our case can be measured using an inertial measurement unit

(IMU), while the dynamics incorporate the forces T and H

that we will model using an aerodynamic analysis. Trivially,

one has

a = −
1

m
T−→e 3 −

1

m
H. (2)

Given that a is measured, then this equation provides direct

measurements of T and H . In practice, this measurement

should be treated with care due to high noise levels in a

as well as possible bias effects. However, the information

provided by this correspondence lies at the core of a number

of recent works for velocity and attitude estimation for

quadrotors [1], [9], [11], [12].

The system model that we consider consists of the second

order linear kinematics along with the first order attitude

kinematics

V̇ = −Ω× V + gR⊤−→e 3 + a, (3a)

Ṙ = RΩ×, (3b)

where the linear operator (.)× maps any vector in R
3×1 to

its corresponding skew-symmetric matrix in so(3) such that

x×y is equal to the cross product x× y for all x, y ∈ R
3×1.

Define |.| to be the Euclidian norm in R
3×1 and ||.|| to

be the Frobenius norm in R
3×3. That is for all A ∈ R

3×3,

||A|| =
√

tr(ATA), where tr(.) is the trace.

The set SO(3) denotes the special orthogonal Lie-group

and so(3) denotes its Lie-algebra, the set of skew-symmetric

matrices. Define U(3) to be the set of all invertible upper

triangular including entries along the diagonal, matrices in

R
3×3. It is easily verified that U(3) is a Lie-group with

Lie algebra u(3) given by the set of all upper triangular

matrices: that is including upper triangular matrices that

are not invertible. Any invertible matrix A has a unique

decomposition into an orthogonal and upper triangular part

A = UQ, Q ∈ SO(3), U ∈ U(3).

The factorisation is locally unique, and globally unique if

the diagonal elements of U are required to be positive.

Observe that the Lie-algebra’s so(3) and u(3) span R
3×3

in a natural manner under the usual vector space addition of

matrices. Let Pas (anti-symmetric) and Put (upper-triangular)

denote the associated projections onto so(3) and u(3) respec-

tively. For any matrix A ∈ R
3×3 given by

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ,

then one has

Pas(A) =





0 −a21 −a31
a21 0 −a32
a31 a32 0



 ∈ so(3),

and

Put(A) =





a11 a12 + a21 a13 + a31
0 a22 a23 + a32
0 0 a33



 ∈ u(3).

It is easily verified that P2

ut = Put and P
2

as = Pas. Moreover,

Put(A) + Pas(A) = A,

for any matrix A. It is straightforward to verify that

Pas(Put(A)) = 0 and Put(Pas(A)) = 0.

III. AERODYNAMIC POWER AND ESTIMATION OF V

This section presents a lumped model for the aerodynam-

ics of a quadrotor. The approach is based on recent work in

measuring aerodynamic power for quadrotor applications [3].

The model is based on using simplified momentum theory to

relate thrust, horizontal drag force and aerodynamic power

and combining these relationships with (2).

A. Horizontal drag force

There are several recent works [1], [4], [9], [11], [12]

that have discussed and exploited models for horizontal drag

force in estimating attitude and velocity for quadrotor and

other aerial vehicles. The horizontal force associated with

induced drag, blade flapping, and translational drag [4] all

manifest as bilinear functions of horizontal velocity and

thrust magnitude

H = −TKrV ∈ {B}, (4)



where T ∈ R is the thrust,

Kr =





c̄ 0 0
0 c̄ 0
0 0 0



 ,

and c̄ > 0 is a lumped parameter that models the combined

linear drag coefficients. In contrast, parasitic drag depends

quadratically on vehicle velocity and since we consider

quadrotors operating in near hover conditions, its contribu-

tion is negligible.

B. Vertical thrust force

Modeling the thrust or vertical force of a rotor is complex

because of the dependence of thrust on the induced velocity

vi of air passing through the rotor; that is air velocity at the

rotor plane that is induced by action of the rotor in generating

thrust and separate from the relative wind experienced due

to the motion of the vehicle through the air.

We will assume that the aerodynamic conditions across all

four rotors are similar and there is an ‘average’ rotor speed

̟ that can be used to model the aerodynamic performance of

the quadrotor using momentum theory. We will also assume

a single average induced velocity vi for all four rotors. We

will use vector notation for the induced velocity vi ∈ {B}.

However, following the lead of classical helicopter books

[8], only the vertical component of the induced velocity is

considered in the aerodynamic model. That is

vi = viz
−→e 3,

where viz ∈ R is a scalar. We will assume that all rotors

have the same flapping angles and generate the same aero-

dynamic drag forces. These assumptions are reasonable if

the quadrotor is flying in near hover conditions.

Consider a control volume for a single rotor shown in

Figure 1. Momentum theory for a single rotor yields [8]

Tk = 2ρAvizU,

where Tk denotes the thrust associated with rotor k, ρ is the

density of air, A is the area of a rotor disc, and

U = |vi − V | (5)

is the magnitude of the total wind velocity, including both

vehicle velocity and induced velocity of the air through the

rotor. Note that the wind due to the vehicle motion is −V ,

the negative of the vehicle motion. Let c1 = 8ρAtotal ∈ R,

then the total thrust generated by all four rotors is modeled

by

T = c1v
i
zU. (6)

Unlike the classical helicopter analysis found in books such

as Leishman [8], where only the steady-state performance

in the separate lift or drag directions is required, we will

provide a combined model that includes transient effect for

power in the rotor and both thrust and drag in a single model.

The aerodynamic power Pa supplied to the air consists of

two components: vertical PT and horizontal PH power,

Pa = PT + PH , (7)

Fig. 1. Momentum theory control volume and rotor hub showing the

various powers for one of the rotors. In the control volume, we have the
axis definition for {B} which may not always align with the rotor tip path
plane. Vc = −Vz is the climb velocity described in the helicopter literature.

associated with providing thrust and overcoming drag respec-

tively.

The power associated with motion of the air in the vertical

direction is [8]

PT = T (viz − Vz), (8)

where Tviz is the induced power (required to operate the

rotor and overcome induce aerodynamic forces) and −TVz

is the power to climb. Note that due to the choice of axis,

when Vz < 0 the vehicle is ascending and −TVz is positive

as expected. In the horizontal plane one has

PH = −H⊤V > 0, (9)

where H ∈ {B} is a vector quantity that lies uniquely in

the horizontal plane and hence only the horizontal velocity

contributes to the power PH .

To account for losses such as tip loss and rotational wake,

there is an an efficiency factor between the mechanical power

supplied and the aerodynamic power at steady state. We refer

to this efficiency as the figure of merit (FoM) which is a

number between 0 and 1 and is obtained from static thrust

tests [4]. It follows that the mechanical power Pm, supplied

to the rotor hub factors into

Pm = Pr +
1

FoM
Pa, (10)

where the power supplied to accelerate or decelerate the rotor

is Pr = I̟ ˙̟ . If the torque on the rotor shaft is τ , then

the mechanical power supplied to the rotor hub is given by

Pm = τ̟. The torque τ can be measured by identifying

motor parameters and measuring current. The rotor speed

̟ is measured in the operation of all Electronic Speed

Controllers (ESCs) and a complementary filter for estimating

˙̟ is provided in [3]. It follows that Pr and Pm can be

measured, and once FoM is identified then Pa can be treated

as a measured variable.

Counting equations, one has two constraints from (4)

(note that although this is a compound equation with three

components, only the two associated with the horizontal rotor

plane contain meaningful information), and one constraint



from both (6) and (8) in six unknowns Vx, Vy, Vz, v
i
z, H ,

and T . However, adding the constraint measurement (2) that

has three additional constraints ensures that this system of

equations can be resolved algebraically.

Given that a is measured, then T , Vx and Vy can be solved

for directly using (2) and (4). This is the same approach used

in [1], [4], [9], [11], [12] to measure horizontal velocity of the

vehicle. From (4) and (9) and using T , Vx and Vy then PH

is computed. It follows that using (7) and (10) then PT can

be computed. With PT known, then (8) is used to compute

(viz − Vz). Finally, this is used to compute the total wind

velocity U and substituted into (6) to compute vi = viz
−→e 3.

Once viz is computed the z-axis velocity Vz is available by

substituting back into the known value of (viz − Vz).
The key outcome of this algebraic process is the compu-

tation of a measured value of the body-fixed frame velocity

V = (Vx, Vy, Vz). We emphasise that this “measurement”

is independent of orientation of the vehicle, unlike the

approximations made in prior work [1], [4], [9], [11], [12].

The assumptions on the aerodynamic conditions still limit

applications to those where the vehicle is in hover or near

hover conditions. However, the additional identification of

z-axis velocity provides the potential for a more advanced

observer design than developed in prior works.

IV. OBSERVER DESIGN

In this section, a nonlinear observer for estimating the

body-fixed-frame velocity for a quadrotor is proposed. The

approach is based on deterministic Lyapunov design tech-

niques and draws heavily from the approach pioneered in

[6].

For a quadrotor vehicle with an inertial measurement unit

(IMU), the angular velocity Ω and specific acceleration a

are available. If the same vehicle is equipped with electronic

speed controllers (ESCs) that measure both rotor speed and

combined torque to all four motors then the mechanical

power supplied to the rotor hubs can be measured. As we

have seen in Section III, this is sufficient to provide a

measurement of the body-fixed-frame velocity V ∈ {B} of

the vehicle. If the IMU is also equipped with magnetometers,

then these can be used to provide an additional measurement

µ = R⊤µ̊ ∈ {B}

for µ̊ ∈ {A} the inertial “known” magnetic field. In prac-

tice, the magnetic field measurement is often corrupted by

onboard magnetic fields and cannot be used for attitude

estimation. For this reason we will initially develop the

proposed observer in the case where the magnetic field is

not available.

The goal of the observer design is to provide estimates

V̂ ∈ R
3 and R̂ ∈ SO(3) of the body-fixed-frame velocity

and attitude of the quadrotor. We will distinguish between

the true velocity V̊ (t) and the measured velocity V (t) in

the following theorem, for the sake of clarity, although the

deterministic stability analysis is based on the relationship

V (t) = V̊ (t).

Assumption 1 Assume that the trajectory of the quadrotor

is sufficiently smooth such that Ω(t), Ω̇(t), V̇ (t) and V̈ (t)
are bounded signals.

Theorem 1 Consider system (3) with Ω, a and V measured.

Consider the observer

˙̂
V = −Ω× V̂ + gX⊤−→e 3 + a− k1∆1,

V̂ (0) = V (0) (11a)

Ẋ = U̇ R̂+ U
˙̂
R, X(0) = U(0)R̂(0) (11b)

where k1 > 0 is a scalar gain and X = UR̂ is the upper-

triangular orthogonal decomposition of a general matrix

X ∈ R
3×3. The dynamics of U and R̂ are given by

U̇ = −k2gUPut(U
−1−→e 3(V̂ − V )⊤R̂⊤),

U(0) = I3 (12a)

˙̂
R = R̂Ω× + k2R̂∆2, R̂(0) = I3 (12b)

∆1 = V̂ − V (12c)

∆2 = −gR̂⊤
Pas(U

−1−→e 3 (V̂ − V )⊤R̂⊤)R̂, (12d)

where k2 > 0 is a scalar gain. Suppose that Assumption 1 is

satisfied, then for almost all initial conditions, the estimate

V̂ (t) → V̊ (t) and R̂⊤−→e 3 → R⊤−→e 3.

Proof: Define a velocity error

Ṽ = V̂ − V.

The time derivative of Ṽ is given by

˙̃
V =

˙̂
V − V̇

= −Ω× Ṽ + (X −R)⊤g−→e 3 − k1∆1.
(13)

Define a candidate Lyapunov function

L :=
1

2
Ṽ ⊤Ṽ +

1

2k2
||X −R||2.

The time derivative of L satisfies

L̇ = Ṽ ⊤(X −R)⊤g−→e 3 − k1Ṽ
⊤∆1+

1

k2
tr((X −R)⊤(U̇ R̂+ k2X∆2))

(14)

= tr(Ṽ ⊤(X −R)⊤g−→e 3)
︸ ︷︷ ︸

A

+

1

k2
tr((X −R)⊤(U̇ R̂+ k2X∆2))

︸ ︷︷ ︸

B

− k1Ṽ
⊤∆1.

︸ ︷︷ ︸

C

(15)

Since the rotation matrix R is unknown, the innovation terms

∆2 and U̇ must be chosen properly in order to cancel the

expressions A and B in the previous equation while ∆1 is



chosen to make L̇ negative. Considering just terms A and B

from above, one has

tr(Ṽ ⊤(X −R)⊤g−→e 3) +
1

k2
tr((X −R)⊤(U̇ R̂+ k2X∆2))

= tr((X −R)⊤(g−→e 3 Ṽ ⊤ +
1

k2
U̇ R̂+X∆2))

=
1

k2
tr((X −R)⊤(k2g

−→e 3Ṽ
⊤R̂⊤ + U̇ + k2UR̂∆2R̂

⊤)R̂)

=
1

k2
tr((X −R)⊤UΓR̂), (16)

where the matrix Γ ∈ R
3×3 is given by

Γ = k2gU
−1−→e 3 Ṽ ⊤R̂⊤ + U−1U̇ + k2R̂∆2R̂

⊤.

Since X can be an arbitrary matrix, then the only choice to

cancel terms A and B from (15) for all possible X is to set

Γ ≡ 0. Using the projectors defined in Section II, one can

split Γ into its components

Γ = Pas(Γ) + Put(Γ), (17)

with

Pas(Γ) = k2gPas(U
−1−→e 3 Ṽ ⊤R̂⊤) + k2R̂∆2R̂

⊤

Put(Γ) = k2gPlt(U
−1−→e 3 Ṽ ⊤R̂⊤) + U−1U̇

since ∆2 = −∆⊤
2

, Pas(U
−1U̇) = 0 and Put(k2R̂∆2R̂

⊤) =
0. Substituting (12d) for ∆2 and (12a) for U̇ , it is easily

verified that Pas(Γ) = 0 = Plt(Γ) and hence Γ ≡ 0.

Substituting (12c), one obtains

L̇ = −k1Ṽ
⊤ Ṽ ≤ 0. (18)

Since the time derivative of L̇ is semi-negative definite and

L is positive definite then Ṽ and X are bounded. In view

of (13) and Assumption 1, one deduces that
˙̃
V is bounded

and it follows that L̈ is also bounded. This is sufficient

to ensure that L̇ is uniformly continuous along trajectories

of the system. Applying Barbalat’s lemma [7] ensures the

convergence of L̇ → 0 that implies the convergence of Ṽ to

0.

The same procedure is performed to prove that
¨̃
V is

bounded (since Ω̇,
˙̃
V , Ẋ and

˙̂
R are bounded) and conse-

quently to demonstrate the uniform continuity of
˙̃
V . Bar-

balat’s lemma ensures the convergence of
˙̃
V to 0 which

implies from (13) the convergence of X⊤g−→e 3 to R⊤g−→e 3.

Finally, substituting X = UR̂, one sees that R̂⊤U⊤−→e 3 →
R⊤−→e 3. Taking norms, one has |U⊤−→e 3| → 1, that is the

(3, 3) entry of U converges to unity and U⊤−→e 3 → −→e 3. It

follows that R̂⊤−→e 3 → R⊤−→e 3 by continuity.

Since R̂⊤−→e 3 → R⊤−→e 3, then this observer will effec-

tively identify the pitch and roll components of the attitude

of a quadrotor. The remaining degree of freedom in the

orientation, corresponding to yaw rotation around the −→e 3

axis is unobservable without additional measurements. If

magnetometer measurements are available, then the filter

can be augmented with these measurements to obtain full

estimation of the attitude.

V. SIMULATION RESULTS

In this section, we illustrate through simulation results,

the performance and robustness of the proposed observer.

Simulations are performed for a model of a quadrotor aerial

vehicle. The complete observer scheme is shown in Figure 2.

Ωa

a
V̂x

V̂y

V̂z

R̂

Pm

Pr

ϖ
controller

power

measurements

from

Velocity
Attitude

V z observer

V y velocity

V x
and

Fig. 2. Observer scheme

The trajectories of both V (t), a(t) and R(t) are generated

assuming that the vehicle performs circular motion in the

inertial frame combined with a sinusoidal changes of altitude.

The vehicle’s linear velocity, given in the inertial frame is

v(t) = [0.5 sin(α1t); 0.5 sin(α1t+
π
2
); sin(α2t)] ∈ {A} with

α1 = 1

2
and α2 = 1

3
. For the observer given by (11), the

gains are k1 = 10 and k2 = 1. If Rx(θ), Ry(θ), Rz(θ) are

the rotations about the x, y, z-axis respectively by θ, then the

initial conditions are R̂(0) = Rx(10)Ry(−20)Rz(30) and

U(0) = [.5 0 0; .2 .3 0; .4 .5 .2], ensuring that R̂ ∈ SO(3) and

U is an upper triangular matrix. In the following, we assume

that we can measure Pa = FoM(Pm−Pr). In terms of prac-

tical implementation, [3] showed that Pa can be measured

from the current and ̟ along with a complementary filter

which estimates ˙̟ onboard an electronic speed controller

board [2]. We also consider that the onboard IMU gives the

specific acceleration and angular velocity measurements. In

order to have a more realistic simulation, a random signal

with a constant power spectral density is added to all inputs

of the observer. The range of this signal is in accordance

with the sensors used. For the accelerometer measurements,

a high frequency noise of 200% the magnitude of typical

accelerations experienced by such vehicles is added.

The noise in Ω of relative magnitude 20% is also added.

For the Pa used, the experimental results obtained in [3]

showed that the estimated values have relative noise that

are under 10%. Hence 10% noise was added to Pa. The

performance of the proposed observer is shown in Figures 3

and 4. The plots show the convergence and the performance

of the proposed observer for the three body velocities. Note

that despite the magnitude of noise in the input as well

as in V̄ , the outputs of the observer are smooth and track

the true real body velocities. Finally, Figure 4 shows the

convergence of R̂⊤e3 to R⊤e3 and the convergence of

U(3, 3) to 1.
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Fig. 3. Results of the simulated V ∈ {B}. With V being the true velocity,
we can see that despite the 200% noise in accelerometer measurements that
is reflected in V̄ determined algebraically as in Section III, the estimated

velocities V̂ track quite well the true velocity V . This is indicated by the

small difference ǫ between estimated V̂ and true V .
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Fig. 4. Attitude error and scaling factor. We can see that the norm of

the attitude error between estimated (R̂⊤~e3) and true (R⊤~e3) converges to

zero in less than 0.5s which implies R̂⊤~e3 → R⊤~e3. This performance is
further reaffirmed by U~e3 → 1.
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